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Intel Management Engine
Quick Start



Intel	Management	Engine	(ME)

• Poorly documented Intel technology with proprietary firmware
• Root of trust for security features such as PAVP, PTT, and Boot

Guard
• Full access to many Intel devices
• Hardware capabilities for interception of user activity 
• Integral component for all stages of the platform operating cycle
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Intel	ME	11:	Implementation	Details

• Independent 32-bit processor core (x86)
• Runs its own modified MINIX [STW17]	
• Has a built-in Java machine [IMS14]	
• Interacts with CPU/iGPU/USB/DDR/PCI/...
• Operates when main CPU is powered down (M3 mode)
• Contains starter code in non-reprogrammable on-die memory
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Intel’s JTAG
Overview



JTAG	Overview

• JTAG,	Joint	Test	Action	Group	IEEE	1149
• Essential	mechanism	for	debugging	electronic	chips
• JTAG-based	debugging	is	available	immediately	after	processor	core	
reset

• Maxim	Goryachy,	Mark	Ermolov,	Where	there's	a	JTAG	there's	a	way:	
obtaining	full	system	access	via	USB: details	about	JTAG	in	modern	
Intel’s	platform
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Intel	DCI

• Intel	Direct	Connect	Interface	(DCI)	is	a debug	transport	technology	designed	to	
enable	closed	chassis	debug	through	a	USB3 port	from	Intel	silicon

• Intel	DCI	provides	access	to	CPU/PCH	JTAG	via	USB3.0
• Software	is	available	without	NDA	(Intel	System	Studio)
• There	are	two	types	of	DCI	hosting	interfaces	in	the	platform:

üUSB3	Hosting	DCI	(USB-Debug	cable)
üBSSB	Hosting	DCI	(Intel	SVT	Closed	Chassis	Adapter)
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JTAG	+	ME	=	?

Unlimited	research	of	
a modern	x86	architecture
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How Does It Work?
JTAG for ME



Unlock	Token

UTOK	(unlock	token)	or	STOK	(security	token)	is	a	special	
partition	in	ME	region:
• Integrated	via	FPT,	HECI,	DCI,	or	directly	via	an	SPI	
programmer

• Unique	for	the	platform	and	temporary
• Unlocking	modes:	ORANGE	and	RED	
• Designed	to	activate	DFx functionality	for	Intel	Management	
Engine
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About	DFx

• DFx stands	for	design	for	manufacturability,	testability,	and	
debuggability

• DFx is	a	private	implementation	of	JTAG	(1149.1	and	1149.7)	by	Intel
• There	are	many	integrated	devices	coupled	to	a	DFx chain	inside	PCH	
and	CPU

• Embedded	DFx Interface	(ExI)	is	used	to	access	DFx
• ExI connects	DFx and	the	external	interface	(such	as	USB)
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ORANGE

• Provides	access	to	IOSF*
• Unlocks	JTAG	for	ISH	core*
• Enables	debugging	of	the	ISH	program	via	GDB-stub	or	DCI

N.B.	 UTOK	partition	must	be	signed	by	vendor’s	key.

* Our	team	has	found	a	server	firmware	image	with	ORANGE	unlock	support	(provides	access	to	
IOSF	on	the	server’s	motherboard),	but	hasn’t	found	a	similar	image	for	desktops.
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RED

• Provides	access	to	IOSF
• Unlocks	JTAG	for	ME	core
• Unlocks	JTAG	for	ISH	core
• Enables	debugging	from	the	reset	vector	(S0)	before	starting	the	main	
CPU

• Provides	unlimited	access	to	internal	devices	and	memory

N.B.	UTOK	partition	must	be	signed	by	Intel	key

15



ME	JTAG	Activation	Interface

• PCH	has	a	special	internal	device	DFX_AGGREGATOR	that	controls	
access	to	DFx

• BUP and	ROM	have	direct	access	to	the	CSE	zeroing	register	and	
DFX_AGGREGATOR	device (via	LDT	selector)

Ext#8 MmioRanges[41]:
...
sel= FF, base:F00B1050, size:00000004, flags:00000003 :: F00B1000:00001000 GEN_PCIP
sel=107, base:F00B1004, size:00000004, flags:00000003 :: F00B1000:00001000 GEN_PCIP
sel=10F, base:F5010000, size:00001000, flags:00000003 :: F5010000:00008000 DFX_AGGREGATOR_SBS
...
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Activation	(I)

031

0xF00B1050

CSE	zeroing	register	(bit)

0 Intel Unlock Request (R/W)

31..1 Reserved

CSE	zeroing	register
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Activation	(II)

DFx Personality

031

DFx Consent

031

DFx Status0xF5010008

063

0xF5010004

0xF5010000

PUID0xF5010018

063

DFx Personality
value	(2..0)

Unlock	type

101 ORANGE

011 RED

DFx Consent bits Unlock	type

0 Unlock Consent

...

30 Lock Bit

DFx Aggregator	MMIO:
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RED	Unlock:	BUP	

start Is	the	UTOK	found

Parsing	KNOBs

Yes

end

Are	the	partition	
signature	&	platform	

ID	valid?
Invalid	UTOK

Yes

Is	the	platform	
already	unlocked?

Is			"Intel	Knob	Lock"	
found?

Yes

Parsing	and	
processing	
other	KNOBs

Yes

end

CSE_Zeroing_REG |=		1

Reset	ME
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RED	Unlock:	ROM

start

CSE_Zeroing_REG =		0

CSE_Zeroing_REG &	1

DFx Personality	|=		3

Clean	ME’s	keys

end

end

Yes

DFx Consent		|=		1
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Latching	Consent	Register

void bup_switch_on_dci()
{
...
eom = 0;
bup_get_pch_straps(0, &pch_desc_rec0);
LOBYTE(eom_err) = bup_read_eom(&eom); // Is the platform in Manufacture Mode?
if ( !(BYTE2(pch_desc_rec0) & 2) || (dfx_data |= 2u, eom_err) || eom )
bup_disable_dci_by_strap();

else
bup_enable_dci_by_strap();

if ( bup_is_dci_active() == 1 ) // If dci is active ME doesn’t latch DFx consent register
bup_set_dfx_agg_consent();

else
bup_lock_dfx_agg_consent();

if ( gRmlbCookie != cookies )
sys_fault();

}
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Red Activation Without Intel Keys 
JTAG for ME



CVE-2017-5705,6,7

void __cdecl bup_init_trace_hub()
{
...
int ct_data[202]; // [esp+1Ch] [ebp-334h] 808 bytes
int cookie; // [esp+344h] [ebp-Ch]

cookie = gRmlbCookie;
...
if ( !(getDW_sel(0xBF, 0xE0u) & 0x1000000)
&& !bup_get_si_features(si_features)
&& !bup_dfs_get_file_size("/home/bup/ct", &file_size) )

{
if ( file_size )
{
LOBYTE(err) = bup_dfs_read_file("/home/bup/ct", 0, ct_data, file_size, &bytes_read);

...   
if ( gRmlbCookie != cookie )
sys_fault();

}

Vulnerability	in	BUP	module	[HTH17]	
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ME	JTAG	How-To

Arbitrary	code	execution	in	the	BUP	module	(CVE-2017-5705,6,7)

Activation	of	RED	UNLOCK	without	Intel	keys

JTAG	access	to	ME	core

Full	control	over	the	target		

ME	is	no	longer	a	"black	box"
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Red	Activation	Without	Intel’s	Crypto	Keys

1. Activate	Manufacture	Mode	for	the	target
2. Set	DCI	strap	in	a	flash	descriptor
3. Use	the	vulnerability	to	load	the	value	3	to	DFx Personality	register
4. Done	;)
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RED	is	Activated	for	Target
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ME	core	JTAG	device	ID



What About Host Side?
DFx Abstraction Layer



Intel	DAL:	What	Is	It?

• DAL	stands	for	DFx Abstraction	Layer,	a	software	stack	for	DFx
• DAL	is	the	core	of	all	recent	Intel	HW	debugging/checking	tools	
(System	Debugger,	System	Trace,	Platform	Debugging	Toolkit)

• Supports	a	wide	range	of	Intel	platforms/CPUs
• Supports	multiple	Intel	HW	probe	types
• DAL	is	available	without	NDA
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Overview	of	Intel	DAL	

UI

• Python	Console	(CLI)
• Intel	System	Studio	(GUI)

DAL
•C#	library

Driver
• Probe/DCI	Driver

Transport

• Intel	SVT
•USB	3.0	DbC
• Intel	ITP-XDP	

Target
•DFx
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Sources	of	Information	About	DAL

Documentation	/	White	Papers	/	Patents
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Problem

Trial	version	of	Intel	System	Studio
doesn’t	include	configuration	options	for	ME	core
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Crafting ME Core Configuration
DFx Abstraction Layer



Encrypted	XML	Files

• DAL	configuration	is	included	in	encrypted	XML	files
• Encryption	is	performed	using	PBKDF2	and	AES
• Key	and	salt	are	hardcoded	in	DAL	(Intel.DAL.Common.Decryption.dll)

Salt	=	"I	wandered	lonely	as	a	cloud,\r\n
That	floats	on	high	o'er	vales	and	hills,\r\n
When	all	at	once	I	saw	a	crowd,\r\n
A	host	of	golden	daffodils	"

Key	= "ITP"

William	Wordsworth
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ME	Core	Device	Configuration

• Configuration	options	for	ME	core	are	missing	in	public	XML	files
• ME	core	is	an	LMT2	device	(by	JTAG	ID	code)
• LMT2	is	included	in	XML	files
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DFx Chain	to	ME	LMT2	Core	(LP	series)

CLTAP

SPT_RGNTOP

SPT_TPSB

SPT_MASTER SPT_NPK

SPT_PARCSMEA SPT_CSME

SPT_RGNLB SPT_PARISH SPT_ISH

SPT_AGG
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Craft	Custom	Configuration	(for	Skylake)

1. Decrypt	XML	files
2. Add	the	following	lines	to	"Topo.SPT.xml":

3. Use	standard	DAL	environment	for	ME	debugging
4. Make	your	computer	personal	again	

<Device	Name="SPT_PARCSMEA"	LogicalType="CHIPSET"	IrLength="8"	IdCode="0x00000000"	Mask="0x00000000"	IsIndependentTap="false"	Subtypes="_INHERIT">
<_tag	key="Invisible"	value="False"	/>

<SubDevices>
<SubDevice Name="LMT2"	TapRegister="idcode"	Field="idcode"	Val="0x1"	Mask="0x1"	IsLogicalChild="true"	SerializePreScan="TapSerializationSTAP0.Serialized"	

PhysicalEnable="True"	/>
<SubDevice Name="SPT_PARCSMEA_RETIME"	TapRegister="idcode"	Field="idcode"	Val="0x1"	Mask="0x1"	IsLogicalChild="true"	

SerializePreScan="TapSerializationSTAP5.Serialized"	PhysicalEnable="True"	/>
</SubDevices>
</Device>
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Demo
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Our	achievements	so	far

• JTAG	activated	for	Intel	ME
• Starter	code	(aka	ROM)	dumped
• Complete	Huffman	code	recovered	for	ME	11
• Integrity	and	Confidentiality	Platform	Keys	[FFS17]	extracted
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Links

• GitHub:	
https://github.com/ptresearch/

• Blogs:
http://blog.ptsecurity.com/
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Thank	you!
Questions?

Mark	Ermolov
Maxim	Goryachy
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