{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Id | \n",
" Purchase | \n",
" WeekofPurchase | \n",
" StoreID | \n",
" PriceCH | \n",
" PriceMM | \n",
" DiscCH | \n",
" DiscMM | \n",
" SpecialCH | \n",
" SpecialMM | \n",
" LoyalCH | \n",
" SalePriceMM | \n",
" SalePriceCH | \n",
" PriceDiff | \n",
" Store7 | \n",
" PctDiscMM | \n",
" PctDiscCH | \n",
" ListPriceDiff | \n",
" STORE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" CH | \n",
" 237 | \n",
" 1 | \n",
" 1.75 | \n",
" 1.99 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.500000 | \n",
" 1.99 | \n",
" 1.75 | \n",
" 0.24 | \n",
" No | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.24 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" CH | \n",
" 239 | \n",
" 1 | \n",
" 1.75 | \n",
" 1.99 | \n",
" 0.00 | \n",
" 0.3 | \n",
" 0 | \n",
" 1 | \n",
" 0.600000 | \n",
" 1.69 | \n",
" 1.75 | \n",
" -0.06 | \n",
" No | \n",
" 0.150754 | \n",
" 0.000000 | \n",
" 0.24 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" CH | \n",
" 245 | \n",
" 1 | \n",
" 1.86 | \n",
" 2.09 | \n",
" 0.17 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.680000 | \n",
" 2.09 | \n",
" 1.69 | \n",
" 0.40 | \n",
" No | \n",
" 0.000000 | \n",
" 0.091398 | \n",
" 0.23 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" MM | \n",
" 227 | \n",
" 1 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.400000 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" No | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.00 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" CH | \n",
" 228 | \n",
" 7 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.956535 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" Yes | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Id Purchase WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM \\\n",
"0 1 CH 237 1 1.75 1.99 0.00 0.0 \n",
"1 2 CH 239 1 1.75 1.99 0.00 0.3 \n",
"2 3 CH 245 1 1.86 2.09 0.17 0.0 \n",
"3 4 MM 227 1 1.69 1.69 0.00 0.0 \n",
"4 5 CH 228 7 1.69 1.69 0.00 0.0 \n",
"\n",
" SpecialCH SpecialMM LoyalCH SalePriceMM SalePriceCH PriceDiff Store7 \\\n",
"0 0 0 0.500000 1.99 1.75 0.24 No \n",
"1 0 1 0.600000 1.69 1.75 -0.06 No \n",
"2 0 0 0.680000 2.09 1.69 0.40 No \n",
"3 0 0 0.400000 1.69 1.69 0.00 No \n",
"4 0 0 0.956535 1.69 1.69 0.00 Yes \n",
"\n",
" PctDiscMM PctDiscCH ListPriceDiff STORE \n",
"0 0.000000 0.000000 0.24 1 \n",
"1 0.150754 0.000000 0.24 1 \n",
"2 0.000000 0.091398 0.23 1 \n",
"3 0.000000 0.000000 0.00 1 \n",
"4 0.000000 0.000000 0.00 0 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from pycaret.datasets import get_data\n",
"data = get_data('juice')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data.drop('Purchase', axis = 1, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Id | \n",
" WeekofPurchase | \n",
" StoreID | \n",
" PriceCH | \n",
" PriceMM | \n",
" DiscCH | \n",
" DiscMM | \n",
" SpecialCH | \n",
" SpecialMM | \n",
" LoyalCH | \n",
" SalePriceMM | \n",
" SalePriceCH | \n",
" PriceDiff | \n",
" Store7 | \n",
" PctDiscMM | \n",
" PctDiscCH | \n",
" ListPriceDiff | \n",
" STORE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 237 | \n",
" 1 | \n",
" 1.75 | \n",
" 1.99 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.500000 | \n",
" 1.99 | \n",
" 1.75 | \n",
" 0.24 | \n",
" No | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.24 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 239 | \n",
" 1 | \n",
" 1.75 | \n",
" 1.99 | \n",
" 0.00 | \n",
" 0.3 | \n",
" 0 | \n",
" 1 | \n",
" 0.600000 | \n",
" 1.69 | \n",
" 1.75 | \n",
" -0.06 | \n",
" No | \n",
" 0.150754 | \n",
" 0.000000 | \n",
" 0.24 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 245 | \n",
" 1 | \n",
" 1.86 | \n",
" 2.09 | \n",
" 0.17 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.680000 | \n",
" 2.09 | \n",
" 1.69 | \n",
" 0.40 | \n",
" No | \n",
" 0.000000 | \n",
" 0.091398 | \n",
" 0.23 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 227 | \n",
" 1 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.400000 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" No | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.00 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 228 | \n",
" 7 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.956535 | \n",
" 1.69 | \n",
" 1.69 | \n",
" 0.00 | \n",
" Yes | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.00 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Id WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH \\\n",
"0 1 237 1 1.75 1.99 0.00 0.0 0 \n",
"1 2 239 1 1.75 1.99 0.00 0.3 0 \n",
"2 3 245 1 1.86 2.09 0.17 0.0 0 \n",
"3 4 227 1 1.69 1.69 0.00 0.0 0 \n",
"4 5 228 7 1.69 1.69 0.00 0.0 0 \n",
"\n",
" SpecialMM LoyalCH SalePriceMM SalePriceCH PriceDiff Store7 PctDiscMM \\\n",
"0 0 0.500000 1.99 1.75 0.24 No 0.000000 \n",
"1 1 0.600000 1.69 1.75 -0.06 No 0.150754 \n",
"2 0 0.680000 2.09 1.69 0.40 No 0.000000 \n",
"3 0 0.400000 1.69 1.69 0.00 No 0.000000 \n",
"4 0 0.956535 1.69 1.69 0.00 Yes 0.000000 \n",
"\n",
" PctDiscCH ListPriceDiff STORE \n",
"0 0.000000 0.24 1 \n",
"1 0.000000 0.24 1 \n",
"2 0.091398 0.23 1 \n",
"3 0.000000 0.00 1 \n",
"4 0.000000 0.00 0 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'dsc123.pkl.pkl'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mpycaret\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclassification\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mload_model\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpredict_model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0ml\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'dsc123'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mplatform\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'aws'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mauthentication\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;34m'bucket'\u001b[0m \u001b[1;33m:\u001b[0m \u001b[1;34m'pycaret-test'\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mpredict_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ml\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pycaret\\classification.py\u001b[0m in \u001b[0;36mload_model\u001b[1;34m(model_name, platform, authentication, verbose)\u001b[0m\n\u001b[0;32m 2161\u001b[0m \u001b[0mplatform\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mplatform\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2162\u001b[0m \u001b[0mauthentication\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mauthentication\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2163\u001b[1;33m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mverbose\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2164\u001b[0m )\n\u001b[0;32m 2165\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pycaret\\internal\\tabular.py\u001b[0m in \u001b[0;36mload_model\u001b[1;34m(model_name, platform, authentication, verbose)\u001b[0m\n\u001b[0;32m 9013\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9014\u001b[0m return pycaret.internal.persistence.load_model(\n\u001b[1;32m-> 9015\u001b[1;33m \u001b[0mmodel_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mplatform\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mauthentication\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 9016\u001b[0m )\n\u001b[0;32m 9017\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pycaret\\internal\\persistence.py\u001b[0m in \u001b[0;36mload_model\u001b[1;34m(model_name, platform, authentication, verbose)\u001b[0m\n\u001b[0;32m 391\u001b[0m \u001b[0ms3\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mBucket\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbucketname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdownload_file\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 392\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 393\u001b[1;33m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 394\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 395\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pycaret\\internal\\persistence.py\u001b[0m in \u001b[0;36mload_model\u001b[1;34m(model_name, platform, authentication, verbose)\u001b[0m\n\u001b[0;32m 371\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 372\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Transformation Pipeline and Model Successfully Loaded\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 373\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mjoblib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 374\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 375\u001b[0m \u001b[1;31m# cloud providers\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\joblib\\numpy_pickle.py\u001b[0m in \u001b[0;36mload\u001b[1;34m(filename, mmap_mode)\u001b[0m\n\u001b[0;32m 575\u001b[0m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_unpickle\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 576\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 577\u001b[1;33m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'rb'\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 578\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0m_read_fileobject\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmmap_mode\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mfobj\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 579\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'dsc123.pkl.pkl'"
]
}
],
"source": [
"from pycaret.classification import load_model, predict_model\n",
"l = load_model('dsc123', platform = 'aws', authentication = {'bucket' : 'pycaret-test'})\n",
"predict_model(l, data=data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(l)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}