Mark Ermolov
Maxim Goryachy

Inside
Intel Management Engine

34th Chaos Communication Congress, Leipzig, 2017

ptsecurity.com

~OSITIVE TECHNOLOGIES

Research Team

* Mark Ermolov Tapping into the Core
email: mermolov {at} ptsecurity {dot} com 2'.';5‘?%';‘!‘%
twitter: @ _markel e

Intel DCI Secrets
How to Hack a Turned-0ff

Computer. or Running
Unsigned Code in

e Maxim Gor‘yachy T S e e e Intel Management Engine
email: mgoryachy {at} ptsecurity {dot} com
twitter: @hOt_max

le:khat
EUROPE 2017

. Intel ME: T
* Dmitry Sklya rov Flash File System Explained i

email: dsklyarov {at} ptsecurity {dot} com Intel ME: The Way of the
-
twitter: @_Dmit I Static Analysis

~OSITIVE TECHNOLOGIES

* Intel Management Engine: Quick Start
* Intel’s JTAG: Overview

* JTAG for ME: How Does It Work?

e Activation Without Intel Keys

* DFx Abstraction Layer

* Developing ME Core Configuration

* Demo

Intel Management Engine

Quick Start

Intel Management Engine (ME)

* Poorly documented Intel technology with proprietary firmware

* Root of trust for security features such as PAVP,PTT, and Boot
Guard

* Full access to many Intel devices
* Hardware capabilities for interception of user activity
* Integral component for all stages of the platform operating cycle

Intel ME 11: Implementation Details

* Independent 32-bit processor core (x86)

 Runs its own modified MINIX [STW17]

 Has a built-in Java machine [IMS14]

 Interacts with CPU/iGPU/USB/DDR/PCI/...

* Operates when main CPU is powered down (M3 mode)

* (Contains starter code in non-reprogrammable on-die memory

Intel’'s JTAG

Overview

JTAG Overview

* JTAG, Joint Test Action Group IEEE 1149
* Essential mechanism for debugging electronic chips

* JTAG-based debugging is available immediately after processor core
reset

* Maxim Goryachy, Mark Ermolov, Where there's a JTAG there's a way:

obtaining full system access via USB: details about JTAG in modern
Intel’s platform

Intel DCI

* Intel Direct Connect Interface (DCI) is a debug transport technology designed to
enable closed chassis debug through a USB3 port from Intel silicon

* Intel DCI provides access to CPU/PCH JTAG via USB3.0

» Software is available without NDA (Intel System Studio)

* There are two types of DCI hosting interfaces in the platform:
v" USB3 Hosting DCI (USB-Debug cable)
v BSSB Hosting DCI (Intel SVT Closed Chassis Adapter)

USB CABLE INTEL" SVT CLOSED CHASSIS ADAPTER -,

Target Intel® System .-
P USB) D Debugger JTAG data | - Debugger
over physical —‘&z‘ %
JSB port

Debug & trace OS boot Debug & trace from CPU reset

Available startin g with 6th generation Inte * Core™ processor fami ly

JTAG + ME =7

Unlimited research of
a modern x86 architecture

How Does It Work?

JTAG for ME

Unlock Token

UTOK (unlock token) or STOK (security token) is a special
partition in ME region:

* Integrated via FPT, HECI, DCI, or directly via an SPI
programmer

* Unique for the platform and temporary
* Unlocking modes: ORANGE and RED

* Desighed to activate DFx functionality for Intel Management
Engine

12

About DFx

* DFx stands for design for manufacturability, testability, and
debuggability

* DFxis a private implementation of JTAG (1149.1 and 1149.7) by Intel

* There are many integrated devices coupled to a DFx chain inside PCH
and CPU

 Embedded DFx Interface (Exl) is used to access DFx
e Exl connects DFx and the external interface (such as USB)

13

ORANGE

* Provides access to IOSF*
e Unlocks JTAG for ISH core*
* Enables debugging of the ISH program via GDB-stub or DCI

N.B. UTOK partition must be signed by vendor’s key.

* Our team has found a server firmware image with ORANGE unlock support (provides access to
|OSF on the server’s motherboard), but hasn’t found a similar image for desktops.

14

RED

* Provides access to IOSF
 Unlocks JTAG for ME core

e Unlocks JTAG for ISH core

* Enables debugging from the reset vector (SO) before starting the main
CPU

* Provides unlimited access to internal devices and memory

N.B. UTOK partition must be signed by Intel key

15

ME JTAG Activation Interface

* PCH has a special internal device DFX_AGGREGATOR that controls
access to DFx

* BUP and ROM have direct access to the CSE zeroing register and
DFX_AGGREGATOR device (via LDT selector)

Ext#8 MmioRanges[41]:

sel= FF, base:F00B1050, size:00000004, flags:00000003 :: FOOB1000:00001000 GEN PCIP
sel=107, base:F00B1004, size:00000004, flags:00000003 :: FOOB1000:00001000 GEN_PCIP
sel=10F, base:F5010000, size:00001000, flags:00000003 :: F5010000:00008000 DFX AGGREGATOR SBS

16

Activation (I)

OxFO0B1050 CSE zeroing register

31 0

0 Intel Unlock Request (R/W)

31..1 Reserved

17

Activation (I1)

DFx Aggregator MMIO:

OxF5010000 DFx Personality
31 0
OxF5010004 DFx Consent
31 0
OxF5010008 DFx Status
63 0
OxF5010018 PUID
63 0

DFx Personality | Unlock type DFx Consent bits | Unlock type
value (2..0) 0 Unlock Consent

101 ORANGE

011 RED 30 Lock Bit

18

RED Unlock: BUP

Is the UTOK found

l Yes

Are the partition
signature & platform
ID valid?

—_— (ea)

Parsing KNOBs 4

—) < Invalid UTOK)

|

Yes

Yes
mmm=) | CSE_Zeroing REG |= 1

Is the platform
already unlocked?

Is "Intel Knob Lock"
found?

Parsing and Reset ME
processing
other KNOBs

. 2

() .

RED Unlock: ROM

CSE_Zeroing_REG & 1

1Yes

CSE_Zeroing REG= 0

4
DFx Consent |= 1

\ 4
DFx Personality |= 3

4
/CIeanME'skeys/ —) (end)

20

Latching Consent Register

void bup switch on dci()
{
eom = 0;
bup _get pch straps(0, &pch desc reco);
LOBYTE(eom err) = bup read eom(&eom); // Is the platform in Manufacture Mode?
if (!(BYTE2(pch desc reco) & 2) || (dfx data |= 2u, eom err) || eom)
bup_disable dci by strap();
else
bup _enable_dci by strap();
if (bup is dci active() ==1) //
bup_set dfx_agg consent();
else
bup_lock dfx_agg consent();
if (gRmlbCookie != cookies)
sys_fault();

Is it a design flaw or not?

Red Activation Without Intel Keys

JTAG for ME

CVE-201/-5705,6,7

void _ cdecl bup _init trace hub()
{

int ct data[202];

int cookie;

cookie = gRmlbCookie;

if (!(getDW_sel(OxBF, OxEOQu) & ©x1000000)

&& !bup get si features(si_features)

&& !bup dfs get file size("/home/bup/ct", &file size))
{

if (file size)

{

(err) = bup _dfs read file("/home/bup/ct", 0, ct data, file size, &bytes read);

if (gRmlbCookie != cookie)
sys_fault();

Vulnerability in BUP module [HTH17]

ME JTAG How-To

Arbitrary code execution in the BUP module (CVE-2017-5705,6,7)

¥

Activation of RED UNLOCK without Intel keys

¥

JTAG access to ME core

¥

Full control over the target

.

ME is no longer a "black box"

24

Red Activation Without Intel’s Crypto Keys

Activate Manufacture Mode for the target
Set DCl strap in a flash descriptor
Use the vulnerability to load the value 3 to DFx Personality register

= w o

Done ;)

25

RED is Activated for Target

-
s Configuration Console

(o E) o |

Eile Tools Help

=43 Root
=) Domain
=-4 DebugPort
-4 Jtag
& Tep
=63 Mtag
0 Tep
o) Tep
) Tap
) Tap
) Tap
& Tap
=& Tap
| TapSelect
o
& Tep
& Tep
0 Tep
o Tep
£ 12¢
£ Pns
) IntefacePort
) IntefacePort
) Obs

[Cickto Disconnect from MasterFrame | | kil Masterframe |

| Platform Selection | Physcal Irtedaces | Logical Devices | Logging |

item Value |
ﬁ DeviceSelect {(none)
IsSelected True
%
By IsSelectable False
3 Irlength 8
P ldcode (28289013
O
3 Globalld AN
¥ Stepping AD
B DeviceType LMT2
L]
£ Tags x86, IRTrigger, writepir
i Enabled True
Invisble False
i

ME core JTAG device ID

26

What About Host Side?

DFx Abstraction Layer

Intel DAL: What Is It?

* DAL stands for DFx Abstraction Layer, a software stack for DFx

* DAL is the core of all recent Intel HW debugging/checking tools
(System Debugger, System Trace, Platform Debugging Toolkit)

» Supports a wide range of Intel platforms/CPUs
e Supports multiple Intel HW probe types
DAL is available without NDA

28

Overview of Intel DAL

e Python Console (CLI)
¢ Intel System Studio (GUI)

o C# library

¢ Probe/DCI Driver

e Intel SVT)
e USB 3.0 DbC
e Intel ITP-XDP)

e DFx

Target

€€€&

29

Sources of Information About DAL

(i@ Documentation / White Papers / Patents

See also:

Intel DCI Secrets

10th - 14th April 2017
~POSITIVE TECHNOLOGIES

30

Trial version of Intel System Studio
doesn’t include configuration options for ME core

31

Crafting ME Core Configuration

DFx Abstraction Layer

Encrypted XML Files

* DAL configuration is included in encrypted XML files
* Encryption is performed using PBKDF2 and AES
* Key and salt are hardcoded in DAL (/ntel. DAL.Common.Decryption.dll)

Salt = "I wandered lonely as a cloud,\r\n
That floats on high o'er vales and hills,\r\n
When all at once | saw a crowd,\r\n
A host of golden daffodils "

Key = "ITP"

A ; A
I . P
il ¥
: ¥
- - ¢
- ¥ ¥ T A
- Loy
% oo
3
% BT 4
-
tr'.)
WY A
» DI
i B

William Wordsworth
33

ME Core Device Configuration

* Configuration options for ME core are missing in public XML files
* ME core is an LMT2 device (by JTAG ID code)
* LMT2 is included in XML files

34

DFx Chain to ME LMT2 Core (LP series)

SPT_TPSB J

—| SPT_MASTER J ~ SPT _NPK

— SPT_RGNTOP | SPT_PARCSMEA |——— SPT_CSME |

| CLTAP k —'“ U

—— SPT_RGNLB | » SPT_PARISH |—r— SPT_ISH |

IS —

35

Craft Custom Configuration (for Skylake)

1. Decrypt XML files
2. Add the following lines to "Topo.SPT.xml":

<Device Name="SPT_PARCSMEA" LogicalType="CHIPSET" IrLength="8" IdCode="0x00000000" Mask="0x00000000" IsindependentTap="false" Subtypes="_INHERIT">

<_tag key="Invisible" value="False" />

<SubDevices>
<SubDevice Name="LMT2" TapRegister="idcode" Field="idcode" Val="0x1" Mask="0x1" IsLogicalChild="true" SerializePreScan="TapSerializationSTAPO.Serialized"

PhysicalEnable="True" />
<SubDevice Name="SPT_PARCSMEA_RETIME" TapRegister="idcode" Field="idcode" Val="0x1" Mask="0x1" IsLogicalChild="true"

SerializePreScan="TapSerializationSTAP5.Serialized" PhysicalEnable="True" />
</SubDevices>
</Device>

3. Use standard DAL environment for ME debugging
4. Make your computer personal again

36

Our achievements so far

* JTAG activated for Intel ME

e Starter code (aka ROM) dumped

* Complete Huffman code recovered for ME 11

* Integrity and Confidentiality Platform Keys [FFS17] extracted

38

e GitHub:
https://github.com/ptresearch/

* Blogs:
http://blog.ptsecurity.com/

39

References

[IMS14] Igor Skochinsky, Intel ME Secrets. Hidden code in your chipset and how to
discover what exactly it does. Hex-Rays. RECON 2014.

[STW17] Dmitry Sklyarov, ME: The Way of the Static Analysis. Troopers 2017.

[FFS17] Dmitry Sklyarov, Intel ME: flash file system explained, Black Hat Europe,
2017.

[IDS17] Mark Ermolov, Maxim Goryachy, Intel DCI Secrets, HITBSecConf 2017
CommSec, Amsterdam, 2017.

[HTH17] Mark Ermolov, Maxim Goryachy, How to Hack a Turned-Off Computer, or
Running Unsigned Code in Intel Management Engine, Black Hat Europe, 2017.

[PSTR14] Xiaoyu Ruan, Platform Embedded Security Technology Revealed:
Safeguarding the Future of Computing with Intel Embedded Security and
Management Engine, 2014, Apress, ISBN 978-1-4302-6572-6.

40

Thank you!
Questions?

Mark Ermolov
Maxim Goryachy

~OSITIVE TECHNOLOGIES

