{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PyCaret 2 Classification Example\n", "This notebook is created using PyCaret 2.0. Last updated : 31-07-2020" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.0\n" ] } ], "source": [ "# check version\n", "from pycaret.utils import version\n", "version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Data Repository" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Dataset | \n", "Data Types | \n", "Default Task | \n", "Target Variable | \n", "# Instances | \n", "# Attributes | \n", "Missing Values | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "anomaly | \n", "Multivariate | \n", "Anomaly Detection | \n", "None | \n", "1000 | \n", "10 | \n", "N | \n", "
1 | \n", "france | \n", "Multivariate | \n", "Association Rule Mining | \n", "InvoiceNo, Description | \n", "8557 | \n", "8 | \n", "N | \n", "
2 | \n", "germany | \n", "Multivariate | \n", "Association Rule Mining | \n", "InvoiceNo, Description | \n", "9495 | \n", "8 | \n", "N | \n", "
3 | \n", "bank | \n", "Multivariate | \n", "Classification (Binary) | \n", "deposit | \n", "45211 | \n", "17 | \n", "N | \n", "
4 | \n", "blood | \n", "Multivariate | \n", "Classification (Binary) | \n", "Class | \n", "748 | \n", "5 | \n", "N | \n", "
5 | \n", "cancer | \n", "Multivariate | \n", "Classification (Binary) | \n", "Class | \n", "683 | \n", "10 | \n", "N | \n", "
6 | \n", "credit | \n", "Multivariate | \n", "Classification (Binary) | \n", "default | \n", "24000 | \n", "24 | \n", "N | \n", "
7 | \n", "diabetes | \n", "Multivariate | \n", "Classification (Binary) | \n", "Class variable | \n", "768 | \n", "9 | \n", "N | \n", "
8 | \n", "electrical_grid | \n", "Multivariate | \n", "Classification (Binary) | \n", "stabf | \n", "10000 | \n", "14 | \n", "N | \n", "
9 | \n", "employee | \n", "Multivariate | \n", "Classification (Binary) | \n", "left | \n", "14999 | \n", "10 | \n", "N | \n", "
10 | \n", "heart | \n", "Multivariate | \n", "Classification (Binary) | \n", "DEATH | \n", "200 | \n", "16 | \n", "N | \n", "
11 | \n", "heart_disease | \n", "Multivariate | \n", "Classification (Binary) | \n", "Disease | \n", "270 | \n", "14 | \n", "N | \n", "
12 | \n", "hepatitis | \n", "Multivariate | \n", "Classification (Binary) | \n", "Class | \n", "154 | \n", "32 | \n", "Y | \n", "
13 | \n", "income | \n", "Multivariate | \n", "Classification (Binary) | \n", "income >50K | \n", "32561 | \n", "14 | \n", "Y | \n", "
14 | \n", "juice | \n", "Multivariate | \n", "Classification (Binary) | \n", "Purchase | \n", "1070 | \n", "15 | \n", "N | \n", "
15 | \n", "nba | \n", "Multivariate | \n", "Classification (Binary) | \n", "TARGET_5Yrs | \n", "1340 | \n", "21 | \n", "N | \n", "
16 | \n", "wine | \n", "Multivariate | \n", "Classification (Binary) | \n", "type | \n", "6498 | \n", "13 | \n", "N | \n", "
17 | \n", "telescope | \n", "Multivariate | \n", "Classification (Binary) | \n", "Class | \n", "19020 | \n", "11 | \n", "N | \n", "
18 | \n", "glass | \n", "Multivariate | \n", "Classification (Multiclass) | \n", "Type | \n", "214 | \n", "10 | \n", "N | \n", "
19 | \n", "iris | \n", "Multivariate | \n", "Classification (Multiclass) | \n", "species | \n", "150 | \n", "5 | \n", "N | \n", "
20 | \n", "poker | \n", "Multivariate | \n", "Classification (Multiclass) | \n", "CLASS | \n", "100000 | \n", "11 | \n", "N | \n", "
21 | \n", "questions | \n", "Multivariate | \n", "Classification (Multiclass) | \n", "Next_Question | \n", "499 | \n", "4 | \n", "N | \n", "
22 | \n", "satellite | \n", "Multivariate | \n", "Classification (Multiclass) | \n", "Class | \n", "6435 | \n", "37 | \n", "N | \n", "
23 | \n", "asia_gdp | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "40 | \n", "11 | \n", "N | \n", "
24 | \n", "elections | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "3195 | \n", "54 | \n", "Y | \n", "
25 | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "7050 | \n", "12 | \n", "N | \n", "|
26 | \n", "ipl | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "153 | \n", "25 | \n", "N | \n", "
27 | \n", "jewellery | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "505 | \n", "4 | \n", "N | \n", "
28 | \n", "mice | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "1080 | \n", "82 | \n", "Y | \n", "
29 | \n", "migration | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "233 | \n", "12 | \n", "N | \n", "
30 | \n", "perfume | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "20 | \n", "29 | \n", "N | \n", "
31 | \n", "pokemon | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "800 | \n", "13 | \n", "Y | \n", "
32 | \n", "population | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "255 | \n", "56 | \n", "Y | \n", "
33 | \n", "public_health | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "224 | \n", "21 | \n", "N | \n", "
34 | \n", "seeds | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "210 | \n", "7 | \n", "N | \n", "
35 | \n", "wholesale | \n", "Multivariate | \n", "Clustering | \n", "None | \n", "440 | \n", "8 | \n", "N | \n", "
36 | \n", "tweets | \n", "Text | \n", "NLP | \n", "tweet | \n", "8594 | \n", "2 | \n", "N | \n", "
37 | \n", "amazon | \n", "Text | \n", "NLP / Classification | \n", "reviewText | \n", "20000 | \n", "2 | \n", "N | \n", "
38 | \n", "kiva | \n", "Text | \n", "NLP / Classification | \n", "en | \n", "6818 | \n", "7 | \n", "N | \n", "
39 | \n", "spx | \n", "Text | \n", "NLP / Regression | \n", "text | \n", "874 | \n", "4 | \n", "N | \n", "
40 | \n", "wikipedia | \n", "Text | \n", "NLP / Classification | \n", "Text | \n", "500 | \n", "3 | \n", "N | \n", "
41 | \n", "automobile | \n", "Multivariate | \n", "Regression | \n", "price | \n", "202 | \n", "26 | \n", "Y | \n", "
42 | \n", "bike | \n", "Multivariate | \n", "Regression | \n", "cnt | \n", "17379 | \n", "15 | \n", "N | \n", "
43 | \n", "boston | \n", "Multivariate | \n", "Regression | \n", "medv | \n", "506 | \n", "14 | \n", "N | \n", "
44 | \n", "concrete | \n", "Multivariate | \n", "Regression | \n", "strength | \n", "1030 | \n", "9 | \n", "N | \n", "
45 | \n", "diamond | \n", "Multivariate | \n", "Regression | \n", "Price | \n", "6000 | \n", "8 | \n", "N | \n", "
46 | \n", "energy | \n", "Multivariate | \n", "Regression | \n", "Heating Load / Cooling Load | \n", "768 | \n", "10 | \n", "N | \n", "
47 | \n", "forest | \n", "Multivariate | \n", "Regression | \n", "area | \n", "517 | \n", "13 | \n", "N | \n", "
48 | \n", "gold | \n", "Multivariate | \n", "Regression | \n", "Gold_T+22 | \n", "2558 | \n", "121 | \n", "N | \n", "
49 | \n", "house | \n", "Multivariate | \n", "Regression | \n", "SalePrice | \n", "1461 | \n", "81 | \n", "Y | \n", "
50 | \n", "insurance | \n", "Multivariate | \n", "Regression | \n", "charges | \n", "1338 | \n", "7 | \n", "N | \n", "
51 | \n", "parkinsons | \n", "Multivariate | \n", "Regression | \n", "PPE | \n", "5875 | \n", "22 | \n", "N | \n", "
52 | \n", "traffic | \n", "Multivariate | \n", "Regression | \n", "traffic_volume | \n", "48204 | \n", "8 | \n", "N | \n", "
\n", " | Id | \n", "Purchase | \n", "WeekofPurchase | \n", "StoreID | \n", "PriceCH | \n", "PriceMM | \n", "DiscCH | \n", "DiscMM | \n", "SpecialCH | \n", "SpecialMM | \n", "LoyalCH | \n", "SalePriceMM | \n", "SalePriceCH | \n", "PriceDiff | \n", "Store7 | \n", "PctDiscMM | \n", "PctDiscCH | \n", "ListPriceDiff | \n", "STORE | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "CH | \n", "237 | \n", "1 | \n", "1.75 | \n", "1.99 | \n", "0.00 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.500000 | \n", "1.99 | \n", "1.75 | \n", "0.24 | \n", "No | \n", "0.000000 | \n", "0.000000 | \n", "0.24 | \n", "1 | \n", "
1 | \n", "2 | \n", "CH | \n", "239 | \n", "1 | \n", "1.75 | \n", "1.99 | \n", "0.00 | \n", "0.3 | \n", "0 | \n", "1 | \n", "0.600000 | \n", "1.69 | \n", "1.75 | \n", "-0.06 | \n", "No | \n", "0.150754 | \n", "0.000000 | \n", "0.24 | \n", "1 | \n", "
2 | \n", "3 | \n", "CH | \n", "245 | \n", "1 | \n", "1.86 | \n", "2.09 | \n", "0.17 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.680000 | \n", "2.09 | \n", "1.69 | \n", "0.40 | \n", "No | \n", "0.000000 | \n", "0.091398 | \n", "0.23 | \n", "1 | \n", "
3 | \n", "4 | \n", "MM | \n", "227 | \n", "1 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.400000 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "No | \n", "0.000000 | \n", "0.000000 | \n", "0.00 | \n", "1 | \n", "
4 | \n", "5 | \n", "CH | \n", "228 | \n", "7 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.956535 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "Yes | \n", "0.000000 | \n", "0.000000 | \n", "0.00 | \n", "0 | \n", "
Description | Value | |
---|---|---|
0 | \n", "session_id | \n", "123 | \n", "
1 | \n", "Target Type | \n", "Binary | \n", "
2 | \n", "Label Encoded | \n", "CH: 0, MM: 1 | \n", "
3 | \n", "Original Data | \n", "(1070, 19) | \n", "
4 | \n", "Missing Values | \n", "False | \n", "
5 | \n", "Numeric Features | \n", "13 | \n", "
6 | \n", "Categorical Features | \n", "5 | \n", "
7 | \n", "Ordinal Features | \n", "False | \n", "
8 | \n", "High Cardinality Features | \n", "False | \n", "
9 | \n", "High Cardinality Method | \n", "None | \n", "
10 | \n", "Sampled Data | \n", "(1070, 19) | \n", "
11 | \n", "Transformed Train Set | \n", "(748, 28) | \n", "
12 | \n", "Transformed Test Set | \n", "(322, 28) | \n", "
13 | \n", "Numeric Imputer | \n", "mean | \n", "
14 | \n", "Categorical Imputer | \n", "constant | \n", "
15 | \n", "Normalize | \n", "False | \n", "
16 | \n", "Normalize Method | \n", "None | \n", "
17 | \n", "Transformation | \n", "False | \n", "
18 | \n", "Transformation Method | \n", "None | \n", "
19 | \n", "PCA | \n", "False | \n", "
20 | \n", "PCA Method | \n", "None | \n", "
21 | \n", "PCA Components | \n", "None | \n", "
22 | \n", "Ignore Low Variance | \n", "False | \n", "
23 | \n", "Combine Rare Levels | \n", "False | \n", "
24 | \n", "Rare Level Threshold | \n", "None | \n", "
25 | \n", "Numeric Binning | \n", "False | \n", "
26 | \n", "Remove Outliers | \n", "False | \n", "
27 | \n", "Outliers Threshold | \n", "None | \n", "
28 | \n", "Remove Multicollinearity | \n", "False | \n", "
29 | \n", "Multicollinearity Threshold | \n", "None | \n", "
30 | \n", "Clustering | \n", "False | \n", "
31 | \n", "Clustering Iteration | \n", "None | \n", "
32 | \n", "Polynomial Features | \n", "False | \n", "
33 | \n", "Polynomial Degree | \n", "None | \n", "
34 | \n", "Trignometry Features | \n", "False | \n", "
35 | \n", "Polynomial Threshold | \n", "None | \n", "
36 | \n", "Group Features | \n", "False | \n", "
37 | \n", "Feature Selection | \n", "False | \n", "
38 | \n", "Features Selection Threshold | \n", "None | \n", "
39 | \n", "Feature Interaction | \n", "False | \n", "
40 | \n", "Feature Ratio | \n", "False | \n", "
41 | \n", "Interaction Threshold | \n", "None | \n", "
42 | \n", "Fix Imbalance | \n", "False | \n", "
43 | \n", "Fix Imbalance Method | \n", "SMOTE | \n", "
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | TT (Sec) | |
---|---|---|---|---|---|---|---|---|---|
0 | \n", "Logistic Regression | \n", "0.8263 | \n", "0.8959 | \n", "0.7262 | \n", "0.8139 | \n", "0.7644 | \n", "0.6280 | \n", "0.6338 | \n", "0.0420 | \n", "
1 | \n", "Linear Discriminant Analysis | \n", "0.8263 | \n", "0.8938 | \n", "0.7536 | \n", "0.7938 | \n", "0.7713 | \n", "0.6317 | \n", "0.6342 | \n", "0.0085 | \n", "
2 | \n", "Ridge Classifier | \n", "0.8236 | \n", "0.0000 | \n", "0.7499 | \n", "0.7920 | \n", "0.7680 | \n", "0.6262 | \n", "0.6292 | \n", "0.0134 | \n", "
3 | \n", "Ada Boost Classifier | \n", "0.8075 | \n", "0.8637 | \n", "0.7053 | \n", "0.7837 | \n", "0.7398 | \n", "0.5881 | \n", "0.5924 | \n", "0.0663 | \n", "
4 | \n", "Gradient Boosting Classifier | \n", "0.8062 | \n", "0.8869 | \n", "0.7363 | \n", "0.7651 | \n", "0.7479 | \n", "0.5909 | \n", "0.5939 | \n", "0.1177 | \n", "
5 | \n", "CatBoost Classifier | \n", "0.8008 | \n", "0.8884 | \n", "0.7259 | \n", "0.7614 | \n", "0.7399 | \n", "0.5790 | \n", "0.5826 | \n", "1.7187 | \n", "
6 | \n", "Extreme Gradient Boosting | \n", "0.7968 | \n", "0.8885 | \n", "0.7294 | \n", "0.7512 | \n", "0.7374 | \n", "0.5722 | \n", "0.5752 | \n", "0.0455 | \n", "
7 | \n", "Light Gradient Boosting Machine | \n", "0.7861 | \n", "0.8806 | \n", "0.7053 | \n", "0.7393 | \n", "0.7195 | \n", "0.5471 | \n", "0.5497 | \n", "0.0749 | \n", "
8 | \n", "Quadratic Discriminant Analysis | \n", "0.7621 | \n", "0.8240 | \n", "0.6267 | \n", "0.7397 | \n", "0.6678 | \n", "0.4863 | \n", "0.5000 | \n", "0.0100 | \n", "
9 | \n", "Random Forest Classifier | \n", "0.7608 | \n", "0.8397 | \n", "0.6674 | \n", "0.7124 | \n", "0.6848 | \n", "0.4928 | \n", "0.4974 | \n", "0.1165 | \n", "
10 | \n", "Decision Tree Classifier | \n", "0.7594 | \n", "0.7519 | \n", "0.6911 | \n", "0.6970 | \n", "0.6907 | \n", "0.4943 | \n", "0.4975 | \n", "0.0097 | \n", "
11 | \n", "Extra Trees Classifier | \n", "0.7433 | \n", "0.8205 | \n", "0.6708 | \n", "0.6758 | \n", "0.6698 | \n", "0.4605 | \n", "0.4638 | \n", "0.1478 | \n", "
12 | \n", "K Neighbors Classifier | \n", "0.7231 | \n", "0.7683 | \n", "0.6062 | \n", "0.6600 | \n", "0.6287 | \n", "0.4094 | \n", "0.4129 | \n", "0.0104 | \n", "
13 | \n", "Naive Bayes | \n", "0.7140 | \n", "0.7952 | \n", "0.7466 | \n", "0.6100 | \n", "0.6708 | \n", "0.4227 | \n", "0.4301 | \n", "0.0029 | \n", "
14 | \n", "SVM - Linear Kernel | \n", "0.5267 | \n", "0.0000 | \n", "0.4200 | \n", "0.2409 | \n", "0.2561 | \n", "0.0204 | \n", "0.0299 | \n", "0.0103 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7867 | \n", "0.8501 | \n", "0.6552 | \n", "0.7600 | \n", "0.7037 | \n", "0.5385 | \n", "0.5421 | \n", "
1 | \n", "0.8533 | \n", "0.9355 | \n", "0.7241 | \n", "0.8750 | \n", "0.7925 | \n", "0.6806 | \n", "0.6879 | \n", "
2 | \n", "0.7600 | \n", "0.8193 | \n", "0.6552 | \n", "0.7037 | \n", "0.6786 | \n", "0.4875 | \n", "0.4883 | \n", "
3 | \n", "0.8133 | \n", "0.9168 | \n", "0.7241 | \n", "0.7778 | \n", "0.7500 | \n", "0.6014 | \n", "0.6023 | \n", "
4 | \n", "0.8133 | \n", "0.8838 | \n", "0.8621 | \n", "0.7143 | \n", "0.7813 | \n", "0.6209 | \n", "0.6293 | \n", "
5 | \n", "0.8267 | \n", "0.8966 | \n", "0.6897 | \n", "0.8333 | \n", "0.7547 | \n", "0.6225 | \n", "0.6292 | \n", "
6 | \n", "0.8267 | \n", "0.9019 | \n", "0.7000 | \n", "0.8400 | \n", "0.7636 | \n", "0.6286 | \n", "0.6351 | \n", "
7 | \n", "0.8400 | \n", "0.9348 | \n", "0.7000 | \n", "0.8750 | \n", "0.7778 | \n", "0.6552 | \n", "0.6651 | \n", "
8 | \n", "0.8243 | \n", "0.8912 | \n", "0.6552 | \n", "0.8636 | \n", "0.7451 | \n", "0.6149 | \n", "0.6286 | \n", "
9 | \n", "0.9189 | \n", "0.9287 | \n", "0.8966 | \n", "0.8966 | \n", "0.8966 | \n", "0.8299 | \n", "0.8299 | \n", "
Mean | \n", "0.8263 | \n", "0.8959 | \n", "0.7262 | \n", "0.8139 | \n", "0.7644 | \n", "0.6280 | \n", "0.6338 | \n", "
SD | \n", "0.0398 | \n", "0.0357 | \n", "0.0808 | \n", "0.0664 | \n", "0.0552 | \n", "0.0854 | \n", "0.0854 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7067 | \n", "0.7061 | \n", "0.6552 | \n", "0.6129 | \n", "0.6333 | \n", "0.3893 | \n", "0.3899 | \n", "
1 | \n", "0.7467 | \n", "0.7234 | \n", "0.5862 | \n", "0.7083 | \n", "0.6415 | \n", "0.4483 | \n", "0.4531 | \n", "
2 | \n", "0.6933 | \n", "0.6799 | \n", "0.6207 | \n", "0.6000 | \n", "0.6102 | \n", "0.3575 | \n", "0.3577 | \n", "
3 | \n", "0.7733 | \n", "0.7976 | \n", "0.7586 | \n", "0.6875 | \n", "0.7213 | \n", "0.5311 | \n", "0.5329 | \n", "
4 | \n", "0.7867 | \n", "0.7879 | \n", "0.7931 | \n", "0.6970 | \n", "0.7419 | \n", "0.5614 | \n", "0.5648 | \n", "
5 | \n", "0.7333 | \n", "0.7185 | \n", "0.6897 | \n", "0.6452 | \n", "0.6667 | \n", "0.4449 | \n", "0.4455 | \n", "
6 | \n", "0.7333 | \n", "0.7333 | \n", "0.7333 | \n", "0.6471 | \n", "0.6875 | \n", "0.4565 | \n", "0.4592 | \n", "
7 | \n", "0.8533 | \n", "0.8481 | \n", "0.8333 | \n", "0.8065 | \n", "0.8197 | \n", "0.6961 | \n", "0.6964 | \n", "
8 | \n", "0.7568 | \n", "0.7414 | \n", "0.5862 | \n", "0.7391 | \n", "0.6538 | \n", "0.4702 | \n", "0.4777 | \n", "
9 | \n", "0.8108 | \n", "0.7831 | \n", "0.6552 | \n", "0.8261 | \n", "0.7308 | \n", "0.5879 | \n", "0.5973 | \n", "
Mean | \n", "0.7594 | \n", "0.7519 | \n", "0.6911 | \n", "0.6970 | \n", "0.6907 | \n", "0.4943 | \n", "0.4975 | \n", "
SD | \n", "0.0459 | \n", "0.0482 | \n", "0.0816 | \n", "0.0723 | \n", "0.0600 | \n", "0.0957 | \n", "0.0964 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7933 | \n", "0.8653 | \n", "0.6034 | \n", "0.8140 | \n", "0.6931 | \n", "0.5424 | \n", "0.5562 | \n", "
1 | \n", "0.7733 | \n", "0.8534 | \n", "0.6949 | \n", "0.7193 | \n", "0.7069 | \n", "0.5222 | \n", "0.5224 | \n", "
2 | \n", "0.7600 | \n", "0.8167 | \n", "0.6949 | \n", "0.6949 | \n", "0.6949 | \n", "0.4971 | \n", "0.4971 | \n", "
3 | \n", "0.8456 | \n", "0.8904 | \n", "0.7931 | \n", "0.8070 | \n", "0.8000 | \n", "0.6743 | \n", "0.6744 | \n", "
4 | \n", "0.7785 | \n", "0.8459 | \n", "0.6379 | \n", "0.7551 | \n", "0.6916 | \n", "0.5207 | \n", "0.5252 | \n", "
Mean | \n", "0.7902 | \n", "0.8544 | \n", "0.6849 | \n", "0.7581 | \n", "0.7173 | \n", "0.5514 | \n", "0.5551 | \n", "
SD | \n", "0.0297 | \n", "0.0241 | \n", "0.0644 | \n", "0.0469 | \n", "0.0417 | \n", "0.0631 | \n", "0.0625 | \n", "
\n", " | Name | \n", "Reference | \n", "Turbo | \n", "
---|---|---|---|
ID | \n", "\n", " | \n", " | \n", " |
lr | \n", "Logistic Regression | \n", "sklearn.linear_model.LogisticRegression | \n", "True | \n", "
knn | \n", "K Neighbors Classifier | \n", "sklearn.neighbors.KNeighborsClassifier | \n", "True | \n", "
nb | \n", "Naive Bayes | \n", "sklearn.naive_bayes.GaussianNB | \n", "True | \n", "
dt | \n", "Decision Tree Classifier | \n", "sklearn.tree.DecisionTreeClassifier | \n", "True | \n", "
svm | \n", "SVM - Linear Kernel | \n", "sklearn.linear_model.SGDClassifier | \n", "True | \n", "
rbfsvm | \n", "SVM - Radial Kernel | \n", "sklearn.svm.SVC | \n", "False | \n", "
gpc | \n", "Gaussian Process Classifier | \n", "sklearn.gaussian_process.GPC | \n", "False | \n", "
mlp | \n", "MLP Classifier | \n", "sklearn.neural_network.MLPClassifier | \n", "False | \n", "
ridge | \n", "Ridge Classifier | \n", "sklearn.linear_model.RidgeClassifier | \n", "True | \n", "
rf | \n", "Random Forest Classifier | \n", "sklearn.ensemble.RandomForestClassifier | \n", "True | \n", "
qda | \n", "Quadratic Discriminant Analysis | \n", "sklearn.discriminant_analysis.QDA | \n", "True | \n", "
ada | \n", "Ada Boost Classifier | \n", "sklearn.ensemble.AdaBoostClassifier | \n", "True | \n", "
gbc | \n", "Gradient Boosting Classifier | \n", "sklearn.ensemble.GradientBoostingClassifier | \n", "True | \n", "
lda | \n", "Linear Discriminant Analysis | \n", "sklearn.discriminant_analysis.LDA | \n", "True | \n", "
et | \n", "Extra Trees Classifier | \n", "sklearn.ensemble.ExtraTreesClassifier | \n", "True | \n", "
xgboost | \n", "Extreme Gradient Boosting | \n", "xgboost.readthedocs.io | \n", "True | \n", "
lightgbm | \n", "Light Gradient Boosting Machine | \n", "github.com/microsoft/LightGBM | \n", "True | \n", "
catboost | \n", "CatBoost Classifier | \n", "catboost.ai | \n", "True | \n", "
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | TT (Sec) | |
---|---|---|---|---|---|---|---|---|---|
0 | \n", "Extreme Gradient Boosting | \n", "0.8022 | \n", "0.8790 | \n", "0.7501 | \n", "0.7464 | \n", "0.7475 | \n", "0.5850 | \n", "0.5857 | \n", "0.0349 | \n", "
1 | \n", "Gradient Boosting Classifier | \n", "0.7955 | \n", "0.8769 | \n", "0.7365 | \n", "0.7391 | \n", "0.7370 | \n", "0.5698 | \n", "0.5707 | \n", "0.0912 | \n", "
2 | \n", "Ada Boost Classifier | \n", "0.7915 | \n", "0.8612 | \n", "0.7091 | \n", "0.7454 | \n", "0.7258 | \n", "0.5579 | \n", "0.5593 | \n", "0.0733 | \n", "
3 | \n", "Light Gradient Boosting Machine | \n", "0.7914 | \n", "0.8706 | \n", "0.7261 | \n", "0.7368 | \n", "0.7309 | \n", "0.5607 | \n", "0.5613 | \n", "0.0564 | \n", "
4 | \n", "CatBoost Classifier | \n", "0.7874 | \n", "0.8805 | \n", "0.7194 | \n", "0.7329 | \n", "0.7250 | \n", "0.5520 | \n", "0.5531 | \n", "2.0134 | \n", "
5 | \n", "Random Forest Classifier | \n", "0.7727 | \n", "0.8348 | \n", "0.6576 | \n", "0.7342 | \n", "0.6917 | \n", "0.5131 | \n", "0.5167 | \n", "0.1183 | \n", "
6 | \n", "Extra Trees Classifier | \n", "0.7660 | \n", "0.8303 | \n", "0.6849 | \n", "0.7100 | \n", "0.6954 | \n", "0.5058 | \n", "0.5078 | \n", "0.1597 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7600 | \n", "0.8328 | \n", "0.7931 | \n", "0.6571 | \n", "0.7188 | \n", "0.5126 | \n", "0.5195 | \n", "
1 | \n", "0.8800 | \n", "0.9333 | \n", "0.8621 | \n", "0.8333 | \n", "0.8475 | \n", "0.7486 | \n", "0.7489 | \n", "
2 | \n", "0.7600 | \n", "0.8081 | \n", "0.7241 | \n", "0.6774 | \n", "0.7000 | \n", "0.5004 | \n", "0.5011 | \n", "
3 | \n", "0.8267 | \n", "0.9168 | \n", "0.8621 | \n", "0.7353 | \n", "0.7937 | \n", "0.6458 | \n", "0.6519 | \n", "
4 | \n", "0.8000 | \n", "0.8823 | \n", "0.8966 | \n", "0.6842 | \n", "0.7761 | \n", "0.6012 | \n", "0.6192 | \n", "
5 | \n", "0.8267 | \n", "0.8966 | \n", "0.7586 | \n", "0.7857 | \n", "0.7719 | \n", "0.6322 | \n", "0.6325 | \n", "
6 | \n", "0.8000 | \n", "0.9033 | \n", "0.8000 | \n", "0.7273 | \n", "0.7619 | \n", "0.5902 | \n", "0.5922 | \n", "
7 | \n", "0.8667 | \n", "0.9341 | \n", "0.8667 | \n", "0.8125 | \n", "0.8387 | \n", "0.7253 | \n", "0.7264 | \n", "
8 | \n", "0.8784 | \n", "0.8935 | \n", "0.7931 | \n", "0.8846 | \n", "0.8364 | \n", "0.7400 | \n", "0.7428 | \n", "
9 | \n", "0.8649 | \n", "0.9287 | \n", "0.8966 | \n", "0.7879 | \n", "0.8387 | \n", "0.7233 | \n", "0.7277 | \n", "
Mean | \n", "0.8263 | \n", "0.8929 | \n", "0.8253 | \n", "0.7585 | \n", "0.7884 | \n", "0.6420 | \n", "0.6462 | \n", "
SD | \n", "0.0435 | \n", "0.0403 | \n", "0.0565 | \n", "0.0706 | \n", "0.0497 | \n", "0.0870 | \n", "0.0860 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7467 | \n", "0.8463 | \n", "0.6552 | \n", "0.6786 | \n", "0.6667 | \n", "0.4625 | \n", "0.4627 | \n", "
1 | \n", "0.8400 | \n", "0.9262 | \n", "0.6897 | \n", "0.8696 | \n", "0.7692 | \n", "0.6493 | \n", "0.6595 | \n", "
2 | \n", "0.7733 | \n", "0.7969 | \n", "0.6552 | \n", "0.7308 | \n", "0.6909 | \n", "0.5128 | \n", "0.5147 | \n", "
3 | \n", "0.8133 | \n", "0.9160 | \n", "0.7931 | \n", "0.7419 | \n", "0.7667 | \n", "0.6114 | \n", "0.6123 | \n", "
4 | \n", "0.7733 | \n", "0.8643 | \n", "0.8276 | \n", "0.6667 | \n", "0.7385 | \n", "0.5425 | \n", "0.5524 | \n", "
5 | \n", "0.7867 | \n", "0.8523 | \n", "0.6897 | \n", "0.7407 | \n", "0.7143 | \n", "0.5444 | \n", "0.5453 | \n", "
6 | \n", "0.7733 | \n", "0.8533 | \n", "0.7000 | \n", "0.7241 | \n", "0.7119 | \n", "0.5251 | \n", "0.5253 | \n", "
7 | \n", "0.8400 | \n", "0.9081 | \n", "0.8000 | \n", "0.8000 | \n", "0.8000 | \n", "0.6667 | \n", "0.6667 | \n", "
8 | \n", "0.7703 | \n", "0.8590 | \n", "0.6207 | \n", "0.7500 | \n", "0.6792 | \n", "0.5028 | \n", "0.5082 | \n", "
9 | \n", "0.9054 | \n", "0.9184 | \n", "0.8276 | \n", "0.9231 | \n", "0.8727 | \n", "0.7978 | \n", "0.8008 | \n", "
Mean | \n", "0.8022 | \n", "0.8741 | \n", "0.7259 | \n", "0.7625 | \n", "0.7410 | \n", "0.5815 | \n", "0.5848 | \n", "
SD | \n", "0.0453 | \n", "0.0394 | \n", "0.0742 | \n", "0.0764 | \n", "0.0598 | \n", "0.0952 | \n", "0.0957 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7467 | \n", "0.8223 | \n", "0.6552 | \n", "0.6786 | \n", "0.6667 | \n", "0.4625 | \n", "0.4627 | \n", "
1 | \n", "0.8533 | \n", "0.9040 | \n", "0.6897 | \n", "0.9091 | \n", "0.7843 | \n", "0.6763 | \n", "0.6912 | \n", "
2 | \n", "0.7067 | \n", "0.7864 | \n", "0.5862 | \n", "0.6296 | \n", "0.6071 | \n", "0.3736 | \n", "0.3742 | \n", "
3 | \n", "0.7867 | \n", "0.8606 | \n", "0.7586 | \n", "0.7097 | \n", "0.7333 | \n", "0.5559 | \n", "0.5567 | \n", "
4 | \n", "0.7200 | \n", "0.8531 | \n", "0.6897 | \n", "0.6250 | \n", "0.6557 | \n", "0.4207 | \n", "0.4222 | \n", "
5 | \n", "0.7200 | \n", "0.8396 | \n", "0.5517 | \n", "0.6667 | \n", "0.6038 | \n", "0.3902 | \n", "0.3944 | \n", "
6 | \n", "0.8133 | \n", "0.8604 | \n", "0.7667 | \n", "0.7667 | \n", "0.7667 | \n", "0.6111 | \n", "0.6111 | \n", "
7 | \n", "0.8133 | \n", "0.8811 | \n", "0.7333 | \n", "0.7857 | \n", "0.7586 | \n", "0.6067 | \n", "0.6077 | \n", "
8 | \n", "0.7838 | \n", "0.8383 | \n", "0.6207 | \n", "0.7826 | \n", "0.6923 | \n", "0.5290 | \n", "0.5375 | \n", "
9 | \n", "0.8649 | \n", "0.8977 | \n", "0.7586 | \n", "0.8800 | \n", "0.8148 | \n", "0.7093 | \n", "0.7142 | \n", "
Mean | \n", "0.7809 | \n", "0.8543 | \n", "0.6810 | \n", "0.7434 | \n", "0.7083 | \n", "0.5335 | \n", "0.5372 | \n", "
SD | \n", "0.0534 | \n", "0.0336 | \n", "0.0723 | \n", "0.0939 | \n", "0.0704 | \n", "0.1127 | \n", "0.1147 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7733 | \n", "0.7894 | \n", "0.6552 | \n", "0.7308 | \n", "0.6909 | \n", "0.5128 | \n", "0.5147 | \n", "
1 | \n", "0.8000 | \n", "0.8482 | \n", "0.6897 | \n", "0.7692 | \n", "0.7273 | \n", "0.5701 | \n", "0.5722 | \n", "
2 | \n", "0.7067 | \n", "0.7234 | \n", "0.6552 | \n", "0.6129 | \n", "0.6333 | \n", "0.3893 | \n", "0.3899 | \n", "
3 | \n", "0.8267 | \n", "0.8516 | \n", "0.7931 | \n", "0.7667 | \n", "0.7797 | \n", "0.6369 | \n", "0.6371 | \n", "
4 | \n", "0.8000 | \n", "0.8557 | \n", "0.7931 | \n", "0.7188 | \n", "0.7541 | \n", "0.5862 | \n", "0.5883 | \n", "
5 | \n", "0.7067 | \n", "0.8362 | \n", "0.6207 | \n", "0.6207 | \n", "0.6207 | \n", "0.3816 | \n", "0.3816 | \n", "
6 | \n", "0.8000 | \n", "0.8593 | \n", "0.8000 | \n", "0.7273 | \n", "0.7619 | \n", "0.5902 | \n", "0.5922 | \n", "
7 | \n", "0.8133 | \n", "0.8733 | \n", "0.7333 | \n", "0.7857 | \n", "0.7586 | \n", "0.6067 | \n", "0.6077 | \n", "
8 | \n", "0.7838 | \n", "0.8027 | \n", "0.6897 | \n", "0.7407 | \n", "0.7143 | \n", "0.5407 | \n", "0.5416 | \n", "
9 | \n", "0.8378 | \n", "0.8636 | \n", "0.7586 | \n", "0.8148 | \n", "0.7857 | \n", "0.6555 | \n", "0.6566 | \n", "
Mean | \n", "0.7848 | \n", "0.8303 | \n", "0.7189 | \n", "0.7288 | \n", "0.7226 | \n", "0.5470 | \n", "0.5482 | \n", "
SD | \n", "0.0429 | \n", "0.0437 | \n", "0.0623 | \n", "0.0625 | \n", "0.0552 | \n", "0.0899 | \n", "0.0902 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.7867 | \n", "0.8366 | \n", "0.6552 | \n", "0.7600 | \n", "0.7037 | \n", "0.5385 | \n", "0.5421 | \n", "
1 | \n", "0.8400 | \n", "0.9130 | \n", "0.7241 | \n", "0.8400 | \n", "0.7778 | \n", "0.6538 | \n", "0.6582 | \n", "
2 | \n", "0.7200 | \n", "0.7834 | \n", "0.6552 | \n", "0.6333 | \n", "0.6441 | \n", "0.4134 | \n", "0.4136 | \n", "
3 | \n", "0.7867 | \n", "0.8981 | \n", "0.7586 | \n", "0.7097 | \n", "0.7333 | \n", "0.5559 | \n", "0.5567 | \n", "
4 | \n", "0.8133 | \n", "0.8756 | \n", "0.8276 | \n", "0.7273 | \n", "0.7742 | \n", "0.6162 | \n", "0.6200 | \n", "
5 | \n", "0.7067 | \n", "0.8456 | \n", "0.6207 | \n", "0.6207 | \n", "0.6207 | \n", "0.3816 | \n", "0.3816 | \n", "
6 | \n", "0.8000 | \n", "0.8722 | \n", "0.7667 | \n", "0.7419 | \n", "0.7541 | \n", "0.5856 | \n", "0.5859 | \n", "
7 | \n", "0.8267 | \n", "0.8970 | \n", "0.7333 | \n", "0.8148 | \n", "0.7719 | \n", "0.6328 | \n", "0.6351 | \n", "
8 | \n", "0.7568 | \n", "0.8659 | \n", "0.6552 | \n", "0.7037 | \n", "0.6786 | \n", "0.4833 | \n", "0.4841 | \n", "
9 | \n", "0.8919 | \n", "0.9119 | \n", "0.7931 | \n", "0.9200 | \n", "0.8519 | \n", "0.7675 | \n", "0.7727 | \n", "
Mean | \n", "0.7929 | \n", "0.8699 | \n", "0.7190 | \n", "0.7471 | \n", "0.7310 | \n", "0.5629 | \n", "0.5650 | \n", "
SD | \n", "0.0527 | \n", "0.0379 | \n", "0.0658 | \n", "0.0871 | \n", "0.0664 | \n", "0.1098 | \n", "0.1113 | \n", "
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
0 | \n", "0.8267 | \n", "0.8853 | \n", "0.7241 | \n", "0.8077 | \n", "0.7636 | \n", "0.6274 | \n", "0.6298 | \n", "
1 | \n", "0.8000 | \n", "0.8954 | \n", "0.6552 | \n", "0.7917 | \n", "0.7170 | \n", "0.5645 | \n", "0.5705 | \n", "
2 | \n", "0.7867 | \n", "0.8388 | \n", "0.6897 | \n", "0.7407 | \n", "0.7143 | \n", "0.5444 | \n", "0.5453 | \n", "
3 | \n", "0.8133 | \n", "0.8932 | \n", "0.7241 | \n", "0.7778 | \n", "0.7500 | \n", "0.6014 | \n", "0.6023 | \n", "
4 | \n", "0.7600 | \n", "0.8677 | \n", "0.7586 | \n", "0.6667 | \n", "0.7097 | \n", "0.5066 | \n", "0.5097 | \n", "
5 | \n", "0.8000 | \n", "0.8752 | \n", "0.7241 | \n", "0.7500 | \n", "0.7368 | \n", "0.5756 | \n", "0.5759 | \n", "
6 | \n", "0.8000 | \n", "0.8856 | \n", "0.6667 | \n", "0.8000 | \n", "0.7273 | \n", "0.5714 | \n", "0.5774 | \n", "
7 | \n", "0.8267 | \n", "0.9174 | \n", "0.7333 | \n", "0.8148 | \n", "0.7719 | \n", "0.6328 | \n", "0.6351 | \n", "
8 | \n", "0.8108 | \n", "0.8789 | \n", "0.6552 | \n", "0.8261 | \n", "0.7308 | \n", "0.5879 | \n", "0.5973 | \n", "
9 | \n", "0.8243 | \n", "0.9027 | \n", "0.6897 | \n", "0.8333 | \n", "0.7547 | \n", "0.6198 | \n", "0.6265 | \n", "
Mean | \n", "0.8048 | \n", "0.8840 | \n", "0.7021 | \n", "0.7809 | \n", "0.7376 | \n", "0.5832 | \n", "0.5870 | \n", "
SD | \n", "0.0196 | \n", "0.0202 | \n", "0.0341 | \n", "0.0477 | \n", "0.0205 | \n", "0.0374 | \n", "0.0377 | \n", "
\n", " | Model | \n", "Accuracy | \n", "AUC | \n", "Recall | \n", "Prec. | \n", "F1 | \n", "Kappa | \n", "MCC | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "Logistic Regression | \n", "0.8416 | \n", "0.9048 | \n", "0.768 | \n", "0.8136 | \n", "0.7901 | \n", "0.6631 | \n", "0.6638 | \n", "
\n", " | WeekofPurchase | \n", "PriceCH | \n", "PriceMM | \n", "DiscCH | \n", "DiscMM | \n", "LoyalCH | \n", "SalePriceMM | \n", "SalePriceCH | \n", "PriceDiff | \n", "PctDiscMM | \n", "... | \n", "Store7_No | \n", "Store7_Yes | \n", "STORE_0 | \n", "STORE_1 | \n", "STORE_2 | \n", "STORE_3 | \n", "STORE_4 | \n", "Purchase | \n", "Label | \n", "Score | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "260.0 | \n", "1.86 | \n", "2.18 | \n", "0.0 | \n", "0.70 | \n", "0.959305 | \n", "1.48 | \n", "1.86 | \n", "-0.38 | \n", "0.321101 | \n", "... | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.1873 | \n", "
1 | \n", "229.0 | \n", "1.69 | \n", "1.69 | \n", "0.0 | \n", "0.00 | \n", "0.795200 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.000000 | \n", "... | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.1914 | \n", "
2 | \n", "261.0 | \n", "1.86 | \n", "2.13 | \n", "0.0 | \n", "0.24 | \n", "0.588965 | \n", "1.89 | \n", "1.86 | \n", "0.03 | \n", "0.112676 | \n", "... | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.2532 | \n", "
3 | \n", "247.0 | \n", "1.99 | \n", "2.23 | \n", "0.0 | \n", "0.00 | \n", "0.003689 | \n", "2.23 | \n", "1.99 | \n", "0.24 | \n", "0.000000 | \n", "... | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "1 | \n", "1 | \n", "0.9127 | \n", "
4 | \n", "271.0 | \n", "1.99 | \n", "2.09 | \n", "0.1 | \n", "0.40 | \n", "0.973612 | \n", "1.69 | \n", "1.89 | \n", "-0.20 | \n", "0.191388 | \n", "... | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.1895 | \n", "
5 rows × 31 columns
\n", "\n", " | Id | \n", "WeekofPurchase | \n", "StoreID | \n", "PriceCH | \n", "PriceMM | \n", "DiscCH | \n", "DiscMM | \n", "SpecialCH | \n", "SpecialMM | \n", "LoyalCH | \n", "SalePriceMM | \n", "SalePriceCH | \n", "PriceDiff | \n", "Store7 | \n", "PctDiscMM | \n", "PctDiscCH | \n", "ListPriceDiff | \n", "STORE | \n", "Label | \n", "Score | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "237 | \n", "1 | \n", "1.75 | \n", "1.99 | \n", "0.00 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.500000 | \n", "1.99 | \n", "1.75 | \n", "0.24 | \n", "No | \n", "0.000000 | \n", "0.000000 | \n", "0.24 | \n", "1 | \n", "0 | \n", "0.4742 | \n", "
1 | \n", "2 | \n", "239 | \n", "1 | \n", "1.75 | \n", "1.99 | \n", "0.00 | \n", "0.3 | \n", "0 | \n", "1 | \n", "0.600000 | \n", "1.69 | \n", "1.75 | \n", "-0.06 | \n", "No | \n", "0.150754 | \n", "0.000000 | \n", "0.24 | \n", "1 | \n", "1 | \n", "0.5433 | \n", "
2 | \n", "3 | \n", "245 | \n", "1 | \n", "1.86 | \n", "2.09 | \n", "0.17 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.680000 | \n", "2.09 | \n", "1.69 | \n", "0.40 | \n", "No | \n", "0.000000 | \n", "0.091398 | \n", "0.23 | \n", "1 | \n", "0 | \n", "0.1670 | \n", "
3 | \n", "4 | \n", "227 | \n", "1 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.400000 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "No | \n", "0.000000 | \n", "0.000000 | \n", "0.00 | \n", "1 | \n", "1 | \n", "0.7475 | \n", "
4 | \n", "5 | \n", "228 | \n", "7 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.0 | \n", "0 | \n", "0 | \n", "0.956535 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "Yes | \n", "0.000000 | \n", "0.000000 | \n", "0.00 | \n", "0 | \n", "0 | \n", "0.0492 | \n", "
Pipeline(memory=None,\n", " steps=[('dtypes',\n", " DataTypes_Auto_infer(categorical_features=[],\n", " display_types=True, features_todrop=[],\n", " ml_usecase='classification',\n", " numerical_features=[], target='Purchase',\n", " time_features=[])),\n", " ('imputer',\n", " Simple_Imputer(categorical_strategy='not_available',\n", " numeric_strategy='mean',\n", " target_variable=None)),\n", " ('new_levels1',\n", " New_Catagorical_L...\n", " ('group', Empty()), ('nonliner', Empty()), ('scaling', Empty()),\n", " ('P_transform', Empty()), ('pt_target', Empty()),\n", " ('binn', Empty()), ('rem_outliers', Empty()),\n", " ('cluster_all', Empty()), ('dummy', Dummify(target='Purchase')),\n", " ('fix_perfect', Empty()), ('clean_names', Clean_Colum_Names()),\n", " ('feature_select', Empty()), ('fix_multi', Empty()),\n", " ('dfs', Empty()), ('pca', Empty())],\n", " verbose=False)
DataTypes_Auto_infer(ml_usecase='classification', target='Purchase')
Simple_Imputer(categorical_strategy='not_available', numeric_strategy='mean',\n", " target_variable=None)
New_Catagorical_Levels_in_TestData(replacement_strategy='least frequent',\n", " target='Purchase')
Empty()
Empty()
Empty()
Empty()
New_Catagorical_Levels_in_TestData(replacement_strategy='least frequent',\n", " target='Purchase')
Make_Time_Features(list_of_features=None)
Empty()
Empty()
Empty()
Empty()
Empty()
Empty()
Empty()
Empty()
Dummify(target='Purchase')
Empty()
Clean_Colum_Names()
Empty()
Empty()
Empty()
Empty()
\n", " | WeekofPurchase | \n", "PriceCH | \n", "PriceMM | \n", "DiscCH | \n", "DiscMM | \n", "LoyalCH | \n", "SalePriceMM | \n", "SalePriceCH | \n", "PriceDiff | \n", "PctDiscMM | \n", "... | \n", "SpecialCH_1 | \n", "SpecialMM_0 | \n", "SpecialMM_1 | \n", "Store7_No | \n", "Store7_Yes | \n", "STORE_0 | \n", "STORE_1 | \n", "STORE_2 | \n", "STORE_3 | \n", "STORE_4 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
584 | \n", "264.0 | \n", "1.86 | \n", "2.13 | \n", "0.37 | \n", "0.0 | \n", "0.836160 | \n", "2.13 | \n", "1.49 | \n", "0.64 | \n", "0.000000 | \n", "... | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "
751 | \n", "232.0 | \n", "1.79 | \n", "2.09 | \n", "0.00 | \n", "0.0 | \n", "0.400000 | \n", "2.09 | \n", "1.79 | \n", "0.30 | \n", "0.000000 | \n", "... | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "
462 | \n", "228.0 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.0 | \n", "0.584000 | \n", "1.69 | \n", "1.69 | \n", "0.00 | \n", "0.000000 | \n", "... | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "
7 | \n", "234.0 | \n", "1.75 | \n", "1.99 | \n", "0.00 | \n", "0.4 | \n", "0.977746 | \n", "1.59 | \n", "1.75 | \n", "-0.16 | \n", "0.201005 | \n", "... | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "
161 | \n", "269.0 | \n", "1.99 | \n", "2.09 | \n", "0.10 | \n", "0.0 | \n", "0.978010 | \n", "2.09 | \n", "1.89 | \n", "0.20 | \n", "0.000000 | \n", "... | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "
5 rows × 28 columns
\n", "