{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "expmkveO04pw" }, "source": [ "## Parameter identification for various models\n", "\n", "To investigate the performance of parameter identification for different electrochemical models we will start with synthetic data from the highest order model in PyBOP (Many-particle DFN) and try to identify the correct parameter values on the reduced order models.\n", "\n", "### Setting up the Environment\n", "\n", "Before we begin, we need to ensure that we have all the necessary tools. We will install PyBOP and upgrade dependencies:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "X87NUGPW04py", "outputId": "0d785b07-7cff-4aeb-e60a-4ff5a669afbf" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/engs2510/Documents/Git/Second_PyBOP/.nox/notebooks-overwrite/bin/python3: No module named pip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Note: you may need to restart the kernel to use updated packages.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "/Users/engs2510/Documents/Git/Second_PyBOP/.nox/notebooks-overwrite/bin/python3: No module named pip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "%pip install --upgrade pip ipywidgets pybamm -q\n", "%pip install pybop -q" ] }, { "cell_type": "markdown", "metadata": { "id": "jAvD5fk104p0" }, "source": [ "Next, we import the added packages plus any additional dependencies," ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SQdt4brD04p1" }, "outputs": [], "source": [ "import numpy as np\n", "import pybamm\n", "\n", "import pybop\n", "\n", "go = pybop.plot.PlotlyManager().go\n", "pybop.plot.PlotlyManager().pio.renderers.default = \"notebook_connected\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's fix the random seed in order to generate consistent output during development, although this does not need to be done in practice." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.random.seed(8)" ] }, { "cell_type": "markdown", "metadata": { "id": "X8-tubYY04p_" }, "source": [ "## Optimising the Parameters" ] }, { "cell_type": "markdown", "metadata": { "id": "PQqhvSZN04p_" }, "source": [ "First, we define the model to be used for the parameter optimisation," ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "zuvGHWID04p_" }, "outputs": [], "source": [ "parameter_set = pybop.ParameterSet.pybamm(\"Chen2020\")\n", "parameter_set = pybamm.get_size_distribution_parameters(parameter_set)\n", "synth_model = pybop.lithium_ion.DFN(\n", " parameter_set=parameter_set, options={\"particle size\": \"distribution\"}\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Simulating Forward Model\n", "\n", "We can then simulate the model using the `predict` method, with a default constant current to generate voltage data." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_points = 450\n", "t_eval = np.linspace(0, 1600 + 1000, n_points)\n", "current = np.concatenate(\n", " [np.ones(200) * parameter_set[\"Nominal cell capacity [A.h]\"], np.zeros(250)]\n", ")\n", "initial_state = {\"Initial SoC\": 0.5}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset = pybop.Dataset(\n", " {\n", " \"Time [s]\": t_eval,\n", " \"Current function [A]\": current,\n", " }\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "synth_model.build(dataset=dataset, initial_state=initial_state)\n", "synth_model.signal = [\"Voltage [V]\"]\n", "values = synth_model.simulate(t_eval=t_eval, inputs={})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adding Noise to Voltage Data\n", "\n", "To make the parameter estimation more realistic, we add Gaussian noise to the data." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "