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Abstract

The knowledge of the baryonic and non-baryonic matter distribution of the universe is fundamental in
understanding evolution and structure formation in the Universe. However, a large fraction of them cannot
be detected directly. One of the major ways of indirectly detecting the baryon distribution is the cross-
correlation between thermal Sunyaev Zel’dovich (tSZ) effect by the hot baryons and Weak Gravitational
Lensing by the dark matter. There have been multiple attempts/detection of this cross-correlation in the
past. However, newer and better data promises to yield better constraints as attempted in this thesis.
Moreover, doing an independent analysis of this cross-correlation will also be useful in detecting systematic
errors, if any, in the existing skymaps. We compute the tSZ skymaps using a methodology independent
from the Planck collaboration’s pipelines, and then cross-correlate these skymaps with tangential shear due
to lensing potential, to compare with the existing constraints on halo astrophysics and cosmology and in
the process detect for the first time, hot diffuse baryons present in conglomeration of galaxies. This work
consists of two parts- independent generation of tSZ skymaps using Unsupervised machine learning (which
was done partially in collaboration with Prof Rishi Khatri) and cross-correlating the tSZ skymaps with
RCSLenS and KiDS weak lensing surveys. Finally, we attempt to connect the observed detection with
physics modelling of diffuse baryons in halos.
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Chapter 1

Introduction

Though the general physical processes driving cosmological evolution and large scale structure formation
is reasonably well understood, many of the details which are essential for understanding how galaxies and
clusters of galaxies form and evolve are still unclear. One such important detail is the knowledge of the
distribution of baryonic and dark matter in galaxies and clusters. We know that stellar mass accounts for
only approximately 10% of the baryonic mass in the universe and the rest resides in diffuse components
such as halos[2, 3]. This makes it hard to estimate the mass distribution of matter in galaxies and clusters.

Historically, diffuse components are measured via X-Ray emissions and thermal Sunyaev-Zel’dovich (tSZ)
effect; but because of the sensitivity of the experiments, just relying on these will help us detect only the
hot and dense diffuse components. A possible way of observing these diffuse components would be to use
gravitational lensing fields; since these lensing fields provide an estimate of the matter distribution in the
large scale structure of the universe. Especially, with the recent RCSLens dataset and the ongoing KiDS
dataset (Section 4.1.1) from the galaxy surveys, weak lensing has become a precision tool in understanding
large-scale structure. Whereas, our lack of understanding of baryonic physics at small scales, leads to un-
certainty in our estimates of matter distribution using gravitational lensing.

The missing insights from both the tSZ probes and weak lensing datasets from sky surveys can be com-
pensated by cross-correlating tSZ probes with the weak lensing fields. Since cross-correlations also have
the advantage of being immune to systematic effects which doesn’t correlate with the signals, it provides
a powerful method for extracting information from these probes and help us understand the astrophysical
processes governing these scales.

A recent attempt at cross-correlation between the two probes found that the data supports WMAP-7yr
cosmology more than the Planck Cosmology[1]. While this result was found using the tSZ maps provided by
the Planck collaboration, the results beg the question of systematic deviations existing in the skymaps pro-
vided by the Planck collaboration. It is therefore useful to consider independent algorithms which extract
information from the multi frequency CMB observations such as WMAP and Planck. The methodology
presented by us here is the first attempt in using unsupervised machine learning to perform component
separation using a model independent methodology.

This work consists of 2 parts- (a) We use an independent methodology to extract the tSZ maps from
Planck’s frequency data. This provides us with hints, incase there exists systematic deviations from the
Planck skymaps. (b) We compute cross-correlations between tSZ maps and Weak Lensing maps by various
sky surveys.

This thesis is divided as follows, we initially review the relevant physics of the data and the machine
learning concepts we would be using (Chapter 2). After which, we explain our component separation
technique which uses unsupervised machine learning techniques (Chapter 3). We then compute the cross-
correlation with various maps and datasets. (Chapter 4). We finally present our results and concluding
remarks (Chapter 5).
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Chapter 2

Relevant Physics and Algorithms

In this chapter, we will provide a quick introduction to the concepts involved. We first review Weak Lensing
and SZ Effect (Sections 2.1 and 2.2). We then review machine learning concepts and techniques we will
be using (Section 2.3), and then we finally review space partitioning algorithms and data structures which
help us compute correlation functions efficiently (Section 2.4)

2.1 Weak Lensing

Weak Lensing is the phenomenon when a gravitational potential distorts the shape of astrophysical sources.
We know that according to general relativity, light bends when passing though a gravitational potential.
This creates a lens-like effect which distorts the sources in the background. If the lensing is weak enough
that the images are simply distorted instead of forming multiple images, it is known as weak lensing.

Starting with the lensing equation ~β = ~θ − ~α, where, ~θ is the true position of the source, ~β is the ob-
served position of the source and ~α is the deviation. The deviation ~α can be derived as a function of the
gravitational potential, using the geodesic equation,

αi(~θ) =
∂Φ(~θ)/c2

∂θi
(2.1)

where, Φ is the projected gravitational potential[4] and c is the speed of light.

Since, we would be interested in the change in the flux of the incoming light due to the intermediate
lensing potential, we would like to consider the change in the image size per unit change in the source size.
This gives us a measure of distortion by the intermediate mass distribution,

∂βi
∂θj

=


1− ∂α1

∂θ1

∂α1

∂θ2
∂α2

∂θ1
1− ∂α2

∂θ2

 (2.2)

The distortion tensor (Ψij) is then defined as,

Ψij ≡
(

1 0
0 1

)
− ∂βi

∂θj
(2.3)

which captures the deviation from identity. Note that, in the absence of intermediate lensing potentials,
the distortion tensor goes to zero. This means, that the image we see would be the same size as the source.
The elements of the distortion tensor1 are given by,

Ψij =

(
κ+ γ1 γ2
γ2 κ− γ1

)
(2.4)

1The distortion tensor is symmetric because we can write the deviation ~α as a gradient of the projected gravitational
potential
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Here, the convergence term κ corresponds to the change in size of the object and the shear terms γ1 and
gamma2 corresponds to the shear in the particular direction. The shear terms contribute to the change in
the shape of the objects. For a perfectly circular object, the ellipticities of the images which arise due to
the shear terms, can be written in terms of γ1 and γ2. In the weak lensing regime, γ1 ≈ e1/2 and γ2 ≈ e2/2
where, e1 and e2 are the ellipticities of the galaxies[4]

The shear terms γ1 and γ2, along with the convergence κ can be written in terms of the deflection α
(Eq. (2.2)),

κ =
1

2

(
∂α1

∂θ1
+
∂α2

∂θ2

)

γ1 =
1

2

(
∂α1

∂θ1
− ∂α2

∂θ2

)

γ2 =
∂α1

∂θ2
=
∂α2

∂θ1

(2.5)

which can then be written in terms of the gravitational potential,

κ =
1

2c2

(
∂2Φ

∂θ21
+
∂2Φ

∂θ21

)
γ1 =

1

2c2

(
∂2Φ

∂θ21
− ∂2Φ

∂θ21

)
γ2 =

1

2c2

(
∂2Φ

∂θ1∂θ2

) (2.6)

These relationships between the gravitational potential and the distortion tensor, allows us to understand
various astrophysical and cosmological processes by computing the mass distribution from the shear.

Different linear combinations of γ1 and γ2 are defined in order to remove the polar dependence on these
terms,

γT = −γ1 cos(2φ)− γ2 sin(2φ)

γX = −γ1 cos(2φ) + γ2 sin(2φ)
(2.7)

Since, for the case of spherically symmetric mass distributions, γx is zero, it serves as a very useful null
test. Any deviation from zero for γx can be considered as systematic error in our calculations.

While trying to compute the shear from observed ellipticities of the galaxies, we have no way of knowing
in advance, the intrinsic ellipticities of the galaxies to study the effect of shear. The only way to eliminate
the effect of these intrinsic ellipticities is to compute the average of shear over a particular region. Since,
the intrinsic ellipticites of the galaxies are randomly oriented; while computing the average of a particular
component of shear the intrinsic component cancels out. A way of computing these averages is correlation
functions, which quantifies the correlation between the shears of galaxies separated by a distance r. The
correlation function would be zero without the presence of an lensing field, since the intrinsic ellipticities
are randomly oriented. When there is an intermediate gravitating body, the shears are correlated because
of it.

In the following example, for the case of cross-correlation between γT and some scalar field y, let us
consider the observed shear of the galaxies consisting of two parts. One from the intrinsic shear of the
galaxies and the second from the lensing gravitational body,

〈γobsT y〉 = 〈γshearT y〉+ 〈γintrinsicT y〉

= 〈γshearT y〉+���
���:

0
〈γintrinsicT y〉

= 〈γshearT y〉

(2.8)
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this way, the effect of weak lensing can be computed directly from the ellipticities without worrying about
accounting for the intrinsic shapes of galaxies. Note that, even in the case of auto-correlation (correlation
function between two shears), the intrinsic part cancels out but we are susceptible to the systematic noise
in our measurements of shear which can correlated.

2.2 SZ Effect

Compton scattering is one of the major astrophysical processes which couple matter and radiation. Sunyeav
- Zel’dovich effect (SZ Effect) is one such example of Compton scattering at low energies, which electrons in
clusters of galaxies get scattered by the Cosmic Microwave background radiation. This induces a temper-
ature anisotropy at a frequency ν. We would specifically be in interested in the comptonization parameter
y, which is a dimensionless measure of the time spent by the radiation in an electron distribution along a
particular line of sight, which is related to the temperature anisotropy ∆T ,

∆T (~r)

T0
= y(~r)S

(
hν

kBT0

)
y(~r) =

∫
ne(~r)σT dl

kBTe(~r)

mec2
(2.9)

where,

• S(x) is the tSZ spectral dependence S(x) = x coth(x/2)− 4[5],

• ne is the electron concentration,

• σT is the thompson scattering cross section (since for low energies, we can take the non relativistic
approximation),

• Te is the temperature of the electron cloud,

• T0 is the present-day CMB temperature,

• h and kb are the Planck and Boltzmann constant respectively.

When we construct skymaps for the SZ effect, we are using the change in intensity to measure this comp-
tonization parameter to give us insights into the distribution of electron clouds in the universe.

To use these maps to compute astrophysical or cosmological parameters, we compute the cross-correlation
between the two quantities. Cross-correlation is a powerful statistical tool since it helps us avoid system-
atic biases, which might be present in these two quantities individually. Cross-correlating the quantities
mean that the systematic biases won’t affect our final outcome as the systematic biases from two different
experiments could be assumed to be uncorrelated with each other. (See Fig. 4.4)

2.3 Quick Introduction to Machine Learning

Machine learning is a type of an algorithm which, rather than explicitly coding an algorithm for a partic-
ular function/behaviour, gives the computer the ability to learn that function. Machine learning involves
a training set, from which the computer learns the function of interest, and a validation set where the
computer applies whatever it has learned from the training set and gives us results. Whenever, we say
that the computer learns, we mean a minimization of some cost function, by varying the parameters of
the function the computer is trying to learn. This cost function captures the deviation from the desired
behavior of the algorithm after learning.

We would be particularly interested in a classifier, which can be defined as a function (f : D → [0, 1]n)
which divides the input data (from the domain D which is usually Rm) into n different classes, by assigning
a probability for each of the classes.

We would also be only implementing hard clustering, where the final result is a single cluster value in-
stead of a set of probabilities for each cluster. This is implemented by assigning the value of the cluster to
be the one with maximum probability. In our case, we will be dividing the sky into different classes based
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on their foreground properties, while using the different frequencies as input. Based on our training set,
machine learning can be divided into two categories,

• Supervised Machine Learning

• Unsupervised Machine Learning

2.3.1 Supervised Machine Learning

A machine learning algorithm is said to perform supervised learning when the training set is different from
the validation set and we have the expected learning outcomes as part of our training set. These labeled
training sets consist of an input and an expected output value as part of the examples, and the algorithm
learns the function which relates the input value to the output value based on these training examples. In
this case, the cost function is some sort of deviation from the output value compared to the given output
value in the training examples.

2.3.2 Unsupervised Machine Learning

Unsupervised learning is when a machine learning algorithm has no prior information about the data set
in terms of a training set and the data learns and validates from the same set. In this method only the
raw data is given to the algorithm, and it tries to learn patterns inherent in the data, without any labels
to learn from. This would be really useful for our purposes since it allows us to partition the sky based on
the frequency without any model dependent inputs. We would specifically be using clustering algorithms
and dimensionality reduction algorithms.

Clustering Algorithms Partition the data into different classes based on how every data point is lo-
cated with respect to it’s neighbours. These algorithms have a varying point in the data space which is
representative of the cluster and assign the cluster to the available data based on it’s relationship to this
point.

Dimensionality Reduction Clustering algorithms in higher dimensions tend to be heavily dependent
on the initial seed for the clusters. It is therefore, incredibly useful to reduce the dimentionality of the data
by summarizing the information in fewer number of variables and then performing the clustering in a lower
dimensional space.

2.3.3 Neural Networks

A neural network is a special case of a machine learning algorithm, which has a specific functional form.
The advantage a neural network provides is based on a mathematical theorem that this specific functional
form can approximate any continuous function[6].
A single layer neural network is defined by the following function,

~c = σ(M1~v + ~b1) (2.10)

Where,

• ~v is the Input Data with the dimensionality of our Input variables space,

• ~c is the Output data with the dimensionality of our number of classes,

• ~b is the bias vector with the dimensionality of our number of classes,

• σ is a sigmoidal2 function which acts component wise (also known as the activation function),

• M is a matrix whose elements we will tune as parameters.

The parameters (the elements of the matrix M) can then be tuned based on a cost function, which after
training will help us get the final matrix, which we can use to classify our data. A multi-layer neural
network can be constructed by composition of this, an arbitary number of times. We use Rectified Linear
Unit (ReLU: max(0, x)) as our activation function.

2A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative
derivative at each point.
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2.4 Space Partitioning for quick computation of Correlation func-
tions

In order to compute the correlation function, the nearest neighbours of every galaxy needs to be known.
Computationally, looping over all the galaxies and computing the pairwise distance is a very costly. We
would need an algorithm, which lets us know the nearest neighbour without explicitly computing the dis-
tances. There is a class of algorithms which help us do this, called Space Partitioning Algorithms.
Space partitioning systems are often hierarchical, where the algorithm is applied recursively in order to
partition the regions. These regions are in general stored in the form of a Tree3. Finally when the recursion
stops at the individual points instead of regions. These end points of the tree are known as leaves. We
would specifically be interested in an algorithm called k-D Trees.

2.4.1 k-D Trees

k-D trees is a space partitioning data structure, which constructs the tree based on the proximity of the
points without explicitly computing the distances between the points. k-D Trees are a special case of space
partitioning, called binary space partitioning, where each region is divided into two regions recursively.
This also implies, that each node in the tree we are constructing will be connected to two other nodes.
In this structure, each leaf-node will be a point from the given data. Each non-leaf-node, will also implicitly
divide the space with a hyper plane, which is parallel to the axis and passes through the point corresponding
to the space. The Algorithm goes as follows,

1. Choose the median point along a particular axis, and make that into a parent node.

2. Create 2 regions, based on the hyperplane which divides the same axis along the median point.

3. Create two sub-trees for these two regions, and repeat from step 1, while cycling though all possible
axis for the choice of axis.

(a) A k-d tree partitioning a 2-d
space

(b) A visual representation of the data structure

Figure 2.1: In this example, we can see k-D trees, in action. In Fig. 2.1a we see how every node in a k-d
tree also acts as a hyperplace which divides the space into two parts. This is important since, it helps us
ignore entire segments when traversing the tree. In Fig. 2.1b, We see how the tree like structure of the data
structure enables it. Note that each parent node only contains children on their side of the division

Finding the nearest neighbours then becomes merely the act of traversing the trees. This immensely
speeds up the computation of correlation functions.

3A Tree is a data structure, which is defined recursively, where the values are stored as a collection of nodes, each with a
root value and also acts as a parent for a sub-tree, represented by a collection of linked nodes
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2.4.2 Finding the nearest neighbour

By efficiently, utilizing the properties of the tree; Nearest Neighbour (NN) searchs can be done efficiently
by quickly eliminating large chunks of data. The process of searching for nearest neighbours is analogous to
the process of searching for particular value on the tree. This involves traversing the tree starting from the
root, and choosing the branch at every node. Since, in the case of a binary tree; this involves ignoring the
other branch altogether, we can ignore huge chunks of data without explicitly comparing with the current
neighbours. The Algorithm goes as follows,

1. Start from the root-node of the tree.

2. Compute the distance to the node. Store this value as the best value.

3. Compute the distances to all the children nodes. If any of the values is lesser than the best value.
Choose this node and repeat step 2.

4. Exit the loop when all the children’s distances are greater than the best value, or if you reach the
leaves of the tree.

If instead of searching for the nearest neighbour, we want all the neighbours till a particular distance. We
can also exit the loop once that particular distance is reached and return all the nodes, belonging to a
particular node all the way to the leaves.
We wrote the code in Python implementing the k-d trees algorithm to compute correlation functions.

2.4.3 Ball - Trees

Ball Tree is a variant of the k-D Trees data structure, where each node is partitions the data into two
disjoint sets each associated with a different hypersphere. Each node in this tree defines the smallest ball,
which contains all the data points in it’s subtree. The algorithm for construction and searching for nearest
neighbour is similar to the k-d trees algorithm. We use a Python library (treecorr) which computes two

Figure 2.2: Ball Trees: (A) Initial Hyper-balls (These initializations can be overlapping, but it is made sure
that each hypersphere contains only one point; It’s center) (B & C) Ball-Tree structure constructed for the
available data (Image Courtesy:[7])

point correlation functions, by implementing the ball-tree algorithm.[8]. All the subsequent correlation
functions computed in this thesis uses treecorr.
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Chapter 3

New thermal SZ maps

One of the ways of removing foregrounds from our data is to have a parametric model for the foregrounds
based on known physics and fit the data to these foreground models to get an estimate of the parameters
and use them to eliminate the foregrounds in the data. This is the methodology followed by Commander
pipeline of the Planck collaboration[9] and LIL Method[10]. These methods suffer from being model de-
pendent and the parameters are insufficient to model the foregrounds because various physical processes
contribute to the foreground in a single pixel, making it hard to model these with a single parametric model.
Therefore, it is useful to look at algorithms which are model independent and just use the data to estimate
the foreground characteristics.

Various such blind component separation algorithms have been proposed where only the spectrum of the
signal is needed[11, 12] and have been applied in various variations such as Harmonic space, Needlet frame
etc[13, 14]. Since these blind algorithms require the number of foreground components to be lesser than
the number of spectral channels available, it is necessary to divide the sky with similar foreground prop-
erties into different regions and apply the algorithm separately on those regions to reduce the number
of foreground components. These existing variations try to divide the data into different clusters with
similar foregrounds based on heuristic arguments and our current understanding of the properties of the
foregrounds. We provide a spectral data based approach extending upon this data driven foreground clus-
tering approach[15], which uses the signature of the foregrounds available in the data. Since the data is
clustered only based on the spectra, different regions of the sky can still be in the same cluster based on
their foreground properties. To the best of our knowledge, this is the first attempt at using unsupervised
machine learning for foreground component separation.

In this chapter, first, we review the GILC method (Section 3.1). We then explain our algorithm for
creating the new skymaps using unsupervised machine learning Section 3.2. We then present our results
Section 3.3.

3.1 Generalized ILC

We want to separate out the cosmological signal of interest from the different frequency maps provided by
the Planck collaboration, by subtracting out the different foreground signals. The Generalized ILC is used
to separate out any signal with a known spectrum.

The observed temperature data, in different pixels (positions) and frequency channels can be written as,

T (ν, p) = S(ν)A(p) + F (ν, p) +N(ν, p) (3.1)

Where,

• S(ν) is the spectrum of the signal we are looking for. This is essentially the unit conversion which
let’s us perform ILC to extract any signal of a known spectrum. For eg, in the case of CMB, in
Kcmb units, it is equal to one. ie, the CMB temperature is independent of the frequency and is only
a function of the pixel p.
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• A(p) is the position dependent signal (sky-map) we are looking for.

• F (ν, p) is the sum of all the foreground components in a particular pixel. Since, different foregrounds
with different spectra contribute in each pixel, this is dependent on both the frequency and the pixel
position in the sky.

• N(ν, p) is the noise which is in general dependent on both the frequency channel and the pixel position.

Now, assuming that the signal is a linear combination of the frequency maps. We can write,

ssig(p) =
∑
ν

w(ν)T (ν, p) (3.2)

Since, in the absence of foregrounds and noise, we need to recover back the signal (ie, ssig(p) = A(p)); We
get the following constraint, ∑

ν

w(ν)S(ν) = 1 (3.3)

If we knew the true signal strue(p), we could find the weights (w(ν)) assigned to the different frequencies
by minimising a cost function,

C =
∑
p

(strue(p)− ssig(p))2 (3.4)

C =
∑
p

∑
ν

(F (ν, p) +N(ν, p)) (3.5)

Since, we don’t know the true value of the signal, let us consider an alternate cost function,

C ′ =
∑
p

(ssig(p))
2

(3.6)

C ′ =
∑
p

(strue(p))
2

+ C −
∑
p

strue(p)
∑
ν

(F (ν, p) +N(ν, p)) (3.7)

Since the first term is a additive constant, which is irrelevant to the minimization problem. We see that
C = C ′ if, the third term is zero (ie, The foregrounds and noise are not correlated with the signal). Though
the noise is in general not correlated with the signal, we can’t say the same about the foregrounds. This
leads to a bias, where the ILC also will remove the part of the signal correlated with the foregrounds. This
results in a solution which has lesser power than the actual signal.[15] It has also been previously studied
that, this ILC Bias is significant only for l = 2, and is negligible for all the higher multipoles. It can
however, start affecting the higher multipoles if we increase the number of partitions to a high number.[15]
By minimising the cost, with respect to the constraint Eq. (3.3), We get the following equations for the
weight,

w(i) =

∑
j

D−1ij∑
ij

D−1ij
(3.8)

where,

Dij ≡
∑
p

T (i, p)T (j, p) (3.9)

and where the sum over the pixels (
∑
p

) is done for pixels belonging to a single cluster.
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3.1.1 Combining information from maps with different resolutions

Different resolution maps, has different information. In order to effectively use out algorithm, We need to
find a way to combine these information effectively.[15] Since the noise properties depend on the resolution
of the map used, We need to rebeam all the maps to a common resolution. But, it is not straightforward
to see which resolution map is useful for performing the ILC. Rebeaming all the maps to a lower resolution
means, we loose all the large ` signals. Whereas, rebeaming all the maps to a higher resolution means, the
noise in the lower resolution gets boosted significantly, and these noise dominated maps will contribute less
to the final solution, effectively loosing any information contained in these maps.

We would effectively like a technique, where all the channels with sufficient signal to noise ratio, pro-
vide information. We first rebeam all the maps to gaussian beams with different resolutions. We then
adopt the following technique.

• Rebeam all maps to lowest resolution map and apply the ILC algorithm on the maps. This solution
will have the lowest foregrounds at that resolution since it uses the information from the maximum
number of channels. Let’s label the ILC solutions by index a, i.e. sa(p), with a = 1 corresponding to
the lowest resolution, and a > b implying resolution of map a is higher than map b. We will denote
the corresponding (Gaussian) beams with ba` .

• We, leave the low resolution channels and perform ILC after rebeaming to the next higher resolution.

• Repeat the above step until not enough frequency channels remain to get a viable ILC solution

• Combine the solution in harmonic space, to get the final solution sf (p), or in harmonic space af`m,
with the resolution corresponding to the highest resolution channel with beam bn` , as follows:

af`m = bn`

[
a1`m + (1− b1`)

(
a2`m + (1− b2`)

(
a3`m + · · ·+

(
1− bn−1`

) an`m
bn`

))]
. (3.10)

In the last term in nested brackets in the above equation, we correct the highest resolution solution
with its beam and then use the resulting a`m to fill in only the information not present in the next
lower resolution map, hence the factor of (1 − bn−1` ). We keep repeating this process to fill-in the
information missing from the previous iterations.

3.2 New tSZ maps with Unsupervised Machine Learning

There have been attempts to classify the foregrounds in the data using supervised learning by using simu-
lations to generate the training set[16]. This method involves using the simulations to generate the training
data for different classes based on the different foreground models used in the simulation. We then expect
the machine learning algorithm to learn from these simulations and help us classify the real sky into re-
gions based on it’s foreground properties. This method suffers from being model dependent, similar to the
parametric models of component separation as the algorithm tends to learn only based on the foreground
models fed during the simulation. In order to avoid this, we use unsupervised machine learning which gives
us the advantage of clustering the data in a model independent manner. In unsupervised machine learning,
we take the hard clustering approach, where each data belongs only to a single class. In order to smooth
the boundaries of the partitions like the current ILC algorithms, we repeat the hard clustering multiple
times with different seeds. Since various seeds produce different partitions, and there is no a-priori reason
to consider one partition over the other, we consider all of them with equal probability. We see that this
approach essentially smoothens the boundary and no additional smoothing across the cluster boundaries
are necessary.

3.2.1 ‘k-means clustering’ method

k-means clustering partitions n data points into k clusters, by associating each point to the nearest centroid,
which serves as a representation of that cluster. By minimising the inertia, we partition the space into k-
regions, which serve as the partition for our clusters to be used in ILC. The initial positions are initialized
using k-means++ algorithm in order to avoid the local minimas, which the random initializations can get
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Figure 3.1: In this k-means clustering example, we can see that the points are classified into different
clusters based on their distance to the nearest cluster point. This is an example of unsupervised machine
learning because, the classifications were not given to the algorithm in advance for it to learn

into. The algorithm spreads out the initial cluster centres as much as possible. The data is rescaled with
quartile scaling, to prevent the outliers from influencing the scaling (Refer3.2.2). k-means clustering was
implemented using scikit-learn[17]

Choice of Variables for k-means clustering

Let the frequency maps in KCMB units be denoted by, Ti, where
i ∈ {30, 44, 70, 100, 143, 217, 353, 545, 857}Hz. We obtain the frequency maps from Planck collaboration’s
second data release. We use both the high frequency and low frequency maps together, and the difference
in resolution of these maps, is taken care of by the methodology explained before (Section 3.1.1)

Since the essential idea is to cluster the pixels based on their foreground properties. We capture the
foregrounds by subtracting subtracting the spectra of both our signals of interest from our frequency maps.
We first subtract the CMB. Ai = Ti−T100Hz. Then we subtract out the tSZ, by changing to the correspond-
ing y units. The maps we get are mostly dominated by foregrounds. Apart from clustering these foreground
maps separately (labeled as raw k-means), we divide out the amplitudes of these raw maps to make different
measures, which capture how fast the foreground is increasing or decreasing with frequency similar to the
measure defined in the single component foreground clustering approach previously developed[15] (labelled
as kmeans with m),

y1 = A857 − 24.371A143 y2 = A857 − 7.199A217 y3 = A545 − 14.836A143

y4 = A545 − 4.3826A217 y5 = A353 − 8.215A143 y6 = A353 − 2.4267A217

y7 = A30 − 1.7339A70 y8 = A44 − 1.541A70 y9 = A217 + 3.671A44

y10 = A217 + 5.657A70 y11 = A353 + 13.73A70 y12 = A30 − 1.125A44

(3.11)

Apart from clustering these y-maps separately. We divide out the amplitudes to make different measures,
which capture how fast the foreground is increasing or decreasing with frequency,

m1 = y1/y3 m2 = y2/y4 m3 = y3/y5

m4 = y4/y6 m5 = y7/y12 m6 = y12/y5

m7 = y7/y5 m8 = y7/y8 m9 = y8/y5

(3.12)

By visually inspecting the maps, we choose the 3 measures. m1,m3,m7, and perform k-means clustering
(Appendix A) We also masked the galactic center along with the point sources and clustered the masked
regions separately.

3.2.2 Preprocessing

Before we do machine learning, we need to pre-process the data to remove outliers and heavily contaminated
regions. For this, we first mask the sky and separate the masked and the un-masked regions. We then
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perform machine learning on these two regions separately. Since all our cost functions are metric based, we
need to scale all the different frequency maps into the same range. This makes sure that all the information
in the different frequency maps are used to the same extent.

While there are many ways to perform this scaling, we specifically use quartile scaling, which is robust
to the presence of outliers. Quartile scaling, scales using the percentile values. In our case, we scale the
region between 15-percentile and 85-percentile to a range of 0 to 1. This makes sure that all the frequency
maps are prioritized equally.

Masks

In order to mask the regions which will be dominated by foregrounds, we create masks which cover different
fractions of the sky. We use the Linearized Iterative Least squares method[10] to fit the spectra to a
foreground model and mask 14% of the sky, based on the χ2 value.[18] While calculating the power spectrum,

MASK

0 1

Figure 3.2: A mask where 14% of the sky is covered. We cluster the masked region and the unmasked
region separately, since the foreground dominant masked region may affect the clustering by the presence
of outliers.

we use a stricter condition on the masks (60% of the sky), revealing a lower fraction of the sky. We apodise
the masks by replacing the 1s in the mask by 1 − exp(−9θ2/(2θ2ap)) for θ < θap = 30′, the apodization
angle, where θ is the distance from the nearest masked pixel.

3.2.3 Dimensionality Reduction

We use non-linear dimensionality reduction algorithms in order to reduce the 12 dimensional input data
(CMB and tSZ subtracted maps) to a lower dimension in order to apply the k-means algorithm on it. Unlike
the previous method, we use neural networks to determine the parameters which encode the maximum
information about the data. We use two non-linear dimensionality reduction algorithms.
The two algorithms used are,

• Auto Encoders

• Self Organising Maps

3.2.4 Auto Encoders

Auto Encoder is a neural network where, the output dimensionality is the same as input dimentionality.
With a hidden layer having a smaller dimension. We train the network by use the same data for both input
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and output. The idea is to make the network learn to reduce the dimentionality to a lower dimension and
reconstruct the input data from that (known as encoder and decoder respectively).

We use a denoising auto encoder, made from an fully connected neural network, using L2-norm as the
cost. There are two intermediate layers for both the encoder and the decoder containing seven and three
neurons each. Once the network has been trained we can use the encoder part for dimensionality reduction.
And then the k-means algorithm is used in this lower dimensional space to cluster the pixels. Auto encoders
were implemented using both TensorFlow and PyTorch to test out different architectures[19, 20]. We vary
the learning rate of the neural network by decaying the learning rate, exponentially. The rate of decay
is also considered a hyper-parameter. The hyper-parameters were tuned by performing a random search
trying to minimise the cost as much as possible.

3.2.5 Self Organising Maps

Self organising map reduces the input data to two dimensions by fitting a discrete two dimensional manifold
on the data and then use k-means algorithm on this manifold. Self Organising Maps was implemented using
the somoclu Library[21]. We used a 200×200 grid for testing the performance on FFP6 data, and a 300×300
grid for the clustering using the actual Planck Data.

3.3 Results

After the maps are generated using the above algorithms, We compute the power spectrum using PolSpice[22,
23]. The result of using the various algorithms FFP6 simulations is shown in Fig. 3.4. We see that our

Figure 3.3: A single instance Clustering of the Sky based on foregrounds using various methods (negative
values indicate masked regions)

clustering algorithm is better than the one dimensional version[15]. We hope to compare it with the existing
algorithms using FFP6 simulations. We also see that the neural network method like self organising map
with a 200 × 200 grid performs, very close to the k-means algorithm where the measures are chosen by
hand. It is interesting to note that raw-kmeans performs the same as a self organising map. Seeing that the
k-means algorithm using the m-values as input, performs the best out of the various algorithms explored,
We use that on the frequency maps made available by the Planck collaboration. From Fig. 3.5, We can see
that the new machine learning based method performs better than the existing model based method[10].
Further analysis is necessary to understand the differences between the two maps.
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Figure 3.4: Comparison of the tSZ power spectrum for various methods. In this figure, k-means refers
to power spectrum of maps generated using k-means on m-values.k-means-y refers do directly clustering
using the foreground maps. SOM-200 refers to a self organising map with a grid size of 200 × 200. We
see that all the other machine learning algorithms perform similarly, and better than the one parameter
clustering[15].We can also see that k-means clustering using m-values seem to perform better than the
methods which involve directly using the foreground frequency maps as input
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Figure 3.5: Comparison of the tSZ power spectrum on Planck data using Linearized Iterative Least-squares
(LIL) method and k-means clustering using m-values as inputs. Considering that the large ` exponential
increase in power spectra is because of the noise, we see that the machine learning based approach performs
better
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Chapter 4

Thermal-SZ Weak Lensing Cross
Correlation

Cross-correlation is one of the most powerful probes available to extract the mass distribution of diffuse com-
ponents in the universe. Since, cross-correlation has the advantage of being immune to systematic effects.
We attempt to utilize our new tSZ maps to extract information from the diffuse components. We compute
the cross-correlation while working in the configuration space. This is because, since the galaxy sky surveys
cover a small portion of the sky, the error associated with using a pseudo-C` method by deconvolving the
mask is very high. One of the advantages of working in the configuration space is that the mask is directly
taken care of, since we compute the correlation functions only in the small patches of the sky available to
us. The disadvantage is the computational cost for computing the correlation functions in massive data sets.

This chapter is divided into the following parts, In the first section describes the Lensing survey datasets
used and the systematics involved in computing the correlation functions (Section 4.1), We then describe
the results (Section 4.2) of our attempts to compute the correlation function. We compute the correlation
functions for both the Planck SkyMaps and the skymaps obtained by us in the previous section. We com-
pare the results with the cross-correlation between RCSLenS and Planck Skymaps[1]. We also provide the
first attempt in computing the cross-correlation between the tSZ skymaps and the KiDS Survey. In the
final section, We review the theory of Halo Models which we plan to do next, in an attempt to interpret
the results (Section 4.3).

4.1 Calculation from Data

4.1.1 Observational Data and Sampling

RCSLenS Survey

RCSLenS is the largest public multi-band survey, which is suitable for weak gravitational lensing measurements[24]
It’s parent survey, RCS2[25] is sub-arcsecond multiband imaging survey in the g,r,i,z bands. It covers a
total area of 785 deg2, to a depth of 24.3 mag in the r-band (for a point source at 7σ), carried out with a
MegaCAM camera mounted on the Canada France Hawaii Telescope (CHFT). This area is divided into 14
square patches, from hereon referred to as RCSLenS Fields. The largest of the fields being 100deg2 and the
smallest being 36 deg2. Each square represents a mosaic, which consists of multiple pointings of the 1 deg2

camera field of view. RCSLenS is reanalyzes the data with a dedicated weak-lensing pipeline.

The RCSLenS team used the methodologies developed my the CHFTLenS team, which performed data
reduction with THELI[26]. , Bayesian Model fitting for shear measurement using Lensfit[27], gaussianised
photometry for accurate photometric redshifts[28, 29], Robust field selection based on systematic error
analyses[30]. More details can be found in the original paper[24].

Inorder to filter out only galaxies from our data. We use the following rules,
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• We remove entries with MASK > 1

• We only select entries with weight > 0 and fitclass = 0

• We perform a magnitude cut of magr > 18 which includes all the points in the survey.
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Figure 4.1: In this figure, We show the normalized n(z) for different r-band magnitude (magr) cuts for the
RCSLenS. The posterior redshift probability distribution were found using an BPZ estimate[28]. In our
work we work with magr > 18, Since it doesn’t have an impact on the SNR[1].

KiDS Survey

We use the shear measurements from the Kilo Degree Survey’s KiDS-450 dataset.[31, 32, 33] KiDS is
an ongoing ESO optical survey which will eventually cover 1350deg2 of the sky. Currently, the dataset
covers of 449.7deg2 of the sky, in 5 different patches. It is carried out using the OmegaCAM CCD mosaic
camera mounted at the Cassegrain focus of the VLT Survey Telescope. The data processing consists of
ASTRO-Wise[34, 35] for data reduction from individual exposures in multiple colours to photometry, and
THELI[26, 36, 37] for lensing specific data reduction of r-band images. The shears calculated using Bayesian
model fitting using lensfit [27], and the photometric redshifts are obtained from PSF-matched photometry
and calibrated using external overlapping spectroscopic surveys[28, 32]
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Figure 4.2: In this figure, We show the normalized n(z) for different r-band magnitude (magr) cuts for the
KiDS survey. The posterior redshift probability distribution were found using an BPZ estimate[28]. Here
too we work with magr > 18.We note that the KiDS’ galaxies are farther away than the RCSLenS galaxies
(Fig. 4.1)

tSZ Skymaps

For the tSZ skymaps, We use the maps generated by us as explained in the previous chapter and also the
skymaps provided in the Planck 2015 Public Data Release[38]. Since tSZ skymaps are all skymaps, We use
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Figure 4.3: A visual representation of the RCSLenS and KiDS fields, in galactic coordinates, using Mollweide
projection.

the entire skymap to compute the correlation function in order to provide a large correlation area around
the RCSLens fields, which reduces the statistical noise.

Sampling

We compute the correlation function separately for each of the 14 RCSLens fields or 5 KiDS fields. We
then create jackknife samples of these results and them compute the mean and the standard deviation of
these samples.

4.1.2 Two Point Correlation Functions

Now, In order to compute the two-point correlation functions we work in the configuration space. For
y − γT , we compute the two point correlation function as,

ξy−γT (θ) =

∑
ij

yieijt w
j∆ij(θ)∑

ij

wj∆ij(θ)
(4.1)

where, yi is the y-value from the tSZ maps in pixel i. And eij is the tangential ellipticity of the galaxy j
in the catalogue with respect to pixel i. The tangential ellipticity is corrected for both multiplicative and
additive bias. ∆ij(θ) imposes our binning scheme. It is one if the angular separation between i and j is θ
and zero otherwise, and wj is the lensfit weight (For definition see Reference[39]).

4.1.3 Bias Correction

During the measurement of the ellipticities there exists calibration corrections to account for biases in our
measurement. These are modelled by a multiplicative term and an additive term such that,

gobsi = (1 +m)gtruei + c (4.2)

Estimates of these biases from image simulations are given to us as part of the catalogue and we need to
correct for them before computing the correlation functions. The RCSLens catalogue contains two additive
biases, Detector Bias and Noise Bias, whereas the KiDS catalogue contains only a multiplicative bias which
needs to be corrected for. More information can be found in the respective catalogue information.

4.1.4 Systematic Tests

In order to test for systematics in the data, We perform 2 systematic tests.

• We calculate 〈yγx〉: We can compute this by rotating the sources by 45◦ (ie, e1,new = e2,old) and
e2,new = −e1,old. We saw in a previous section how this will always be zero for spherically symmetric
mass distributions Section 2.1.
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• We randomise the catalogue and find the correlation once again: Since the catalogues are
randomized (un-correlated), The correlation functions will become zero. Any deviations from zero,
will show the existence of biases in our methodology.

in the absence of systematic errors, in our calculation. Both of these tests should give us values close to
zero.

4.1.5 Effect of Masks

Since, we are computing cross-correlations, the effect of point sources and foregrounds which are uncor-
related with the signal should not have an effect on our computations. We verify this by computing the
cross-correlation with various sky masks provided by the Planck Collaboration[38]. These masks are used
to avoid point sources and various other foreground contaminations in our data. We find that these masks
does not have an effect on the cross-correlation computed by us.
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Figure 4.4: We see that the masks does not play a role in the computation of cross-correlations since the
foregrounds and point sources are uncorrelated with the diffuse component signal we are looking for. (a)
RCSLenS Catalogue (b) KiDS Catalogue

4.2 Results

Now, computing the cross-correlation using the Planck sky maps and our own sky maps; we get the results
presented in Figs. 4.5 and 4.6.
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Figure 4.5: Cross Correlation between tSZ and Weak Lensing maps for RCSLens fields. The two sets of
data (Connected Lines) represent the Planck skymaps and the skymaps we generated using unsupervised
machine learning techniques (ML Maps). Comparing it to the existing results,[1] our peak value seems to
be smaller. We would like to point out that since the correlations seem to agree with different skymaps,
The difference could be only in systematics and uncorrelated with the signal.

Since, as shown in Fig. 4.5, we see that the deviation between the two skymaps, don’t manifest when
computing the cross-correlation functions. This is indicative of the fact that the results can be a systematic
deviation or noise uncorrelated with the signal. We would also like to point out the difference between
the KiDS cross-correlation (Fig. 4.6) and RCSLenS cross-correlation such as a smaller peak value of the
correlation and a sharper fall, which could be a artifact of the fact that the KiDS’ galaxies are farther away
than the RCSLenS galaxies (Figs. 4.1 and 4.2)
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Figure 4.6: Cross Correlation between tSZ and Weak Lensing maps for KiDS fields. The Two sets of
data represent the Planck skymaps and the Skymaps we generated using unsupervised machine learning
techniques (ML Maps). We would like to point out that since the correlations seem to agree with different
skymaps, The difference could be only in systematics and uncorrelated with the signal. We would like to
point out that the peak seems to be smaller and broader than the RCSLenS fields. This could be because
of the fact that, the Galaxies part of the KiDS survey are closer than the RCSLenS survey
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4.3 Comparison with theory

We like to compare our observations with theoretical predictions based on Halo models, closely following
the method developed by[2]. Currently we are concentrating on computing the real space cross correlation
ξ = 〈γT − y〉, By using,

ξy−γT (θ) =

∫
d2~l

2π2
Cy−kl cos(2(φ− ψ)) exp(iθ cos(φ− ψ)) (4.3)

Where, φ is the Polar angle with respect to the coordinate system and ψ is the angle between ~l and the
coordinate.

In order to compute the y− k cross correlation power spectra found in Eq. (4.3), we use the 1-halo term as
defined in[40],

Cy−k,1hl =

zmax∫
0

dz
dV

dzdΩ

Mmax∫
Mmin

dM
dn

dM
yl(M, z)kl(M, z) (4.4)

For the halo mass function, We use the form suggested by Sheth and Tormen[41] For the convergence profile
in fourier space, We use

kl =
W k(z)

ξ2(z)

1

ρm
4π

rvir∫
0

drr2
sin(lr/ξ)

lr/ξ
ρ(r;M, z) (4.5)

And for the fourier transform of the projected gas pressure,

yl =
4πrs
l2s

σT
mec2

∫
dxx2

sin(lx/ξ)

lx/ξ
Pe(x;M, z) (4.6)

For electron pressure, We use the universal pressure profile and the NFW model. We plan to use the best
fit parameters for the Pressure profile from the Planck Collaboration and then compare the halo model
predictions from both the Planck and WMAP-7yr cosmologies. To look for any non-gravitational feedback,
we plan to use the method developed by[42], applied to tSZ Cls.
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Chapter 5

Conclusion

To summarize, we used a model independent algorithm using unsupervised machine learning for the problem
of component separation. The algorithm was developed independent of Planck Collaboration’s pipelines.
We saw that the various machine learning algorithms used for component separation improves upon the
existing foreground clustering algorithm, whose performance was on par with the Planck Collaboration’s
pipelines[15]. We saw that, using unsupervised machine learning, we perform better than the model based
methods too[10]. We hope to improve upon the dimensionality reduction algorithms, to eliminate the
need for making a choice of variables for performing the clustering. This would help in extracting the tSZ
skymaps from the frequency maps in a truly model independent basis. We would also like to point out that
the GILC method is robust for extracting any signal with a known spectra, and therefore our method is
useful in extracting any signal in a model independent basis. We hope that, using an independent algorithm
to produce maps with different residuals, would be useful in testing for the effect of foregrounds and any
biases in the existing algorithms, for the estimates of the cosmological parameters.

In the second part of the work, we computed cross-correlation of tSZ with weak lensing surveys to study
diffuse baryons in halos. We saw that the different maps generated do not have an effect on the cross-
correlation, showing that it is a systematic deviation which is uncorrelated with the signal. We also
performed the first ever computation of cross-correlation between tSZ skymaps and weak lensing shear
from the KiDS survey, which detects hot baryons. We are currently attempting to make sense of this by
theoretically modelling the diffuse baryons in halos. We hope to get better constraints on halo astrophysics
and cosmology, and also better understand the systematic deviations from the existing Planck skymaps.
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Appendix A

m-maps

Looking at the m-maps we can say that, m5 and m8 are very noisy. m1,m2,m4 have similar information
and m6,m7,m9 have similar information. And m9 is also more noisier than m7. Therefore, We choose m1,
m3 and m7.

m1

66.1691 89.8698

m2

66.9979 91.1912

m3

16.8916 22.4365

m4

20.5938 25.0586

m5

0.275106 2.3168

m6

-0.0901303 0.238387

m7

-0.12145 0.313742

m8

-5.51448 12.5082

m9

-0.0571936 0.0946997

Figure A.1: The m-maps for planck data (these maps are plotted only from 5 to 95 percentile to avoid the
outliers from scaling the plot)
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Appendix B

A single RCSLenS Field

(a) A heatmap of ellipticity e1

(b) A heatmap of ellipticity e2

Figure B.1: A single RCSLenS field, for a particular z bin. We could see the masking of stellar halos and
other instrumental artifacts in these. Factors like these, also contribute to the reason why Pseudo-C` are
bad for working with galaxy surveys, since they reduce the skyfraction even more

24



Bibliography

[1] A. Hojjati et al., Cross-correlating Planck tSZ with RCSLenS weak lensing: Implications for
cosmology and AGN feedback, Mon. Not. Roy. Astron. Soc. 471 (2017) 1565 [1608.07581].

[2] Y.-Z. Ma, L. Van Waerbeke, G. Hinshaw, A. Hojjati, D. Scott and J. Zuntz, Probing the diffuse
baryon distribution with the lensing-tSZ cross-correlation, JCAP 1509 (2015) 046 [1404.4808].

[3] M. Fukugita and P. J. E. Peebles, The Cosmic energy inventory, Astrophys. J. 616 (2004) 643
[astro-ph/0406095].

[4] S. Dodelson, Gravitational Lensing. Cambridge University Press, 2017, 10.1017/9781316424254.

[5] Planck collaboration, P. A. R. Ade et al., Planck 2013 results. IX. HFI spectral response, Astron.
Astrophys. 571 (2014) A9 [1303.5070].

[6] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (1991)
251 .

[7] S. M. Omohundrol and S. M. Omohundro, Five balltree construction algorithms, 1989.

[8] M. Jarvis, G. Bernstein and B. Jain, The skewness of the aperture mass statistic, Mon. Not. Roy.
Astron. Soc. 352 (2004) 338 [astro-ph/0307393].

[9] H. K. Eriksen et al., CMB component separation by parameter estimation, Astrophys. J. 641 (2006)
665 [astro-ph/0508268].

[10] R. Khatri, Linearized iterative least-squares (LIL): a parameter-fitting algorithm for component
separation in multifrequency cosmic microwave background experiments such as Planck, Mon. Not.
Roy. Astron. Soc. 451 (2015) 3321 [1410.7396].

[11] H. K. Eriksen, A. J. Banday, K. M. Gorski and P. B. Lilje, Foreground removal by an internal linear
combination method: Limitations and implications, Astrophys. J. 612 (2004) 633
[astro-ph/0403098].

[12] M. Remazeilles, J. Delabrouille and J.-F. Cardoso, Foreground component separation with generalised
ILC, Mon. Not. Roy. Astron. Soc. 418 (2011) 467 [1103.1166].

[13] J.-F. Cardoso, M. Martin, J. Delabrouille, M. Betoule and G. Patanchon, Component separation with
flexible models. Application to the separation of astrophysical emissions, 0803.1814.

[14] D. Marinucci, D. Pietrobon, A. Balbi, P. Baldi, P. Cabella, G. Kerkyacharian et al., Spherical
Needlets for CMB Data Analysis, Mon. Not. Roy. Astron. Soc. 383 (2008) 539 [0707.0844].

[15] R. Khatri, Data driven foreground clustering approach to component separation in multifrequency
CMB experiments: A new Planck CMB map, JCAP 1902 (2019) 039 [1808.05224].

[16] H. U. Norgaard-Nielsen and H. E. Jorgensen, Foreground removal from CMB temperature maps using
an MLP neural network, Astrophys. Space Sci. 318 (2008) 195 [0809.2914].

[17] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. Machine Learning Res. 12 (2011)
2825 [1201.0490].

25

https://doi.org/10.1093/mnras/stx1659
https://arxiv.org/abs/1608.07581
https://doi.org/10.1088/1475-7516/2015/9/046, 10.1088/1475-7516/2015/09/046
https://arxiv.org/abs/1404.4808
https://doi.org/10.1086/425155
https://arxiv.org/abs/astro-ph/0406095
https://doi.org/10.1017/9781316424254
https://doi.org/10.1051/0004-6361/201321531
https://doi.org/10.1051/0004-6361/201321531
https://arxiv.org/abs/1303.5070
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1111/j.1365-2966.2004.07926.x
https://doi.org/10.1111/j.1365-2966.2004.07926.x
https://arxiv.org/abs/astro-ph/0307393
https://doi.org/10.1086/500499
https://doi.org/10.1086/500499
https://arxiv.org/abs/astro-ph/0508268
https://doi.org/10.1093/mnras/stv1167
https://doi.org/10.1093/mnras/stv1167
https://arxiv.org/abs/1410.7396
https://doi.org/10.1086/422807
https://arxiv.org/abs/astro-ph/0403098
https://doi.org/10.1111/j.1365-2966.2011.19497.x
https://arxiv.org/abs/1103.1166
https://arxiv.org/abs/0803.1814
https://doi.org/10.1111/j.1365-2966.2007.12550.x
https://arxiv.org/abs/0707.0844
https://doi.org/10.1088/1475-7516/2019/02/039
https://arxiv.org/abs/1808.05224
https://doi.org/10.1007/s10509-008-9912-6
https://arxiv.org/abs/0809.2914
https://arxiv.org/abs/1201.0490


[18] R. Khatri, An alternative validation strategy for the Planck cluster catalogue and y-distortion maps,
Astron. Astrophys. 592 (2016) A48 [1505.00778].

[19] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,
1603.04467.

[20] A. Paszke, S. Gross et al., Automatic differentiation in PyTorch, in NIPS Autodiff Workshop, 2017.

[21] P. Wittek, S. Gao, I. Lim and L. Zhao, somoclu: An efficient parallel library for self-organizing maps,
Journal of Statistical Software, Articles 78 (2017) 1.

[22] G. Chon, A. Challinor, S. Prunet, E. Hivon and I. Szapudi, Fast estimation of polarization power
spectra using correlation functions, Mon. Not. Roy. Astron. Soc. 350 (2004) 914 [astro-ph/0303414].

[23] I. Szapudi, S. Prunet and S. Colombi, Fast clustering analysis of inhomogeneous megapixel cmb maps,
astro-ph/0107383.

[24] H. Hildebrandt et al., RCSLenS: The Red Cluster Sequence Lensing Survey, Mon. Not. Roy. Astron.
Soc. 463 (2016) 635 [1603.07722].

[25] D. G. Gilbank, M. D. Gladders, H. K. C. Yee and B. C. Hsieh, The Red-sequence Cluster Survey-2
(RCS-2): Survey Details and Photometric Catalog Construction, Aj 141 (2011) 94 [1012.3470].

[26] T. Erben, H. Hildebrandt, L. Miller, L. van Waerbeke, C. Heymans, H. Hoekstra et al., CFHTLenS:
the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products, Monthly
Notices of the Royal Astronomical Society 433 (2013) 2545
[http://oup.prod.sis.lan/mnras/article-pdf/433/3/2545/13761746/stt928.pdf].

[27] L. Miller, C. Heymans, T. D. Kitching, L. van Waerbeke, T. Erben, H. Hildebrandt et al., Bayesian
galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii
Telescope Lensing Survey, Monthly Notices of the Royal Astronomical Society 429 (2013) 2858
[http://oup.prod.sis.lan/mnras/article-pdf/429/4/2858/3268972/sts454.pdf].

[28] H. Hildebrandt, T. Erben, K. Kuijken, L. van Waerbeke, C. Heymans, J. Coupon et al., CFHTLenS:
improving the quality of photometric redshifts with precision photometry*, Monthly Notices of the
Royal Astronomical Society 421 (2012) 2355
[http://oup.prod.sis.lan/mnras/article-pdf/421/3/2355/5838743/mnras0421-2355.pdf].

[29] N. Benitez, Bayesian photometric redshift estimation, The Astrophysical Journal 536 (2000) 571.

[30] C. Heymans, L. van Waerbeke, L. Miller, T. Erben, H. Hildebrandt, H. Hoekstra et al., CFHTLenS:
the Canada–France–Hawaii Telescope Lensing Survey, Monthly Notices of the Royal Astronomical
Society 427 (2012) 146
[http://oup.prod.sis.lan/mnras/article-pdf/427/1/146/18231420/427-1-146.pdf].

[31] K. Kuijken et al., Gravitational Lensing Analysis of the Kilo Degree Survey, Mon. Not. Roy. Astron.
Soc. 454 (2015) 3500 [1507.00738].

[32] H. Hildebrandt et al., KiDS-450: Cosmological parameter constraints from tomographic weak
gravitational lensing, Mon. Not. Roy. Astron. Soc. 465 (2017) 1454 [1606.05338].

[33] I. Fenech Conti, R. Herbonnet, H. Hoekstra, J. Merten, L. Miller and M. Viola, Calibration of
weak-lensing shear in the Kilo-Degree Survey, Mon. Not. Roy. Astron. Soc. 467 (2017) 1627
[1606.05337].

[34] E. A. Valentijn et al., Astro-WISE: Chaining to the Universe, ASP Conf. Ser. 376 (2006) 491
[astro-ph/0702189].

[35] K. Begeman, A. N. Belikov, D. R. Boxhoorn and E. A. Valentijn, The astro-wise datacentric
information system, Experimental Astronomy 35 (2013) 1.

[36] M. Schirmer, THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND
MID-INFRARED IMAGING DATA, The Astrophysical Journal Supplement Series 209 (2013) 21.

26

https://doi.org/10.1051/0004-6361/201526479
https://arxiv.org/abs/1505.00778
https://arxiv.org/abs/1603.04467
https://doi.org/10.18637/jss.v078.i09
https://doi.org/10.1111/j.1365-2966.2004.07737.x
https://arxiv.org/abs/astro-ph/0303414
https://arxiv.org/abs/astro-ph/0107383
https://doi.org/10.1093/mnras/stw2013
https://doi.org/10.1093/mnras/stw2013
https://arxiv.org/abs/1603.07722
https://doi.org/10.1088/0004-6256/141/3/94
https://arxiv.org/abs/1012.3470
https://doi.org/10.1093/mnras/stt928
https://doi.org/10.1093/mnras/stt928
https://arxiv.org/abs/http://oup.prod.sis.lan/mnras/article-pdf/433/3/2545/13761746/stt928.pdf
https://doi.org/10.1093/mnras/sts454
https://arxiv.org/abs/http://oup.prod.sis.lan/mnras/article-pdf/429/4/2858/3268972/sts454.pdf
https://doi.org/10.1111/j.1365-2966.2012.20468.x
https://doi.org/10.1111/j.1365-2966.2012.20468.x
https://arxiv.org/abs/http://oup.prod.sis.lan/mnras/article-pdf/421/3/2355/5838743/mnras0421-2355.pdf
https://doi.org/10.1086/308947
https://doi.org/10.1111/j.1365-2966.2012.21952.x
https://doi.org/10.1111/j.1365-2966.2012.21952.x
https://arxiv.org/abs/http://oup.prod.sis.lan/mnras/article-pdf/427/1/146/18231420/427-1-146.pdf
https://doi.org/10.1093/mnras/stv2140
https://doi.org/10.1093/mnras/stv2140
https://arxiv.org/abs/1507.00738
https://doi.org/10.1093/mnras/stw2805
https://arxiv.org/abs/1606.05338
https://doi.org/10.1093/mnras/stx200
https://arxiv.org/abs/1606.05337
https://arxiv.org/abs/astro-ph/0702189
https://doi.org/10.1007/s10686-012-9311-4
https://doi.org/10.1088/0067-0049/209/2/21


[37] T. Erben, M. Schirmer, J. P. Dietrich, O. Cordes, L. Haberzettl, M. Hetterscheidt et al., Gabods: The
garching-bonn deep survey, Astronomische Nachrichten 326 (2005) 432
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/asna.200510396].

[38] Planck collaboration, N. Aghanim et al., Planck 2015 results. XXII. A map of the thermal
Sunyaev-Zeldovich effect, Astron. Astrophys. 594 (2016) A22 [1502.01596].

[39] L. Miller, C. Heymans, T. D. Kitching, L. van Waerbeke, T. Erben, H. Hildebrandt et al., Bayesian
galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii
Telescope Lensing Survey, Monthly Notices of the Royal Astronomical Society 429 (2013) 2858
[http://oup.prod.sis.lan/mnras/article-pdf/429/4/2858/3268972/sts454.pdf].

[40] A. Cooray and R. K. Sheth, Halo Models of Large Scale Structure, Phys. Rept. 372 (2002) 1
[astro-ph/0206508].

[41] R. K. Sheth and G. Tormen, An Excursion Set Model of Hierarchical Clustering : Ellipsoidal
Collapse and the Moving Barrier, Mon. Not. Roy. Astron. Soc. 329 (2002) 61 [astro-ph/0105113].

[42] A. Iqbal, S. Majumdar, B. B. Nath, S. Ettori, D. Eckert and M. A. Malik, Excess entropy and energy
feedback from within cluster cores up to r200, Mon. Not. Roy. Astron. Soc. 472 (2017) 713
[1703.00028].

27

https://doi.org/10.1002/asna.200510396
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/asna.200510396
https://doi.org/10.1051/0004-6361/201525826
https://arxiv.org/abs/1502.01596
https://doi.org/10.1093/mnras/sts454
https://arxiv.org/abs/http://oup.prod.sis.lan/mnras/article-pdf/429/4/2858/3268972/sts454.pdf
https://doi.org/10.1016/S0370-1573(02)00276-4
https://arxiv.org/abs/astro-ph/0206508
https://doi.org/10.1046/j.1365-8711.2002.04950.x
https://arxiv.org/abs/astro-ph/0105113
https://doi.org/10.1093/mnras/stx1999
https://arxiv.org/abs/1703.00028

	Introduction
	Relevant Physics and Algorithms
	Weak Lensing
	SZ Effect
	Quick Introduction to Machine Learning
	Supervised Machine Learning
	Unsupervised Machine Learning
	Neural Networks

	Space Partitioning for quick computation of Correlation functions
	k-D Trees
	Finding the nearest neighbour
	Ball - Trees


	New thermal SZ maps
	Generalized ILC
	Combining information from maps with different resolutions

	New tSZ maps with Unsupervised Machine Learning
	`k-means clustering' method
	Preprocessing
	Dimensionality Reduction
	Auto Encoders
	Self Organising Maps

	Results

	Thermal-SZ Weak Lensing Cross Correlation
	Calculation from Data
	Observational Data and Sampling
	Two Point Correlation Functions
	Bias Correction
	Systematic Tests
	Effect of Masks

	Results
	Comparison with theory

	Conclusion
	m-maps
	A single RCSLenS Field

