
Large Scale Data Processing
Lecture 11 – Automatic app management in the production

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman
Bartusiak, Krzysztof Rajda

January 3, 2022



Overview

Continous X

Data Schema updates
Liquibase
FlywayDB
Alembic
db-migrate

Helm

Ansible

2/38



Continuous Deployment (1)
Continous X

▶ What if continuous integration is not enough for you?
▶ What if you want to deploy your software as fast as

possible after feature development?
▶ How to perform multiple deployments daily? (e.g.

Facebook performs thousands of deployments per day)
▶ You need to be sure that your production environment is

as fresh as it can be?

3/38



Continuous Deployment (2)
Continous X

▶ Deploy your software as part of your build pipeline (to
production or production-like environment)

▶ Create push-button deployment possibilities
▶ Automate as much as you can
▶ CI do not guarantee that your software will be

deploy-able, CD does

4/38



Continuous Deployment (3)
Continous X

▶ Create continuous integration pipeline with all its
requirements

▶ Extend it to contain executable creation
▶ Create automation procedure that allows you to deploy

your app/services
▶ Utilize appropriate updates procedure (canary etc.)
▶ Add deployment as part of build pipeline, or create special

build for that

5/38



Continuous Deployment - Argo
Continous X

▶ Argo CD is a declarative, GitOps continuous delivery tool
for Kubernetes.

▶ helm, kustomize, etc.
▶ plain k8s definitions
▶ UI
▶ pull and push
▶ declarative

6/38



Continuous Deployment - Flux
Continous X

▶ Flux is a set of continuous and progressive delivery
solutions for Kubernetes that are open and extensible.

▶ helm, kustomize, etc.
▶ plain k8s definitions
▶ No UI
▶ pull and push
▶ declarative
▶ CNCF

7/38



Overview

Continous X

Data Schema updates
Liquibase
FlywayDB
Alembic
db-migrate

Helm

Ansible

8/38



Liquibase
Data Schema updates

▶ YAML, SQL, XML, JSON
▶ Java
▶ explicit

9/38



Liquibase
Data Schema updates

1 databaseChangeLog:
2 - include:
3 file: liquibase/01-create-sample-schema.yaml

10/38



Liquibase
Data Schema updates

1 databaseChangeLog:
2 - changeSet:
3 id: 1
4 author: Roman Bartusiak
5 comment: "Sample changelog"
6 changes:
7 - createTable:
8 tableName: sample
9 columns:

10 - column:
11 name: id
12 type: uuid
13 constraints:
14 primaryKey: true
15 nullable: false

11/38



FlywayDB
Data Schema updates

▶ SQL
▶ Java
▶ file name based

12/38



FlywayDB
Data Schema updates

13/38



Alembic
Data Schema updates

▶ Python
▶ SQLAlchemy
▶ auto-generation

14/38



Alembic
Data Schema updates

1 """empty message
2
3 Revision ID: 27c6a30d7c24
4 Revises: None
5 Create Date: 2011-11-08 11:40:27.089406
6
7 """
8
9 # revision identifiers, used by Alembic.

10 revision = '27c6a30d7c24'
11 down_revision = None
12
13 from alembic import op
14 import sqlalchemy as sa

15/38



Alembic
Data Schema updates

1 def upgrade():
2 ### commands auto generated by Alembic - please adjust! ###
3 op.create_table(
4 'account',
5 sa.Column('id', sa.Integer()),
6 sa.Column('name', sa.String(length=50), nullable=False),
7 sa.Column('description', sa.VARCHAR(200)),
8 sa.Column('last_transaction_date', sa.DateTime()),
9 sa.PrimaryKeyConstraint('id')

10 )
11 ### end Alembic commands ###
12
13 def downgrade():
14 ### commands auto generated by Alembic - please adjust! ###
15 op.drop_table("account")
16 ### end Alembic commands ###

16/38



db-migrate
Data Schema updates

▶ Node.js
▶ scaffold generator

17/38



db-migrate
Data Schema updates

1 /* Promise-based version */
2 exports.up = function (db) {
3 return db.createTable('pets', {
4 id: { type: 'int', primaryKey: true },
5 name: 'string'
6 });
7 };
8
9 exports.down = function (db) {

10 return db.dropTable('pets');
11 };

18/38



Overview

Continous X

Data Schema updates
Liquibase
FlywayDB
Alembic
db-migrate

Helm

Ansible

19/38



Helm

▶ How to manage Kubernates deployments?
▶ There are not variables in Kubernates manifests
▶ What to do if we want to rollback to previous version

20/38



Helm

▶ Package manager for K8S
▶ OpenSource, maintained by Google,

Microsoft, Bitnami, ...
▶ Many ready to use charts in official

repository
▶ Possibility to use variables during

deployment
▶ Charts can have dependencies

21/38



Helm

▶ Easily find packages
▶ Easily create new packages
▶ Can operate on any K8S cluster
▶ Query the cluster to see installed packages
▶ Update, delete, rollback and check history of installed

charts

22/38



Helm

▶ Basically it templates K8S manifests (Go templates)
▶ Thanks to that, it is independent from resources that you

want to create
▶ Create resource YAML, utilize {{ }} to inject variables
▶ Variables can be provided as a file or during the

deployment

23/38



Helm

Helm v2
▶ requires Tiler

▶ server-side (on cluster)
component

▶ manages packages
▶ 2-way strategic merge

path
▶ releases names are global
▶ release name is optional,

if not provided will be
generated

Helm v3
▶ no Tiler
▶ 3-way strategic merge

path
▶ releases names are in

namespaces
▶ release name is required
▶ library charts

24/38



Directory structure
Helm (db-migrate)

1 wordpress/
2 Chart.yaml # A YAML file containing information
3 # about the chart
4 LICENSE # OPTIONAL: A plain text file containing
5 # the license for the chart
6 README.md # OPTIONAL: A human-readable README file
7 values.yaml # The default configuration values
8 # for this chart
9 values.schema.json # OPTIONAL: A JSON Schema for imposing

10 # a structure on the values.yaml file
11 charts/ # A directory containing any charts upon
12 # which this chart depends.
13 crds/ # Custom Resource Definitions
14 templates/ # A directory of templates that,
15 # when combined with values, will
16 # generate valid Kubernetes manifest files.
17 templates/NOTES.txt # OPTIONAL: A plain text file containing
18 # short usage notes

25/38



Example template
Helm

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: {{ .Release.Name }}-configmap
5 data:
6 myvalue: "Hello World"

26/38



Example template
Helm

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: {{ .Release.Name }}-configmap
5 data:
6 myvalue: "Hello World"
7 drink: {{ .Values.favoriteDrink }}

1 helm install --set favoriteDrink=monsterek ./mychart

27/38



Helm

▶ How to check if your template will work?
▶ dry-run will render template to STD
▶ you need to check it manually
▶ rendered template can be not accepted by kubernetes

28/38



Overview

Continous X

Data Schema updates
Liquibase
FlywayDB
Alembic
db-migrate

Helm

Ansible

29/38



Introduction
Ansible

▶ open source automation tool,
▶ machine provision,
▶ configuration management,
▶ application deployment,
▶ YAML-based declarative language,
▶ agentless (uses SSH / Powershell),

30/38



Characteristics
Ansible

▶ simple & minimalistic (YAML-based language & Jinja
templates),

▶ consistency (of created enviroments),
▶ security (no dedicated agent, SSH used for connections),
▶ reliability (idempotent playbooks),

31/38



Command vs playbook
Ansible (db-migrate)

32/38



Example playbook
Ansible

1 ---
2 - name: Install nginx
3 hosts: all
4 become: true
5
6 tasks:
7 - name: Add epel-release repo
8 yum:
9 name: epel-release

10 state: present
11
12 - name: Install nginx
13 yum:
14 name: nginx
15 state: present
16
17 - name: Insert Index Page
18 template:
19 src: index.html
20 dest: /usr/share/nginx/html/index.html
21
22 - name: Start NGiNX
23 service:
24 name: nginx
25 state: started

33/38



Concepts (1)
Ansible

▶ playbooks:
▶ define steps to build environments,
▶ can be divided into multiple files (readability, reusability),
▶ roles, vars, group_vars etc.

▶ modules:
▶ define actual actions executed by Ansible,
▶ examples given on previous slide,
▶ standalone,
▶ can be written in most scripting languages (Python, Bash,

Perl, Ruby etc.),
▶ should follow idempotent rule,

34/38



Concepts (2)
Ansible

▶ inventory file:
▶ description of nodes that can be accessed by Ansible,
▶ INI or YAML format,
▶ IP addresses or hostnames,
▶ when necessary SSH keys and users can be provided,
▶ nodes can be assigned to groups,

35/38



Inventory file example
Ansible

1 # Consolidation of all groups
2 [hosts:children]
3 web-servers
4 offsite
5 onsite
6 backup-servers
7
8 [web-servers]
9 server1 ansible_host=192.168.0.1 ansible_port=1600

10 server2 ansible_host=192.168.0.2 ansible_port=1800
11
12 [offsite]
13 server3 ansible_host=10.160.40.1 ansible_port=22 ansible_user=root
14 192.168.6.1
15
16 # You can make groups of groups
17 [offsite:children]
18 backup-servers
19
20 [onsite]
21 server5 ansible_host=10.150.70.1 ansible_ssh_pass=password
22
23 [backup-servers]
24 foo.example.com

36/38



Next week
Ansible

▶ Języki do przetwarzania danych masowych

37/38



Large Scale Data Processing
Lecture 11 – Automatic app management in the production

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman
Bartusiak, Krzysztof Rajda

January 3, 2022

38/38


	Continous X
	Data Schema updates
	Liquibase
	FlywayDB
	Alembic
	db-migrate

	Helm
	Ansible

