{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Loading dataset" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
satisfaction_levellast_evaluationnumber_projectaverage_montly_hourstime_spend_companyWork_accidentpromotion_last_5yearsdepartmentsalaryleft
00.380.532157300saleslow1
10.800.865262600salesmedium1
20.110.887272400salesmedium1
30.720.875223500saleslow1
40.370.522159300saleslow1
\n", "
" ], "text/plain": [ " satisfaction_level last_evaluation number_project average_montly_hours \\\n", "0 0.38 0.53 2 157 \n", "1 0.80 0.86 5 262 \n", "2 0.11 0.88 7 272 \n", "3 0.72 0.87 5 223 \n", "4 0.37 0.52 2 159 \n", "\n", " time_spend_company Work_accident promotion_last_5years department \\\n", "0 3 0 0 sales \n", "1 6 0 0 sales \n", "2 4 0 0 sales \n", "3 5 0 0 sales \n", "4 3 0 0 sales \n", "\n", " salary left \n", "0 low 1 \n", "1 medium 1 \n", "2 medium 1 \n", "3 low 1 \n", "4 low 1 " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "data = pd.read_csv('employee.csv')\n", "data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Initialize Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3. Model Training" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 4. Finalize Model" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 5. Save Model" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "powerbi", "language": "python", "name": "powerbi" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" } }, "nbformat": 4, "nbformat_minor": 2 }