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1
Introduction

This manual is meant to be a thorough introduction to the various hardware features of the F256.
In it, I will attempt to explain each of the major subsystems of the F256 and provide simple but
practical examples of their use.

One thing this manual will not provide is a tutorial in programming the 65C02 processor at
the heart of the F256. There are plenty of excellent books and videos explaining how the pro-
cessor works and how to do assembly programming. While examples will generally be written
in assembly, I will try to annotate them fully so that what is happening is very clear even to the
novice assembly language coder.

There are two models of F256 available: the F256jr, and the F256k. The F256jr is a single
board computer, designed to fit within a mini-ITX case, that requires a separate PS/2 keyboard.
The F256k is a complete system with a case and a built-in custom keyboard. The two versions
do have differences but are mostly compatible. Differences between the systems will be clearly
noted.

Several of chapters in this manual include example assembly code to show how the vari-
ous features of the F256 work. While the code included in the text should be executable, the
complete examples can be found on the Github repository that hosts the manual itself. Most of
the examples are able to run on their own, but a few of them expect there to be some sort of
operating system providing text display routines compatible with the old Commodore kernel.
The examples were all written on a machine using OpenKERNAL, which was written for the
F256, but really anything that provides the CINT and CHROUT calls should work fine. Of course,
the examples could be tweaked without too much trouble to run on essentially any operating
system.

A Note on Notation

Important side notes are called out with a black bar in the margin. These notes generally call
out key differences between the different versions of the F256 and may have some important
considerations for programs targeting multiple platforms.

Example code in this manual is presented as assembly language. While the code is fairly
generic 65C02 assembly code, the code was tested using the 64TASS assembler, and there are
aspects of its syntax that are worth explaining.

• Numeric literals are in decimal unless prefixed by the dollar sign ($)
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8 CHAPTER 1. INTRODUCTION

• There are several math and logical operators that can be used to calculate a numeric literal
value at assembly time: + adds numbers, - subtracts, * multiplies, | calculates the bitwise
OR of two values, and ~ computes the bitwise NOT or negation of a value.

• The .byte directive stores a set of 8-bit values into the assembled code. The directive takes
a list of values puts them into the assembled code as bytes.

• The .word directive stores a set of 16-bit values into the assembled code. The directive
takes a list of values and treats them as 16-bit (even if they are less than 256).

• There are special operators for selecting specific bit ranges from a number to allow the
assembly code to write the number byte-by-byte. The less than character (<) selects bits
0–7. The greater than character (>) selects bits 8–15. The back tick character (‘) selects bits
16–23. For example:

SAMPLE = $123456

lda #<SAMPLE
sta $0800 ; Store $56 to $0800
lda #>SAMPLE
sta $0801 ; Store $34 to $0801
lda #‘SAMPLE
sta $0802 ; Store $12 to $0802

About the Machine

F256jr Ports
The connectors of the back of the F256jr from left to right are (see figure: 1.1):

Audio Line Out the stereo audio output. These are standard RCA style line level outputs.

SD Card Slot for standard SD cards for storage of files and programs.

DVI Monitor Port for output to your monitor. This can be connected to the DVI input of a mon-
itor or run through a simple DVI-VGA connector to use with an older VGA input.

IEC Serial Port supports the Commodore serial bus. A Commodore disk drive (1541, 1571, 1581,
etc.), a Commodore compatible serial printer, or other device supporting the Commodore
serial bus can be connected here.

The top of the F256jr board has several connectors and other features that should be ex-
plained (see figure: 1.2):

Power In this is a standard ITX/ATX style power connector. Pretty much any PC power supply
should work here, and a Pico-ATX style power adapter is more than sufficient.

Debug USB Port this provides access to the debug interface of the F256 for a desktop computer.
You can use it to upload data to the F256’s memory or examine the memory. There is a
Mini USB B connector on the board, but there is also a header that can be used to connect
the USB jack on some cases to the board.
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Audio Line Out

SD Card Slot

DVI Monitor Port

PS/2 Port

IEC Serial Port

Figure 1.1: F256jr Rear Connectors

Case Buttons and LEDs this collection of headers is used to connect the power and reset button
from the case as well as the power LED and SD access LED.

Joystick Ports these connectors allow you to plug in Atari style joysticks

DIP Switches these switches allow you to manage certain aspects of the F256. In particular, you
can control gamma correction and some boot options, depending on the kernel installed.

Stereo SIDs out of the box, these will be bare sockets, but they are where you would install your
SID chips or SID emulators. The sockets support the original 6581, the lower voltage 8581,
and the different replacements like the SwinSID, ARMSID, and BackSID.

Wi-Fi Module this optional module works with the built-in serial port to allow for Wi-Fi access,
if a program or operating system supports it.

RS-232 Port this IDC header works with a standard IDC to DE-9 adapter cable to provide an RS-
232 serial port. The same serial port is used for this port as is used by the Wi-Fi module, so
only one of the two can be used at a time.

GPIO this header provides access to the I/O pins of the WDC65C22 VIA. The pin assignments are
compatible with the Commodore C64 keyboard connector.

Expansion Port for future expansion. This is a PCI-E style connector with a custom pinout. In
the future, it might be used for memory expansion or other devices.

Clock Battery this CR2032 cell holder provides power for the real time clock chip.

FPGA JTAG Port this connector is used to apply any future updates to the FPGA. A special adapter
would need to be used to connect to this port.

Gamepad Ports this header provides access for an NES or SNES style gameport interface.

Case Audio Port this header provides access to the headphone and microphone signals to con-
nect to a PC case.

Headphone Out this is a standard headphone adapter port that can be used if the case does not
provide headphone output.
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Stereo SIDs

Power In
Joystick Ports

DIP Switches

Expansion Port

GPIO

Clock Battery

Debug USB Port

Case Buttons 
and LEDs

Headphone Out

Wi-Fi Module 
(Option)

RS-232 Port

FPGA JTAG Port

Gamepad Ports

Case Audio Port

Figure 1.2: F256jr Top View

F256k Ports

The connectors of the back of the F256k from left to right are (see figure: 1.3):

Power Jack The F256k requires a 12 volt DC power supply that can provide at least 2 amps.
They are available from several suppliers and should be readily available. The connector
needed is a 2.5mm barrel plug with a center-positive connection (i.e. the outer sleave is
ground).

USB Debug Port provides the debug interface through USB

PS/2 Mouse Port provides the PS/2 interface for a mouse

FNX4N4S Adapter Port provides the connections for NES style gamepads, through FNX4N4S
adapter module

IEC Serial Port supports the Commodore serial bus. A Commodore disk drive (1541, 1571, 1581,
etc.), a Commodore compatible serial printer, or other device supporting the Commodore
serial bus can be connected here.

DVI Monitor Port for output to your monitor. This can be connected to the DVI input of a mon-
itor or run through a simple DVI-VGA connector to use with an older VGA input.

RS-232 Port provides a standard RS-232 serial interface

Headphone Port a standard jack for headphones

Audio Line Out the stereo audio output. These are standard RCA style line level outputs.
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Figure 1.3: F256k Rear Connectors

The top of the F256k board contains a few connectors and jumpers (see figure 1.4). Note that,
for the F256k, the JTAG port and DIP switches that are on top of the F256jr board are on the
bottom side of the F256k, and they are accessible without removing the board from the case.

Audio Line-input this three pin header provides an stereo audio line level input for the CODEC.

Wi-Fi Module this optional module works with the built-in serial port to allow for Wi-Fi access,
if a program or operating system supports it.

Serial Device Selectors these two three pin headers allow the system to use either the RS-232
port on the back of the board for serial I/O or the optional Wi-Fi module.

Expansion Port for future expansion. This is a PCI-E style connector with a custom pinout. In
the future, it might be used for memory expansion or other devices.

Clock Battery this CR2032 cell holder provides power for the real time clock chip.

Atari Style Joysticks two DE-9 connectors (accessible through the side of the case) provide ac-
cess for Atari style joysticks.

System Architecture
For being so small, the F256 has a lot of components to it, so it is worth mapping out the over all
structure of the computer. One of the main things to note is that most of what makes the F256 the
F256 is the FPGA TinyVicky. TinyVicky provides the MMU, the various text and graphics engines,
most of the I/O devices, controllers for the sound chips, and the controller for the 512KB of SRAM.
The CPU, VIA, RTC, flash memory, and expansion RAM are separate from TinyVicky, although
TinyVicky is still responsible for translating CPU addresses to the appropriate chip selection logic
and bank selection. One of the most important aspects of this architecture is that, while the first
512KB of SRAM is accessible to both the CPU and TinyVicky, TinyVicky cannot access the data in
the flash or in any expansion RAM.
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Figure 1.4: F256k Top View
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Figure 1.5: F256jr Internal Architecture
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2
Memory Management

The F256 has 512 KB of system RAM which can be used for programs, data, and graphics. It
also has 512 KB of read-only flash memory that can be used by whatever operating system is
installed. Finally, the F256 comes with an expansion port and allows for 256KB of expansion
RAM to be added. Now, the 65C02 CPU at the heart of the F256 has an address space of only
64 KB, so how can it access all this memory, not to mention the I/O devices on the system? The
answer is paging. The F256 has a special memory management unit (MMU) that can swap banks
of memory or I/O registers into and out of the memory space of the CPU.

To understand how it all works, we first need to look at how RAM and flash memory are
handled by the F256. Because there are 1,280 KB of total storage on the system, the system has
a 21-bit address bus to manage the memory. RAM and flash have address on that 21-bit bus as
shown in table 2.1.

Start End Memory Type
0x000000 0x07FFFF System RAM (512 KB)
0x080000 0x0FFFFF Flash Memory (512 KB)
0x100000 0x13FFFF Expansion RAM (256 KB)

Table 2.1: F256 memory layout

This memory is divided up into “banks” of 8 KB each. The 16-bit address space of the CPU
is also divided up into 8 KB banks. The MMU allows the program to assign any bank of system
memory to any bank of the CPU’s memory. It does this through the use of memory look-up tables
(LUT), which provide the upper bits needed to select the bank out of system memory for any
given bank in CPU memory. It takes 13 bits to specify an address within 8 KB, which means for
a 16-bit address from the CPU, the upper 3 bits are the bank number. Since the system bus is
21 bits, the upper 8 bits are used to address the correct 8 KB bank in the full system memory.
So a MLUT must provide a 8-bit system bank number for each 3-bit bank number provided by
the CPU. Figure 2.1 shows the translation of a CPU address to a full system address through the
currently selected memory MLUT.

The F256’s MMU supports up to four MLUTs, only one of which is active at any given moment.
This allows programs to define four different memory layouts and switch between them quickly,
without having to alter a MLUT on the fly.

Of the eight CPU memory banks, one is special. Bank 6 can be mapped to memory as the rest
can, or it can be mapped to I/O registers, which are not memory mapped in the same way as

14
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CPU Address

101

A15…A13

0101010101010

A12…A0

000 00000000

001 00000001

010 00000010

011 00000011

100 00000100

101 00000101

110 00000110

111 01110000

System Address

00000101

A20…A13

0101010101010

A12…A0

Bank Address

Bank Select

Translated 
Bank Address

Bank Offset

Figure 2.1: MMU Address Translation

Bank A[15..13] Start End
0 000 0x0000 0x1FFF
1 001 0x2000 0x3FFF
2 010 0x4000 0x5FFF
3 011 0x6000 0x7FFF
4 100 0x8000 0x9FFF
5 101 0xA000 0xBFFF
6 110 0xC000 0xDFFF
7 111 0xE000 0xFFFF

Table 2.2: CPU Memory Banks

RAM and flash. All I/O devices on the F256 therefore live within 0xC000 through 0xDFFF on the
CPU, but only if the MMU is set to map I/O to bank 6. There is quite a lot of I/O to access on the
F256, so there are four different banks of I/O registers and memory that can be mapped to bank
6 (see table 2.3). Generally speaking, individual control registers for I/O are located in I/O bank
0, while larger I/O tables are stored in the other I/O banks:

The MMU is controlled through two main registers, which are always at locations 0x0000
and 0x0001 in the CPU’s address space (see table 2.4). These registers allow programs to select
an active MLUT, edit a MLUT, and control bank 6:

ACT_LUT these two bits specify which MLUT (0–3) is used to translate CPU bus address to system
bus addresses.

EDIT_EN if set (1), this bit allows a MLUT to be edited by the program, and memory addresses
0x0008–0x0010 will be used by the MLUT being edited. If clear (0), those memory locations
will be standard memory locations and will be mapped like the rest of bank 0.
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I/O Bank Purpose
0 Low level I/O registers
1 Text display font memory and graphics color MLUTs
2 Text display character matrix
3 Text display color matrix

Table 2.3: I/O Banks

Address R/W Name 7 6 5 4 3 2 1 0
0x0000 RW MMU_MEM_CTRL EDIT_EN — EDIT_LUT — — ACT_LUT
0x0001 RW MMU_IO_CTRL — IO_DISABLE IO_PAGE

Table 2.4: MMU Registers

EDIT_LUT if EDIT_EN is set, these two bits will specify which MLUT (0 - 3) is being edited and
will appear in memory addresses 0x0008–0x0010.

IO_DISABLE if set (1), bank 6 is mapped like any other memory bank. If clear (0), bank 6 is
mapped to I/O memory.

IO_PAGE if IO_DISABLE is clear, these two bits specify which bank of I/O memory (0 - 3) is
mapped to bank 6.

Example: Setting up a MLUT

In this example, we will set up MLUT 1 so that the first six banks of CPU memory map to the first
banks of RAM, bank 7 of CPU memory maps to the first bank of flash memory, and bank 6 maps
to the first I/O bank.

lda #$90 ; Active MLUT = 0, Edit MLUT#1
sta $0000

ldx #0 ; Start at bank 0
l1: txa ; First 6 banks will just be the first banks of RAM

sta $0008,x ; Set the MLUT mapping for this bank
inx ; Move to the next bank
cpx #6 ; Until we get to bank 6
bne l1

lda #$40 ; Bank 7 maps to $80000, first bank of flash
sta $000f

stz $0001 ; Bank 6 should be I/O bank 0

lda #$01 ; Turn off MLUT editing, and switch to MLUT#1
sta $0000
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MMU Boot Configuration
While the MMU registers allow the MMU to select one of four memory MLUTs to be used for
address translation or to be edited, in fact the F256’s MMU actually has eight MLUTs in two sets
of four. At any given time, only one of those sets of four MLUTs is active. One set of MLUTs is
the “boot from RAM” set, and the other is the “boot from flash” set. As the names imply, one
set is meant to allow you to boot the F256 to run code you have loaded into RAM (useful for
development and debugging), while the other is meant to be used to boot up an operating system
you have loaded into flash memory (useful for just running programs and playing games).

When the F256 powers on, it initializes the MLUTs in two different ways. The “boot from
RAM” MLUTs are initialized so the 64KB of CPU address space is simply mapped to the first
64KB of system RAM. The “boot from flash” MLUTs are initialized to be the same, except that the
last bank of CPU address space (0xE000 – 0xFFFF) is mapped to the last bank of flash memory
(0x07E000 – 0x07FFFF). After the MLUTs are initialized, the F256 checks to see which of the two
sets of MLUTs should be used and enables them. The memory MLUTs that are not selected are
completely ignored. See figure 2.2 to see how the MLUTs are related and how they are initialized
on power up.
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Figure 2.2: MMU Boot Configuration

How the F256 decides which set of MLUTs to use depends upon the model. For the F256jr
RevB, there is a jumper that can be used to choose between boot from flash or boot from RAM.
For the F256jr RevA (the early prototype board) and the F256k, the choice is made through a
command sent over the USB debug port.

Note: the memory MLUTs are really just tables stored in RAM in the TinyVicky chip, and
apart from the power-up initialization, TinyVicky does not change the MLUTs except when di-
rected by a program. Pressing the RESET button does not re-initialize the MLUTs. This means
that a program should not assume the MLUTs are set to any particular value on reset, unless
the operating system is initializing the MLUTs. A program running as an operating system or
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even just taking complete control over the board should always initialize the MLUTs to the
values it needs as one of its first tasks. Of course, a complete power cycle of the board will
reset the MLUTs, but a program will not always be starting from a complete power cycle.
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The Text Screen

The display on the F256 is managed by the video controller of the TinyVicky chip. The display
controller provides four different engines for generating images on the screen:

• Text: an old school style text screen where the characters to display are stored in a text
matrix, and the shape of those characters comes from font memory. Text mode characters
are 8 pixels wide by 8 pixels high.

• Bitmap: a simple pixel image engine that can display a bitmap image covering the screen.

• Sprite: an engine to display small, movable sprites on the screen.

• Tile: an engine to display images on the screen made up of tiles from a tile set.

The bitmap, sprite, and tile engines are considered graphics modes. TinyVicky will let you
display either text by itself, a mix of the graphics modes by themselves, or text overlaid on top
of the graphics modes.

Text Matrix
The memory for the characters to display on the screen is the text matrix, which is stored in I/O
page 2. When this I/O page is swapped into the CPU address space, it appears at 0xC000. Each
byte of memory corresponds to a single character on the screen in left to right, top to bottom
order. The byte at 0xC000 is the upper left corner of the screen, the byte at 0xC001 is the next
character to the right, and so on. The number of bytes per line is set by the base resolution of
the screen, but is generally 80. When a border is displayed, while that limits the number of
characters displayed, the layout in memory remains the same.

The text screen has two core resolutions, tied to the refresh rate of the screen: 80 by 60 at
60 Hz, and 80 by 50 at 70 Hz. Beyond that, the character display may be made double width or
double height, or both. This gives the following possible character displays: 80 × 60, 40 × 60,
80 × 30, 40 × 30, 80 × 50, 40 × 50, 80 × 25, and 40 × 25.

Example: Print an A to the Screen
lda $0001 ; Save the current MMU setting
pha

19
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lda #$02 ; Swap I/O Page 2 into bank 6
sta $0001

lda #’A’ ; Write ’A’ to the upper left corner
sta $C000

pla ; Restore the old MMU setting
sta $0001

Note: this example does not set the font or the color, so depending on how your F256 is ini-
tialized, you may not see an actual “A” on the screen.

Text Color LUTs

Characters in TinyVicky text mode have two colors: the foreground and the background. The
foreground and background colors are picked for each character out of two different palettes
of 16 colors each. The colors in the palettes are picked from the full range of colors F256 can
produce, which is more than 16 million colors. This is all managed through two color lookup
tables (LUTs) provided by TinyVicky: a text foreground color LUT, and a text background color
LUT.

The text LUTs are stored in I/O page 0. The foreground LUT starts at 0xD800, and the back-
ground LUT starts at 0xD840.

Each LUT is a list of 16 entries. Each entry is a set of four bytes: blue, green, red, and alpha
(in that order). Each byte indicates how much of that primary color is present as a component
of the actual color. The values range from 0 (none) to 255 (as much as possible). Currently, the
alpha channel is not used and is there for future expansion.

Color Matrix

The way that text color is selected for each character is through the color matrix. This section
of memory is in I/O page 3 and starts at 0xC000 when page 3 is swapped into the CPU’s address
space. The layout is precisely the same as the text matrix (e.g. the character at 0xC123 in the text
matrix has its color information at 0xC123 in the color matrix).

Each byte in the color matrix specifies two colors by providing an index into each of the
two text LUTs. The most significant four bits is the number of the foreground color to use. The
number of the least significant four bits is the number of the background color to use.

Let’s say the color value at 0xC123 is 0x45. This means that the foreground color of the char-
acter is color 4 from the text foreground LUT, which starts at 0xD810 (0xD800 + 4 * 4), and the
background color of the character is 5 from the text background LUT, which starts at 0xD854
(0xD840 + 4 * 5). If the bytes at 0xD810 are 0x00, 0x80, 0x80, that means the foreground will be
a medium yellow. If the bytes at 0xD854 are 0xFF, 0x00, 0x00, that means the background will
be blue.
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Index R/W Foreground Background 0 1 2 3
0 W 0xD800 0xD840 BLUE_0 GREEN_0 RED_0 X
1 W 0xD804 0xD844 BLUE_1 GREEN_1 RED_1 X
2 W 0xD808 0xD848 BLUE_2 GREEN_2 RED_2 X
3 W 0xD80C 0xD84C BLUE_3 GREEN_3 RED_3 X
4 W 0xD810 0xD850 BLUE_4 GREEN_4 RED_4 X
5 W 0xD814 0xD854 BLUE_5 GREEN_5 RED_5 X
6 W 0xD818 0xD858 BLUE_6 GREEN_6 RED_6 X
7 W 0xD81C 0xD85C BLUE_7 GREEN_7 RED_7 X
8 W 0xD820 0xD860 BLUE_8 GREEN_8 RED_8 X
9 W 0xD824 0xD864 BLUE_9 GREEN_9 RED_9 X

10 W 0xD828 0xD868 BLUE_10 GREEN_10 RED_10 X
11 W 0xD82C 0xD86C BLUE_11 GREEN_11 RED_11 X
12 W 0xD830 0xD870 BLUE_12 GREEN_12 RED_12 X
13 W 0xD834 0xD874 BLUE_13 GREEN_13 RED_13 X
14 W 0xD838 0xD878 BLUE_14 GREEN_14 RED_14 X
15 W 0xD83C 0xD87C BLUE_15 GREEN_15 RED_15 X

Table 3.1: Text Color Lookup Tables

Example: Make That “A” Yellow on Blue

lda $0001 ; Save the MMU state
pha

stz $0001 ; Switch in I/O Page #0

stz $D810 ; Set foreground #4 to medium yellow
lda #$80
sta $D811
sta $D812

lda #$FF ; Set background #5 to blue
sta $D854
stz $D855
stz $D856

lda #$03 ; Switch to I/O page #3 (color matrix)
sta $0001

lda #$45 ; Color will be foreground=4, background=5
sta $C000

pla ; Restore the MMU state
sta $0001



22 CHAPTER 3. THE TEXT SCREEN

Entering Text Mode

Whether text mode is being displayed (and in what resolution) is controlled by the VICKY Master
Control Registers (see table 3.2). For now, we’re going to ignore most of the bits, which are used
by other display modes. For text mode, we really only care about the TEXT bit, which needs to
be set to turn on the text display. The resolution is controlled by DBL_Y, DBL_X, and CLK_70. If
we set 0xD000 to 0x01 and 0xD001 to 0x00, that will put us into text mode at 80 × 60.

Address R/W 7 6 5 4 3 2 1 0
0xD000 R/W X GAMMA SPRITE TILE BITMAP GRAPH OVRLY TEXT
0xD001 R/W — FON_SET FON_OVLY MON_SLP DBL_Y DBL_X CLK_70

Table 3.2: VICKY Master Control Registers

TEXT if set (1), text mode display is enabled

OVRLY if set, text will be overlaid on graphics

GRAPH if set, one or more of the graphics modes may be used

BITMAP if set (and GRAPHICS is set), bitmap graphics may be displayed

TILE if set (and GRAPHICS is set), tile graphics may be displayed

SPRITE if set (and GRAPHICS is set), sprite graphics may be displayed

GAMMA if set, gamma correction is enabled

CLK_70 if set, the video refresh will be set to 70 Hz mode (640x400 text resolution, 320x200
graphics). If clear, the video refresh will be set to 60 Hz (640x480 text resolution, 320x240
graphics).

DBL_X if set, text mode characters will be twice as wide

DBL_Y if set, text mode characters will be twice as high

MON_SLP if set, the monitor SYNC signal will be turned off, putting the monitor to sleep

FON_OVLY if clear (0), only the text foreground color will be displayed when text overlays
graphics (all background colors will be completely transparent). If set (1), both foreground
and background colors will be displayed, except that background color 0 will be transpar-
ent.

FON_SET if set (1), the text font displayed will be font set 1. If clear (0), the text font displayed
will be font set 0.
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Text Fonts
Character shapes (or “glyphs,” if you prefer) are defined in font memory, which is in I/O page 1
and starts at 0xC000. TinyVicky provides for two font sets, and which one is used for text mode
is controlled by the FON_SET bit in the Vicky Master Control Register. Only one will be in use at
any given time in normal operation. Font set 0 is from 0xC000 through 0xC7FF. Font set 1 is from
0xC800 through 0xCFFF.

The F256 treats each character as a square of pixels, 8 pixels on a side. A pixel may be either in
the foreground color for the character or in the background color for the character. The way this
is managed is that each character has a sequence of eight bytes in the font memory. Each byte
represents a row in the character, and each bit represents a pixel in the row (■ for foreground,
□ for background).

As an example, let’s say we wanted to have a fancy “F” for character 0:

□ □ □ ■ ■ ■ ■ ■ 0x1F
□ □ ■ ■ □ □ □ □ 0x30
□ □ ■ ■ □ □ □ □ 0x30
□ ■ ■ ■ ■ ■ □ □ 0x7C
□ ■ ■ □ □ □ □ □ 0x60
■ ■ □ □ □ □ □ □ 0xC0
■ ■ □ □ □ □ □ □ 0xC0

Table 3.3: A sample character

The glyph to display would be defined by the eight byte sequence 0x1F, 0x30, 0x30, 0x7C,
0x60, 0xC0, 0xC0. We would store that sequence in I/O page 0, starting at 0xC000 (0x1F), through
0xC007 (0xC0). After that was set, any time the byte 0x00 is written to screen memory, the glyph
“F” would be displayed in that position.

Text Cursor
F256 has a text mode cursor. The text mode cursor is implemented as a character which is dis-
played in a (𝑥, 𝑦) position on the screen, visually replacing the character ordinarily at that po-
sition. It may be displayed continuously, or it may flash at one of four rates. When flashing,
that position in the text screen will alternate between the text cursor and the character at that
position in the text matrix. The color for the text cursor comes from the color for the position
on the screen as specified in the color matrix. In other words, the text cursor does not have its
own color. The text cursor registers are located in I/O bank 0.

ENABLE if this flag is set (1), the cursor is enabled

FLASH_DIS if this flag is set (1), the cursor will not flash. If clear (0), it will flash.

RATE these two bits set the rate at which the cursor flashes (see table 3.5)

CCH the character code for the cursor character to display

CURX the column number (16-bit) for the cursor
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Address R/W Name 7 6 5 4 3 2 1 0
0xD010 R/W CCR — FLASH_DIS RATE ENABLE
0xD012 R/W CCH Cursor character
0xD014 R/W CURX X7 X6 X5 X4 X3 X2 X1 X0
0xD015 R/W X15 X14 X13 X12 X11 X10 X9 X8
0xD016 R/W CURY Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0xD017 R/W Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8

Table 3.4: Text Cursor Registers

CURY the row number (16-bit) for the cursor

RATE1 RATE0 Rate
0 0 1s
0 1 1/2s
1 0 1/4s
1 1 1/5s

Table 3.5: Text Cursor Flash Rates
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Graphics

The F256 provides three separate graphics engines, giving programs a choice in how they display
information to the user. Those different engines do share certain features, however, and this
chapter will cover the common elements. The three graphics engines are bitmaps, tile maps,
and sprites. What is common between all these elements is how they decide what colors to
display and how to resolve, when two or more objects are in the same place, which object is
displayed.

• Bitmaps are simple raster images. They are the size of the screen (320×200 or 320×240) and
cannot be moved. The TinyVicky chip used by the F256 allows for three separate bitmaps
to be displayed at the same time.

• Tile maps are images made up of tiles. The tiles come in a tile set, which is a raster image
like a bitmap but provides 256 tiles. The tile map itself creates its image by indicating
which tile is displayed at every position in the tile map. This mapping can be changed on
the fly, allowing tile maps to be altered, and tile maps can also be scrolled horizontally and
vertically to a limited degree. This allows for possibility for smooth scrolling of a tile map
scene. TinyVicky allows for three separate tile maps to be displayed simultaneously.

• Sprites are small, square graphic elements that may be moved to any position on the
screen. Sprites are typically used to represent game characters or very mobile UI elements.
TinyVicky sprites may be 8, 16, 24, or 32 pixels on a side. There may be as many as 64 sprites
active on the screen at once (without using special techniques).

Graphics Colors
The graphics modes use a color lookup system similar to text mode to determine colors. The
pixel data for a tile, bitmap, or sprite is composed of bytes, where each byte specifies the color of
that pixel. The byte serves as an index into a color lookup table where the red, green, and blue
components of the desired color are stored (see figure: 4.1). As with text, the color components
are bytes and specify an intensity from 0 (none of that primary color) to 255 (as much of that
primary color as possible). Also, as with text, there is a fourth byte that is reserved for future use,
meaning that each color takes up four bytes in the CLUT. In short, the byte order of a graphics
CLUT entry is exactly the same as for a text CLUT.

However, there is a key difference from text mode. In text mode, there are two colors (fore-
ground and background), and each color is one out of sixteen possibilities. With graphics modes,

25
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Figure 4.1: Bitmap Data to Pixels

there are 256 possibilities. So a CLUT with only 16 entries will not work. There are therefore sep-
arate CLUTs for graphics. TinyVicky provides for four separate graphics CLUTs with 256 entries.
Each graphic object on the screen specifies which graphics CLUT it will use for its colors. These
CLUTs may be found in I/O page 1 (see table: 4.1).

Address R/W Purpose
0xD000 R/W Graphics CLUT 0
0xD400 R/W Graphics CLUT 1
0xD800 R/W Graphics CLUT 2
0xDC00 R/W Graphics CLUT 3

Table 4.1: Graphics Color Lookup Tables

Example: A Simple Gradient

Let’s set up a CLUT so that we have the colors for a gradient fill between red and blue. In this
example, pointer is a two byte variable down in zero page, which will be used to point to the
first byte of the CLUT entry the code is updating. The Y register is being used to point to the
individual components of the entry.

MMU_IO_CTRL = $0001 ; MMU I/O Control Register
VKY_GR_CLUT_0 = $D000 ; Graphics LUT #0

;
; Initialize the LUT to greyscale from (255, 0, 0) to (0, 0, 255)
;
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lda #$01 ; Set the I/O page to #1
sta MMU_IO_CTRL

lda #<VKY_GR_CLUT_0 ; pointer to a particular LUT entry
sta pointer
lda #>VKY_GR_CLUT_0
sta pointer+1

ldx #0 ; Start with blue = 0

lut_loop: ldy #0 ; And start at the offset for blue
txa ; Take the current blue color level
sta (pointer),y ; Set the blue component
iny

lda #0
sta (pointer),y ; Set the green component to 0
iny

txa ; Get the blue component again
eor #$ff ; And compute the 2’s complement of it
inc a
sta (pointer),y ; Set the red component
iny

inx ; Go to the next color
beq lut_done ; If we are back to black, we’re done

clc ; Move pointer to the next LUT entry (+ 4)
lda pointer
adc #4
sta pointer
lda pointer+1
adc #0
sta pointer+1

bra lut_loop

lut_done:

Pixel Data

All three graphics engines arrange their pixel data in the same manner. They all use rectangular
raster images as a base, although the width and height of the rectangle can vary. The pixels
are placed in memory in sequential order in left-to-right and top-to-bottom order. That is, the
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first pixel in the sequence is the upper-left pixel in the image. The next pixel is the pixel to the
immediate right and so on. If the image size is 𝑤 × ℎ, the position of a pixel at (𝑥, 𝑦) in the list is
𝑦 × 𝑤 + 𝑥.

Note: Pixel data for all graphics modes can be stored anywhere in the initial system RAM.
That is, graphics data can be stored anywhere in the first 512KB of memory. The graphics
engine cannot access graphics data in flash or the expansion memory.

Graphics Layers
Now, what happens if two sprites take up the same position or if a program displays a tile map
and a bitmap together? How does TinyVicky determine what color to display at a given position?
TinyVicky provides a flexible layering system with several layers. Elements in “near” layers
(lower numbers) get displayed on top of elements in “far” layers (higher numbers). If a sprite
in layer 0 says a pixel should be blue while a tile in layer 1 says it should be red, the pixel will
be blue. Color 0, however, is special. It is always the transparent “color”. A pixel that is 0 in
an element will be the color of whatever is behind it (or the global background color, if there is
nothing behind it) see table 7.3.

TinyVicky provides for seven layers, but they are split up a bit. Three of the layers are for
bitmaps and tile maps. Only one bitmap or tile map can be placed in any of those three layers.
The other four layers are for sprites only. Any sprite can be assigned to any of the sprite layers,
and there can be multiple sprites in a layer. The sprite layers are interleaved with the bitmap
and tile map layers (see figure: 4.2).

Figure 4.2: TinyVicky Graphic Layers

Bitmaps and tile maps are assigned to their layers using the layer control registers (see ta-
ble: 4.2). The three fields LAYER0, LAYER1, and LAYER2 in the layer registers are three bit values,
which indicate which graphical element to assign to that layer (see table: 4.3).
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Address R/W 7 6 5 4 3 2 1 0
0xD002 R/W — LAYER1 — LAYER0
0xD003 R/W — LAYER2

Table 4.2: Bitmap and Tile Map Layer Registers

Code Layer
0 Bitmap Layer 0
1 Bitmap Layer 1
2 Bitmap Layer 2
4 Tile Map Layer 0
5 Tile Map Layer 1
6 Tile Map Layer 2

Table 4.3: Bitmap and Tile Map Layer Codes

Example: Put Bitmap 0 on Layer 0
As an example of how to use layers, we can set things up for future examples by putting bitmap
0 in the front layer (0), tile map 0 in the next layer (1), and bitmap 1 in the back layer (2).

lda #$40 ; Layer 0 = BM 0, Layer 1 = TM 0
sta VKY_LAYER_CTRL_0
lda #$01 ; Layer 2 = BM 1
sta VKY_LAYER_CTRL_1

Bitmaps
TinyVicky allows for three full screen bitmaps to be displayed at once. These bitmaps are either
320×200 or 320×240, depending on the value of the CLK_70 bit of the master control register. A
bitmap’s pixel data contains either 64,000 bytes, or 76,800 bytes of data. In both cases, the pixel
data is arranged from left to right and top to bottom. The first 320 bytes are the pixels of the first
line (with the first pixel being the left-most). The second 320 bytes are the second line, and so
on. Additionally, the bitmaps can independently use any of the four graphics CLUTs to specify
the colors for those indexes. TinyVicky provides registers for each bitmap set the CLUT and the
address of the bitmap:

ENABLE if set and both graphics and bitmaps are enabled in the Vicky Master Control Register
(see table 3.2), then this bitmap will be displayed.

CLUT sets the graphics color lookup table to be used for this bitmap

AD give the address of the first byte of the pixel data within the 512KB system RAM. Note that
this address is relative to the system bus of 21 bits and is not based on the CPU’s addressing.

To set up and display a bitmap, the following things need to be done. The order is not terribly
important, although updates to the bitmap’s pixel data after the bitmap is displaying will be
visible. That could be desirable, depending on what the program is doing.
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Address R/W Bitmap 7 6 5 4 3 2 1 0
0xD100 R/W

0

— CLUT ENABLE
0xD101 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD102 R/W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD103 R/W — AD18 AD17 AD16
0xD108 R/W

1

— CLUT ENABLE
0xD109 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD10A R/W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD10B R/W — AD18 AD17 AD16
0xD110 R/W

2

— CLUT ENABLE
0xD111 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD112 R/W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD113 R/W — AD18 AD17 AD16

Table 4.4: Bitmap Registers

1. Enable bitmap graphics in the TinyVicky Master Control Register (see table: 3.2). This
means you need to set both the GRAPH and BITMAP bits and either clear TEXT or set the
OVRLY to display text and bitmap together.

2. Set up the pixel data for the bitmap somewhere in the first 512KB of RAM.

3. Set the address of the bitmap’s pixel data in the AD field.

4. Assign the bitmap to a layer using the layer control registers (see table: 4.2).

5. Set the bitmap’s CLUT and ENABLE bit in its control register.

Example: Display a Bitmap
This example will build on the previous examples of setting up the CLUT and display a gradient
on the screen. First, it needs to turn on the bitmap graphics:

MMU_MEM_CTRL = $0000 ; MMU Memory Control Register
MMU_IO_CTRL = $0001 ; MMU I/O Control Register
VKY_MSTR_CTRL_0 = $D000 ; Vicky Master Control Register 0
VKY_MSTR_CTRL_1 = $D001 ; Vicky Master Control Register 1
VKY_BM0_CTRL = $D100 ; Bitmap #0 Control Register
VKY_BM0_ADDR_L = $D101 ; Bitmap #0 Address bits 7..0
VKY_BM0_ADDR_M = $D102 ; Bitmap #0 Address bits 15..8
VKY_BM0_ADDR_H = $D103 ; Bitmap #0 Address bits 17..16

bitmap_base = $10000 ; The base address of our bitmap

stz MMU_IO_CTRL ; Go back to I/O page #0

lda #$0C ; enable GRAPHICS and BITMAP. Disable TEXT
sta VKY_MSTR_CTRL_0 ; Save that to VICKY master control register 0
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stz VKY_MSTR_CTRL_1 ; Make sure we’re just in 320x240 mode

Next, it needs to set up the bitmap: setting the address, CLUT, and enabling the bitmap:

;
; Turn on bitmap #0
;

stz VKY_BM1_CTRL ; Make sure bitmap 1 is turned off

lda #$01 ; Use graphics LUT #0, and enable bitmap
sta VKY_BM0_CTRL

lda #<bitmap_base ; Set the low byte of the bitmap’s address
sta VKY_BM0_ADDR_L
lda #>bitmap_base ; Set the middle byte of the bitmap’s address
sta VKY_BM0_ADDR_M
lda #‘bitmap_base ; Set the upper two bits of the address
and #$03
sta VKY_BM0_ADDR_H

Now, the code needs to create the pixel data for the gradient in memory. This is a bit tricky
on the F256, because the program is using the larger 320×240 screen, which requires more than
64 KB of memory. In order to write to the entire bitmap, the program will have to work with the
MMU to switch memory banks to access the whole bitmap. The program will use bank 1 (0x2000
– 0x3FFF) as its window into the bitmap, which will start at 0x10000. It will walk through the
memory byte-by-byte, setting each pixel’s color based on what line it is on (tracked in a line
variable). Once it has written a bank’s worth of pixels (8 KB), it will increment the bank number
and update the MMU register. Once it has written 240 lines, it will finish.

In the following code, bm_bank and line are byte variables, and pointer and column are
two-byte variables in zero page (although really only pointer has to be there).

; Set the line number to 0
stz line

; Calculate the bank number for the bitmap
lda #(bitmap_base >> 13)
sta bm_bank

bank_loop: stz pointer ; Set the pointer to start of the current bank
lda #$20
sta pointer+1

; Set the column to 0
stz column
stz column+1

; Alter the LUT entries for $2000 -> $bfff
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lda #$80 ; Turn on editing of MMU LUT #0, and use #0
sta MMU_MEM_CTRL

lda bm_bank
sta MMU_MEM_BANK_1 ; Set the bank we will map to $2000 - $3fff

stz MMU_MEM_CTRL ; Turn off editing of MMU LUT #0

; Fill the line with the color..

loop2: lda line ; The line number is the color of the line
sta (pointer)

inc_column: inc column ; Increment the column number
bne chk_col
inc column+1

chk_col: lda column ; Check to see if we have finished the row
cmp #<320
bne inc_point
lda column+1
cmp #>320
bne inc_point

lda line ; If so, increment the line number
inc a
sta line
cmp #240 ; If line = 240, we’re done
beq done

stz column ; Set the column to 0
stz column+1

inc_point: inc pointer ; Increment pointer
bne loop2 ; If < $4000, keep looping
inc pointer+1
lda pointer+1
cmp #$40
bne loop2

inc bm_bank ; Move to the next bank
bra bank_loop ; And start filling it

done: nop ; Lock up here
bra done
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Sprites

In addition to bitmaps and tiles, the F256 provides support for sprites, which are mobile graphi-
cal objects that can appear anywhere on the screen. F256 sprites are similar to the sprites on the
Commodore 64 or player-missile graphics on the 8-bit Atari computers, but they are more flex-
ible than either of those. A sprite is essentially a little bitmap that can be positioned anywhere
on the screen. Each one can come in one of four sizes: 8 × 8, 16 × 16, 24 × 24, or 32 × 32. Each
one can display up to 256 colors, picked from one of the four graphics color lookup tables.

A program for the F256 can use up to 64 sprites, each one of which is controlled by a block of
sprite control registers. The sprite control registers are in I/O page 0, and start at 0xD900. Each
sprite takes up 8 bytes, so sprite 0 starts at 0xD900, sprite 1 starts at 0xD908, sprite 2 at 0xD910,
and so on. The registers for each sprite are arranged within that block of 8 bytes as shown in
table 5.1.

Offset R/W 7 6 5 4 3 2 1 0
0 W — SIZE LAYER LUT ENABLE
1 W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
2 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
3 W — AD18 AD17 AD16
4 W X7 X6 X5 X4 X3 X2 X1 X0
5 W X15 X14 X13 X12 X11 X10 X9 X8
6 W Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
7 W Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8

Table 5.1: Sprite Registers for a Single Sprite

These registers manage seven fields:

ENABLE if set, this particular sprite will be displayed (assuming the graphics and sprite engines
are enabled in the Vicky Master Control Register).

LUT selects the graphics color lookup table to use in assigning colors to pixels

LAYER selects which sprite layer the sprite will be displayed on

SIZE selects the size of the sprite (see table 5.2)
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AD the address of the bitmap (must be within the first 512KB of RAM). The address is based on
the 21-bit system bus, not the CPU’s address space.

X the X coordinate where the sprite will be displayed (corresponds to the sprite’s upper-left
corner)

Y the Y coordinate where the sprite will be displayed (corresponds to the sprite’s upper-left
corner)

SIZE Meaning
0 0 32 × 32
0 1 24 × 24
1 0 16 × 16
1 1 8 × 8

Table 5.2: Sprite Sizes

Sprite Layers and Display Priority

While a sprite can be assigned to any of four layers, this layer is only used for determining
how the sprite interacts with bitmap or tile map graphics and not how sprites layer with each
other. When sprites “collide,” a built-in sprite priority order is used to determine which sprite
determines a pixel’s color. When two sprites are both trying to set the color of a pixel on the
screen, the sprite with the lowest number is the one that determines the color. For example, if
sprite 0 and sprite 5 are in the same location, it is sprite 0 that will display in the foreground.
The sprite layers cannot be used to change this.

The best practice for assigning sprites is to place the images that need to be on top in the first
sprites and those that need to be in the back in the higher numbered sprites. Use the LAYER field
for the sprites to control how the sprites layer with the tile maps and bitmaps.

Sprite Positioning

The coordinate system for sprites is similar to that for bitmap graphics, but it is offset by 32
pixels in both the horizontal and vertical directions. There is a sort of margin area around the
entire displayed screen that a sprite can be in and be either partially or completely hidden from
view. The horizontal coordinate for a sprite ranges from 0 to 352. The vertical coordinate can
range from 0 to 232 or 272, depending on the vertical resolution. For a sprite to have its top-left
corner in the top-left of the screen, its position would need to be (32, 32). This coordinate system
is the same for all sprites, regardless of their size. Figure: 5.1 shows how the coordinate system
is arranged.
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Figure 5.1: Sprite Positions

Example: Displaying a Sprite
In this example, we’ll just put a ball on the screen. First, the program needs to set up TinyVicky
to be in sprite mode with no border and a light purple background:

MMU_IO_CTRL = $0001 ; MMU I/O Control Register

VKY_MSTR_CTRL_0 = $D000 ; Vicky Master Control Register 0
VKY_MSTR_CTRL_1 = $D001 ; Vicky Master Control Register 1
VKY_BRDR_CTRL = $D004 ; Vicky Border Control Register
VKY_BKG_COL_B = $D00D ; Vicky Graphics Background Color Blue
VKY_BKG_COL_G = $D00E ; Vicky Graphics Background Color Green
VKY_BKG_COL_R = $D00F ; Vicky Graphics Background Color Red

VKY_SP0_CTRL = $D900 ; Sprite #0’s control register
VKY_SP0_AD_L = $D901 ; Sprite #0’s pixel data address register
VKY_SP0_AD_M = $D902
VKY_SP0_AD_H = $D903
VKY_SP0_POS_X_L = $D904 ; Sprite #0’s X position register
VKY_SP0_POS_X_H = $D905
VKY_SP0_POS_Y_L = $D906 ; Sprite #0’s Y position register
VKY_SP0_POS_Y_H = $D907

VKY_GR_CLUT_0 = $D000 ; Graphics LUT #0 (in I/O page #1)

ptr_src = $0080 ; A pointer to data to read
ptr_dst = $0082 ; A pointer to data to write

;
; Set up TinyVicky to display sprites
;
lda #$24 ; Graphics & Sprite engines enabled
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sta VKY_MSTR_CTRL_0
stz VKY_MSTR_CTRL_1 ; 320x240 @ 60Hz

stz VKY_BRDR_CTRL ; No border

lda #$96 ; Background: lavender
sta VKY_BKG_COL_R
lda #$7B
sta VKY_BKG_COL_G
lda #$B6
sta VKY_BKG_COL_B

Next, the program loads the sprite’s colors into the CLUT (ptr_src and ptr_dst are 16-bit
storage locations in zero page and are used as pointers):

;
; Load the sprite LUT into memory
;

lda #$01 ; Switch to I/O Page #1
sta MMU_IO_CTRL

lda #<balls_clut_start ; Set the source pointer to the palette
sta ptr_src
lda #>balls_clut_start
sta ptr_src+1

lda #<VKY_GR_CLUT_0 ; Set the destination to Graphics CLUT
sta ptr_dst
lda #>VKY_GR_CLUT_0
sta ptr_dst+1

ldx #0 ; X is the number of colors copied
color_loop: ldy #0 ; Y points to the color component
comp_loop: lda (ptr_src),y ; Read a byte from the code

sta (ptr_dst),y ; And write it to the CLUT
iny ; Move to the next byte
cpy #4
bne comp_loop ; Continue until 4 bytes copied

inx ; Move to the next color
cpx #16
beq done_lut ; Until we have copied all 16

clc ; Move ptr_src to the next source color
lda ptr_src
adc #4
sta ptr_src
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lda ptr_src+1
adc #0
sta ptr_src+1

clc ; Move ptr_dst to the next destination
lda ptr_dst
adc #4
sta ptr_dst
lda ptr_dst+1
adc #0
sta ptr_dst+1

bra color_loop ; And start copying that new color

done_lut: stz MMU_IO_CTRL ; Go back to I/O Page 0

Finally, we point sprite 0 to the pixel data (which is included in the assembly code below), set
its location on the screen (which will be the upper left corner of the screen), and then we turn
on the sprite setting its LUT and LAYER in the process:

;
; Set up sprite #0
;

init_sp0: lda #<balls_img_start ; Address = balls_img_start
sta VKY_SP0_AD_L
lda #>balls_img_start
sta VKY_SP0_AD_M
stz VKY_SP0_AD_H

lda #32
sta VKY_SP0_POS_X_L ; (x, y) = (32, 32)... should be
stz VKY_SP0_POS_X_H ; upper-left corner of the screen

lda #32
sta VKY_SP0_POS_Y_L
stz VKY_SP0_POS_Y_H

lda #$41 ; Size=16x16, Layer=0, LUT=0, Enabled
sta VKY_SP0_CTRL

Here is the pixel data for the sprite:

balls_img_start:
.byte $0, $0, $0, $0, $0, $0, $3, $2, $2, $1, $0, $0, $0, $0, $0, $0
.byte $0, $0, $0, $0, $5, $5, $4, $3, $3, $3, $3, $2, $0, $0, $0, $0
.byte $0, $0, $0, $7, $7, $7, $6, $5, $4, $4, $3, $3, $1, $0, $0, $0
.byte $0, $0, $7, $9, $A, $B, $A, $8, $6, $5, $4, $3, $2, $1, $0, $0
.byte $0, $5, $7, $A, $D, $E, $D, $A, $7, $5, $5, $4, $3, $1, $1, $0
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.byte $0, $5, $7, $B, $E, $E, $E, $C, $7, $5, $5, $4, $3, $1, $1, $0

.byte $3, $4, $6, $A, $D, $E, $D, $A, $7, $5, $5, $4, $3, $2, $1, $1

.byte $2, $3, $5, $8, $A, $C, $A, $8, $6, $5, $5, $4, $3, $2, $1, $1

.byte $2, $3, $4, $6, $7, $7, $7, $6, $5, $5, $5, $4, $3, $1, $1, $1

.byte $1, $3, $4, $5, $5, $5, $5, $5, $5, $5, $5, $3, $3, $1, $1, $1

.byte $0, $3, $3, $4, $5, $5, $5, $5, $5, $5, $4, $3, $2, $1, $1, $0

.byte $0, $2, $3, $3, $4, $4, $4, $4, $4, $3, $3, $2, $1, $1, $1, $0

.byte $0, $0, $1, $2, $3, $3, $3, $3, $3, $3, $2, $1, $1, $1, $0, $0

.byte $0, $0, $0, $1, $1, $1, $2, $2, $1, $1, $1, $1, $1, $0, $0, $0

.byte $0, $0, $0, $0, $1, $1, $1, $1, $1, $1, $1, $1, $0, $0, $0, $0

.byte $0, $0, $0, $0, $0, $0, $1, $1, $1, $1, $0, $0, $0, $0, $0, $0

Here are the colors for the sprite (note that this example is using only 15 colors, to make the
example more understandable in print):

balls_clut_start:
.byte $00, $00, $00, $00
.byte $88, $00, $00, $00
.byte $7C, $18, $00, $00
.byte $9C, $20, $1C, $00
.byte $90, $38, $1C, $00
.byte $B0, $40, $38, $00
.byte $A8, $54, $38, $00
.byte $C0, $5C, $50, $00
.byte $BC, $70, $50, $00
.byte $D0, $74, $68, $00
.byte $CC, $88, $68, $00
.byte $E0, $8C, $7C, $00
.byte $DC, $9C, $7C, $00
.byte $EC, $A4, $90, $00
.byte $EC, $B4, $90, $00
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Tiles

The third graphics engine TinyVicky provides is the tile map system. The tile map system might
seem a bit confusing at first, but really it is very similar to text mode, just made more flexible.
In text mode, we have characters (256 of them). The shapes of the characters are defined in the
font. What character is shown in a particular spot on the screen is set in the text matrix, which
is a rectangular array of bytes in memory. In the same way, with the tile system we have tiles
(256 of those, too). What those tiles look like are defined in a “tile set.” What tile is shown in a
particular spot on the screen is set in the “tile map.” So there is an analogy:

character ≈ tile
font ≈ tile set

text matrix ≈ tile map

There are several differences with tile maps, however:

• A tile map may use tiles that are either 8 × 8 pixels or 16 × 16 pixels.

• A tile map can be scrolled smoothly horizontally or vertically.

• A tile may use 256 colors in its pixels as opposed to text mode’s two-color characters. This
means that a tile set uses one byte per pixel, with that byte’s value being an index into a
CLUT (as with bitmaps and sprites), where text mode fonts are one bit per pixel choosing
between a foreground and background color.

• The tile map system allows for up to eight different tile sets to be used at the same time,
where text mode has a single font.

• Up to three different tile maps can be displayed at one time, where text mode can only
display one text matrix.

• A tile map can be placed on any one of three display layers, where text mode is always on
top.
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Tile Maps
There are three tile maps supported by TinyVicky, each of which has 12 bytes worth of registers
(see table: 6.1). Tile map 0 starts at 0xD200. Tile map 1 starts at 0xD20C. Tile map 2 starts at
0xD218.

Offset R/W 7 6 5 4 3 2 1 0
0 W — TILE_SIZE — ENABLE
1 W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
2 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
3 W — AD18 AD17 AD16
4 W MAP_SIZE_X
5 W RESERVED
6 W MAP_SIZE_Y
7 W RESERVED
8 W X3 X2 X1 X0 SSX3 SSX2 SSX1 SSX0
9 W — X9 X8 X7 X6 X5 X4

10 W Y3 Y2 Y1 Y0 SSY3 SSY2 SSY1 SSY0
11 W — Y7 Y6 Y5 Y4

Table 6.1: Tile Map Registers

TILE_SIZE if 1, tiles are 8 pixels wide by 8 tall. If 0, tiles are 16 pixels wide by 16 pixels tall

ENABLE if set, the tile map will be displayed (if GRAPH and TILES are set in TinyVicky’s Master
Control Register)

AD the address of the tile map data in RAM

MAP_SIZE_X the width of the tile map in tiles (i.e. the number of columns)

MAP_SIZE_Y the height of the tile map in tiles (i.e. the number of rows)

X horizontal scroll in tile widths

SSX horizontal scroll in pixels. How these bits are used varies with the size. If tiles are 16 pixels
wide, then flags SSX[3..0] are used. If tiles are only 8 pixels wide, then only SSX[3..1] are
used.

Y vertical scroll in tile heights

SSY vertical scroll in pixels. How these bits are used varies with the size. If tiles are 16 pixels
wide, then flags SSY[3..0] are used. If tiles are only 8 pixels wide, then only SSY[3..1] are
used.

One way tile maps get their flexibility is that, where text mode uses 8-bit bytes for the text
matrix, a tile map uses 16-bit integers in memory. A tile map entry is divided up into two pieces:
the first byte is the number of the tile to display in that position (much like the character code in
text mode), but the upper byte contains attribute bits (see table: 6.2) and has two fields:
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SET is the number of the tile set to use for this tile’s appearance

CLUT is the number of the graphics CLUT to use in setting the colors

This attribute system makes tiles very powerful. Effectively, a single tile map can display
1,024 completely unique shapes at one time by using all eight tile sets. Also, since the CLUT is
set for each tile in the attributes, the number of tiles needed can be reduced by clever use of
recoloring.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— CLUT SET TILE NUMBER

Table 6.2: A Tile Map Entry

Scrolling

Tile maps can scroll across the screen both horizontally and vertically. The position of the tile
map on the screen is controlled through the registers at offsets 8, 9, and 10. The horizontal
position is controlled by X, and SSX. The vertical position is controlled by Y, and SSY. The bits X
and Y set the position in units of tiles. That is, the number in X[9..0] specifies how many complete
tile columns the tile map is moved left. Likewise, Y[9..0] specifies how many tile rows the tile map
is moved up. The SSX and SSY bits are used to specify how many rows of pixels within a tile the
tile map is to move. SSX and SSY are therefore “smooth scroll” registers. They have a small trick
to their use, however:

If the tile map uses tiles 16 pixels on a side, SSX[3..0] is used to specify the number of pixels to
shift the tile map left: from 0 to 15. If, on the other hand, the tile map uses tiles 8 pixels on a side,
only SSX[3..1] are used to specify the number of pixels to move: from 0 to 7. Note that SSX[0] is
not used at all in this case. The SSY bits work in exactly the same way for smooth scrolling in the
vertical direction.

To make sure that scrolling will work properly, the tile map needs to be at least as big as the
full screen (even if it is largely “empty”), and there should be blank columns to the left and the
right and blank rows above and below. That is, it is best to leave an empty margin all the way
around your working tile map.

Tile Sets

Essentially, a tile set is just a bitmap, but of a smaller size and arranged in a specific pattern. A
tile set can be either a linear arrangement of tiles or a square arrangement of tiles. In the linear
arrangement, the image is one tile wide by 256 tiles high. So for 8 × 8 tiles, the tile set is 8 pixels
wide by 2,048 pixels high. For 16× 16 tiles, the tile set is 16 pixels wide by 4,096 pixels high. The
tiles are arranged vertically, so the first 8 or 16 (depending on tile size) rows are tile 0, the second
set of rows are tile 1, and so on. For the square arrangement, the tile set is either 128 pixels wide
by 128 pixels high (for 8 × 8 tiles), or it is 256 pixels wide by 256 pixels high (for 16 × 16 tiles). In
both cases, the tiles are laid out left to right and top to bottom in a grid that is 16 tiles wide by 16
tiles high (see table 6.3).
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As with bitmaps and sprites, the pixels of the tiles are each an individual byte. The contents
of the byte (0 – 255) serving as an index into a color lookup table. The pixels are also laid out in
left-to-right and top-to-bottom order, just as with bitmaps and individual sprites.

128 or 256 pixels

12
8

or
25

6
pi

xe
ls

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 46
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 60 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Table 6.3: Arrangement of Tiles in a Tile Set Image

TinyVicky supports eight separate tile sets. Each one has a single three byte address register,
which provides the address to the tile set pixel data, and a configuration register (see table: 6.4).
To use them, a program simply stores the address of the pixel data to use into the appropriate
address register. The configuration register contains a single SQUARE flag, which indicates the
layout of the tile set image. If SQUARE is set (1), the tile set image is square (128 × 128 pixels for
8× 8 tiles or 256× 256 pixels for 16× 16 tiles). If SQUARE is clear (0), the tile set image is vertical
(8 × 2, 048 pixels for 8 × 8 tiles, or 16 × 4, 096 pixels for 16 × 16 tiles).

Example: A Simple Tile Map
;
; Set up TinyVicky to display tiles
;
lda #$14 ; Graphics and Tile engines enabled
sta VKY_MSTR_CTRL_0
stz VKY_MSTR_CTRL_1 ; 320x240 @ 60Hz

lda #$40 ; Layer 0 = Bitmap 0, Layer 1 = Tile map 0
sta VKY_LAYER_CTRL_0
lda #$15 ; Layer 2 = Tile Map 1
sta VKY_LAYER_CTRL_1

stz VKY_BRDR_CTRL ; No border
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Address R/W Tile Set 7 6 5 4 3 2 1 0
0xD280 W

0

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD281 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD282 W — AD18 AD17 AD16
0xD283 W — SQUARE —
0xD284 W

1

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD285 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD286 W — AD18 AD17 AD16
0xD287 W — SQUARE —
0xD288 W

2

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD289 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD28A W — AD18 AD17 AD16
0xD28B W — SQUARE —
0xD28C W

3

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD28D W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD28E W — AD18 AD17 AD16
0xD28F W — SQUARE —

Table 6.4: Tile Set 0–3 Registers

lda #$19 ; Background: midnight blue
sta VKY_BKG_COL_R
lda #$19
sta VKY_BKG_COL_G
lda #$70
sta VKY_BKG_COL_B

To define the tile set, all we really need to do is to set the address register for the tile set to
point to the actual pixel data. In this particular case, the code is just going to use tile set 0.

;
; Set tile set #0 to our image
;

lda #<tiles_img_start
sta VKY_TS0_ADDR_L
lda #>tiles_img_start
sta VKY_TS0_ADDR_M
lda #‘tiles_img_start
sta VKY_TS0_ADDR_H

Finally, the code sets up the tile map itself, setting the size of the tiles, the size of the tile map,
setting the position of the screen in the tile map, and pointing to the tile map data.

;
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Address R/W Tile Set 7 6 5 4 3 2 1 0
0xD290 W

4

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD291 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD292 W — AD18 AD17 AD16
0xD293 W — SQUARE —
0xD294 W

5

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD295 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD296 W — AD18 AD17 AD16
0xD297 W — SQUARE —
0xD298 W

6

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD299 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD29A W — AD18 AD17 AD16
0xD29B W — SQUARE —
0xD29C W

7

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD29D W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD29E W — AD18 AD17 AD16
0xD29F W — SQUARE —

Table 6.5: Tile Set Registers 4–7

; Set tile map #0
;

lda #$01 ; 16x16 tiles, enable
sta VKY_TM0_CTRL

lda #22 ; Our tile map is 20x15
sta VKY_TM0_SIZE_X
lda #16
sta VKY_TM0_SIZE_Y

lda #<tile_map ; Point to the tile map
sta VKY_TM0_ADDR_L
lda #>tile_map
sta VKY_TM0_ADDR_M
lda #‘tile_map
sta VKY_TM0_ADDR_H

lda #$0F ; Set scrolling (15, 0)
sta VKY_TM0_POS_X_L
lda #$00
sta VKY_TM0_POS_X_H

stz VKY_TM0_POS_Y_L
stz VKY_TM0_POS_Y_H
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The tile map itself. In this case, we just define it in-line. The data is formatted to match the
dimensions of the tile map for ease of reading. Note that the left-most and right-most columns
are essentially blank, providing some buffer space to allow for scrolling. Similarly, there is a
spare row on the bottom. This data is formatted as single hexadecimal digits, to make it easier
to format this data on the page, but the data is actually stored as 16-bit values. This is taking
advantage of the fact that the code is using CLUT 0 and LAYER 0 for the tiles and that there are
no more than 16 tiles in the tile set.

tile_map:
.word $4,$1,$0,$1,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$4,$0,$4,$0
.word $0,$0,$1,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$4,$0,$0
.word $0,$1,$0,$1,$0,$0,$6,$7,$7,$7,$7,$7,$7,$7,$7,$8,$0,$0,$4,$0,$4,$0
.word $0,$0,$0,$0,$0,$0,$9,$1,$2,$3,$4,$5,$0,$0,$0,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$2,$1,$2,$3,$4,$5,$0,$0,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$3,$2,$1,$2,$3,$4,$5,$0,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$4,$3,$2,$1,$2,$3,$4,$5,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$5,$4,$3,$2,$1,$2,$3,$4,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$0,$5,$4,$3,$2,$1,$2,$3,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$0,$0,$5,$4,$3,$2,$1,$2,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$0,$0,$0,$5,$4,$3,$2,$1,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$B,$C,$C,$C,$C,$C,$C,$C,$C,$D,$0,$0,$0,$0,$0,$0
.word $0,$3,$0,$3,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$2,$0
.word $0,$0,$3,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$0
.word $0,$3,$0,$3,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$2,$0
.word $0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$0,$4
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Miscellaneous Features of TinyVicky

DIP Switches
F256 has eight DIP switches on the board, which can be used to configure various options. The
DIP switches are present on a single register (see table: 7.1). The DIP switches ground their
signals when placed in their “on” positions. So a true or asserted value is 0, while the false or
de-asserted value is 1.

Address R/W 7 6 5 4 3 2 1 0
0xD670 R GAMMA USER2 USER1 USER0 BOOT

Table 7.1: DIP Switch Register

There are five fields of switches:

GAMMA this is a dedicated switch to indicate if gamma correction should be turned on (0) or
not (1)

USER0, USER1, USER2 these three switches are reserved for use by the operating system or
programs. On is 0, off is 1.

BOOT these four switches provide information to the operating system for boot options.

The Border
The F256’s display can have a border, which overlays all the other display elements. The border
can have any color which TinyVicky can display, and can have a width from 0 to 31 pixels. The
border can also be turned off, leaving the full display for graphics or text.

When using graphics modes, the border simply hides the graphics elements underneath it.
For text mode, things are a little different. The text display will be shifted so that the character
at (0, 0) is still the upper-left character. The layout of the text and color matrixes do not change,
however. Cells that are under the right side or bottom of the border will still be in the matrixes
but will not be displayed. Another way to put it is that, if the text resolution is 80 characters
wide, it will remain 80 characters per line even if the border is on and only 76 characters are
displayed.
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Address R/W Name 7 6 5 4 3 2 1 0
0xD004 R/W BRDR_CTRL — SCROLL_X — ENABLE
0xD005 R/W BRDR_BLUE Blue component of border color
0xD006 R/W BRDR_GREEN Green component of border color
0xD007 R/W BRDR_RED Red component of border color
0xD008 R/W BRDR_WIDTH — SIZE_X
0xD009 R/W BRDR_HEIGHT — SIZE_Y

Table 7.2: Border Registers

ENABLE when set (1), the border will be displayed

SCROLL_X the number of pixels the border should be shifted in the horizontal direction

BRDR_BLUE the amount of blue in the border (0 = none, 255 = maximum amount)

BRDR_GREEN the amount of green in the border (0 = none, 255 = maximum amount)

BRDR_RED the amount of red in the border (0 = none, 255 = maximum amount)

SIZE_X the width of the left and right sides of the border in pixels (from 0 to 31)

SIZE_Y the height of top and bottom of the border in pixels (from 0 to 31)

Background Color
In text mode, the background color is determined by the color matrix and the text color LUTs.
For the graphics modes, however, a background color is specified separately. There are three
registers to specify the background color’s red, green, and blue components (see table: 7.3). This
is the color that will be displayed in graphics modes, if all the layers specify that a given pixel
has the color 0 (which is always the transparent pixel color).

Address R/W Name 7 6 5 4 3 2 1 0
0xD00D R/W BGND_BLUE Blue component of background color
0xD00E R/W BGND_GREEN Green component of background color
0xD00F R/W BGND_RED Red component of background color

Table 7.3: Background Color Registers

Line Interrupt and Beam Position
TinyVicky can trigger a SOL interrupt (see table: 9.2) when the display has reached a given raster
line. This can be useful for split-screen style effects or other programming tricks that work off of
partitioning the screen into separate areas. To use this feature, a program would enable the line
interrupt and set a register to the number of the line on the screen when the interrupt should
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be triggered. In addition to setting a line interrupt, there are two 12-bit registers that allow the
program to see what line and column is TinyVicky is currently drawing. The addresses for all
these registers overlap. The line interrupt registers are write-only, and the current beam position
registers are read only (see table: 7.4)

Address R/W Name 7 6 5 4 3 2 1 0
0xD018 W LINT_CTRL — ENABLE
0xD019 W LINT_L L7 L6 L5 L4 L3 L2 L1 L0
0xD01A W — L11 L10 L9 L8
0xD01B W — Reserved
0xD018 R RAST_COL X7 X6 X5 X4 X3 X2 X1 X0
0xD019 R — X11 X10 X9 X8
0xD01A R RAST_ROW Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0xD01B R — Y11 Y10 Y9 Y8

Table 7.4: Line Interrupt and Beam Position Registers

ENABLE if set (1), TinyVicky will trigger line interrupts (write only)

LINT_L the line number (12 bits) on which to trigger the next line interrupt (write only). The
top of the display is line 0, and the bottom of the screen is 400 for 320× 200 mode, and 480
for 320 × 240 mode.

RAST_COL the number (12 bits) of the current pixel being drawn (read only)

RAST_ROW the number (12 bits) of the current line being drawn (read only)

Example: Changing Border with the Line
In this example, we will play with a split-screen style effect changing the color of the border so
that the top and bottom borders are blue while the left and right borders are red. To do this, we
will use the line interrupt twice for each frame: once when we are on the line just below the last
line of the top border, and once when we are on the first line of the bottom border.

To make this work, the example has a single state variable, which will track which color
border is being rendered. It will enable the line interrupt, and then set the line number to wait
for. When that interrupt comes in, it will check the state variable, setting the border color and
new line number based on state. It will also flip state to the other value (0 or 1).

INT_PEND_0 = $D660 ; Pending register for interrupts 0 - 7
INT_PEND_1 = $D661 ; Pending register for interrupts 8 - 15
INT_MASK_0 = $D66C ; Mask register for interrupts 0 - 7
INT_MASK_1 = $D66D ; Mask register for interrupts 8 - 15
INT01_VKY_SOL = $02

MMU_IO_CTRL = $0001 ; MMU I/O Control Register

VKY_MSTR_CTRL_0 = $D000 ; Vicky Master Control Register 0
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VKY_MSTR_CTRL_1 = $D001 ; Vicky Master Control Register 1
VKY_BRDR_CTRL = $D004 ; Vicky Border Control Register
VKY_BRDR_COL_B = $D005 ; Vicky Border Color -- Blue
VKY_BRDR_COL_G = $D006 ; Vicky Border Color -- Green
VKY_BRDR_COL_R = $D007 ; Vicky Border Color -- Red
VKY_BRDR_HORI = $D008 ; Vicky Border Horizontal Thickness in pixels
VKY_BRDR_VERT = $D009 ; Vicky Border vertical thickness in pixels

VIRQ = $FFFE

LINE0 = 16 ; Start at line 16 (first line on the text display)
LINE1 = 480 - 16 ; End on line 464 (last line of text display)

;
; Variables
;
* = $0080

state .byte ? ; Variable to track which color we should use

;
; Code
;
* = $e000

start: ; Disable IRQ handling
sei

; Go back to I/O page 0
stz MMU_IO_CTRL

; Load my IRQ handler into the IRQ vector
; NOTE: this code just takes over IRQs completely. It could save
; the pointer to the old handler and chain to it when it has
; handled its interrupt. But what is proper really depends on
; what the program is trying to do.
lda #<my_handler
sta VIRQ
lda #>my_handler
sta VIRQ+1

; Mask off all but the SOL interrupt
lda #$ff
sta INT_MASK_1
and #~INT01_VKY_SOL
sta INT_MASK_0



50 CHAPTER 7. MISCELLANEOUS FEATURES OF TINYVICKY

; Clear all pending interrupts
lda #$ff
sta INT_PEND_0
sta INT_PEND_1

; Make sure we’re in text mode
lda #$01 ; enable TEXT
sta VKY_MSTR_CTRL_0 ; Save to VICKY master control register 0
stz VKY_MSTR_CTRL_1

; Set the border
lda #$01 ; Enable the border
sta VKY_BRDR_CTRL

lda #16 ; Make it 16 pixels wide
sta VKY_BRDR_VERT
sta VKY_BRDR_HORI

lda #$80 ; Make it cyan to start with
sta VKY_BRDR_COL_B
sta VKY_BRDR_COL_G
stz VKY_BRDR_COL_R

lda #$01 ; Turn on the line interrupt
sta VKY_LINE_CTRL

lda #<LINE0 ; set the line to interrupt on
sta VKY_LINE_NBR_L
lda #>LINE0
sta VKY_LINE_NBR_H

stz state ; Start in state 0

; Re-enable IRQ handling
cli

loop: ; Just loop forever... a real program will do stuff here
nop
bra loop

;
; A simple interrupt handler
;
my_handler: .proc

pha

; Save the system control register
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lda MMU_IO_CTRL
pha

; Switch to I/O page 0
stz MMU_IO_CTRL

; Check for SOL flag
lda #INT01_VKY_SOL
bit INT_PEND_0
beq return ; If it’s zero, exit the handler

; Yes: clear the flag for SOL
sta INT_PEND_0

lda state ; Check the state
beq is_zero

stz state ; If state 1: Set the state to 0

lda #<LINE0 ; Set the line to interrupt on
sta VKY_LINE_NBR_L
lda #>LINE0
sta VKY_LINE_NBR_H

lda #$80 ; Make the border blue
sta VKY_BRDR_COL_B
stz VKY_BRDR_COL_G
stz VKY_BRDR_COL_R
bra return

is_zero: lda #$01 ; Set the state to 1
sta state

lda #<LINE1 ; set the line to interrupt on
sta VKY_LINE_NBR_L
lda #>LINE1
sta VKY_LINE_NBR_H

lda #$80 ; Make the border red
sta VKY_BRDR_COL_R
stz VKY_BRDR_COL_G
stz VKY_BRDR_COL_B

; Restore the system control register
return: pla

sta MMU_IO_CTRL
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; Return to the original code
pla
rti
.pend

Gamma Correction
TinyVicky has the ability to apply gamma correction to the video signal. This allows users to
adjust their images to match their monitors. Activating gamma correction is done by setting the
GAMMA flag in the Vicky master control register (see table: 3.2). When enabled, colors will be
adjusted through the gamma look up tables. There are three tables: blue is at 0xC000, green is
at 0xC400, and red is at 0xC800.

The way that the gamma look up tables work is very straight forward. When drawing a pixel,
the separate color components are used as indexes into their respective gamma LUTs, and the
value in the LUT is used as the new component value. For instance, if a pixel’s color is (𝑟, 𝑔, 𝑏),
then the new color is:

r_corrected = gamma_red[r]
g_corrected = gamma_green[g]
b_corrected = gamma_blue[b]

On power up, TinyVicky sets up a default gamma correction of 1.8, although software (either
the user’s program or the operating system) has to turn on gamma correction to use it.
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Sound

The F256 line has a couple of sound chips, which chips are present depends upon the model.
All of the machines have built-in the SN76489 (called the “PSG” here), which was used by many
vintage machines including the TI99/4A, the BBC Micro, the IBM PCjr, and the Tandy 1000. The
PSG chips on the F256 are actually implemented as part of the TinyVicky FPGA. The F256jr also
has two sockets on the board that may be populated with SID chips (either the original 6581, the
later 8580, or any of the new FPGA replacements). The F256k implements these SID chips in the
FPGA but also includes a physical OPL3 chip on the board.

CODEC

The F256 (and indeed all the Foenix computers up to this point) makes use of a WM8776 CODEC
chip. You can think of the CODEC as the central switchboard for audio on the F256. The CODEC
chip has inputs for several audio channels (both analog and digital), and each audio device on
the F256 is routed to an input on the CODEC. The CODEC then has outputs for audio line level and
headphones. The CODEC will convert analog inputs to digital, mix all the audio inputs according
to its settings, and then convert the resulting digital audio to analog and drive the outputs. With
the CODEC, you can turn on and off the various input channels, control the volume, and mute
or enable the different outputs.

The CODEC is a rather complex chip with many features, and the full details are really beyond
the scope of this document. Most programs for the F256 will not need to use it or will only use
it in very specific ways. Therefore, this document will really just show how to access it and
initialize it and then leave a reference to the data sheet for the chip that has the complete data
on the chip.

Raw access to the CODEC chip is fairly complex. Fortunately, the FPGA on the F256 provides
three registers to simply access for programs. The FPGA takes care of the actual timing of trans-
mitting data to the CODEC, serializing the data correctly, and so on. All the program needs to
know about are the correct format for the 16-bit command words that are sent to the CODEC,
and then a status register to monitor.

The CODEC commands are based around a number of registers. Each command is really
just writing values to those registers. The command words are 16-bits wide, with the 7 most
significant bits being the number of the register to write, and the 9 least significant bits being
the data to write. For instance, there is a register to enable and disable the headphone output.
Bit 0 of the register controls whether or not the headphone output is enabled (0 = enabled, 1 =
disabled). The register number is 13. So, to disable the output on the headphones, we would need
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to write 000000001 to register 13. The register number in binary is 0001101, So the command
word we would need to send is 0001101000000001 or 0x1A01.

The registers for the CODEC on the F256 are shown in table 8.1.

Address R/W 7 6 5 4 3 2 1 0 Purpose
0xD620 W D7 D6 D5 D4 D3 D2 D1 D0 Command Low
0xD621 W R6 R5 R4 R3 R2 R1 R0 D8 Command High
0xD622 R X BUSY Status
0xD622 W X START Control

Table 8.1: CODEC Control Registers

Bit 0 of the status/control register both triggers sending the command (on a write) and indi-
cates if the CODEC is busy receiving a command (writing a 1 triggers the sending of the command,
reading a 1 indicates that the CODEC is busy).

So to mute the headphones, we would issue the following:

wait: lda $D622 ; Wait for the CODEC to be ready
and #$01
cmp #$01
beq wait ; Bit 0 = 1, CODEC is still busy... keep waiting

lda #$01 ; Set command to %0001101000000001, or R13 <- 000000001
sta $D620
lda #$1A
sta $D621

lda #$01 ; Trigger the transmission of the command to the CODEC
sta $D622

Using the PSGs

The F256 has support for dual SN76489 (PSG) sound chips, emulated in the FPGA. The SN76489
was used in several vintage machines, including the TI-99/4A, BBC Micro, IBM PCjr, and Tandy
1000. The chip provides three independent square-wave tone generators and a single noise gen-
erator. Each tone generator can produce tones of several frequencies in 16 different volume
levels. The noise generator can produce two different types of noise in three different tones at
16 different volume levels.

Access to each PSG is through a single memory address, but that single address allows the
CPU to write a value to eight different internal registers. For each tone generator, there is a ten
bit frequency (which takes two bytes to set), and a four bit “attenuation” or volume level. For
the noise generator, there is a noise control register and a noise attenuation register.

There are four basic formats of bytes that can be written to the port, as shown in table 8.3.
Note: there is a PSG sound device for the left stereo channel and one for the right. The left

channel PSG can be accessed at 0xD600, and the right channel at 0xD610. Both are in I/O page
0. There is also a sound “device” for managing the left and right PSGs together, which starts at
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R2 R1 R0 Channel Purpose
0 0 0 Tone 1 Frequency
0 0 1 Tone 1 Attenuation
0 1 0 Tone 2 Frequency
0 1 1 Tone 2 Attenuation
1 0 0 Tone 3 Frequency
1 0 1 Tone 3 Attenuation
1 1 0 Noise Control
1 1 1 Noise Attenuation

Table 8.2: SN76489 Channel Registers

D7 D6 D5 D4 D3 D2 D1 D0 Purpose
1 R2 R1 R0 F3 F2 F1 F0 Set the low four bits of the frequency
0 X F9 F8 F7 F6 F5 F4 Set the high six bits of the frequency
1 1 1 0 X FB F1 F0 Set the type and frequency of the noise generator
1 R2 R1 R0 A3 A2 A1 A0 Set the attenuation (four bits)

Table 8.3: SN76489 Command Formats

0xD608. The combined registers work in the same way as the left and right PSGs. Writing to the
combined registers is equivalent to writing to the left and right channel registers simultaneously.

The PSGs can be used with their outputs mixed in one of two modes. They can either be used
as independent 4 voice stereo sound (one PSG on the left and one on the right), or they can be
used as 8 voice monaural sound (both PSGs are routed to both left and right sound channels).
This is controlled by the PSG_ST flag in the system control registers (see page 94).

Attenuation

All the channels support attenuation or volume control. The PSG expresses the loudness of the
sound with how much it is attenuated or dampened. Therefore, an attenuation of 0 will be the
loudest sound, while an attenuation of 15 will make the channel silent.

Tones

Each of the three sound channels generates simple square waves. The frequency generated de-
pends upon the system clock driving the chip and the number provided in the frequency register.
The relationship is:

𝑓 =
𝐶

32𝑛
where 𝑓 is the frequency produced, 𝐶 is the system clock, and 𝑛 is the number provided in the
register. Expressed a different way, the value we need to produce a given frequency can be
computed as:

𝑛 =
𝐶

32 𝑓
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For the F256 the system clock is 3.57 MHz, which means:

𝑛 =
111, 563

𝑓

So, let us say we want channel 1 to produce a concert A, which is 440Hz at maximum volume.
The value we need to set for the frequency code is 111, 320/440 = 253 or 0xFE. We can do that
with this code:

lda #$90 ; %10010000 = Channel 1 attenuation = 0
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

lda #$8E ; %10001100 = Set the low 4 bits of the frequency code
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

lda #$0F ; %00001111 = Set the high 6 bits of the frequency
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

To turn it off later, we just need to write:

lda #$9F ; %10011111 = Channel 1 attenuation = 15 (silence)
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

Noise
Noise works differently from tones, since it is random. The noise generator on the PSG can
produce two styles of noise determined by the FB bit: white noise (FB = 1), and periodic (FB = 0).
The noise has a sort of frequency, based on either the system clock or the current output of tone
3. This frequency is set using the F1 and F0 bits:

F1 F0 Frequency
0 0 𝐶/512
0 1 𝐶/1024
1 0 𝐶/2048
1 1 Tone 3 output

Table 8.4: SN76489 Noise Frequencies

As an example, to set white noise of the highest frequency (𝐶/512 or around 6 kHz), we could
use the code:

lda #$F0 ; %10010000 = Channel 3 attenuation = 0
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG
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lda #$E4 ; %11100100 = white noise, f = C/512
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

To turn it off later, we just need to write:

lda #$FF ; %1ff11111 = Channel 3 attenuation = 15 (silence)
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

Using the SIDs
The SID is a full-featured analog sound synthesizer, and a full explanation of how to use it is
really beyond the scope of this document. In this document, I will provide just an introduction
to the chip and list the register addresses for the SID chips (see table 8.5), which are expressed as
offsets from a base address. Since there are two SID chips, there are two base addresses: the left
channel starts at 0xD400, and the right channel starts at 0xD500. For the F256jr, the SID chips are
optional. The board comes with two unpopulated sockets into which either genuine SID chips
or the various FPGA replacements may be installed. For the F256k, there is no socket for SIDs,
but the two SID chips are provided by the built-in FPGAs.

The SID chip provides three independent voices (so it can play three notes at once). The three
voices are almost identical in their features, with voice 3 being the only one different. Each voice
can produce one of four basic sound wave forms: randomized noise, square waves, saw tooth
waves, and triangle waves. These waves can be generated over a range of frequencies, and for
the square waves, the width of the pulse (i.e. duty cycle) may be adjusted.

The type of wave form produced by a voice is controlled by the NOISE, PULSE, SAW, and TRI
bits. If NOISE is set to 1, the output is random noise. If PULSE is set, a square wave is produced.
If SAW is set, a saw tooth wave is produced. If TRI is set, the voice produces a triangle wave. If
PULSE is set, the duty cycle of the square wave (or pulse width, if you prefer) is set by the PW
bits according to the formula PW/40.95 (expressed as a percent).

The frequency of the waveform is set by the bits F[15..0]. This number sets the actual
frequency according the the formula:

𝑓out =
𝐹𝐶

16777216
where: 𝑓out is the output frequency, 𝐹 is the number set in the registers, and 𝐶 is the system clock
driving the SIDs. For the F256, 𝐶 is 1.022714 MHz, so the formula for the F256 is:

𝑓out =
𝐹

16.405
or:

𝐹 = 16.404 𝑓out
For example: concert A, which is 440 Hz, would be: 𝐹 = 16.405×440 ≈ 7218. So, to play a concert
A, you would set the frequency to 7218, or 0x1C32.

Each of the three voices has a sound “envelope” which changes the volume of the sound
during the duration of the note. There are four phases to the sound envelope: attack, decay,
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Voice Offset R/W 7 6 5 4 3 2 1 0

V1

0 W F7 F6 F5 F4 F3 F2 F1 F0
1 W F15 F14 F13 F12 F11 F10 F9 F8
2 W PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0
3 W X PW11 PW10 PW9 PW8
4 W NOISE PULSE SAW TRI TEST RING SYNC GATE
5 W ATK3 ATK2 ATK1 ATK0 DLY3 DLY2 DLY1 DLY0
6 W STN3 STN2 STN1 STN0 RLS3 RLS2 RLS1 RLS0

V2

7 W F7 F6 F5 F4 F3 F2 F1 F0
8 W F15 F14 F13 F12 F11 F10 F9 F8
9 W PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0

10 W X PW11 PW10 PW9 PW8
11 W NOISE PULSE SAW TRI TEST RING SYNC GATE
12 W ATK3 ATK2 ATK1 ATK0 DLY3 DLY2 DLY1 DLY0
13 W STN3 STN2 STN1 STN0 RLS3 RLS2 RLS1 RLS0

Table 8.5: SID V1 and V2 Registers

sustain, and release (ADSR). When the note first starts playing (that is, the GATE bit for the voice
is set to 1), it starts at the attack phase when the volume starts at zero and goes up to the current
maximum volume (which is controlled by VOL3-0). How fast this happens is determined by the
attack rate (ATK3-0 in the registers). Once the volume reaches the maximum, the volume goes
down again to the sustain volume. This phase is called decay, and the speed at which the volume
drops is determined by the DCY3-0 register values. Next, the envelope enters the sustain phase,
where the volume is held steady at the sustain level (STN3-0). It stays here until the note is to
stop playing (GATE is set to 0). At this point, the envelope enters the release stage, where the
volume drops back to zero at the release rate (RLS3-0).

The ADSR envelope allows the SID chip to mimic the qualities of various musical instruments
or shape various sound effects. For instance, a pipe organ’s notes are typically either on or off, so
the attack, decay, and release rates would be set to be instantaneous, and the sustain level would
be set to full. A piano, on the other hand tends to have a sharp, somewhat percussive sound at
the beginning with the note holding a long time on release if not dampened.

While the different voices are independent, they can be set to alter one another through
two different effects: synchronization, and ring modulation. With these features, the voices can
interact with each other in the following pairs:

• Voice 1 → Voice 2

• Voice 2 → Voice 3

• Voice 3 → Voice 1

Ring Modulation

If a voice’s RING bit is set and the voice is set to use the triangle wave form (TRI is set), then the
triangle wave will be replaced by the combination of the two voice’s frequencies. So if the RING
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Voice Offset R/W 7 6 5 4 3 2 1 0

V3

14 W F7 F6 F5 F4 F3 F2 F1 F0
15 W F15 F14 F13 F12 F11 F10 F9 F8
16 W PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0
17 W X PW11 PW10 PW9 PW8
18 W NOISE PULSE SAW TRI TEST RING SYNC GATE
19 W ATK3 ATK2 ATK1 ATK0 DLY3 DLY2 DLY1 DLY0
20 W STN3 STN2 STN1 STN0 RLS3 RLS2 RLS1 RLS0
21 W X FC2 FC1 FC0
22 W FC10 FC9 FC8 FC7 FC6 FC5 FC4 FC3
23 W RES3 RES2 RES1 RES0 EXT FILTV3 FILTV2 FILTV1
24 W MUTEV3 HIGH BAND LOW VOL3 VOL2 VOL1 VOL0

Table 8.6: SID V3 and Miscellaneous Registers

bit of voice 1 is set, the result will be the ring modulation of voice 1 and voice 3. Ring modulation
tends to produce harmonics and overtones and can be used for bell like sounds.

Synchronization

If a voice’s SYNC bit is set, the frequency it produces will be synchronized to the controlling voice.
So if voice 1’s SYNC bit is set, its frequency will be synchronized to voice 3.

NOTE: Voice 3 can be muted by setting MUTEV3. This is useful to have the wave forms gener-
ated by voice 3 be used for ring modulation and synchronization without having voice 3’s wave
forms being actually audible.

Filtering

The SID chip can apply a filter to the audio before sending it out for amplification. The filter
works at an adjustable frequency and may be used as either a high-pass filter (if HIGH is set),
a low-pass filter (if LOW is set), or as a band-pass filter (if BAND is set). The filter frequency is
set by the bits FC0-10. The filter may be applied or not to each voice independently. Bits FILTV1,
FILTV2, and FILTV3 control whether the filter is applied to voices 1, 2, and 3 respectively. Finally,
a resonance effect may be tuned on the filter using the RES0-3 bits: 0 indicates no resonance, and
15 indicates maximum resonance.

OPL3

Note: This section is relevant to the F256k only. It does not apply to any of the F256
revisions.

The F256k includes a physical OPL3 sound chip, specifically the Yamaha YMF262 sound chip.
The OPL3 provides for complex, FM synthesized sound, which allows numerous oscillators to
be combined in various ways to generate musical tones. An explanation of the various registers
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and functions provided by the OPL3 device is well outside the scope of this manual as it deserves
its own book. Only how to access those ports will be covered here.

The OPL3 provides many registers or ports for setting the various parameters. These ports
are arranged in an address space of 9 bits (0x000–0x1FF). To access these ports, the CPU must
first write the address of the port desired into one of two address registers. It then must write
the data to be written to that port into the data register. To maintain compatibility with older
versions of the Yamaha FM synthesizer chips, these ports are accessed through two different sets
of address registers. For ports 0x000 through 0x0FF, the first address register is used. For ports
0x100 through 0x1FF, the second address register is used. See table 8.7.

Address R/W Purpose
0xD580 W Address pointer register for ports 0x000–0x0FF
0xD581 W Data register for all ports
0xD582 W Address pointer register for ports 0x100–0x1FF

Table 8.7: OPL3 Registers
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Interrupt Controller

The 65C02 has two interrupts: non-maskable interrupts (NMI) for high priority events, and the
regular interrupt request line (IRQ) for normal priority events. Currently, the F256 series of
computers do not use NMI for any purpose, so the only interrupt is the IRQ line. There are many
devices on the F256 which can trigger interrupts, so to save the interrupt handler the chore of
querying each device in turn, the F256 provides an interrupt controller module.

The individual devices route their interrupt request signals to the interrupt controller. When
an interrupt comes in, the controller knows which device it is and decides whether to forward
the interrupt to the CPU. The interrupt handler can then query the interrupt handler to see which
device or devices have interrupts pending and can then acknowledge them once they have been
properly handled.

Each interrupt that the interrupt controller manages belongs to one of three separate groups.
Each group manages at most eight interrupts, and each interrupt within that group has its own
bit within the group. That bit is used in the four registers that control the interrupts for that
group (see table 9.1). The four different registers for each group are:

PENDING In this register, there are eight flags, one for each interrupt in the group. When read-
ing the register, if the flag is set, the interrupt controller has received that interrupt. When
writing to the register, setting a flag will clear the pending status of the interrupt.

POLARITY This register, together with EDGE, controls how the interrupt controller interprets
the inputs to recognize an interrupt condition (see table 9.5).

EDGE This register, together with POLARITY, controls how the interrupt controller interprets
the inputs to recognize an interrupt condition (see table 9.5).

MASK This register controls whether interrupts asserted by the devices will trigger an IRQ. If
an interrupt’s flag is set in the MASK register, then the interrupt will be ignored. If the flag
is clear, the interrupt being asserted by the device will trigger an IRQ on the processor.

The interrupt controller registers are divided on the F256 into three groups: 0, 1, and 2. Group
0 represents seven of the interrupts: two video interrupts, two PS/2 controller interrupts, two
timer interrupts, and the DMA interrupt. Group 1 represents the other interrupts: UART, real
time clock, VIA, and the SD card controller. Group 2 represents interrupts used by the IEC serial
port. See tables 9.2, 9.3, and 9.4 to see how device interrupts are assigned to their groups.

NOTE: Some devices on the F256 have their own interrupt enable flags (separate from the
mask flags). For example, the 65C22 VIA has an interrupt enable bit in one of its registers and
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Group Address Name

0

0xD660 INT_PENDING_0
0xD664 INT_POLARITY_0
0xD668 INT_EDGE_0
0xD66C INT_MASK_0

1

0xD661 INT_PENDING_1
0xD665 INT_POLARITY_1
0xD669 INT_EDGE_1
0xD66D INT_MASK_1

2

0xD662 INT_PENDING_2
0xD666 INT_POLARITY_2
0xD66A INT_EDGE_2
0xD66E INT_MASK_2

Table 9.1: Interrupt Registers

will not send an interrupt to the F256’s interrupt controller if that bit is not enabled. For such
devices, the interrupt enable flag on the device must be set and the corresponding mask bit in
the interrupt controller must be clear in order for interrupts to be sent to the CPU. Other devices,
like VICKY, do not have a separate enable flag. In their case, only their corresponding mask bits
must be cleared to enable their interrupts.

Bit Name Purpose
0x01 INT_VKY_SOF TinyVicky Start Of Frame interrupt.
0x02 INT_VKY_SOL TinyVicky Start Of Line interrupt
0x04 INT_PS2_KBD PS/2 keyboard event
0x08 INT_PS2_MOUSE PS/2 mouse event
0x10 INT_TIMER_0 TIMER0 has reached its target value
0x20 INT_TIMER_1 TIMER1 has reached its target value
0x40 RESERVED
0x80 Cartridge Interrupt asserted by the cartidge

Table 9.2: Interrupt Group 0 Bit Assignments

The Start Of Frame (SOF) and Start of Line (SOL) interrupts could use some further explana-
tion. The SOF interrupt is raised at the beginning of the vertical blanking period, when the raster
has reached the bottom of the screen and starts to return to the top. This interrupt is raised ei-
ther 60 times a second or 70 times a second, depending on the value of CLK_70 (see table 3.2),
which sets the base resolution of the screen. The SOF interrupt is good for timing updates to
graphics (like placement of sprites) to avoid screen tearing. It can also be used for rough timing
of events, provided the code takes into account the fact that the timing changes with screen res-
olution. The Start of Line interrupt is raised when the raster line has reached a target line (see
table 7.4). When the interrupt is raised, the raster is in the process of drawing the screen and
has reached the desired target line.

As an example of working with the interrupt controller, let’s try using the SOF interrupt to
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Bit Name Purpose
0x01 INT_UART The UART is ready to receive or send data
0x02 RESERVED
0x04 RESERVED
0x08 RESERVED
0x10 INT_RTC Event from the real time clock chip
0x20 INT_VIA0 Event from the 65C22 VIA chip
0x40 INT_VIA1 F256k Only: Local keyboard
0x80 INT_SDC_INS User has inserted an SD card

Table 9.3: Interrupt Group 1 Bit Assignments

Bit Name Purpose
0x01 IEC_DATA_i IEC Data In
0x02 IEC_CLK_i IEC Clock In
0x04 IEC_ATN_i IEC ATN In
0x08 IEC_SREQ_i IEC SREQ In
0x10 RESERVED
0x20 RESERVED
0x40 RESERVED
0x80 RESERVED

Table 9.4: Interrupt Group 2 Bit Assignment

alter the character in the upper left corner.
To start, we will need to install our interrupt handler to respond to IRQs. For this example,

we’re going to completely take over interrupt processing, so we’ll do some things we wouldn’t
ordinarily do. Also, since an interrupt could come in while we’re setting things, up, we need to
be careful about how we do things.

1. First, we want to disable IRQs at the CPU level.

2. Then we set the interrupt vector.

3. Next, we want to mask off all but the SOF interrupt, since that is the only one we will
process (in real programs, we will either need to handle several interrupts or play nicely
with the operating system).

4. Now, there might be interrupts that came in earlier, so we will just clear all the pending
interrupt flags to ensure the program starts cleanly.

5. Finally, we enable CPU interrupt handling again and loop forever... processing the SOF
interrupt when it comes in.

VIRQ = $FFFE

INT_PEND_0 = $D660 ; Pending register for interrupts 0 - 7
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INT_PEND_1 = $D661 ; Pending register for interrupts 8 - 15
INT_MASK_0 = $D66C ; Mask register for interrupts 0 - 7
INT_MASK_1 = $D66D ; Mask register for interrupts 8 - 15

start: ; Disable IRQ handling
sei

; Load my IRQ handler into the IRQ vector
; NOTE: this code just takes over IRQs completely. It could save
; the pointer to the old handler and chain to it when it has
; handled its interrupt. But what is proper really depends on
; what the program is trying to do.
lda #<my_handler
sta VIRQ
lda #>my_handler
sta VIRQ+1

; Mask off all but the SOF interrupt
lda #$ff
sta INT_MASK_1
and #~INT00_VKY_SOF
sta INT_MASK_0

; Clear all pending interrupts
lda #$ff
sta INT_PEND_0
sta INT_PEND_1

; Put a character in the upper right of the screen
lda #SYS_CTRL_TEXT_PG
sta SYS_CTRL_1

lda #’@’
sta $c000

; Set the color of the character
lda #SYS_CTRL_COLOR_PG
sta SYS_CTRL_1

lda #$F0
sta $c000

; Go back to I/O page 0
stz SYS_CTRL_1

; Make sure we’re in text mode
lda #$01 ; enable TEXT
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sta $D000 ; Save that to VICKY master control register 0
stz $D001

; Re-enable IRQ handling
cli

To actually process the interrupt, we need to read and then increment the character at the
start of the screen, clear the pending flag for the SOF interrupt, and then return. However, the
screen and the interrupt control registers are in different I/O banks, so we’ll need to change the
I/O bank a couple of times during interrupt processing. So, the first thing we will do is to save
the value of the system control register at 0x0001, so we can restore it before we return from
the interrupt.

SYS_CTRL_1 = $0001
SYS_CTRL_TEXT_PG = $02

my_handler: pha

; Save the system control register
lda SYS_CTRL_1
pha

; Switch to I/O page 0
stz SYS_CTRL_1

; Check for SOF flag
lda #INT00_VKY_SOF
bit INT_PEND_0
beq return ; If it’s zero, exit the handler

; Yes: clear the flag for SOF
sta INT_PEND_0

; Move to the text screen page
lda #SYS_CTRL_TEXT_PG
sta SYS_CTRL_1

; Increment the character at position 0
inc $c000

; Restore the system control register
return: pla

sta SYS_CTRL_1

; Return to the original code
pla
rti
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Polarity and Edge Controls
The POLARITY and EDGE registers work together to control how the interrupt controller recog-
nizes an interrupt condition from the input signal. The EDGE register controls if the interrupt
is triggered by the transition of the signal between high and low, and POLARITY controls which
direction or logic level is the triggering condition. Table 9.5 lists how the two work together to
choose the specific condition.

For groups 0 and 1, these registers are really not needed, and they should be left in their
default settings. For group 2, these registers will be more useful for recognizing changes to the
IEC input lines.

EDGE POLARITY Function
0 0 Interrupt is triggered if input line is LOW
0 1 Interrupt is triggered if input line is HIGH
1 0 Interrupt is triggered when the input transitions from HIGH to LOW
1 1 Interrupt is triggered when the input transitions from LOW to HIGH

Table 9.5: Interrupt Polarity and Edge Function
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Tracking Time

Interval Timers
The F256 provides two 24-bit timers. The two timers work on different clocks: timer 0 works off
the video dot clock (25.175 MHz), while timer 1 works off the start-of-frame timing (either 60 Hz
or 70 Hz, depending on the resolution). The timers have a few features in how they time things:

• they can count up from 0 or down from a starting value

• they can be set to trigger an interrupt on a specific value

• they can either reload a start value or reset the value to 0 on reaching the target value

Address R/W Name 7 6 5 4 3 2 1 0
D650 W T0_CTR — — UP LD CLR EN
D650 R T0_STAT — EQ
D651 R/W

T0_VAL
V7 V6 V5 V4 V3 V2 V1 V0

D652 R/W V15 V14 V13 V12 V11 V10 V9 V8
D653 R/W V23 V22 V21 V20 V19 V18 V7 V6
D654 R/W T0_CMP_CTR — RELD RECLR
D655 R/W

T0_CMP
C7 C6 C5 C4 C3 C2 C1 C0

D656 R/W C15 C14 C13 C12 C11 C10 C9 C8
D657 R/W C23 C22 C21 C20 C19 C18 C17 C16
D658 W T1_CTR INT_EN — UP LD CLR EN
D658 R T1_STAT — EQ
D659 R/W

T1_VAL
V7 V6 V5 V4 V3 V2 V1 V0

D65A R/W V15 V14 V13 V12 V11 V10 V9 V8
D65B R/W V23 V22 V21 V20 V19 V18 V7 V6
D65C R/W T1_CMP_CTR — RELD RECLR
D65D R/W

T1_CMP
C7 C6 C5 C4 C3 C2 C1 C0

D65E R/W C15 C14 C13 C12 C11 C10 C9 C8
D65F R/W C23 C22 C21 C20 C19 C18 C17 C16

Table 10.1: Timer Registers
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There are five registers for each timer:

CTR the master control register for the timer. There are five flags:

UP if set, the timer will count up. If clear, it will count down.

CLR if set, the timer will reset to 0

LD if set, the timer will be set to the last value written to VAL

EN if set, the timer will count clock ticks

STAT this register (read on the same address as CTR) has just one flag EQ, which indicates if the
timer has reached the target value

VAL when read, gives the current value of the timer. When written, sets the value to use when
loading the timer.

CMP_CTR this register contains two flags to control what happens when the target value is
reached. When RECLR is set, the timer will return to 0 on reaching the target value. When
RELD is set, the timer will be set to the last value written to VAL.

CMP this register contains the target value for comparison

Real Time Clock

For programs needing to keep track of time, F256 provides a real time clock chip (RTC), the
bq4802. This chip, keeps track of the year (including century), month, day, hour (in 12 or 24
hour mode), minute, and second. The coin cell battery on the F256 motherboard is to provide
power to the RTC so it can continue tracking time even when the F256 is turned off or unplugged.
Additionally, the RTC can send interrupts to the CPU, either periodically or at a specific time.

The RTC is relatively straightforward to use, but one potentially tricky thing to keep in mind
is that there is a specific procedure to follow when reading or writing the date-time. As well as
the registers the CPU can access, the RTC has internal registers which are constantly updating
as time progresses. Normally, the internal registers update their external counterparts, but this
should not be allowed to happen while the CPU is getting or setting the externally facing registers.
So, to access the external registers, the program must first disable the automatic updates to the
external registers. Then it can read or write the external registers. Then it can re-enable the
automatic updates. If the program has changed the registers, when updates are re-enabled the
data in the external registers will be sent to the internal registers in one action. This keeps the
time information consistent.

There are 16 registers for the RTC (see table 10.2). There is a register each for century, year,
month, day of the week (i.e. Sunday-Saturday), day, hour, minute, and second. Each one is ex-
pressed in binary-coded-decimal, meaning the lower four bits are the ones digit (0-9), and the
upper bits are the 10s digit. In most cases, the upper digit is limited (e.g. seconds and minutes can
only have 0-5 as the tens digit). For seconds, minutes, hours, and day there is a separate alarm
register, which will be described later. Finally, there are the four registers for rates, enabled,
flags, and control:

The Enables register has four separate enable bits:
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Address R/W Name 7 6 5 4 3 2 1 0
0xD690 R/W Seconds 0 second 10s digit second 1s digit
0xD691 R/W Seconds Alarm 0 second 10s digit second 1s digit
0xD692 R/W Minutes 0 minute 10s digit minute 1s digit
0xD693 R/W Minutes Alarm 0 minute 10s digit minute 1s digit
0xD694 R/W Hours AM/PM 0 hour 10s digit hour 1s digit
0xD695 R/W Hours Alarm AM/PM 0 hour 10s digit hour 1s digit
0xD696 R/W Days 0 0 day 10s digit day 1s digit
0xD697 R/W Days Alarm 0 0 day 10s digit day 1s digit
0xD698 R/W Day of Week 0 0 0 0 0 day of week digit
0xD699 R/W Month 0 0 0 month 10s digit month 1s digit
0xD69A R/W Year year 10s digit year 1s digit
0xD69B R/W Rates 0 WD RS
0xD69C R/W Enables 0 0 0 0 AIE PIE PWRIE ABE
0xD69D R/W Flags 0 0 0 0 AF PF PWRF BVF
0xD69E R/W Control 0 0 0 0 UTI STOP 12/24 DSE
0xD69F R/W Century century 10s digit century 1s digit

Table 10.2: Real Time Clock Registers

AIE if set (1), the alarm interrupt will be enabled. The RTC will raise an interrupt when the
current time matches the time specified in the alarm registers.

PIE if set (1), the RTC will raise an interrupt periodically, where the period is specified by the RS
field.

PWRIE if set (1), the RTC will raise an interrupt on a power failure (not relevant to the F256).

ABE if set (1), the RTC will allow alarm interrupts when on battery backup (not relevant to the
F256).

The Flags register has four separate flags, which generally reflect why an interrupt was
raised:

AF if set (1), the alarm was triggered

PF if set (1), the periodic interrupt was triggered

PWRF if set (1), the power failure interrupt was triggered

BVF if set (1), the battery voltage is within safe range. If clear (0), the battery voltage is low, and
the time may be invalid.

The Control register has four bits which change how the RTC operates:

UTI if set (1), the update of the externally facing registers by the internal timers is inhibited.
In order to read or write those registers, the program must first set UTI and then clear it
when done.
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STOP this bit allows for a battery saving feature. If it is clear (0) before the system is powered
down, it will avoid draining the battery and may stop tracking the time. If it is set (1), it
will keep using the battery as long as possible.

12/24 sets whether the RTC is using 12 or 24 hour accounting.

DSE if set (1), daylight savings is in effect.

The Rates register controls the watchdog timer and the periodic interrupt. The watchdog
timer is not really relevant to the F256, but it monitors for activity and raises an interrupt if ac-
tivity has not been seen within a certain amount of time (specified by the WD field). The periodic
interrupt will be raised repeatedly, the period of which is set by the RS field (see table 10.3).

RS3 RS2 RS1 RS0 Period
0 0 0 0 None
0 0 0 1 30.5175 𝜇s
0 0 1 0 61.035 𝜇s
0 0 1 1 122.070 𝜇s
0 1 0 0 244.141 𝜇s
0 1 0 1 488.281 𝜇s
0 1 1 0 976.5625 𝜇s
0 1 1 1 1.95315 ms
1 0 0 0 3.90625 ms
1 0 0 1 7.8125 ms
1 0 1 0 15.625 ms
1 0 1 1 31.25 ms
1 1 0 0 62.5 ms
1 1 0 1 125 ms
1 1 1 0 250 ms
1 1 1 1 500 ms

Table 10.3: RTC Periodic Interrupt Rates

Example: Display the Time

In this example, we will read the time from the real time clock chip and print it out to the screen
in hh:mm:ss format. The basic procedure is fairly simple: first the code disables the update of
the transfer registers, then the code reads the hours and prints them, then the code reads the
minutes and prints them, then the code fetches the seconds and prints them. Finally, the code
re-enables the update of the transfer registers by dropping the UTI flag.

NOTE: This code resets the MMU I/O page to 0 before it tries to read from the clock chip. This
is just to allow for the possibility of the kernel routines changing the I/O page without restoring
it to 0.

ok_cint = $FF81 ; OpenKernal call to initialize the screen
ok_cout = $FFD2 ; OpenKernal call to print the character code in A
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RTC_SECS = $D690 ; RTC Seconds register
RTC_MINS = $D692 ; RTC Minutes register
RTC_HOURS = $D694 ; RTC Hours register

RTC_CTRL = $D96E ; RTC Control register
RTC_24HR = $02 ; 12/24 hour flag (1 = 24 Hr, 0 = 12 Hr)
RTC_STOP = $04 ; 0 = STOP when power off, 1 = run from battery when power off
RTC_UTI = $08 ; Update Transfer Inhibit

start: jsr ok_cint ; Initialize the text screen

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_CTRL ; Stop the update of the RTC registers
ora #RTC_UTI | RTC_24HR
sta RTC_CTRL

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_HOURS ; Print the hours
jsr putbcd

lda #’:’
jsr ok_cout

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_MINS ; Print the minutes
jsr putbcd

lda #’:’
jsr ok_cout

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_SECS ; Print the seconds
jsr putbcd

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_CTRL ; Reenable the update of the registers
and #~RTC_UTI
sta RTC_CTRL

Since the time registers of the clock chip are encoded in binary-coded-decimal, printing is
relatively straightforward, and is handled by a simple putbcd subroutine:
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;
; Print a BCD number to the screen
;
putbcd: pha ; Save the number

and #$F0 ; Isolate the upper digit
lsr a
lsr a
lsr a
lsr a

clc ; Convert to ASCII
adc #’0’
jsr ok_cout ; And print

pla ; Get the full number back
and #$0F ; Isolate the lower digit

clc ; Convert to ASCII
adc #’0’
jsr ok_cout ; And print

rts
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Versatile Interface Adapter

The F256 includes a Western Design Center WDC65C22 versatile interface adapter or VIA. The
VIA provides several useful features for I/O and timing:

• Two independent I/O ports of eight parallel bits (PA, and PB).

• Four handshake control lines (CA1, CA2, CB1, and CB2)

• Programmable serial register for serial I/O operations

• Two independent timer counters

On the F256jr, the VIA is connected to header which is compatible with the keyboard header
on the Commodore VIC-20 and C-64. This means that a Commodore compatible keyboard could
be connected to the F256 and used for keyboard input with appropriate programming. The VIA
also provides access to the two Atari-style joystick ports. The pins could also be used for general
purpose I/O, although the voltage levels are for 3.3 volt logic instead of the 5 volt logic used in
older 8-bit machines. The internal circuitry of the VIA’s port A and port B I/O pins is shown in
figure 11.1.

Note: While the F256jr has a single VIA, the F256k has two VIA chips. The second VIA
chip is located at 0xDB00. The purpose of this second VIA is to manage the built-in keyboard
of the F256k, while the first VIA is used solely for the joystick. On the F256jr, the single VIA
handles either the joystick or the keyboard. See page 83 for a more complete description of
the keyboard.

A complete description of the VIA would be rather long, so this guide will merely list out the
register addresses and provide a quick break-down on the register functions. For a complete
description, please see the data sheet from Western Design Center. See table 11.1 for a listing of
all the VIA registers.

IORA Input/Output Register for Port A. The eight bits correspond to the eight pins on port A.

DDRA Data Direction Register for Port A. Each bit configures the corresponding pin to be input
(0) or output (1).

IORB Input/Output Register for Port B. The eight bits correspond to the eight pins on port B.
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Address R/W Name Purpose
0xDC00 R/W IORB Port B data
0xDC01 R/W IORA Port A data
0xDC02 R/W DDRB Port B Data Direction Register
0xDC03 R/W DDRA Port A Data Direction Register
0xDC04 R/W T1C_L Timer 1 Counter Low
0xDC05 R/W T1C_H Timer 1 Counter High
0xDC06 R/W T1L_L Timer 1 Latch Low
0xDC07 R/W T1L_H Timer 1 Latch High
0xDC08 R/W T2C_L Timer 2 Counter Low
0xDC09 R/W T2C_H Timer 2 Counter High
0xDC0A R/W SDR Serial Data Register
0xDC0B R/W ACR Auxiliary Control Register
0xDC0C R/W PCR Peripheral Control Register
0xDC0D R/W IFR Interrupt Flag Register
0xDC0E R/W IER Interrupt Enable Register
0xDC0F R/W IORA2 Port A data (no handshake)

Table 11.1: VIA Registers

Name 7 6 5 4 3 2 1 0
ACR T1_CTRL T2_CTRL SR_CTRL PBL_EN PAL_EN
PCR CB2_CTRL CB1_CTRL CA2_CTRL CA1_CTRL
IFR IRQF T1F T2F CB1F CB2F SRF CA1F CA2F
IER SET T1E T2E CB1E CB2E SRE CA1E CA2E

Table 11.2: VIA Control Registers

DDRB Data Direction Register for Port B. Each bit configures the corresponding pin to be input
(0) or output (1).

T1C_L, T1C_H Timer 1 counter value

T1L_L, T1L_H Timer 1 latch

T2C_L, T2C_H Timer 2 counter value

SDR is the shift register. Serial input may be read here, or data may be written here to be shifted
out.

ACR Auxiliary Control Register. Contains fields to control the function of timer 1, timer 2, the
shift register, and how Port A and Port B latch data. See table 11.2 for details.

PCR Peripheral Control Register. Contains fields to control how the CA1, CA2, CB1, and CB2
handshake pins are used. See table 11.2 for details.
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IFR Interrupt Flag Register. Contains flags indicating which condition triggered an interrupt
request. Possible conditions are timer 1, timer 2, CB1, CB2, CA1, CA2, and shift register
complete. See table 11.2 for details.

IER Interrupt Enable Register. Contains flags to enable or disable interrupts based on the dif-
ferent possible conditions. See table 11.2 for details.

IORA2 Same as IOPA except that the built-in handshaking capability is not used.

Figure 11.1: VIA Pin Internal Circuitry
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Game Controllers

The F256 allows you to connect either Atari style joysticks or NES/SNES style gamepads as game
controllers. The two different styles of controllers are used differently and are supported by
different registers on the F256. Note: Atari style analog devices are not supported (e.g. paddles,
analog joysticks, analog mice).

Atari Style Joysticks

The F256jr has two IDC headers that can be connected to a DE-9 socket to allow Atari style joy-
sticks to be used (see figure: 12.1 for the pinouts). Joystick header 0 is wired to the pins of Port B of
the VIA (see page 11), and joystick header 1 is connected to Port A. The various joystick switches
are connected to the ports in same manner as on the C-64, with the exception that more buttons
are supported (see table: 12.1). On the F256k, the DE-9 connectors are supplied on the board and
are on the right-hand side of the case; there is no need for an adapter cable.

RIGHT

DOWN

GND

BUTTON0

N.C.

LEFT

UP

+3.3v

BUTTON2

BUTTON1

Figure 12.1: Joystick Port Pinouts

In order to use the joysticks, the DDR bits for the ports must be set to 0 for input. Then the
input/output register for the port may be read. If a button or switch is closed on the joystick, the
corresponding bit in the I/O register will be clear (0). If the button is not pressed, the bit will be
set (1).

As a reminder: be aware that the WDC65C22 on the F256 is being used with a 3.3 volt supply.
This means that any device plugged into the joystick ports should be 3.3 volt tolerant and should
not raise any pin above 3.3 volts, otherwise damage could occur.
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7 6 5 4 3 2 1 0
— BUTTON2 BUTTON1 BUTTON0 RIGHT LEFT DOWN UP

Table 12.1: Joystick Flags

Example: Displaying Joystick 1
In this example, we will poll joystick 1 and print out the state of all the buttons by printing the
byte we read from the joystick port as a simple binary number. The example will try to be a
little smart by only printing the value when the value has changed. NOTE: this example expects
OpenKernal to be installed, and will call two of its routines for initializing the screen and printing
a character.

First, we initialize the screen, the variable we use to track the old value of the joystick port,
and the VIA (setting port A to be an input port):

ok_cint = $FF81 ; OpenKernal: init the screen
ok_cout = $FFD2 ; OpenKernal: print the character in A

; Variables

* = $0080

value: .byte ? ; Variable for the old joystick value
prv: .byte ? ; Copy of value for printing

* = $e000

start: jsr ok_cint ; Set up the screen

lda #$FF ; Set the previous value to $FF
sta value

stz MMU_IO_CTRL ; Switch to I/O Page 0

lda #$00 ; Set VIA Port A to input
sta VIA_DDRA

Next, we print the OpenKernal code to clear the screen, and we print out the byte in value
as a binary number.

loop1: lda #147 ; Print the CBM clear screen code
jsr ok_cout

lda value ; Copy the value to prv
sta prv

ldx #8 ; Loop for all eight bits
loop2: asl prv ; Shift MSB into the carry
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bcc is0 ; If it’s 0, print ’0’

lda #’1’ ; Otherwise, print ’1’
jsr ok_cout
bra repeat ; And go to the next bit

is0: lda #’0’ ; Print ’0’
jsr ok_cout

repeat: dex ; Count down
bne loop2 ; Repeat until we’ve done all 8 bits

Next, we read the value of port A. If it is different from value, we save it to value and go
back to print the byte we read. Otherwise, we keep waiting and polling the joystick port.

stz MMU_IO_CTRL ; Switch to I/O Page 0

wait: lda VIA_IORA ; Get the status of port A
cmp value ; Is it different from before?
beq wait ; Yes: keep waiting

sta value ; Save this value as the previous one
bra loop1 ; And go to print it

NES/SNES Gamepads

The F256 also provides support for NES/SNES compatible gamepads. NES gamepads work a little
differently from Atari style joysticks. Where Atari style joysticks are directly readable through
the VIA ports, NES gamepads communicate to the F256 through a serial interface. To read the
gamepad, a program needs to first send the signal to the gamepad to capture the status of all
the buttons, then the program needs to trigger the system to transfer the button status over the
serial interface to the computer. This transfer takes a few clock cycles, since it is done serially,
so the program needs to wait until the NES registers indicate that the transfer is done.

Before any transfer is done, the program must specify (by setting or clearing the MODE bit)
whether the gamepad is NES compatible or SNES compatible. NES gamepads only send 8 bits
of data, but SNES controllers send 12 bits. The NES/SNES data register are arranged differently
depending on the value of MODE.

The process the program follows to read the state of the gamepad is:

1. Set NES_EN of NES_CTRL to enable the NES/SNES support (see table 12.2) and set or clear
MODE, to choose between NES mode or SNES mode.

2. Set NES_TRIG of NES_CTRL to sample the buttons and transfer the data to the registers.

3. Read NES_STAT and wait until the DONE bit is set

4. Check the appropriate NES or SNES control registers (see table 12.3)
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Address R/W Name 7 6 5 4 3 2 1 0
0xD880 W NES_CTRL NES_TRIG — MODE — NES_EN
0xD880 R NES_STAT NES_TRIG DONE — MODE — NES_EN

Table 12.2: NES/SNES Gamepad Registers

5. Clear NES_TRIG

NES_CTRL Set (1) to start the process of sampling the buttons.

DONE If set (1), the gamepad status has been read into the registers, and is available for reading

MODE If set (1), the gamepad is expected to be an SNES compatible controller. If clear (0), the
gamepad is expected to be an NES compatible controller.

NES_EN If set (1), enables NES/SNES controller support.

MODE Address Pad 7 6 5 4 3 2 1 0

0

0xD884 0 A B SELECT START UP DOWN LEFT RIGHT
0xD886 1 A B SELECT START UP DOWN LEFT RIGHT
0xD888 2 A B SELECT START UP DOWN LEFT RIGHT
0xD88A 3 A B SELECT START UP DOWN LEFT RIGHT

1

0xD884 0 B Y SELECT START UP DOWN LEFT RIGHT
0xD885 — A X L R
0xD886 1 B Y SELECT START UP DOWN LEFT RIGHT
0xD887 — A X L R
0xD888 2 B Y SELECT START UP DOWN LEFT RIGHT
0xD889 — A X L R
0xD88A 3 B Y SELECT START UP DOWN LEFT RIGHT
0xD88B — A X L R

Table 12.3: NES/SNES Data Registers

NOTE: If you want to use NES/SNES controllers with the F256, you will need to add an adapter
to convert the common port to NES and SNES connectors. The Foenix shop has the adapter, which
comes in one of two flavors: one for the F256 (which has an IDC pin header on the board for the
NES/SNES controllers), and one for the F256k (which has a 9 pin mini-DIN connector on the
back).
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SD Card Interface

TinyVicky includes an interface to the SD card port on F256. This interface provides access to the
SPI bus interface SD cards support. This interface will allow a program to exchange bytes of data
with an SD card using one of two clock speeds for the transfer rate (400 kHz or 12.5 MHz). Use of
these registers requires an understanding of the SD card protocols and conventions, which are
really outside the scope of this manual. So only the basic information about the control registers
are provided here.

Address R/W 7 6 5 4 3 2 1 0
0xDD00 RW SPI_BUSY — SPI_CLK CS_EN
0xDD01 RW SPI_DATA

Table 13.1: SD Card Interface Registers

CS_EN This bit controls the chip select input on the SD card. If clear (0), the SD card is disabled.
If set (1), the SD card is enabled.

SPI_CLK This bit controls the clock speed for the SPI interface to the SD card. If set (1), the clock
speed is 400 kHz. If clear (0), the clock speed is 12.5 MHz.

SPI_BUSY This read only bit indicates if the SPI bus is busy exchanging bits with the SD card.
The SPI_DATA register will not be ready for access while SPI_BUSY is set (1).

SPI_DATA this register is for the data to exchange with the SD card. A byte written to this register
will be send to the SD card. The data read from this register are the bits received from the
SD card. If SPI_BUSY is set, the program must way until SPI_BUSY is clear before reading
or writing data to this register

NOTE: The system control registers have two bits relevant to the SD card interface: SD_WP,
which indicates the write-protect status of the card, and SD_CD which indicates if a card is de-
tected in the slot. See table 17.1 for details.
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Keyboard and Mouse

The F256 provides a single PS/2 port for use with either a keyboard or a mouse. This port is
accessed through five registers, which provide very simple access to a PS/2 device. The F256
does not have a full PS/2 controller, but instead provides mostly raw access to the data stream.
It does make some attempt to translate set 2 scan codes to ASCII character code, although raw
scan codes may be read instead. See table 14.1 for details.

Address R/W Name 7 6 5 4 3 2 1 0
0xD640 R/W PS2_CTRL — MCLR KCLR M_WR — K_WR —
0xD641 R/W PS2_OUT Data to send to keyboard
0xD642 R KBD_IN Data from the keyboard input FIFO
0xD643 R MS_IN Data from the mouse input FIFO
0xD644 R PS2_STAT K_AK K_NK M_AK M_NK — MEMP KEMP

Table 14.1: PS/2 Port Registers

K_WR set to 1 then 0 to send a byte written on PS2_OUT to the keyboard

M_WR set to 1 then 0 to send a byte written on PS2_OUT to the mouse

KCLR set to 1 then 0 to clear the keyboard input FIFO queue.

MCLR set to 1 then 0 to clear the mouse input FIFO queue.

K_AK when 1, the code sent to the keyboard has been acknowledged

K_NK when 1, the code sent to the keyboard has resulted in an error

M_AK when 1, the code sent to the mouse has been acknowledged

M_NK when 1, the code sent to the mouse has resulted in an error

KEMP when 1, the keyboard input FIFO is empty

MEMP when 1, the mouse input FIFO is empty
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Mouse Support

The F256 provides special support for a PS/2 mouse, including support for a hardware mouse
pointer.

Mouse Pointer

The F256 provides for a grayscale hardware mouse pointer. The pointer is a 16 × 16 grayscale
image of 256 levels. Each pixel of the image is a single byte. The bitmap data is stored in the
address range 0xCC00–0xCFFF.

The position of the mouse pointer is controlled in one of two ways. In the default approach
(MODE = 0), the system software will monitor mouse movements, determine the mouse posi-
tion programmatically, and set the TinyVicky mouse position registers directly. In the legacy
approach (MODE = 1), the system software will receive the three byte PS/2 mouse data packet
and set the TinyVicky mouse PS2_BYTE registers. In this legacy mode, TinyVicky will interpret
the mouse packets and track the mouse position for the system. This approach is less work for
the system software, but is less flexible.

Address R/W 7 6 5 4 3 2 1 0
0xD6E0 W — MODE EN
0xD6E2 RW X7 X6 X5 X4 X3 X2 X1 X0
0xD6E3 RW X15 X14 X13 X12 X11 X10 X9 X8
0xD6E4 RW Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0xD6E5 RW Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
0xD6E6 W PS2_BYTE_0
0xD6E7 W PS2_BYTE_1
0xD6E8 W PS2_BYTE_2

Table 14.2: Mouse Pointer Registers

EN if set (1), the mouse pointer is displayed. If clear (0), the mouse pointer is not displayed

MODE if clear (0), the mouse position is specified by setting the X and Y registers. If set (1), the
program must pass along the 3 byte PS/2 mouse packet to the packet registers (this is a
legacy mode).

X this is the X coordinate of the mouse and both readable and writable if MODE is clear (0)

Y this is the Y coordinate of the mouse and both readable and writable if MODE is clear (0)

PS2_BYTE_0 the first byte of the PS/2 mouse message packet. Only used if MODE is set (1).

PS2_BYTE_1 the second byte of the PS/2 mouse message packet. Only used if MODE is set (1).

PS2_BYTE_2 the third byte of the PS/2 mouse message packet. Only used if MODE is set (1).
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F256k Keyboard

Note: this section pertains to the F256k only.

The F256k includes a second WDC65C22 VIA chip at 0xDB00 on I/O page 0 (see page 73 for de-
tails on the VIAs) which manages the keyboard input from the F256k’s built-in keyboard. The
F256K’s keyboard is a matrix keyboard. Except for the RESTORE key, all keys on the keyboard
are arranged in a matrix with the columns assigned to VIA1’s PB pins and the rows assigned to
VIA1’s PA pins. VIA0’s PB7 pin is also used for a column. See figure 14.1.
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Figure 14.1: F256k Keyboard Matrix
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Indicator Address R/W Color

Power
0xD6A7 W Blue
0xD6A8 W Green
0xD6A9 W Red

Media
0xD6AA W Blue
0xD6AB W Green
0xD6AC W Red

Shift
0xD6AD W Blue
0xD6AE W Green
0xD6AF W Red

Table 14.3: F256k Keyboard LEDs

The F256k keyboard includes three indicator RGB LEDs that can be set under program con-
trol. The three LEDs are for power, media access (SD and IEC), and the shift lock indicator. Each
LED has three single byte registers to set the red, green, and blue component intensities for the
desired colors. See table 14.3.
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Serial and Wi-Fi Port

The F256 has a simple UART for serial communications. This UART can be used to provide an
RS-232 serial connection (via an IDC header on the board compatible with IDC to DE-9 cables)
or a Wi-Fi serial connection using an ESP8266 Feather adapter board. The UART is compatible
with the standard 16750.

Address R/W Name 7 6 5 4 3 2 1 0
DLAB = 0

0xD630 R RXD RX_DATA
0xD630 W TXR TX_DATA
0xD631 R/W IER — STAT ERR TXE RXA
0xD632 R ISR — STAT ERR TXE RXA
0xD632 W FCR RXT FIFO64 — — TXR RXR FIFOE
0xD633 R/W LCR DLAB — PARITY STOP DATA
0xD634 R/W MCR — LOOP OUT2 OUT1 RTS DTR
0xD635 R LSR ERR TEMT THRE BI FE PE OE DR
0xD636 R/W MSR DCD RI DSR CTS DDCD TERI DDSR DCTS
0xD637 R SPR scratch data

DLAB = 1
0xD630 R/W DLL DIV7 DIV6 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0
0xD631 R/W DLH DIV15 DIV14 DIV13 DIV12 DIV11 DIV10 DIV9 DIV8
0xD632 W PSD prescaler division

Table 15.1: UART Registers

RXD (read only) register contains data from the receive FIFO

TXR (write only) writing a byte stores it in the transmission FIFO to be sent over the serial
connection

IER this is the interrupt enable register. There are flags for each of the four conditions that the
UART can use to trigger an interrupt

ISR this is the interrupt STAT register. There are flags for each of the four conditions that can
trigger an interrupt
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FCR FIFO control register. This register controls the FIFOs for transmission and receiving:

RXT sets the number of characters in the receive FIFO to trigger an interrupt. See ta-
ble: 15.5.

FIFO64 enables the 64 byte FIFO

TXR if set, clear the transmition FIFO

RXR if set, clear the receive FIFO

FIFOE if set, the FIFOs are enabled. Otherwise, only a single character can be waiting to
send or pending a read

LCR1 LCR0 Length
0 0 5
0 1 6
1 0 7
1 1 8

Table 15.2: UART Data Length

LCR2 Stop Bits
0 1
1 1.5 or 2

Table 15.3: UART Stop Bits

LCR5 LCR4 LCR3 Parity
— — 0 NONE
0 0 1 ODD
0 1 1 EVEN
1 0 1 MARK
1 1 1 SPACE

Table 15.4: UART Parity
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FCR7 FCR6 Trigger Level (bytes)
0 0 1
0 1 4
1 0 8
1 1 14

Table 15.5: UART RX FIFO Trigger

BPS Divisor
300 5,244
600 2,622

1,200 1,311
1,800 874
2,000 786
2,400 655
3,600 437
4,800 327
9,600 163

19,200 81
38,400 40
57,600 27

115,200 13

Table 15.6: UART Divisors
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Direct Memory Access

The DMA engine can either write a specific byte to RAM or copy a set of bytes from one location
in RAM to another. The DMA engine can also treat memory as being arranged either linearly
(that is, as a certain number of consecutive locations) or as a rectangle (the data is a rectangular
area of an image).

Linear Data
Linear data (or “1D”, if you prefer) is just a single block of sequential memory locations. When
filling or copying data linearly, you need a destination address (and a source address if copying),
and a count of bytes to copy. That is really all there is to it.

Rectangular Data
Rectangular data (or “2D”) is a bit more complicated and is meant to be working with image
data. With a bitmap, the pixel bytes are arranged in memory left to right and top to bottom.
If the image starts at address 𝑎 and is 𝑤 pixels wide, then the pixel at (𝑥, 𝑦) can be found at
location 𝑎+ 𝑦 ×𝑤+ 𝑥. Rectangular fills and copies are meant to work on data that is arranged in
this fashion. In this case, you can use DMA to fill or copy a rectangular area within that image.
As with linear fills and copies, you will need a destination address (and source address if doing
a copy), but instead of a count of bytes you need the width and height of the rectangular areas
affected. But you need one other thing, too. You need to tell the DMA the geometry of the over-all
image... you need to tell it the width of the image containing the rectangular areas. This is called
the “stride” and effectively tells the DMA how many pixels to skip between lines when it finishes
one line of the rectangle before getting to the next line.

START set to trigger the DMA

INT_EN enables triggering an interrupt when DMA is complete

FILL when set, DMA will write a specific byte to memory. When clear, DMA will copy data from
a source address to the destination address

2D when set, DMA copies or fills a rectangular region of memory. When clear, DMA copies or
fills a certain number of sequential bytes
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Address R/W 7 6 5 4 3 2 1 0
0xDF00 R/W START — INT_EN FILL 2D ENABLE
0xDF01 W FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0
0xDF01 R BUSY —
0xDF04 R/W SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0
0xDF05 R/W SA15 SA14 SA13 SA12 SA11 SA10 SA9 SA8
0xDF06 R/W — SA18 SA17 SA16
0xDF08 R/W DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0
0xDF09 R/W DA15 DA14 DA13 DA12 DA11 DA10 DA9 DA8
0xDF0A R/W — DA18 DA17 DA16

Table 16.1: DMA Registers (Part 1)

Address R/W 7 6 5 4 3 2 1 0
0xDF0C R/W CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNT0
0xDF0D R/W CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
0xDF0E R/W — CNT18 CNT17 CNT16
0xDF0C R/W W7 W6 W5 W4 W3 W2 W1 W0
0xDF0D R/W W15 W14 W13 W12 W11 W10 W9 W8
0xDF0E R/W H7 H6 H5 H4 H3 H2 H1 H0
0xDF0F R/W H15 H14 H13 H12 H11 H10 H9 H8
0xDF10 R/W SS7 SS6 SS5 SS4 SS3 SS2 SS1 SS0
0xDF11 R/W SS15 SS14 SS13 SS12 SS11 SS10 SS9 SS8
0xDF12 R/W SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0
0xDF13 R/W SD15 SD14 SD13 SD12 SD11 SD10 SD9 SD8

Table 16.2: DMA Registers (Part 2)

ENABLE set to enable DMA

FD the byte to be written to memory when FILL is set

BUSY status bit set when DMA is busy copying data

SA the 19 bit source address (must be a location in the first 512KB of RAM). Only relevant when
FILL is clear.

DA the 19 bit destination address (must be a location in the first 512KB of RAM)

CNT the number of bytes to copy (only available when 2D is clear)

W the width of the rectangle of data to copy (only available when 2D is set)

H the height of the rectangle of data to copy (only available when 2D is set)

SS the width of the “stride” for the source bitmap (only available for 2D copy operations)

SD the width of the “stride” for the destination bitmap (only available when 2D is set)
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The term “stride” might be a little confusing. It is a concept only relevant for 2D DMA oper-
ations. For 2D operations, the DMA engine is always copying or filling a rectangular area of a
given width and height. The width of the rectangle need not be the full size of the overall bitmap
image. If a program performs a DMA operation on a 32 × 32 area of the screen, the DMA engine
will need to skip many pixels on each affected line. Thus, the program needs to inform the DMA
engine how many pixels wide the bitmap is. For example, if a program is filling 32×32 rectangle
in a 320 × 240 bitmap, it needs to tell the DMA engine that the width of the bitmap is 320. This
number is the “stride” for the operation. The DMA engine will operate on 32 pixels, then skip
320 − 32 pixels to get to the next set of 32 pixels to copy or fill. Figure 16.1 illustrates how the
various addresses, sizes, and strides work in the case of a 2D copy operation.

For 2D fill operations, only the destination stride (SD) is needed. The destination stride spec-
ifies how wide the bitmap being altered is. For 2D copy operations, both the destination stride
and the source stride (SS) are needed. The source stride specifies how wide the bitmap is that
provides the source data. Why would you ever have a source and destination stride be different?
As a simple example, let’s say a program needs to copy graphical font data to a bitmap for the
screen in 320×240mode. The characters are in cells that are 8 pixels wide by 16 pixels deep, and
that the characters are arranged vertically. So the over all image for the characters is 8 pixels
wide by 4,096 pixels high. In that case, the source stride is 8, but the destination stride is 320
(since it is the bitmap for the full screen).
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Figure 16.1: A 2D Copy DMA Operation

Example: Using DMA to Fill a Bitmap
In this example, we will use the 1D fill operation to set the bitmap shown on the screen to a set
color. Note that the full example code includes the various setup operations for the bitmap mode
and the graphics CLUTs, which are exactly the same as were used in the bitmap example (see
page 4).

DMA_CTRL = $DF00 ; DMA Control Register
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DMA_CTRL_START = $80 ; Start the DMA operation
DMA_CTRL_FILL = $04 ; DMA is a fill operation
DMA_CTRL_ENABLE = $01 ; DMA engine is enabled

DMA_STATUS = $DF01 ; DMA status register (Read Only)
DMA_STAT_BUSY = $80 ; DMA engine is busy with an operation

DMA_FILL_VAL = $DF01 ; Byte value to use for fill operations

DMA_DST_ADDR = $DF08 ; Destination address (system bus)
DMA_COUNT = $DF0C ; Number of bytes to fill or copy

bitmap_base = $10000 ; The base address of our bitmap

bitmap_width = 320 ; The size of our bitmap
bitmap_height = 240
bitmap_size = bitmap_width*bitmap_height

First, we need to enable the DMA engine and set it up for a fill operation:

lda #DMA_CTRL_FILL | DMA_CTRL_ENABLE
sta DMA_CTRL

Next, we provide the value to fill:

lda #$ff
sta DMA_FILL_VAL ; We will fill the screen with $FF

Then we need to provide the destination address:

lda #<bitmap_base ; Our bitmap will be the destination
sta DMA_DST_ADDR
lda #>bitmap_base
sta DMA_DST_ADDR+1
lda #‘bitmap_base
and #$03
sta DMA_DST_ADDR+2

Next, we provide the number of bytes to write:

lda #<bitmap_size ; We will write 320*240 bytes
sta DMA_COUNT
lda #>bitmap_size
sta DMA_COUNT+1
lda #‘bitmap_size
sta DMA_COUNT+2

Finally, we flip the START flag to trigger the DMA operation and wait for it to complete:
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lda DMA_CTRL
ora #DMA_CTRL_START
sta DMA_CTRL

wait_dma: lda DMA_STATUS ; Wait until DMA is not busy
and #DMA_STAT_BUSY
cmp #DMA_STAT_BUSY
beq wait_dma

stz DMA_CTRL ; Turn off the DMA engine

Example: Using DMA to Fill a Rectangle
We can extend our 1D DMA example to draw a 2D rectangle at a given coordinate on the screen.
In this example, we will calculate the starting address based on coordinates using the assem-
bler’s built-in math functions for constants. In general, a program will need to calculate these
values at runtime and could use the built-in integer math coprocessor.

We will need to use some different registers to specify the size and layout of the rectangu-
lar area. These registers overlap the registers used in the 1D case. The first two replace the
DMA_COUNT register to give the width and height of the rectangle. The second specifies the stride
for the destination bitmap (for copying, there is a source stride as well that can be different from
the destination stride):

DMA_WIDTH = $DF0C ; Width of rectangle (16-bit)
DMA_HEIGHT = $DF0E ; Height of rectangle (16-bit)
DMA_STRIDE_DST = $DF12 ; Stride of the destination (16-bit)

We start off very similar to the 1D fill and just turn on the flag for 2D DMA:

lda #DMA_CTRL_FILL | DMA_CTRL_2D | DMA_CTRL_ENABLE
sta DMA_CTRL

We can then calculate the starting address, using the base address of the bitmap and a starting
coordinate of (100, 40):

lda #<(bitmap_base + 320 * 40 + 100)
sta DMA_DST_ADDR
lda #>(bitmap_base + 320 * 40 + 100)
sta DMA_DST_ADDR+1
lda #‘(bitmap_base + 320 * 40 + 100)
sta DMA_DST_ADDR+2

Next, we set the value to write into the bitmap fill area:

lda #$30
sta DMA_FILL_VAL ; We will fill the screen with $30

A difference from 1D is that the size of the fill is a width and a height, so we provide the width
and height of the rectangle we want to draw. In this case, we are setting it to (100, 30):
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lda #100 ; Size of rectangle is (100,30)
sta DMA_WIDTH
stz DMA_WIDTH+1
lda #30
sta DMA_HEIGHT
stz DMA_HEIGHT+1

For 2D DMA operations, we need to provide the “stride”. This is the width of the overall
bitmap into which the DMA operation is writing. In this case, we are updating a bitmap that is
the full screen, so we set the destination stride to 320:

lda #<bitmap_width ; Set the width of the destination bitmap for 2D DMA
sta DMA_STRIDE_DST
lda #>bitmap_width
sta DMA_STRIDE_DST+1

And then we can start the DMA operation and wait for it to complete:

lda DMA_CTRL
ora #DMA_CTRL_START
sta DMA_CTRL

wait_dma2d: lda DMA_STATUS ; Wait until DMA is not busy
and #DMA_STAT_BUSY
cmp #DMA_STAT_BUSY
beq wait_dma2d
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System Control Registers

The Buzzer and Status LEDs

The F256 has several software-controllable LEDs. There are the SD card access LED and the
power LED, but there are also two status LEDs on the board which may be controlled either
manually or set to flash automatically. All the LEDs under “manual” control can be controlled
by setting or clearing their relevant flags in the SYS0 register (0xD6A0) (see table: 17.1). The
power LED is controlled by PWR_LED. The SD card LED is controlled by SD_LED.

Address R/W Name 7 6 5 4 3 2 1 0
0xD6A0 W SYS0 RESET — CAP_EN BUZZ L1 L0 SD_L PWR_L
0xD6A0 R SYS0 — SD_WP SD_CD BUZZ L1 L0 SD_L PWR_L
0xD6A1 R/W SYS1 L1_RATE L0_RATE SID_ST PSG_ST L1_MN L0_MN

Table 17.1: System Control Registers

The two status LEDs on the board are a little more complex. They may be in manual or
automatic mode. The two flags L0_MN and L1_MN in SYS1 control which mode they are in. If an
LED’s flag is set (1), then the LED is under manual control and its equivalent flag in SYS0 controls
whether the LED is on or off. If the flag is clear, then the LED is set to flash automatically, and
the LED’s flashing rate will be set by pair of bits L0_RATE or L1_RATE according to table 17.2.

The flag PSG_ST controls how the output of the PSG sound chips are mixed. If clear (0), the
PSGs will be mixed for monaural output (both will go to both left and right channels). If set (1),
the left PSG will go to the left channel, and the right PSG will go to the right channel. This allows
a program to use the PSGs as either independent 4 voice channels in stereo or as a monaural 8
voice channels.

The flag SID_ST controls how the output of the SID devices are mixed. If clear (0), the SIDs
will be mixed for monaural output (both will go to both left and right channels). If set (1), the
left SID will go to the left channel, and the right SID will go to the right channel. This allows a
program to use the SIDs as either independent 3 voice channels in stereo or as a monaural 6
voice channels.

For the PC speaker, there is the BUZZ flag. By toggling BUZZ, a program can tweak the speaker
and make a noise.
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Note: CAP_EN is only on the F256k. If set, it enables the RGB LED for the shift lock key. It
is ignored on the F256. Likewise, the F256k does not have a built-in buzzer, so BUZZ is ignored
on the F256k. The SID_ST flag is also available on the F256k only. The same functionality is
provided by jumpers on the F256jr board.

RATE1 RATE0 Rate
0 0 1s
0 1 0.5s
1 0 0.4s
1 1 0.2s

Table 17.2: LED Flash Rates

Software Reset

A program can trigger a system reset. This can be done by writing the value 0xDE to 0xD6A2 and
the value AD to 0xD6A3 to validate that a reset is really intended (see table: 17.3), setting the most
significant bit (RESET) of 0xD6A0, and then clearing the RESET bit to actually trigger the reset.

Address R/W Name 7 6 5 4 3 2 1 0
0xD6A2 R/W RST0 Set to 0xDE to enable software reset
0xD6A3 R/W RST1 Set to 0xAD to enable software reset

Table 17.3: System Reset

Random Numbers

The F256 has a built-in pseudo-random number generator that produces 16-bit random numbers
(see table: 17.4). To use the random number generator, a program just sets the enable flag and
then reads the random numbers from RNDL and RNDH (0xD6A4 and 0xD6A5). The program
can set the seed value to better randomize the numbers by storing a seed value in those same
locations and then toggling SEED_LD (set to load the seed value then reclear).

ENABLE set to turn on the random number generator

SEED_LD set to load a value stored in SEEDL and SEEDH as the seed value for the random num-
ber generator

RNDL and RNDH read 16-bit random numbers from these registers when the random number
generator is enabled
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Address R/W Name 7 6 5 4 3 2 1 0
0xD6A4 W SEEDL SEED[7. . . 0]
0xD6A4 R RNDL RND[7. . . 0]
0xD6A5 W SEEDH SEED[15. . . 0]
0xD6A5 R RNDH RND[15. . . 0]
0xD6A6 W RND_CTRL — SEED_LD ENABLE
0xD6A6 R RND_STAT DONE —

Table 17.4: Random Number Generator

Machine ID and Version Information
Nine registers are set aside to identify the machine, the version of the printed circuit board,
and the version of the FPGA. See table 17.5 for the various registers. All the registers are read-
only, and only the chip information will change over the course of the machine’s life span. The
machine ID contains a four-bit code that is common between all the Foenix machines (see ta-
ble 17.6).

For the F256, the machine ID will be 0x02. For the F256k, the machine ID will be 0x12.

Address R/W Name 7 6 5 4 3 2 1 0
0xD6A7 R MID — ID
0xD6A8 R PCBID0 ASCII character 0: “B”
0xD6A9 R PCBID1 ASCII character 1: “0”
0xD6AA R CHSV0 TinyVicky subversion in BCD (low)
0xD6AB R CHSV1 TinyVicky subversion in BCD (high)
0xD6AC R CHV0 TinyVicky version in BCD (low)
0xD6AD R CHV1 TinyVicky version in BCD (high)
0xD6AE R CHN0 TinyVicky number in BCD (low)
0xD6AF R CHN1 TinyVicky number in BCD (high)
0xD6EB R PCBMA PCB Major Rev (ASCII)
0xD6EC R PCBMI PCB Minor Rev (ASCII)
0xD6ED R PCBD PCB Day (BCD)
0xD6EE R PCBM PCB Month (BCD)
0xD6EF R PCBY PCB Year (BCD)

Table 17.5: Machine ID and Versions
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MID4 MID3 MID2 MID1 MID0 Machine
0 0 0 0 0 C256 FMX
0 0 0 0 1 C256 U
0 0 0 1 0 F256
1 0 0 1 0 F256k
0 0 0 1 1 A2560 Dev
0 0 1 0 0 Gen X
0 0 1 0 1 C256 U+
0 0 1 1 0 Reserved
0 0 1 1 1 Reserved
0 1 0 0 0 A2560 X
0 1 0 0 1 A2560 U
0 1 0 1 0 A2560 M
0 1 0 1 1 A2560 K

Table 17.6: Machine IDs
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IEC Serial Port

The F256 has an IEC serial port included (this is the Commodore serial port variation of the IEEE-
488 interface). There are two registers supporting the IEC port. There is a read-only register that
shows the current state of the individual lines on the serial bus, and there is a read/write register
that can be used to control the various lines as well as how IEC interrupts are handled.

Address R/W Name 7 6 5 4 3 2 1 0
0xD680 R IEC_I SRQ_i — ATN_i — CLK_i DAT_i
0xD681 R/W IEC_O SRQ_o RST_o NMI_EN ATN_o — CLK_o DAT_o

Table 18.1: IEC Registers

DAT_i Reflects the current state of the DATA line on the IEC bus.

CLK_i Reflects the current state of the CLK line on the IEC bus.

ATN_i Reflects the current state of the ATN line on the IEC bus.

SRQ_i Reflects the current state of the SREQ line on the IEC bus.

DAT_o Sets the DATA line on the IEC bus.

CLK_o Sets the CLK line on the IEC bus.

ATN_o Sets the ATN line on the IEC bus.

SRQ_o Sets the SREQ line on the IEC bus.

RST_o Resets the IEC bus (and any installed SIDs on the F256jr).

NMI_EN If set (1), the IEC interrupts will trigger an NMI interrupt. If clear (0), the IEC interrupts
will trigger an IRQ interrupt.
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Integer Math Coprocessor

The F256 includes a built-in math coprocessor for integer math. This coprocessor provides fast
16-bit unsigned multiplication and division. As well as a 32-bit adder. The use of this coprocessor
is straightforward: both operands are written to the appropriate registers and then the result
is read for the corresponding answer register. The math units are completely separate blocks
using separate registers, so they function independently of each other.

Address R/W Name Data
0xDE00 R/W MULU_A_L Unsigned A Low Byte
0xDE01 R/W MULU_A_H Unsigned A High Byte
0xDE02 R/W MULU_B_L Unsigned B Low Byte
0xDE03 R/W MULU_B_H Unsigned B High Byte
0xDE10 R MULU_LL 𝐴 × 𝐵 (unsigned) byte 0
0xDE11 R MULU_LH 𝐴 × 𝐵 (unsigned) byte 1
0xDE12 R MULU_HL 𝐴 × 𝐵 (unsigned) byte 2
0xDE13 R MULU_HH 𝐴 × 𝐵 (unsigned) byte 3

Table 19.1: Unsigned Multiplication Registers

Address R/W Name Data
0xDE04 R/W DIVU_DEN_L Unsigned Denominator Low Byte
0xDE05 R/W DIVU_DEN_H Unsigned Denominator High Byte
0xDE06 R/W DIVU_NUM_L Unsigned Numerator Low Byte
0xDE07 R/W DIVU_NUM_H Unsigned Numerator High Byte
0xDE14 R QUOU_LL Quotient of NUM/DEN (unsigned) low byte
0xDE15 R QUOU_LH Quotient of NUM/DEN (unsigned) high byte
0xDE16 R REMU_HL Remainder of NUM/DEN (unsigned) low byte
0xDE17 R REMU_HH Remainder of NUM/DEN (unsigned) low byte

Table 19.2: Unsigned Division Registers
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Address R/W Name Data
0xDE08 R/W ADD_A_LL Unsigned A byte 0
0xDE09 R/W ADD_A_LH Unsigned A byte 1
0xDE0A R/W ADD_A_HL Unsigned A byte 2
0xDE0B R/W ADD_A_HH Unsigned A byte 3
0xDE0C R/W ADD_B_LL Unsigned B byte 0
0xDE0D R/W ADD_B_LH Unsigned B byte 1
0xDE0E R/W ADD_B_HL Unsigned B byte 2
0xDE0F R/W ADD_B_HH Unsigned B byte 3
0xDE18 R ADD_R_LL 𝐴 + 𝐵 (unsigned) byte 0
0xDE19 R ADD_R_LH 𝐴 + 𝐵 (unsigned) byte 1
0xDE1A R ADD_R_HL 𝐴 + 𝐵 (unsigned) byte 2
0xDE1B R ADD_R_HH 𝐴 + 𝐵 (unsigned) byte 3

Table 19.3: Unsigned 32-bit Addition Registers
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Using the Debug Port

One of the ways to get software and data onto the F256 is through the USB debug port. The
debug port uses a USB serial protocol to allow a host computer to issue commands to the F256.
These commands allow the host computer to stop and start the CPU, write to memory, read from
memory, erase the flash memory, and reprogram the flash memory. With this port, it is possible
to load a program and its data directly into the F256’s memory and start it running. It is also
possible to examine the F256’s memory to see what state a program has left it in.

Three are three main tools available to provide user access to the debug port:

Foenix IDE A full-featured emulator and development tool for the Foenix line of computers.
Among the many tools provided by the IDE is a built-in GUI tool to upload and download
data to the F256 and program the flash. The main limitation of the IDE is that it was written
in .NET and uses features that are available under the Windows API.

Foenix Uploader Tool A stand-alone version of just the uploader tool from the Foenix IDE. This
tool is more limited (it may only support binary files) and is tailored to specific machines.

FoenixMgr A script written in Python 3 which provides command line access on the host com-
puter to the debug port. It supports files in Intel HEX, Motorola SREC, raw binary, PGX,
and PGZ files. It should run on any computer or operating system that can run Python 3
and provide sufficient access to USB serial interfaces. It runs under Windows and Linux
definitely and may be able to run under Mac OS X eventually.

Debug Protocol
The USB debug port is accessed over the USB Serial protocol. Data is sent from the host computer
to the F256 using data packets, each one of which is a command. The general process is:

1. Host PC sends the command to enter debug mode

2. The F256 replies

3. Host PC sends a command packet

4. The F256 replies

5. The host repeats from step 3 until finished
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6. Host PC send the command to exit debug mode

7. The F256 replies and sends a reset signal to the CPU

Command Packets

The commands sent from the host PC are in the form of command packets show in table 20.1.
The command codes themselves are listed in table 20.3. The F256 will respond to each command
packet with a response packet as shown in table 20.2. The size of a packet can vary depending
on the command. Some commands and responses include no actual data payload bytes. Others
will transfer actual data and will include however many bytes of payload are needed.

Each command and response packet includes an LRC check byte, which is simply the exclu-
sive or of all the bytes in the packet, except for the LRC value itself. This provides only rudimen-
tary error checking, but the connection itself is generally pretty reliable, so more sophisticated
error checking is really not needed.

Offset Size Name
0 1 Command sync byte
1 1 Command byte
2 3 Address
5 2 Length
7 𝑛 Payload

7 + 𝑛 1 LRC check byte

Table 20.1: USB Debug Port Command Packet

Command sync byte This is always 0x55 and signals the start of a command packet

Command byte This byte specifies what command is being sent (see table: 20.3)

Address This is a three byte, big-endian integer that provides the address relevant to the com-
mand. For a write command, it is the address of the first block of memory to receive data.
For a read command, it is the address of the first byte of memory to read. For the program
flash command, it is the address of the first byte of data to write to flash.

Length This is the number of bytes to transfer. For a write command, it is the number of bytes to
be sent to the F256 and will be control the size of the payload section of the write command
packet. For the read command, it is the number of bytes to read from the F256 and will
control the size of the payload section of the response packet (the payload section of the
read command packet is empty).

Payload This is an option section of the packet that contains the actual data to transfer between
the host PC and the F256.

LRC check byte This byte provides for simple error checking on the packet transmission.
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Offset Size Purpose
0 1 Response sync byte (0xAA)
1 2 Status bytes
3 𝑚 Payload

3 +𝑚 1 LRC check byte

Table 20.2: USB Debug Port Reponse Packet

Response Packets

Response packets follow the same general structure as a command packet (see table 20.2):

Response sync byte This is always 0xAA and signals the start of a response packet

Status bytes These two bytes contain the status codes for the success or failure of the command

Payload This is an option section of the packet that contains the actual data to transfer between
the host PC and the F256.

LRC check byte This byte provides for simple error checking on the packet transmission.

Command Purpose
0x80 Enter debug mode
0x81 Exit debug mode (resets CPU)
0x00 Read a block of data from the F256 to the host PC
0x01 Write a block of data to RAM on the F256
0x10 Program flash memory from data in F256’s RAM
0x11 Erase flash memory
0x12 Erase flash sector
0x13 Program flash sector
0x90 Set the MMU to boot in RAM (F256jr Rev A, or F256k only)
0x91 Set the MMU to boot in flash (F256jr Rev A, or F256k only)
0xFE Fetch the revision number of the debug interface

Table 20.3: USB Debug Port Commands

Flash Sectors

Individual blocks or sectors of flash may be erased or programmed without affecting the rest of
flash memory. This can be done through the commands 0x12 to erase flash sectors and 0x13 to
program them from RAM. The packets for sectors are a little different from the others. The main
difference is that third byte of the packet (ordinarily the high byte of the address) is the number
of the sector to program, and addresses are limited to 16-bits. Each sector is a 4KB block, with 0
being the first 4KB of flash, 1 being the second 4KB of flash, and so on.
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The flash of the F256 has a limitation that the smallest block of flash that can be erased is 8KB,
so when erasing sectors, two sectors must be erased, not just one. And the sector pairs must be
aligned to 8KB. So sector 0 and sector 1 would be erased together, but not sector 1 and sector 2
(although sectors 0 – 3 would be fine).

Programming flash sectors has no such limitation (it is fine to flash just a 4KB block). How-
ever, for simplicity’s sake, it would probably be best for any program directly accessing the debug
port to limit erasing and programming to 8KB blocks. Programming the flash sectors does have
a limitation: since the address is limited to 16-bits, the data can only be stored in the first 64KB
of the 512KB system RAM.
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Expansion Connector

The F256 includes a PCIe x1 style expansion connector. This expansion connector is designed
to support both RAM expansion and game style ROM cartridges. The pin assignments for the
expansion connector can be seen in figure 21.1, while the size information for the card itself can
be seen in figure 21.2.

B1 A1

B2 A2

B3 A3

B4 A4

B5 A5

B6 A6

B7 A7

B8 A8

B9 A9

B10 A10

B11 A11

B12 A12

B13 A13

B14 A14

B15 A15

B16 A16

B17 A17

B18 A18

C02_A4

C02_A3

C02_A2

C02_A1

C02_A0

CS_RAM

C02_D0

C02_D1

+3.3v

GND

C02_D2

C02_D3

/CS_RAM

/CS_RAM

/CS_RAM

C02_R/W

RAM_A17

RAM_A16

/CS_RAM

/CS_RAM

/CS_RAM

RAM_A15

RAM_A14

RAM_A13

C02_D4

/CS_RAM

/CS_RAM

/CS_RAM

C02_A9

C02_A10

C02_A11

/CS_RAM

/CS_RAM

/CS_RAM

C02_A12

CRT_IRQ

C02_PHI2

C02_RST

C02_A5

C02_A6

C02_A7

C02_A8

OE

C02_D7

C02_D6

GND

+3.3v

C0_D5

Figure 21.1: Expansion Port

105



106 CHAPTER 21. EXPANSION CONNECTOR

Figure 21.2: Expansion Port Physical Size
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F256jr I/O Connectors and Jumpers

Note: This chapter describes the various jumpers and connectors on the F256jr board and
is not relevant to the F256k.

Connectors
The F256jr has several connectors on its board for I/O devices beyond the standard connections
on the back. Some of these connectors are the only way to access that particular I/O device, but
some are auxiliary connectors that provide alternate forms of access. All are IDC header pins.
The diagrams that follow show the pin assignments for these connectors. In these diagrams, the
views are top-down onto the board, with the board arranged so that the main connectors are
towards the top and the power connector is towards the bottom.

Game Connectors
There are two connectors for game controllers. There are two connectors for Atari style joysticks
(figure 22.1). And two for NES or Super NES gamepads (figure 22.2).

For the Atari style joysticks, an adapter cable will be needed to convert from IDC to the stan-
dard DE-9 connector. There are two key differences between the F256jr and Atari or Commodore
devices: first, the F256jr provides 3.3 volts instead of 5 volts, and second there are no paddle in-
puts supported on the F256jr.

For the NES and SNES style gamepads, an adapter box will be needed to provide the correct
interfacing for a controller. This adapter should be available from Foenix Retro Systems in the
near future (at the time of writing this manual).

RIGHT

DOWN

GND

BUTTON0

N.C.

LEFT

UP

+3.3v

BUTTON2

BUTTON1

Figure 22.1: Joystick Port Pinouts
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DATA3

DATA1

GND

SNES/NES

N.C.

DATA2

DATA0

+3.3v

LATCH

CLK

Figure 22.2: NES/SNES Gamepad Port Pinouts

PS/2 Port

An internal connector is included for the PS/2 mouse and keyboard port (figure 22.3). This con-
nector just provides an alternate way of accessing the PS/2 signals. It could be useful in building
an integrated case for the F256jr that includes a PS/2 keyboard.

+5v

DATA

CLK

GND

Figure 22.3: Auxiliary PS/2 Pinouts

UART

This connector provides access to the serial in and out signals for the F256jr’s UART (figure 22.4).
The TxD and RxD signals are compatible with standard ±12 volt RS-232 signals. The signals on
this connector can be brought out to a DE-9 connector to provide a standard 3 wire RS-232 serial
port.

N.C.

RxD

N.C.

N.C.

+5v

TxD

N.C.

N.C.

GND

N.C.

Figure 22.4: UART Pinouts

An ESP32 Feather board can be installed on the F256jr to provide access to Wi-Fi, but using
this board will take over the supplied UART. Therefore, the F256jr can provide either an RS-232
serial port or access to Wi-Fi, but not both at the same time. A jumper on the board selects which
is active.
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USB Debug Port

While there is a USB Mini-B connector (figure: 22.5) on the port to access the USB debug inter-
face, there is an IDC header connector on the board to provide access to this for the case USB
connector, if desired. This is not compatible with all USB case connectors, as many of them are
dual connectors and require pins for two USB ports. It should be compatible with cases with
single connectors or with panel mounted USB cables.

+
5
v

U
S
B
-

U
S
B
+

G
N
D

A
L
I
G
N
 

N
O
T
C
H

Figure 22.5: USB Debug Pinouts

Case Connectors

There are two connectors for the usual PC case connections. There is one for the headphone
jack (figure: 22.6), and one for the various buttons, LEDs, and case speaker (figure: 22.7): power,
reset, hard drive/SD card activity. Note that while the speaker and buttons are not polarized, the
power LED and hard-drive activity LED are and must be wired in the correct orientation.

N.C.

GND

ALIGN 
NOTCH

N.C.

N.C.

N.C.

N.C.

N.C.

PHONE 
LEFT

PHONE 
RIGHT

Figure 22.6: Case Audio Pinouts

Not shown is a small secondary connector for an SPST switch for power (the connector is lo-
cated at the front-right corner of the F256jr RevB board). This connector provides an alternative
to the usual case power push button. The two buttons cannot be used together. Either the case
push button shown in 22.7 is used, or the other SPST switch is used, but not both.

Jumpers

There are several IDC header pins with jumpers to configure various options on the F256jr. All
the jumper headers are three pin headers, where the center pin is the common. The header is
used to select the appropriate routing of a signal or voltage level. So the jumper is always used to
connect the center common pin to either the left or right pins (or the top or bottom, depending
on the orientation of the header).
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N.C.

SPEAKER0

SPEAKER1

N.C.

N.C.

N.C.

RESET SW

RESET SW

POWER SW

N.C.

POWER SW

N.C.

POWER LED SDC LED

Figure 22.7: Case Button and LED Pinouts

SID Jumpers

The SID chips have two sets of jumpers each. The first pair are the voltage selection jumpers.
They can be used to select the appropriate voltage for the SID chip: 12 volts for the original 6581,
and 9 volts for the later 8580 (see figure 22.8). If you are using a modern replacement, check the
instructions as to which voltage to use: some replacements work with either voltage.

+12v +9v

Figure 22.8: SID Voltage Jumper

The second pair of SID jumpers are the channel selectors (see figure 22.9). These jumpers
select the source of the left and right channels for the CODEC. With each one, you can select
either the right or the left SID as an input to the CODEC for that stereo channel. If a F256jr is
using both SIDs, the left channel should select the left SID, and the right channel select the right
SID. But if only a single SID is used, both channels can be set to that SID. For instance, if the
SID is in the left socket, both left and right channels can select the left SID as the source to get a
balanced monaural sound.

Use Right SID

Use Left SID

Figure 22.9: SID Stereo Channel Source Jumper
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Boot Source
There is a jumper to select boot source (see figure 22.10). With the jumper in the left position,
the F256jr will boot off the flash, using the last 8KB bank of flash memory as the last 8KB of CPU
address space. With the jumper in the right position, the F256jr will boot using RAM. See page 17
for a more complete description of boot sources.

Boot from Flash Boot from RAM

Figure 22.10: Boot Source Jumper

UART Configuration
There are two headers for selecting how the UART is used—selecting between the serial port or
the ESP32 Wi-Fi module (see figure 22.11). One jumper controls the routing of the TxD line, while
the other controls the routing of the RxD line. With the jumper positioned across the “back” pair
of pins, the signal is routed to the Wi-Fi module. With the jumper positioned across the “front”
pair of pins, the signal is routed to the DE-9 port connected to the UART connector. Note that
both the TxD and RxD jumpers should be in the same relative position so that they both use the
same device.

Use Wi-Fi

Use DB9

Figure 22.11: UART Device Jumpers
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Memory Maps

Address Purpose
0x000000 System RAM for programs, data, and graphics (512 KB)
0x07FFFF
0x080000 Flash memory (512 KB)
0x0FFFFF
0x100000 Expansion RAM for programs, and data (256 KB)
0x13FFFF
0x140000 Reserved
0x1FFFFF

Table 23.1: System Memory Map for the F256
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Bank Address Purpose

0

0x0000 MMU Memory Control Register
0x0001 MMU I/O Control Register
0x0002 RAM or Flash
0x0007
0x0008 RAM, Flash, or MMU LUT Registers
0x000F
0x0010 65C02 Page Zero
0x00FF
0x0100 65C02 Stack
0x01FF
0x0200 RAM or Flash
0x1FFF

1 0x2000 RAM or Flash
0x3FFF

2 0x4000 RAM or Flash
0x5FFF

3 0x6000 RAM or Flash
0x7FFF

Table 23.2: CPU Memory Map for the F256 (Banks 0–3)

Bank Address Purpose

4 0x8000 RAM or Flash
0x9FFF

5 0xA000 RAM or Flash
0xBFFF

6 0xC000 RAM, Flash, I/O, Text mode character, or color data
0xDFFF

7

0xE000 RAM or Flash
0xFFFA
0xFFFA 65C02 NMI Vector
0xFFFB
0xFFFC 65C02 Reset Vector
0xFFFD
0xFFFE 65C02 IRQ Vector
0xFFFF

Table 23.3: CPU Memory Map for the F256 (Banks 4–7)
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Start End Purpose Page
0xC000 0xC3FF Gamma Table Blue

520xC400 0xC7FF Gamma Table Green
0xC800 0xCBFF Gamma Table Red
0xCC00 0xCFFF Reserved
0xD000 0xD0FF VICKY Master Control Registers 22
0xD100 0xD1FF VICKY Bitmap Control Registers 30
0xD200 0xD2FF VICKY Tile Control Registers 40
0xD300 0xD3FF Reserved
0xD400 0xD4FF SID Left 58
0xD500 0xD57F SID Right
0xD580 0xD583 OPL3 (F256k only) 60
0xD600 0xD607 PSG Left

550xD608 0xD60F PSG Left and Right
0xD610 0xD61F PSG Right
0xD620 0xD62F CODEC 54
0xD630 0xD63F UART 85
0xD640 0xD64F PS/2 Interface 81
0xD650 0xD65F Timers 67
0xD660 0xD66F Interrupt Controller 61
0xD670 0xD67F DIP Switch 46

Table 23.4: I/O Page 0 Addresses (0xC000–0xD67F)

Start End Purpose Page
0xD680 0xD68F IEC Controller 74
0xD690 0xD69F Real Time Clock 69
0xD6A0 0xD6AF System Control Registers 94
0xD6A7 0xD6AF F256k LEDs (F256k only and write-only) 84
0xD6B0 0xD6DF Reserved
0xD6E0 0xD6EA Mouse Pointer Registers 82
0xD6EB 0xD7EF PCB Version Register 96
0xD6EF 0xD7FF Reserved
0xD800 0xD83F Text Foreground Color LUT 21
0xD840 0xD87F Text Background Color LUT
0xD880 0xD8FF Reserved
0xD900 0xDAFF VICKY Sprite Control Registers 33
0xDB00 0xDBFF Reserved
0xDC00 0xDCFF 65C22 VIA Control Registers 74
0xDD00 0xDDFF SD Card Controller 81
0xDE00 0xDE1F Integer Math Coprocessor 99
0xDE20 0xDEFF Reserved
0xDF00 0xDF13 DMA Controller 89

Table 23.5: I/O Page 0 Addresses (0xD680–0xDF13)
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Start End Purpose Page
0xC000 0xC7FF Text Mode Font Set 0 Memory 23
0xC800 0xCFFF Text Mode Font Set 1 Memory 23
0xD000 0xD3FF Graphics Color LUT 0

260xD400 0xD7FF Graphics Color LUT 1
0xD800 0xDBFF Graphics Color LUT 2
0xDC00 0xDFFF Graphics Color LUT 3

Table 23.6: Memory Map for I/O Page 1
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It is not possible to cover all the details of all the chips that are part of the F256 in this one refer-
ence manual. This chapter lists links to all the data sheets for each chip used or implemented as
well as some other useful websites. These chips include the 65C02 (CPU), 65C22 (VIA), WM8776
(sound CODEC), bq4802ly (real time clock), 6581 (SID), and the SN76489 (PSG).

CPU https://www.westerndesigncenter.com/wdc/documentation/w65c02s.pdf

VIA https://www.westerndesigncenter.com/wdc/documentation/w65c22.pdf

CODEC https://web.archive.org/web/20140801092610/http://www.wolfsonmicro.com/media/
76476/WM8776.pdf

RTC https://www.ti.com/lit/ds/symlink/bq4802y.pdf

SID http://archive.6502.org/datasheets/mos_6581_sid.pdf

PSG http://www.vgmpf.com/Wiki/images/7/78/SN76489AN_-_Manual.pdf

OPL3 http://www.bitsavers.org/components/yamaha/YMF262_199110.pdf (F256K only)

The website for all Foenix information is https://c256foenix.com, and the latest electronic
copy of this manual is at https://github.com/pweingar/C256jrManual
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Copyright

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send
a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
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