
ptsecurity.com

Inside
Intel Management Engine

Mark Ermolov
Maxim Goryachy

34th Chaos Communication Congress, Leipzig, 2017

Research Team

• Mark	Ermolov
email:	mermolov {at}	ptsecurity {dot}	com
twitter:	@_markel___

• Maxim	Goryachy
email:	mgoryachy {at}	ptsecurity {dot}	com
twitter:	@h0t_max

• Dmitry	Sklyarov
email:	dsklyarov {at}	ptsecurity {dot}	com
twitter:	@_Dmit

2

Roadmap

• Intel	Management	Engine:	Quick	Start
• Intel’s	JTAG:	Overview
• JTAG	for	ME:	How	Does	It	Work?	
• Activation	Without	Intel	Keys
• DFx Abstraction	Layer
• Developing	ME	Core	Configuration
• Demo

3

Intel Management Engine
Quick Start

Intel	Management	Engine	(ME)

• Poorly documented Intel technology with proprietary firmware
• Root of trust for security features such as PAVP, PTT, and Boot

Guard
• Full access to many Intel devices
• Hardware capabilities for interception of user activity
• Integral component for all stages of the platform operating cycle

5

Intel	ME	11:	Implementation	Details

• Independent 32-bit processor core (x86)
• Runs its own modified MINIX [STW17]	
• Has a built-in Java machine [IMS14]	
• Interacts with CPU/iGPU/USB/DDR/PCI/...
• Operates when main CPU is powered down (M3 mode)
• Contains starter code in non-reprogrammable on-die memory

6

Intel’s JTAG
Overview

JTAG	Overview

• JTAG,	Joint	Test	Action	Group	IEEE	1149
• Essential	mechanism	for	debugging	electronic	chips
• JTAG-based	debugging	is	available	immediately	after	processor	core	
reset

• Maxim	Goryachy,	Mark	Ermolov,	Where	there's	a	JTAG	there's	a	way:	
obtaining	full	system	access	via	USB: details	about	JTAG	in	modern	
Intel’s	platform

8

Intel	DCI

• Intel	Direct	Connect	Interface	(DCI)	is	a debug	transport	technology	designed	to	
enable	closed	chassis	debug	through	a	USB3 port	from	Intel	silicon

• Intel	DCI	provides	access	to	CPU/PCH	JTAG	via	USB3.0
• Software	is	available	without	NDA	(Intel	System	Studio)
• There	are	two	types	of	DCI	hosting	interfaces	in	the	platform:

üUSB3	Hosting	DCI	(USB-Debug	cable)
üBSSB	Hosting	DCI	(Intel	SVT	Closed	Chassis	Adapter)

9

JTAG	+	ME	=	?

Unlimited	research	of	
a modern	x86	architecture

10

How Does It Work?
JTAG for ME

Unlock	Token

UTOK	(unlock	token)	or	STOK	(security	token)	is	a	special	
partition	in	ME	region:
• Integrated	via	FPT,	HECI,	DCI,	or	directly	via	an	SPI	
programmer

• Unique	for	the	platform	and	temporary
• Unlocking	modes:	ORANGE	and	RED	
• Designed	to	activate	DFx functionality	for	Intel	Management	
Engine

12

About	DFx

• DFx stands	for	design	for	manufacturability,	testability,	and	
debuggability

• DFx is	a	private	implementation	of	JTAG	(1149.1	and	1149.7)	by	Intel
• There	are	many	integrated	devices	coupled	to	a	DFx chain	inside	PCH	
and	CPU

• Embedded	DFx Interface	(ExI)	is	used	to	access	DFx
• ExI connects	DFx and	the	external	interface	(such	as	USB)

13

ORANGE

• Provides	access	to	IOSF*
• Unlocks	JTAG	for	ISH	core*
• Enables	debugging	of	the	ISH	program	via	GDB-stub	or	DCI

N.B.	 UTOK	partition	must	be	signed	by	vendor’s	key.

* Our	team	has	found	a	server	firmware	image	with	ORANGE	unlock	support	(provides	access	to	
IOSF	on	the	server’s	motherboard),	but	hasn’t	found	a	similar	image	for	desktops.

14

RED

• Provides	access	to	IOSF
• Unlocks	JTAG	for	ME	core
• Unlocks	JTAG	for	ISH	core
• Enables	debugging	from	the	reset	vector	(S0)	before	starting	the	main	
CPU

• Provides	unlimited	access	to	internal	devices	and	memory

N.B.	UTOK	partition	must	be	signed	by	Intel	key

15

ME	JTAG	Activation	Interface

• PCH	has	a	special	internal	device	DFX_AGGREGATOR	that	controls	
access	to	DFx

• BUP and	ROM	have	direct	access	to	the	CSE	zeroing	register	and	
DFX_AGGREGATOR	device (via	LDT	selector)

Ext#8 MmioRanges[41]:
...
sel= FF, base:F00B1050, size:00000004, flags:00000003 :: F00B1000:00001000 GEN_PCIP
sel=107, base:F00B1004, size:00000004, flags:00000003 :: F00B1000:00001000 GEN_PCIP
sel=10F, base:F5010000, size:00001000, flags:00000003 :: F5010000:00008000 DFX_AGGREGATOR_SBS
...

16

Activation	(I)

031

0xF00B1050

CSE	zeroing	register	(bit)

0 Intel Unlock Request (R/W)

31..1 Reserved

CSE	zeroing	register

17

Activation	(II)

DFx Personality

031

DFx Consent

031

DFx Status0xF5010008

063

0xF5010004

0xF5010000

PUID0xF5010018

063

DFx Personality
value	(2..0)

Unlock	type

101 ORANGE

011 RED

DFx Consent bits Unlock	type

0 Unlock Consent

...

30 Lock Bit

DFx Aggregator	MMIO:

18

RED	Unlock:	BUP	

start Is	the	UTOK	found

Parsing	KNOBs

Yes

end

Are	the	partition	
signature	&	platform	

ID	valid?
Invalid	UTOK

Yes

Is	the	platform	
already	unlocked?

Is			"Intel	Knob	Lock"	
found?

Yes

Parsing	and	
processing	
other	KNOBs

Yes

end

CSE_Zeroing_REG |=		1

Reset	ME

19

RED	Unlock:	ROM

start

CSE_Zeroing_REG =		0

CSE_Zeroing_REG &	1

DFx Personality	|=		3

Clean	ME’s	keys

end

end

Yes

DFx Consent		|=		1

20

Latching	Consent	Register

void bup_switch_on_dci()
{
...
eom = 0;
bup_get_pch_straps(0, &pch_desc_rec0);
LOBYTE(eom_err) = bup_read_eom(&eom); // Is the platform in Manufacture Mode?
if (!(BYTE2(pch_desc_rec0) & 2) || (dfx_data |= 2u, eom_err) || eom)
bup_disable_dci_by_strap();

else
bup_enable_dci_by_strap();

if (bup_is_dci_active() == 1) // If dci is active ME doesn’t latch DFx consent register
bup_set_dfx_agg_consent();

else
bup_lock_dfx_agg_consent();

if (gRmlbCookie != cookies)
sys_fault();

}

21

Is	it	a	design	flaw	or	not?

Red Activation Without Intel Keys
JTAG for ME

CVE-2017-5705,6,7

void __cdecl bup_init_trace_hub()
{
...
int ct_data[202]; // [esp+1Ch] [ebp-334h] 808 bytes
int cookie; // [esp+344h] [ebp-Ch]

cookie = gRmlbCookie;
...
if (!(getDW_sel(0xBF, 0xE0u) & 0x1000000)
&& !bup_get_si_features(si_features)
&& !bup_dfs_get_file_size("/home/bup/ct", &file_size))

{
if (file_size)
{
LOBYTE(err) = bup_dfs_read_file("/home/bup/ct", 0, ct_data, file_size, &bytes_read);

...
if (gRmlbCookie != cookie)
sys_fault();

}

Vulnerability	in	BUP	module	[HTH17]	
23

ME	JTAG	How-To

Arbitrary	code	execution	in	the	BUP	module	(CVE-2017-5705,6,7)

Activation	of	RED	UNLOCK	without	Intel	keys

JTAG	access	to	ME	core

Full	control	over	the	target		

ME	is	no	longer	a	"black	box"

24

Red	Activation	Without	Intel’s	Crypto	Keys

1. Activate	Manufacture	Mode	for	the	target
2. Set	DCI	strap	in	a	flash	descriptor
3. Use	the	vulnerability	to	load	the	value	3	to	DFx Personality	register
4. Done	;)

25

RED	is	Activated	for	Target

26

ME	core	JTAG	device	ID

What About Host Side?
DFx Abstraction Layer

Intel	DAL:	What	Is	It?

• DAL	stands	for	DFx Abstraction	Layer,	a	software	stack	for	DFx
• DAL	is	the	core	of	all	recent	Intel	HW	debugging/checking	tools	
(System	Debugger,	System	Trace,	Platform	Debugging	Toolkit)

• Supports	a	wide	range	of	Intel	platforms/CPUs
• Supports	multiple	Intel	HW	probe	types
• DAL	is	available	without	NDA

28

Overview	of	Intel	DAL	

UI

• Python	Console	(CLI)
• Intel	System	Studio	(GUI)

DAL
•C#	library

Driver
• Probe/DCI	Driver

Transport

• Intel	SVT
•USB	3.0	DbC
• Intel	ITP-XDP	

Target
•DFx

29

Sources	of	Information	About	DAL

Documentation	/	White	Papers	/	Patents

30

See	also:

Problem

Trial	version	of	Intel	System	Studio
doesn’t	include	configuration	options	for	ME	core

31

Crafting ME Core Configuration
DFx Abstraction Layer

Encrypted	XML	Files

• DAL	configuration	is	included	in	encrypted	XML	files
• Encryption	is	performed	using	PBKDF2	and	AES
• Key	and	salt	are	hardcoded	in	DAL	(Intel.DAL.Common.Decryption.dll)

Salt	=	"I	wandered	lonely	as	a	cloud,\r\n
That	floats	on	high	o'er	vales	and	hills,\r\n
When	all	at	once	I	saw	a	crowd,\r\n
A	host	of	golden	daffodils	"

Key	= "ITP"

William	Wordsworth
33

ME	Core	Device	Configuration

• Configuration	options	for	ME	core	are	missing	in	public	XML	files
• ME	core	is	an	LMT2	device	(by	JTAG	ID	code)
• LMT2	is	included	in	XML	files

34

DFx Chain	to	ME	LMT2	Core	(LP	series)

CLTAP

SPT_RGNTOP

SPT_TPSB

SPT_MASTER SPT_NPK

SPT_PARCSMEA SPT_CSME

SPT_RGNLB SPT_PARISH SPT_ISH

SPT_AGG
35

Craft	Custom	Configuration	(for	Skylake)

1. Decrypt	XML	files
2. Add	the	following	lines	to	"Topo.SPT.xml":

3. Use	standard	DAL	environment	for	ME	debugging
4. Make	your	computer	personal	again	

<Device	Name="SPT_PARCSMEA"	LogicalType="CHIPSET"	IrLength="8"	IdCode="0x00000000"	Mask="0x00000000"	IsIndependentTap="false"	Subtypes="_INHERIT">
<_tag	key="Invisible"	value="False"	/>

<SubDevices>
<SubDevice Name="LMT2"	TapRegister="idcode"	Field="idcode"	Val="0x1"	Mask="0x1"	IsLogicalChild="true"	SerializePreScan="TapSerializationSTAP0.Serialized"	

PhysicalEnable="True"	/>
<SubDevice Name="SPT_PARCSMEA_RETIME"	TapRegister="idcode"	Field="idcode"	Val="0x1"	Mask="0x1"	IsLogicalChild="true"	

SerializePreScan="TapSerializationSTAP5.Serialized"	PhysicalEnable="True"	/>
</SubDevices>
</Device>

36

Demo

37

Our	achievements	so	far

• JTAG	activated	for	Intel	ME
• Starter	code	(aka	ROM)	dumped
• Complete	Huffman	code	recovered	for	ME	11
• Integrity	and	Confidentiality	Platform	Keys	[FFS17]	extracted

38

Links

• GitHub:	
https://github.com/ptresearch/

• Blogs:
http://blog.ptsecurity.com/

39

References

[IMS14]		Igor	Skochinsky,	Intel	ME	Secrets.	Hidden	code	in	your	chipset	and	how	to		
discover	what	exactly	it	does.	Hex-Rays.	RECON	2014.
[STW17]	Dmitry	Sklyarov,	ME:	The	Way	of	the	Static	Analysis.	Troopers	2017.
[FFS17]			Dmitry	Sklyarov,	Intel	ME:	flash	file	system	explained,	Black	Hat	Europe,	
2017.
[IDS17]	 Mark	Ermolov,	Maxim	Goryachy,	Intel	DCI	Secrets,	HITBSecConf	2017	
CommSec,	Amsterdam,	2017.
[HTH17]		Mark	Ermolov,	Maxim	Goryachy,	How	to	Hack	a	Turned-Off	Computer,	or	
Running	Unsigned	Code	in	Intel	Management	Engine,	Black	Hat	Europe,	2017.
[PSTR14]	Xiaoyu Ruan,	Platform	Embedded	Security	Technology	Revealed:	
Safeguarding		the		Future	of	Computing	with	Intel	Embedded	Security	and	
Management	Engine,		2014,	Apress,	ISBN	978-1-4302-6572-6.

40

Thank	you!
Questions?

Mark	Ermolov
Maxim	Goryachy

41

