{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# 👉 What is PyCaret?\n", "\n", "PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive.\n", "\n", "In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few words only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and many more.\n", "\n", "The design and simplicity of PyCaret is inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more expertise. Seasoned data scientists are often difficult to find and expensive to hire but citizen data scientists can be an effective way to mitigate this gap and address data-related challenges in the business setting.\n", "\n", "Official Website: https://www.pycaret.org\n", "Documentation: https://pycaret.readthedocs.io/en/latest/" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAkAAAJlCAYAAAC44auaAAAgAElEQVR4AeydB3xUVdr/df/vu++W991d266KbgMCJJMEEiDJJIE0epEOUlzbKhZaCJ1AqCqd0EsoFlAJHde1Y1mUJoqioqRAekJo0tvv//mdmzuZTKZnZpjAcz+fk5ncOffec7/31N99znNug2xCQAgIASEgBISAEBACQkAICAEhIASEgBAAcJtQEAJCQAgIASEgBISAEBACQkAICAEhIASEAAmISCD5QAgIASEgBISAEBACQkAICAEhIASEgBBQBEQkkIwgBISAEBACQkAICAEhIASEgBAQAkJACCgCIhJIRhACQkAICAEhIASEgBAQAkJACAgBISAEFAERCSQjCAEhIASEgBAQAkJACAgBISAEhIAQEAKKgIgEkhGEgBAQAkJACAgBISAEhIAQEAJCQAgIAUVARALJCEJACAgBISAEhIAQEAJCQAgIASEgBISAIiAigWQEISAEhIAQEAJCQAgIASEgBISAEBACQkAREJFAMoIQEAJCQAgIASEgBISAEBACQkAICAEhoAiISCAZQQgIASEgBISAEBACQkAICAEhIASEgBBQBEQkkIwgBISAEBACQkAICAEhIASEgBAQAkJACCgCIhJIRhACQkAICAEhIASEgBAQAkJACAgBISAEFAERCSQjCAEhIASEgBAQAkJACAgBISAEhIAQEAKKgIgEkhGEgBAQAkJACAgBISAEhIAQEAJCQAgIAUVARALJCEJACAgBISAEhIAQEAJCQAgIASEgBISAIiAigWQEISAEhIAQEAJCQAgIASEgBISAEBACQkAREJFAMoIQEAJCQAgIASEgBISAEBACQkAICAEhoAiISCAZQQgIASEgBISAEBACQkAICAEhIASEgBBQBEQkkIwgBISAEBACQkAICAEhIASEgBAQAkJACCgCIhJIRhACQkAICAEhIASEgBAQAkJACAgBISAEFAERCSQjCAEhIASEgBAQAkJACAgBISAEhIAQEAKKgIgEkhGEgBAQAkJACAgBISAEhIAQEAJCQAgIAUVARALJCEJACAgBISAEhIAQEAJCQAgIASEgBISAIiAigWQEISAEhIAQEAJCQAgIASEgBISAEBACQkAREJFAMoIQEAJCQAgIASEgBISAEBACQkAICAEhoAiISCAZQQgIASEgBISAEBACQkAICAEhIASEgBBQBEQkkIwgBISAEBACQkAICAEhIASEgBAQAkJACCgCIhJIRhACQkAICAEhIASEgBAQAkJACAgBISAEFAERCSQjCAEhIASEgBAQAkJACAgBISAEhIAQEAKKgIgEkhGEgBAQAkJACAgBISAEhIAQEAJCQAgIAUVARALJCEJACAgBISAEhIAQEAJCQAgIASEgBISAIiAigWQEISAEhIAQEAJCQAgIASEgBISAEBACQkAREJFAMoIQEAJCQAgIASEgBISAEBACQkAICAEhoAiISCAZQQgIASEgBISAEBACQkAICAEhIASEgBBQBEQkkIwgBISAEBACQkAICAEhIASEgBAQAkJACCgCIhJIRhACQkAICAEhIASEgBAQAkJACAgBISAEFAERCSQjCAEhIASEgBAQAkJACAgBISAEhIAQEAKKgIgEkhGEgBAQAkJACAgBISAEhIAQEAJCQAgIAUVARALJCEJACAgBISAEhIAQEAJCQAgIASEgBISAIiAigWQEISAEhIAQEAJCQAgIASEgBISAEBACQkAREJFAMoIQEAJCQAgIASEgBISAEBACQkAICAEhoAiISCAZQQgIASEgBISAEBACQkAICAEhIASEgBBQBEQkkIwgBISAEBACQkAICAEhIASEgBAQAkJACCgCIhJIRhACQkAICAEhIASEgBAQAkJACAgBISAEFAERCSQjCAEhIASEgBDwEoHr16/jypWruHzpCi5cuIRzZy+qwO/cx98YRzYhIASEgBAQAjUhIO1NTejJsZYERCSwJOJn/7PvaOpgnjfrYJ4372D6WaIlOUJACAiBW4TA1avXUH78Z/xwKB873z+IDa99hgUztyNt9DokD1yJp/ovwIBus/Fw5xno3mY6OsZPUoHfuY+/MQ7j8hgey3PwXDwnz81ryCYEhIAQEAK3NgFpb27t5+/ruxeRwNfELa5HAaD8+Bl8fygPH7//Dd545ROkz9qOtFGvIfmZqh3Mbm2moUNcmgr8XqWD+cxKdQyP5Tl4Lp6T5+Y1ZBMCQkAICIGaEzheehp7Pv8Rr67aiQkjXsUjPeagbcwERIeMRJRhJIzBoyqDYRSMBm1/lGEErIeRKo6Rcc2O5bl4Tp6b1+C1eE1em2mQTQgIASEgBG5uAtLe3NzP19/vTkQCHz+h42VnsO+Ln/Dq6o+QWtHBbBOdCmMwO5DVO5jcZ71jad7hZCezegeT5+S52cHktXhNXptpkE0ICAEhIAQcEzj78wUc2JeFjCXv4bnHlqB9izREBqXAGDxaDeq1OjpF7YsMGg7PhhREGRj0tmG0ug7TwLQwTUwb0yibEBACQkAI1G4C0t7U7ud3s6VeRAIvP1HOPz2wNwsrFr2DZx9djDYxEyo6mNqgXnUwg7zYwQwy72COUtdmGpgWpolpYxplEwJCQAgIAY3AmdPn8ckH32Ja6pvo3nZ6RZ09usIqgPW1p8UA185H4YAWChQqKFgwjUwr08y0yyYEhIAQEAK1g4C0N7XjOd2KqRSRwAtP/cyZ8/j4g28xZdx6dG01FdHBWmeu8o2Tax1CT3dIK99MjVZpYxqZVqaZaZdNCAgBIXCrEeC0rC/3ZuGlSZnokjRVWXDR/J+WXJ6ugz19PqZRTyvTznvYv+eITDW71TKx3K8QEAK1goC0N7XiMd3yiRSRwENZ4PLlKziwPxsvTsrEQ4lTTOahtauDOVKlnfdAE1bek2xCQAgIgZuZAP22ZK7/D57ok66mfemDbU8P5H11PnPBgPfEe5MpZjdzDpZ7EwJCoLYQkPamtjwpSScJiEhQw3xw4sTPqhP2WK95yskUzT9rgzBgq8OqdTA513YkeE/sYJ48cbaGlORwISAEhIB/ETiWW4ZFc95C58QpyqcLLb1s1Yu1db/yZWAYhU4JU9S98p5lEwJCQAgIAd8SkPbGt7zlap4hICKBmxzz845j4ewd6Bg/WfNIfRN2MLU5r6PQIW6Sulfes2xCQAgIgdpMIDe7BLOmbkarKDqMrR3TCWoqUujWBbxn3jsZyCYEhIAQEALeJSDtjbQ33s1h3j27iAQu8j2aU4qZUzYiKXL8LdfB5D3z3slANiEgBIRAbSJQXHQS6TO3V4gDoxGlHMb6zj9MRNBwRAQlWwTfXZ9CA++Z1m4UCxbM3I6S4pO16RFKWoWAEBACtYKAtDfS3tSKjOogkSISOACk/1xacgrpM7dViAOaR+mavt1x9nitc2m9g8nfnD1PzeNpHczEiHGqs11WImt16/lDPoWAEPBPAhcuXMa6NR+jY9wkNUD2hjigCwB6HasG44YRiDaMQIxhJGINoxAbPAotgkdXCdzH3xiHcY2GEVXEC01U8Hwdr4sFneInKzZkJJsQEAJCQAjUjIC0N9XbK2lvapanbuTRIhI4oH/+/CWsW/sxOrRM0ywHvPD2yWEHkx1JWx3M4BvVwRylmJANGckmBISAEPA3Art3HcbjvedX+Bzw3CoF5uIsB/asn1uGjEFCyDgkhaaiVegEtG48EW0ap7kUeAyP5Tl4Lp6T5+Y1dAHC/Nr6Pnc/1TQEwyjFiKxkEwJCQAgIAfcISHtTXSAwb5ukvXEvX93Io0QksEN/7+c/4tGecz0+rUATBbTCZNnBTPRAB5PnsNbBNL+uecF197s+z5WMyEo2ISAEhIA/EKAH6RlTNiImlANszzgk1AfnfONPiwDWseZiQNvGaWBwVRiwFd/8fLp4kBAyXl2baWC9rafJ3TpcP46MyIrMyE42ISAEhIAQcI6AtDf2xQG9ndE/pb1xLl/5QywRCaw8hZPlP6t1pj3bwUxGVNBwZVJatYOpdSrNO4S2Oo2u7Dc/X+vGaaozy04tr80OJtNCU1a90NbkUy/wXJub7GQTAkJACNwoAp/t/A69O85QUwsia2j5xUE4TSU5HSAuZCySQicoEcC8fnWlXq5pXPPrMi1ME9PGNNZcMNCmk5EdGcomBISAEBAC9glIe+OaQFA51pD2xn7O8o9fRSSweA67PvkePdq94MEO5vBa0MH0xBsprcCTHRnKJgSEgBDwJQFOe+KKMxR3PbGcIcXUuOCqwkBNB/mePp6iAc+pBIPgsUoAruyEudd5IzsyJEuZSubLHCzXEgJCoLYQOH/uorQ3ZtPg3G13pL3x7xwvIkHF86GzEXaKYhuP9lgHs2XwWPUGn504vTPn6U5iTc6np4kms0yrbsLqbmHncSzwZEiW4gzLvwu/pE4I3CwEcrJL8Mw/FtdI3NXfxNMHQGLIeJPFQE3qWF8eq9fnTDvvgfWxfk+u1+ma6EumZCubEBACQkAIaARYJw58ZJG0N43TVFsp7c3NWzJEJADUkn5PD1iofA+4a56qmaUOV50zrYM50S+FAVudVq2DOdFU4LXpCO69iSJDrj9OprJc4s1becidCQF/IPDpR4fQKX5KRf3tXp1Fc31OxdKnE9iqJ2vDfl0s4L3wnnhvrosEGkfW42RLxrIJASEgBG51AtLeVPW7I+3NzV0ibnmR4LOdh9AxbrLbHUxNHNA7mKm17u2TZae3ssCnmjqY7r6NYgeTbMlYNiEgBISApwmsW7MTLcLGuGX9pddrHEjTmsqyLrxZ/ue98R7dtSygdRgZk7VsQkAICIFblYC0N1UFAmttpLQ3N1fpuKVFAhb4lqqDWbm8lLNvXCw7mPrg2lqhqa37eE81L/AjFGPpYN5cFYfcjRC4kQQuX76KOdM3V4gD7r0pjzGMUksN1tb62dV0c1lF3rOzbVzVeCmKNZmTvWxCQAgIgVuFgLQ3jsUBy/ZI2pubo3TckiLBlctXMXv6poqlsdzsYAazgzmhVk0psCzEzv5PsYD3GlMxz7Vq59EZ894UxZrMyV42ISAEhIC7BM6fu4Txw19xa3oYxV0uO8ulBJ2t/262eLx3MtCFbufrc20aGdnzGcgmBISAELjZCUh747pAYN5mSntTu0vILScS0CPpuOSXpYPp5nreNS3wZM9nIJsQEAJCwFUCp0+fw9CnVlQ4jHJGoKwap2XwGLRuPPGWFQj0zhsZkIXzAkElR2PwaPUM+CxkEwJCQAjcrASkvamZQCDtTe0vGbeUSHDm9PmadTBDtA7mzTi1QC/Mjj5576qDGVKzDiafhWxCQAgIAWcJnD51DoP/ucwtgYArtySG3rrWA7bqdTJxZ1UbCgV8FnwmsgkBISAEbjYC0t54RiAwb3ukval9peSWEQlqXuA1p4TmGf5W/54YmiodzNpX5iXFQqDWEaCo6K5AQKd9FDZvZXHXVluli766Y0NXLAt0oUAE31pXnCTBQkAI2CEg7Y3nBQK2QdLe2Ml0fvrTLSES0GSoph1MW52sW30/O9816WCKyaqf1gySLCHgJwQ4Pcm9KQYpiA8Zd8tPLXC2jSIrV5cA1qceyBQyPykskgwhIARqREDaG+8IBJbtkLQ3NcqmPjv4phcJ6HSkJh1MefvkuMIgo5oVeHGC5bMSLxcSArWIAB2daj5ktCX8nHnTrTsnpKWTZcdE/rdfn5OZq04NKRTwGYlT2lpUsCSpQkAIVCMg7Y399sHT7ae0N9WyoN/tuKlFAi5bonnBdr6DyU6o0ZAC6WC6XlloBd611SLYweQzkmW1/K5ukAQJgRtOQK1C48KqKhQIog0j1dKtnu7Q3Crn47K3ZOjK6gfG4FFqxaAbnmEkAUJACAgBNwlIe+N6v7+m7aK0N25mVh8ddlOLBFzTmZ0XZ94+MY7WwRwhHUw3Vz5gZaEVeNeW1+Iz4rOSTQgIASGgE1i3ZqdLy9RGBCUjxjBKVi+oQf2td/g4jYwsydS59lNb5pbPTDYhIASEQG0jUFvbm9ahaUgKnoSEoMmID5yMuEZT0LLRFPWd+xINk1TQf+dvjMO43MdjeQ697r8Rn9Le+G9puWlFAhb4KMNIp+dYUiCQDqZnKorKAl+5bJb9jmaKelbSwfTfikJSJgR8SeCznYfQMowrqDhnmcT6O1Y5KPRMHXYjOkr+ds3WjdMUU+ctClLUM+Ozk00ICAEhUFsI1Kb2pnXoJCQYNDGAg/wOTSegf9JoDO09FNOeG4hlEx7DG7P7YcfS3nh/dXd88lpXFfid+/gb4zAuj+GxPAfPRfGAn61CJ/lcNJD2xj9Ly00pEnz60SG0cKGDyQGs1sGU9bM91VGlUECm9sUBcxEhRT0zPjvZhIAQuHUJHM0pRce4yYgyjHC6/og1jPJ5p8ZTdaW/n4dsna3H+cz47PgMZRMCQkAI+DuB2tDetAqZhHgO4gMno3PzCXi+RzIWj3scH73cDdk7W+PMNy2BHCOQFwnkRwAFFYHf87nPyn7GzTHizDct1Dl2vtINS8Y/hkE9h+GhiFRlaUBrA17bl22UtDf+VWJuOpEgJ7sEneKnVFgRmA9CrX9Xb6Ckg+m1SoAF3tk3UbT84LPjM5RNCAiBW4/A+fOX8PSAhU5PE9MtCHzZibkVr0XB19l6nNPH+AwvXLh862VguWMhIARqDQF/b284VYBv9zloH/PoIGxf3BvHPmuFq0eiNSGAg/9jUcDRKCDXCORGVwnXc4wwD5a/q2OOGrVz8FwFEbiaFY28/yThrWW9kPrEc+gSmYq4wClINEz22jjBsk2V9sZ/itBNJRJw6ZKBjyxyoYOZrN52W2ZQ+d+zJrtagXdubis7mM/8YzFYecsmBITArUVgwaztoDNTZ95cc9AqU8Q8W1fbavtcnULGenzh7B23VuaVuxUCQqBWEfDX9oYm/xyUP9lxBF6b0R9HP2sF5EZpwgBFATNB4HqWEVcPR+LSN81xfn84fv68CU5/2hindobg5IfBOPG+Fvid+/gb4zAuj+GxPEelgFAhGtAa4WgU8ncl4fXZffF05xTl24AWDd72YSDtjf8Uo5tKJGCnxPUOpm86WbY6X7Vtfys6SXHRyQnnGmlOsKxbc1gOCPgMpYPpP5WEpEQI+ILArk++R2xjCgTO+SGINowQJ4UecFLobBvEjhuZW9bX1v9PUc+Sz1Q2ISAEhIC/EfDH9obiAB0JDu0zFB++0g3nf4ipJgxczzbi8vcROLcvXA36y94OQsmWhija2ACFGwKqhaLMADBY/W1jA3Usz0EB4fy+cHVuXkMTDSoFg4uHY/DJuq4Y0X+ImoLAtDrbdrgTT9ob/ygxN41I8NnO7xATyrmTjjuYfAPFJZ6YCd3JvLfqMUmhE9G76RQV+J2Df2dZaAXe2WW1UtSz5DOVTQgIgZufwMnyn9Gj3QtOTxPjMrVcScVR/UNRMz50otMhwcV6zdH1/eb30IloGzwBbQ2pWghORZtQ19s/Mid768JAVRGY08f4TPlsZRMCQkAI+AsBb7U37tb3FAb4hv757sn4dH0XXMmK1nwLVFgMcMrA5e8ilAXA8X8HoXhzQ9OgnwJA8aYAlG6uj+Nb66N8Wz2cqAj8XralvgqW+xmXx/BYcxGB5+Y1aG3Aa/LaJsEgPwLXcoz4YkNn5fRQs3jwns8CaW9ufIm5KUSC8uNn0LvjDBc6mLLMoauVGTvbS5LmoLD3ChT2WYEVrea6JBLwelqBd+5NFDuYfKZ8trIJASFwcxN4aVKm01ZgFIITQ1MdCwSN09Cn6RSMjX1JhTGxL8FeYLyRMS+ic9gkl+s2V+tTX8anMNCmySS0bJ0OY89VMPZahdiOi9Gq+TS0DRrvslhA9s6I8RQSaBXGZyubEBACQsBfCHijvXGnTqfZPn0OPBw3BtsW98alH2M0caBiYH7tiBHnv2yK8vcMlcJAhShwfEt9JQZQBMhZH4h9y8Lx9owYvDy2FeYN6oTJj3fHuAG9MLz3wyrwO/fxN8ZhXB7DY3kOCgsUDigaFFZYHlAw4LWZBqZFiQVMW34krhyJxr9X9sSAVqPVPXhrCoK0Nze21NwUIsGMKRs93sF0p8DfrMfQauDxiGk4/nAGfu6XgTP9MnCibwaejJiGRBffRrla4PlsZRMCQuDmJbD38x+dtgLjwDM+ZJxDgYBWTh2aTMLerktwsf8qnO3nOJzrtwoX+6/G+rbzXa7XnK37kwwTEN9ovAr87uxxbsWj9UDIBET1XYv6Cw/gwQ3HUGdbEe7fVoQHNuXj7xnfIfzZTWgdPlnFc+UafAbOWBNQTKCFH5+xbEJACAiBG03AG+2NK3WnHpfWAwwzhjyFkn3x2rSCCsuBa0eicG5PGMreCqwcsG8MMFkKHH09EDvnRWLxsPYY1K0/Hop5Bi0aD0WzRikICxiJJmaB/1vbx7g8hsc+320AFgzpgI/mRiJ3fSDKt1YIBhsrpilkBqi0ME1Mm0ksKIjAia/iMH/kk2gTmuY154bS3ty4UlPrRYLduw57vIOpF2L51KYT0AR3ePQLON03Ayf7ZuBURRhqfAH8zVVOrhZ4PmPZhIAQuPkI0EHpoz3nwmgY6dSgs0XwaLR1YpoTLZ96hE9Cfp8VON1Pq7dYd53svRone67FyYdX4WSfVZXfK+o2igkUFlinuTKdylEdSEGA4dGO8zHu2VdV4Hd9v6PjXf49NA1tQyai8fB/oc7WQty3tQh3Z+bj7g15uGdDHu7akId7Nxfi/u3FaDjzCyRFTndJKOAz4LNwRijgs+UzFme0N1/5lTsSArWJgLfaG1frZy4t2LvlWHy4thtwLFJbnSAnGvQFcH5/U00c2NAAhZkNULIpQL3lL8hsiA/mRGHqE93QvcXTiAoarsSAsAYjlTgQEejcNDDzOpvHKGGhgSYs8LeusQOR9lh3vDfLiPwNDdW1SzbTuoA+DxqotDGNym9BTrSW9rxI/OeNh9A/cbRaptFVHo7iS3tz40pZrRYJuMTS473nu9TBdJQZ5ffqfgYoBCRHv6DEAV0k4OcQN0UCMnalg8lnLMtp3bhKQq4sBLxFYN3aj51ejcYVR4XxITSjH42jvZbjdL9VStw80WsNTg+egwuvPIXLH3TH5Xd64fySITj1+BJNPOiboSwOdnVZiBjDSCQ54fPAmfYiMSgV/VrPxgdvfY3zZy+aUPI79/E3xnHmXM7GaWdIRfgzm1BnezHu3ZiPv28pwOC9J/Dm0XPYmncekw+eQpN/FeKPmXm4f0cJAqd96vL1XXEsxdUO+KxlEwJCQAjcKALeam+crZf16QXD+w5B3q4kzXqgYmrB5UMRKH/XgCIOxs3EgSOvGbBmTGsMaP2EEmVpJdC04QhEBFb1AVNl8B80HBFByRWB36v+bx7X/DvPyXPzGvzeN+lJrBrVBj+9GlxFLGAamVam2dyqoGRvPMY//rxaMtHT0w+kvbkxpaZWiwTr1nwMo4HOCm0XFv03VzqYzhb4WyWeN0QClwq8YRT4rGUTAkLg5iFQVnIaHVqmIcpJj/nO+CHQ62S+vW4VMrJSJOi1Bj+Pm4prh+KB/Ga4fixCBX6/sqsjTj8zHyf7rDaJBBGNkhFrGKNMKFvTmaGbgYP/vq1mI/dIic0Hx98Yh3HdvU6V4wypiI+bjb+sz8a9mwtg2F6Ij0sqxQk9ITlnr6D9RyX4Y2Y+6mwtQtTDa5RTQ52hM5/a9DHH7S+fMZ81n7lsQkAICAFfE/Bme+NMXdk6dBISDJOVaf6FwzFAXiSQY1TLD9JJoO6MsHhTAzUgz1pnwLLh7dA55hk1XSC8QXVhQB/8c5wTFZQCo2GEEri57DhfxLUMHoO44LEq8Dv38TeK4IzLY3isJihUrcd57vCGI9S1O0Q9h/TBHfHTqwaVNuW3YEOASjPTrpZQpNhxLBKXj0Rj+cRH1VSKViGedWoo7Y2vSw1Qa0WCkuKT6BQ/2YUO5ninzFSdKey3WhxviAQ0H0oMHe+UwMMOJp81n7lsQkAI3BwE0mdud8qKgJ2VliFjXHrTzTrDJBI8vBqnnlyMq1+21sSBbKMylaS5pDKZLGiGSzseVtMPON3g866L0LLJKCSGp6JT86no6HaYgrZNJuG97V+ZHtj1K+W4WrpKBX7XN8Zh3I7Np9TgelpaH2qShmaDtuA+WhFk5iHz6Dn9MtU+D5++ggbbCnDvtiI0eulzNUXB1faNz4bPSBfkbX3SmoDPXDYhIASEgK8JeLO9cVRncrDMN+vrZ/bTzPNztXn9V36IVG/kuTwh387TGSFFgvUTEtG1xUA1QOd0APM6Va9rucpMbPAoxIWMVY586RjcfIoc+9htG0+yCJWWwozLYzjw5jkoHugr1+jX0K/LNNC6oHP0M8rpIS0d6ORQWT1sCFD3wHvRVkGIUgLI1kW90a7JRCR5WCiQ9sa3JafWigQLVAfT8ZxI1cEMdq2D6ajA32q/e0Mk0BlS3bSskPSKyfyTXrL5zGUTAkKg9hM4mlOKxIhxpjcZ5mXd8jvfeNDySK8znPmsIhL0WouzL44D8ppXEQd0keB6ThSuHW6B04Pm4mSPDJSN2oScn4qQm1WCo1mlNQrHsstw9eo17YFdKcel75JwYfevVeB3VAgFjMO4Nb0ej8/LKkXv9wpwx4Z8RP27GOeuXLebYf75RTnu3liAv675AQnNp6Kti35m+Gz4jCyfm+X/fGvFZ85nL5sQEAJCwFcEvN3e2GuT9LfpO5b2qrJywcWvm6F0WyO1lKFuPbBnaVM82+UR0GqAZv+WdSjrWVoD8AWb3iZSCLB3fWd+08/Bc1I0YL/cWp3ONDFtT3Z8FLsWNauwKqCvggB1L7wn8+kHH67tjvbhE5VVgTPpcCaOK+1NUsR4aW9qWMhqpUiQm12CVlGpXutgOpNRb6U43hQJXCnwfOZ89rIJASFQuwnMdGFFmoQQ163ALEWC88sH2xEJjO3dxtQAACAASURBVGot6DNjpuFEtwycTdvhFbhXyzfhwhe/wYW992jhi9+A+7yxdfukDL9/Mw/dPnE8IH/p0GnctTEff371Jxibp6FNiGurLvCNFZ+RZYfW2v8Ue/nsZRMCQkAI+IqAt9sbW+MBCgSsH9/N6FFFIDi3NxxFmzTfA6WbA8CwenRrJIQNUW/sLetOTg9gHasLA7aux/20EHAm2DuHdp6J6poxwdWndNNZYsvGQ7F0eDsUbWyg0k/rAt4T741CgWalF4GPXu6mCQUesiiQ9sZXpUa7Tq0UCWZN3ez0kocsWI4Kg/xeaYJkjYU3RQJez5UOJp+9bEJACNReAnnHytQbZS6PZ9kZMv+fFkbsoFirkxztsxQJzs0eZUckiML1n2JwZugsnOi+0msiwbWT23Fh929xYe/dWtj9W3CfN7bOO8twx5t5aP1BCa7aNyTA6AMnlUjw4Ks/oVmzcUgKdrzEpDX+fFaOrcJSkBQ5Hvl5x71x23JOISAEhEAVAqxrWOd4s72xVh/SBwFX2VEWBAWa/wHkRINz+HXnhDTZz14fhDH9eqs39JZTCzidgG/2eX4Ojq1dx3xfUmgaOjWZhM5h9kOnMC1t5sfa+54UmqqmNpi3z8253GKDkRjWqy9+fCVYTT9QQkFmA3WPvNfr9FNQEKFWcWjbZCJ0qwp713L2N2lvqmRzr/1T60SCY7llTlkRqA6mwb0OprOZ9FaJ522RgBxjDI47mDRXpTUB84BsQkAI1E4CC2fvcMoXATsk7q4wUEUk6LMap59Jx7VvE3D9aGS1KQd0XsjVDtTKLb1Womj4BnAt7f1fHMGB3dluhy+/yMK+L37CxQuXtQd17Swu/9QPF3b/nwr8jmtn1W+Mw7g8pqbX3LPrR8RtzsEfN+bjr5sL8NWJSzYzytkr1xH9TjHu3VSA+9b+iPDwsYgzcJlJ101Y+azMO5G2vtM3AfOAbEJACAgBbxPwRXtjORag/4GEoMlYP6tf5QoGOcYKgSBAvX0v31oPX61sgv6tn0CT+iNNAqs2dhmpphRYntfe/+ynT4+bicM9luGHHsvwvZ1wuOcyFTchxLVpfBQsaNVgXrfTV0Gv+KewZ2m4mn5Ay4KizIAKoUCz0qNQsG1RbzXtwFOrHkh74+2So52/1okEi+a85UIH07PLStkroDfzb74QCahUmlc8tr6zg8k8IJsQEAK1j8DJE2fRIW6SQ4ez7Chx7qUzb0+s1b1VRAIugdhrDc7NGIPrWdGaRQHFgqORaqWDawcTcWb4TLUMIh0XcgnEyMBkRAamICZoJKLdDMagEWhSb3DVpf+uXcS1U++pgGuVKw5waS7G5THuXo9p5fGRAYNxb/JbuG9rsVrisNvHpTh1qcIvgkWWSTt4Cvdk5uGBrUW4e96XaBY8Ei3cFNf5rPjMHFkT8Nl0jJ+MEyd+tkiN/CsEhIAQ8BwBX7U3lm1QXKMpmDfySYBtTMUSh7Qg0N+0l2+rh/8sbK4cAXKQrfd3+SIsLsR1Sy59esHurktwof9qnOm3ym5gnN1dF5umJVim39H/8SGaPyG9rg9rMALtIp7Hh3OiNKGgYhlH3rOaekAGeZFq1YO4wMkOLSIcXZ+/S3vjuXJi70y1SiQ4XnYGnRKmOOxgssCxs+JMRpM4jk2YfCES8DnwmemVpa1PdjA7J05B+fEz9vK1/CYEhIAfEshc/x+nRF5lNRTq2tx487q8mkjQN0MJBVwG8fK/HsbVvW1xZXd7XHzzMZx+fq76jZYEFAk+67wAzQKGonlgMiJqGJo1HIbE5uOwf88Rm0+DvzEO49b0ejy+2d+fR9g/1uB3bxTgwc35uGdDHjp8VIp3Ci+g9MJVnLh0DfvKL+GZ3eW4d2OeinPXpiLc+9wWRDUYot4UmbN05Tu9ZfPZ2aq/9f0Ue5kXZBMCQkAIeIuAr9ob8zoyPnAKhvcdArXMYcUqBsoHAefsb9SWN6RA0C7yeYQ3qBQIaE3L+tP8XM5+57SGnk0nI7fXcpzul6Gs4tie2QqMw7g8hsc6ex3zeExrrNkS9HRomBg+GB/MrhAKlEVBpY8C5EbhclY0xj/+PCiimJ/L3e/S3nir5FSet1aJBKrAm2VKvcNh+VnTDqa7GfZmPc5XIoHTBd4gHczKIizfhEDtIHD58hU81msejBbmipb1d02tCFgPWxUJKoSCk31W49Q/luHkI8s1caD3alNn6nSflcgb8joe6TYbjesNdjjYtUy7tf+bNhiGhGZjsXbFByjIL1erHXA1A37nPv7GONaOdXVfk7qDVdq/P1KCplsL8NtXc5UI8KfMPNy3MR+GHYVo/FYhHtyUrywIKCL8MTMfv1x6GKExUxHVcCiiDSPd7sA5+3aHeYB5gXlCNiEgBISApwn4sr3R+/5JwZPQO24s8nclAce0JQHp8Z8O/eiHgFMMKgWCytUL4lxc4le/nv7JPvpg4wvalDk74oAuGpyqiMNjeKx+Hnc+uXyi3k5x9QMKBR/OjQKtJXjPvHfTqgfHolCyNwEDWo1GoqHmFgXS3ni61FQ/X60RCa5cuYon+qQjyskOpjuZ3VPHtAtORXvDePDTk4HndHV5Kk/ck69EAqbVOXPVkSovME/IJgSEQO0gcGBfFozBlW9O9I6F5WeU8kVQs6libCdaBY9Abo9lON1/FU7y7YoprMLJvhWBUxFM+zNwsvcKnJu4A4V55RjQbQ7C6w1VS0FxOShXQ5Sh8o1680bDEFZviHKg1a/rLDDQmRb38TedAY9x9Tp6fKZ1QNfZKCo4oTLE58UXcPcrR/HbV4/hPk4p2JSP+yuC+r4xH394PQ+/WJWLvz68GsYGQ1Q6OOe0Ju0Gp47xGer3ZOszOmQkDuzPrh2ZV1IpBIRArSLgy/aG9SXn2lMkoDd/zsGn074rhyO1ZQ4zGyjHfvRB0Dn6WZMFAV9o0nE3B7uWdW6rxmmID52oAr9b/m7+f1zIRMxNmIVzbOt0kcC8XdO/67/1zVBxeQyPNT+X5XdH6WDaE0PGw1hhQUaLAk49oI8COmbkFAsu9UgWuiPDXW88pHh5wj+BtDfeLZa1RiSgSSbfDtnqcJjvd9fZlWXhcOf/tiET0LTTcjw4+G08MPTfHgt1hr2Dev/chDjjS+A13Embu8f4UiRw3hnJCHy5N8u7pUPOLgSEgMcIvDgp06lVaejR2d26Sj+OIkGiYQR+ip+Pkx2XotwslLZbhJK2Wihtt7jyt05LUZKQjrLnN6h7Li48had7LkZcQ22OKJefciVYq8soCIQHDFXBXBzQ2y8e48o19CWxmEamtbjwZJXnte1QGX7z4j7ctvoY/t+aXPzP2hz8am0u/mt1Dm5fewz/teB7/K13BowVQgWtODzBn+fQ78nWJ5dDZJ6QTQgIASHgaQK+bG/Y7tCEfsaQpzQLghyjcpBb/q4BhRu0JQ6z1wdiQOsnEFbhg4D+YzjAtSYQJIZORI/wychsPx8ZreeiS9gkxNsYzNMfQcvQidjacQHOD9BEghN9VuJEr5Uo77EC5T2WV4QVONF7JfgbhQTG5TE8lufQ207zT16T12YamBamiWkzj8PvvAfeCwVr1vf0UUBnhj++GozSzfUVA7JQyyJW+CdIH/WEx6YdSHvj6dJTeb5aIxK8pDqYjjsenujgWBYAZ/+n1UDj7qtw+/Is1Sm7bdVReDSsOYbfT9uDxObTfGpR4EuRgKydK/CjwDwhmxAQAv5P4MyZ83go0Tl/Momh1t+sOFsPMx5N5jngXdB0Cg4YZ2Nf1CwV9kfPRn6PVSjuvQbFfdYiu9Ny7K34bW/ETOR0Xo6LH/5kAlpSeAoDey5BXCPXl9Jlx8kZyyh9EM241jqMju6baWMamVbzjX5bnhuwAE1CRuEv/dbCkPE96r+Zh7qvH0OTN4/izwM3onHUJJMFAdMREZSMlsFj3VrdQE8n74FvlvT7svVJ0Z95gnlDNiEgBISApwj4ur2hBUGfuLEo3RcPHI1SzvqUo8INASje1AClmwPUMoe6k0KjIcWuQNAtfDI+77IYF/uvxvn+q3Cw+1KMiHlRTQ3gMoesa9UbfiVcp+Hx8Cn4tv0iHO+wBIVJC1EQn478FunIj51fNbRIV78xDuPyGB5LkSC+8UR1Tp6b12C/n9fktZkGpoVpYtqsCQUqTaETTEIB73VYz37KDwMZUCzRHRmS0Ymv4tS0A7LT2w53PqW98VSpsX6eWiESnDl9Hl2SpjplScDOiTsZzSPHhE7EnWm7cNuqXNxGocAbYfVRhPRcg/aGmpnjunK/vhQJXCnwzBPMG7IJASHg3wQ+/uBbh1PFOJiMNoxAm8bV31S4Ul8xri4SNA8ajpaGFMQZUtAicDjaNx+H0qPluH7+MnDhCnbu+BLRDZLV7zENkjGwTzrKT2nLEupESwpOVggF7nidnqjuiYNvW4Nl/sb06lYBrtxrXKNxmkBQUNWCgALBP/stQOO6gxFV4czwo3e+wvmrAJc9LCk+jaSwkYhoMLRaujxjiafdt6171vfT4oN5QzYhIASEgKcI+Lq9iQ+cjG2Le5uWO7x8KALFmxuqOfknttXDmtGtEd5whBKuNYHAujUwB9+6QMCBuT514GdOi+ubgTfbaW/z+fb/oSaTMKnZC3jfOAu5sfNREDsfeTHzkB9jIQxYCgX8P0aLy2N4LM/Bc/GcPDctBngtXlO/trI+6L/KaaGAIj0tCpYmtzOteEAmZKNWfCiIwDsre6qlIl1p86zHlfbGU2XH8jy1QiT4RHUwHU810DqY1s1mrGcsz8Wlr4D4qBfxy/mHcNuKbO8IBBQdVh3Fnwe9ddOKBPpz4rPUO5K2PvkminlDNiEgBPybwJRx6x2uasBOhfYWu+b1Mgfder3B81IsaNooGfHNx6K0rHJllA/fO4gmXMmgIg6dFXJwXX686vJ8NOPn2/p4NywKOPjXraMoCDA9WtCEA/7mjkDAtDBNllMMmHZdINAZcIrDR+9+bcokZSWnkdB8LJo3qhQvmKYYD0z1YB1OsZfPkufU02Dtk6scMG/IJgSEgBDwFAFftjcJQZPxfPdkXPwxBsitOs2gbEt97FkSjoTwIWjWKEWt/GJvioE1gUAXCuhskMLBoR7LsCx6JvZGz0FJbDpKKgSCalYD1sQBK/soFPAcPBfPyXPzGryW7uBQT4MrQgH9LfCeWzYZis8XNdP8E2wIgPm0g8tHojGsz9AaCwXS3niq5FQ/T60QCaalvulUBzNOmUnWvIOpD1Rd+eRUg2YdlnhXIKBIkJGDP0zZ7VNrCV9aEugdTD5LZzqYzBuyCQEh4L8Ezp29iK6tHFuC0dmdu0tAWdbV5iKBPjjlgJgD49KS0yZYH777tfIPoMfhJ9++a0JBpZjAA2jO/4yaeuC6RQHTx85hXPAYxAaPVoHfuc8y7c78TwsCpsXaFANLgYD3RJGA96pvZGApEnh6VSBttRr7IgGFXuYN5hHZhIAQEAI1JeDL9kZ3Vvif9V2A/Ag1zeD8/nAUZmrTDGhm/2yXR0x+CGw5KTS3IKjifNDM0SAd7Jb3WoHSNotQ2iIdRVYG/LpQUBg7H0VKQEhHSYuKEMtj0sHf9HiWnzwnz81r8FrKqa95Giq+M432ph7oFsFsU2hN8GTHR5UDQzXtIDMAZITcaCA/EnsyO6NV6CTlyNCZts9WHGlvalpyrB/v9yLB2Z8voHvb6Q6nGjAzesZM0j2RgSsPNHj0Te9ONaBIsCIb/53+HeKiZ6CtDUcmtgqRu/t9LRIwnXyWfKbmnXfL7+xgMm8wj8gmBISAfxI4sDcL0U6salBTr/rm9VtNRAJNKBhkQyhwf+oB09e2ceX8S/Pv5ml39N00xcDCSWHlFINB1epNRyIB69pENwULe+nlM7Wsty3/Z95gHpFNCAgBIVBTAr5sb2hFwDfhV7KilQn9tSNRKHsrUA2IOc1g/YRE0zQDW8sc6gLBri6L1dt787f2pu/9MlD20FIUtEy3Op2A1gDFsekoU+JBOn6KmYu90bPxQdQMvFsR+J37+BvFAsblMTzWUizgdARei9e0JRTQ0oBptuWjgEIBl0fky76wBiPx8thWatoBVzsgI7LitINrOUaM6D8Y8UE1XxJR2pualp7qx/u9SMBlTCIdDBbZ6fBkB9Nep8fWbxyw//2RDPzfmM34/ciNXg2/G7URUQkz0e4mFgnI2ZkCz7zBPCKbEBAC/klgxaJ3HK5qQDN8dijYsbBVx7qyP9YwqpolkrOWBPogtvHfdYsC61MP9FUPXElXTePymtoUA0snhRVTDP4+WA3KaZURHzJOOU7k/YQFDLFhSTBM+UOwZQJbk/RWdhIrpzTobM0/ucoB84hsQkAICIGaEvBle5NgmIydXPKwworg3J4w5aCvZHMAstYFoWuLgWjaMAVsj6zVpa1C09T8f7sCQd8MlLRfbFMc4Jv/wth0fG6chcXNpuCZxuPROXiU8sXDdoCDdAZ+p3+eTsGjVBzG5TE8luewJRbw2iaxwsKqQBcK6MOA92LtHjmdjgw6Rz+Dn141gGzoxJCsNGuCCHy2rgsSDTUTCaS9qWnJsX6834sEGUvec6KDOdyjHUxrGd3uPq6PGjYJ9z+xHHc+vxp3PbfKq+GOwasR3Gku2gZPNK01SrMnTwf9nm+EJUFlgbdvrsoOJvOIbEJACPgngWcfXezQaSE7MJ60BOOgl35N+IZcDxGNhiORjgstphs0CxhmiqPH1QexjevqFgVVhYKarHqg16uuftpexUD3QVBpQZAQMs4kuNBCwNhwBD5696Apg5BBm4gJiDOMtdqxczVttuJrFmH263A6L2QekU0ICAEhUFMCvmpvOKh9suMInP8hFsiNwrWsqlYES4e3Az380+LV1jS6hJCJyGw3X60cYGsgXtzGukBAHwIc2G+LfBHPNB6HmKAUNAlMRhgd1VbxfVMpFFAs4G+Mw7g8hsfyHDwXz2nNqoBpsJU+rnrAe+C9WGsHWodOVCsekEX64I4V1gQBmjVBFleCiMLFwzF4unNKjYUCaW9qWnqqH+/3IsFzjy2B0QmTRU92MK1ldFv7WoVMRGKj8Yg1TsPdz63GXYPWeD3cMWQt6vZb7PVlEBODUpEUPEEthZIc/YLJiYnuzGSI8QX1my02Nd3PZ6p31m19Mm8wj8gmBISA/xE4XnYGbWImIMpgf+qQN5zOclknOgTUQ1LIBDxknIbjpZW+Bj59/zskBI03xdHjcpCt1zm2fBQU66seNHTPR4Er9aPJgsDOKgZ6es0FAv0aSUGp4L3qGxl0MU4H2y89jrc+HTmhZd5gHmFekU0ICAEh4C4BX7Y3cY2mYN3M/tqKBrnROP9lU82KYFMAjrxmQOeYZ9QbdFp02bKQiw+ZiIzWc21OMyhuu6iaBQEH83zz/5lxJgY2HofmFYN+CgB6G+DsJ4+hYMBz8Fw8p1Wrgpj5YFqsCQW0JuA98F6stSG894TQ8cqJYYeo5/DjK8EmawIyU9YEBRF4Y3Y/kKm1c7iyT9obd0uP9eP8WiQ4Xnoa7Vuk3ZAOpqNMSXWMHbeu0dORseDfeO/Dr7B19yFs/cI3Yft/vsWH7+z3WvjovS/x+pqdeKT9XBgDxmJo1HSc7pehKglfiQR8Bs4UeOYR5hXZhIAQ8C8C+774yeF0MXZUWgSPttmRclQXO/s7B8QcGFuKBBRDLc+hOjYh40x+UXSh4ITFqge6RUF8I+8JBTw3pxhYOilkWsydFNIKwppAwHvjPd4IkYAc+Wwdd2BTwLwimxAQAkLAXQK+am9ahaShc0Qq8j5rBRyLwvUcI8rfMyiRQF/ysEnACMTYmGagtzetGqehS9hkHOy+FGcrljlUA/F+1qcY0Okgw/JmU9XUAVoDVKtbA5MR1XAojA2GIiagauA+/hYZWHUKGM/Bc3E6As+tX6eKVUHMfDXtwdxHAdPMtPMeeC/6fVn75JQLMskY2Qantv0dxzf8Defeqw/khgP5YTj5RQx6Nh+NNoGpaBtifYlIa+c13yftjbslx/Zxfi0S7Pn8R7/pYJpnRL5d79BsCpIfXYX/7DyE8xfP4eefz+DsmdM+DWd+PgNvhvMXzuLw98cwZtBrmNBuHk4+vNKnIoErBZ55RTYhIAT8i8Crqz9yamUaW4Nb83q3pt9dEQl4LU0oGG96O6MLBXQQaL6VmJZH9LxQYEsgqHRSqPkg4JsjW56zeS83UiTgs63WkbV468WlEJlXZBMCQkAIuEvAV+1NfOBkjHl0EK7n0lzeiMvfRaB4cwMUbwxAQWZDDGj9BJo2HOHU6jVxIRMxOGoKTvTN0Kx1K5wU0nmg+SCdzgaPxs7D+LCJCFdv/6taDhgbJaNFw+FoGZaK6Lbz0ezRV9F46DaEjHxbBX7nvug289CySaqKy2PMrQ64FDDPzWvwWrymeRqYJt2ZIV8WMs1MO+/BUfvMKYDN6iWjX/xj+GZDJLZv6oN5m8dg6icLMfk/SzDlsyVoNeENRPRai/iEOWgTOhHtgsarT0fn1n/X2mxpb9wtP9aO82uR4NVVOx36I3DUOdIzj6c+WzcahwHxM/DD/lxrPG/afWe/yMaJ3it8LhKw42teiVn7Tr8EzCuyCQEh4F8EUke86lAkYJm2NWfTU/U2z+OqSKBf27wOqhQKLH0U6KsejHfYWdLP6+iz0gfBySoPtdzCgkBvA+2d70aJBEwTn621ett8H0UC5hXZhIAQEALuEvBVexMXOAXbF/c2TTX4eVcTZUVwfGt9fDg3SomisYbRDtsC7UXYGIQ1GoZX2szChQGr1dKDahUDs1UH+Gafg/bhTVLVG39z0TU6MAUJgaMQFz8LTYbtQL3l3+LBjfmos60Y92+vGrjvwY15qLfsW4QN3Y64FjOR0GgUos2cw+tWBbwWr8lrmwsFTBuXR2RamWamvUXwGLuWgG2DJ6jp0c06L0CDtHdhyPwW928uwj2bynBXZhnuzNQ+79tWjDrbivDnN3LRYM5eRDy2Dq2aT0Nbg/PtqrQ37pYe68f5tUgwwY86mOzsMKNHdluB1iu/wtCDZ/Dc3hN4dk/5TR+e/vIU5mz+ESd7r8CJPitxss9K9Tk4yrs+CVzpYDKvyCYEhID/ELhy5Soe6THHodNCo2EE6D/A3iDXE7+5KxLYtiiwIhT0WoI4D0w94DkG9uIUA+cEAqbRHqMbKRLw2fIZm4sClt/pvJB5hXlGNiEgBISAqwR81d7QQXjn5hNwTE01iMT1bCOO/zsIhZkBKN9WD1Of6IawgJFOOeLVRYKmgcloHToS33RfglILR4X0QVAUO1+93W9cMU2AA3n6ckkIHI1WzaYqceDP63OUKFBnayEe2JyPBzbZCJsLwDgUEP7yWjbChmxDq6ZT1Ll4Tl2A4LVoUcBrMw0moSBmvkoj08o0M+32RIK2QeMRlzQPjV7chQd47e0luG9TEerYSh/3M962Ity/rQh1VxxCZN+12hSEUMcWC862N//oMRdXr15zNZvdcvH9ViTgw3O+g+k449jrQDnzW1tDKiIeXYcHthTiT1uLcNeGPJfC3RvyUFvD7zYVoP3cL1HUcj4K49JVKIhLx/NNpyLRQefUGbb24tCRmLMdTCnwt1z9JTfsxwRoEt8mOtU0r99yYMj/2SHhEkn26gBP/eauSMDra0KBY2eG+tSDmiyPqDsprC4QnKnig4D8nJ2mcSNFAvLjM9Y7n9byAf0pMK9YTuXw4+wtSRMCQsCPCPiqvUkImoxBPZJxNcuophpc+Z5TDRqiZFMAcl8PRLeWTyMq0P6bdfM2rZXq46YgNHAY0qOmoqxFVRN//k8/AXQwqNehqs0MGof41umov+hr1NlRjAe2FNgWBmwMyOtsKVBiQcCCA4hPnIs2QeNUXa23zbwmr20tTUwr02w0pID3YH5P6ntoGtpx3PTIa/jL+mx1HXPx4sHN+bAVzAUOChp1thQiePz7aN10inpZW+1aFuMQZ9qbtjETpL1xovz6rUhAk0o+RHtesT3dwWRHKiHQSmg0HvEhaXhg6be4e0sR7snMdznYVc1sFGDzgnIjv/9xayEemn8AhTHzlKKoq4rPh3tfJGBl4LDAG1JUXmGekU0ICAH/IPD9oTwYg/kG2fbKBhFByWgZ4nyHylHnwN7vNREJeN5KiwLtfiqnHlj6KDiFgb0yEFN/Elo2nOJS4DE81tJJYXUfBHRSON6uiac5ixspEpAbnzGftTWBQNuXovIK84xsQkAICAFXCfiqvaEH/sXjHjdNNTi3L1ybarClPnbOi0RkUDISQqo7wzWvj82/s36MCxmHOEMKvjDOquIHoDg2HZ9FzVIOBekvgHUl61IOvqM7LcWDa3/CvVuKcF9mnsNQZ6MNy4JN+aizvRh/W/sjWrZbCL4QbRkyVl2L16QzQ6aBadGtCeirgGllmpl23oP5PfF72+BUhA3aAgoRHOTrYxgKA0zL3W8cw+9ezcWv1+bg12u08L+v5OLO9cfUvTCefgwtC2j50HD2brSKnG5XKJD2xtWSYz++34oEPxzKR3TISJ91MOmMcORTq7E9cxd2bPocOzaahczPsX3rHrx+MB/rvyvC+kPOhze+K8KkPYWouyXfvnmNHwsFN1IkcLbAM68wz8gmBISAfxD4+P1vHE41YKfH2bfhlp0QV/+vqUigOj5czsnMT4pNoeDIVrzyYn+8PL0/Xn5hgHNhen91TMmRrVUeYHWBwL6TQmtcbrRIwGdsWyDQOr+ccsA8I5sQEAJCwFUCvmpvaEnw0cvdgPwItXzfqZ2hplUNFg1rj6YNRrs8fS4+dCLGh09GidlAnC/jGLg0Id/os/6MCxmLdiETERs3B79KP4TbV+fiFyuy8IuV2fbDimz8clU27t+YVznwthhz0Lz/b2sOK6eB7YInqGvxmrw206CnRxcKmFammWm3bHPaBaWi2ZNvqGkNHOBzsP9gxfXuZenOegAAIABJREFUWHcU/52RjduWZ+G2ZdYD7+d/X86tJhbcv6MEjV7ahdZhk206NOSYQdobV0uP7fh+KxLsfP+gzzqYCUGp6J04Ez/9dAzlp8pRVl5mNZSXFMOdcKa0GCmfFyrrA5MyZlFA/Xn/jRYJnC3wzDOyCQEh4B8E3njlE6ecFiaGOv/WxbIz4sr/nhAJeD3LTkjjuoPUNACTqfyZHUBuM6CgOVAY4VrgMTyW5wCUOaS2zOEg0yDbHVHlRooEZMZn7EgkoPNC5hnZhIAQEAKuEvBFe0N/BB2aTkT2ztba0odZRpS9HYSizACUbamP57v1h7GR8xZerBs5h57LB75vnI0Ss7n/pS3SsS3yJTRT0/KS0bLCOWB7QypCu6/CbWvzcNuqo86FigH5b9bmKBN/W+MNvq0PmL8frcOnoL1hvHKIGNVwCCIaDMFbzabhdPRclBm1cMo4F59GzED74FRlNdAuOBUM7RuNQ2ynJXhwwzFlRaAEgs35asD/q9U5mjDA9DCszMFtq3Ir7yEjB7etqBQQ/t/KbNz1+rEqab5/RzEaD39LWVPYav+lvXG19NiO77ciwYbXPnOqg8llNWxlFEf7WeCTDBPQsfkUDBqwDMUlJSoUFZegpqGwqBh6OFlSjMVfFeLuTDPzGREJnH5ufMbOdDCZZ2QTAkLAPwikz9rusA7nXHRfrGzAtsBTIgHPpQkFXHnFYupB+Xng1Iu4ntVEObSiUys9INsI5PDtUzMt8LvZ73o8HstzlJeft/BB4NoUA/P270aLBHzGfNb26nGKBMwzsgkBISAEXCXgi/YmKXgS+iWOxplvWgC5Ubh6OBIlWxuieFMActYHoUvMM4g3VH+zbl4XK1EgNA0JoRPV0oEtQyfi8fApyInVpvPqb+q5qsAzjcerN/mxBjO/PaETkdRsKhr+4w387anNeOCJN2yHx9fjnmH/qjLw5pv8Kqb8FmOROtuLEDTyHTTtsBRhD61AYMeFqNthPrp2WYbX+ryOl/usV+GVPuuR0Wcd4rtkoMlDKxDO0Fn7rLv4a+V4UBcI7t2Qh/+i9QAtB3RxICMXv5z9Ne4Y8wHuTn4bd6W8g99M243blx3RhIMKIeH25Vm4c71ZmjcX4MHMPCVEcGqEOVv9u7Q3rpYe2/H9ViRYMNP7HUx2Glelv6/mf5aX/YyrV696LFy6dAklpWVKKDhRUoyFIhJYLcx6obb36WyBZ56RTQgIAf8gkDbqNYcigbaygf1Olb26wZXfEg0T0L7pZBwvrfQh8Mm7hxBbbwxaWzGZdHTuSqFAM5fn1IOnBqxA2eFxQE5TkzjAwb8SB3IikPN9V3z09bMq8Lu+3yQQqLhN1Tl4Lp5TH1i74oPAPO28N94j71XfyIAsyMQ8rre+O+OAliIB84xsQkAICAFXCfiiveFUg6G9h+Ea6+lcIy590xxFGxugdHMA9i0LR3wTLudbfX6+Xq9SGKBI0LPpZAw2voC5CbOxteMCfNthUZUVBDj//3PjLMRSWKVjQIv2qW1oGtrSyWDDYTA2GGIzRAcMhrHBUDUIV1YHy7PwixXZ4KBdN/+3ZlXwp40FuJ1v+flW35WwPBv/83JuFSeKnOLwy1VmFgSrjuLXM/ajXvdlaBY2BlGNhsHYcCiiGg5FRPAIBCXNxJ2j3tesDCqsCigU3PNGpUUBl3JsOGu3zSkH0t64Wnpsx/dbkSBt9DqvdjBpQfCPDvNw/twl23Rq+MvPP59FQWERRCSwXWnqlae9T6cL/Oh1NXxicrgQEAKeIpD8zEoYDaNMg1x9sGv+GW0Y4ZNBaqIhFV2jp2P9yk9w+dIV0y1ysDx30lbQqoyisb16yNZv5tOhDH8djm3LugAF2tJYmkDQHDk/dMHTH25AwJYs/GljsQr8zn38DTnNTaICj+U5eC6dFa9h6/r29vOeeG+8R3NxhAzIgkzIxt45PPUbn7V+P9Y+mVeYZ2QTAkJACLhKwBftTXzgZEx7biCQF6n8EZzfH66WPjy+tT7efika0UFj0abxJKv1aVJoGqbHzcSeLktwtNcKnOqbgXP9V+HcgFU43mEJ8mMqlxnkagKLm01Bk8BhVn32sE/M+lRf7cBafarv4yC8adNx+NWML3FbRq56m/8/q3Ps+kijpcFvX9biqjf/+vQAJz7pkFC3VODn/71idp5VR3HHmA/RNHwcjAGDEVXha0FPa2RgsiYYNBqGvwx4BbcvrxAplmUpPwYm54t0argxDy06LFZTHay1UdLeuFqCrMf3W5EgeaB3O5jsGD3ZdaFX18k8f/68iARWvJ5aK9CO9jlV4AdKB9N6MZe9QsC3BK5fB57qv8ChX5kYw0irHSpH9YErv9Mpbc+4Gfj2y6M2Ifxr4z6VjppZFKSgcb0R2Lq0UiTg4P/I990RueMA7sw8jvs3VXp55nfu42+MowsFFAl4Dp6L0xlqYkFATrw3WxuZkA0ZucLUnbh81qbOYIWnbvP/6biQeYZ5RzYhIASEgLMEfNXecGWDZRMeMzktPPt5E5PTwrVjkxATaL0epfVAp7BJONxzGS70X43T/TKUSHCybwYYipIWVhEJilqkK2eBza2I6LpPHH21GAoF9gLrWFobNGo7F7+gKT/fzi/LUisL6IN5S2sC7v/jm8dMqw7oqw84+qSwYBrIb8pXFgu3r6iYYpCRi/+dvAvNQ0chquEwu22BEgsChuCBJ17XhA2KE8uy8IfXKqcd0H9C4xFvo13QeKttl7Q3zpYe+/H8UiS4fv266iwYHXQqatLBFJHAef8IN9Jxod4ZdVTgmVe0Dqb0MO0XeflVCHifwJUrVzGg22xE2Xl77OklbPW6wvKTdf17276qvOnrF3HtzC5cO/d15T4A86dsR3wj6x0Oy3Na/q933MxFAmRH4Wp2FPq/vwN3ZpbZ9CrN3wa8v13F5THmIoE7Tgr1tPFeeE/mG++Z947rF027ycYX1gSOl7IdofIM845sQkAICAFnCfiqveGStm/M7qc5o82NxulPKlc2mD+oE1oEWrcioEjQOWwSvu+xDGf6rVLCgC4QnOizEgXxlcsL0hfBTzHz0Cl4JFrasCCjJUGL4DFqeXDWq/ZCdMU4ikLBA0++oTkJXJ4FSxN+S6FA+ROoWJWAUxOcDfp5KDT8/rWjmh+CFdm4fekRNZWA0x8oXOhWEHwByDQymC95TysDTj/47dQvTEIBV2jQz19nayHqLf4arcMmWZ12IO2Ns6XHfjy/FAkqC7z9Nw9VnHm4+MZaRALnRIL7Nhbiji1l6DDvIAqj0lFgXKBCvnEBngmdjhaGyUgKsV4x6p1VT3zyWZu/dbL8zrdQHJRIB9N+gZdfhYAvCNCc/eHOM264SMA59493TsfFC5e1275yApcOd8eFPb/Hhb1348qxNOC6NijNOlyEDk0nu+WfgHUchQJjgwnYurSrGujTMuDAtwPw4KY81NmkLQOld3DMP/kb4zAuj9FEgq7qXDynO/UnLSJ4L7wntV2/qu6V98x7JwNcOaF+Ihsy8rZ/Amc6bcwz5tNBtMTLXyEgBISAbQK+am843WDH0l5AQQSQE42TO0NMlgTTnuiJlkGTrdbXdkWCXiuR36JSJCiKTcfe6FmIN4xEq8buTYGzbDNi2H8OHKYG3b+b+KkmFCzLUs4E79/o3FjAvM1y9junNShnhaty8YdxHyn/A+y704ktV2tICq1qeUHxIz5knGkqhTFgCP7eO8MkEtAqweRPYXMB/rIuGwktZ6FtSNXz8P6lvbFdXlz5xS9FAl8UeBEJHFcM928sRNi2b5Hw7n8wJGMHirtMR1HXyvBC19F4ulsyHo4fg1ZeFgqkwLtSrCWuELixBC6cv4RubaY5EAmS0SJ4tNVOlWUnx93/4xqNx9QRb5pgXC1ZgQtf/EoJBBf23Kk+r5/TrAzOnb2If3SYr1a8cf96U/Cv5T21TmRuU6zbm4q7M0tNbz9sda4Yh3GR21Qdy3PQtNXddGg+d+aD98SN96gJBNo9kwFZ6BsZkZW713PmOD5r3UTWUuRVHUfDCJVnmHdkEwJCQAg4S8BX7Q0dF76/urtJJDjxgSYSlG+thwmPPIy4IOt1tk2RoF8GynssR77Z0oclLdLxftQMj7aNyvm3IUU5BwyNnYr/Tv9Ocwy4LAu/WZvrsH2y1W7Z20/xgUsYKp8Gq47iL/1fVn4IaDHA9NhqMzRhnJYSo5WoEBozBb9YfNg0TcJyScQW7RdZ9Usg7Y2zpcd+PL8UCS5cuITubaZ7tYNpSyTgVAdrwRKjtTjcZ77VZp8E924sQsu39qD4cAdczY7GlSOxuPZD1XDlxxhcyzLi+P54PNUpBYkG71kUOFPgmWeYd2QTAkLgxhLg4LRDXJpX63BbnQzz/XENx2HamEqR4ErBDFz44te4sPcebdC8+/e4dkZbOpV1x4BOc2pkes+B/dtmIsGaPZNwlxMiAeOs3ZNmEgl4jpqIBGzfeC96fch7vLBbs55Q9/7Fr0EW+kZGZGXOztPfnanDmWd0YUNPm3wKASEgBOwR8FV7k2iYjE9f7QrkR+J6jhEn3g9GUWYAyrbUx5iHH0G8h0SCd6JeQnyIZ0VbvqGnGEuHgXV7rtBEgoq5/neur3Q2aG/g78pv92fm4Rdm/gjqP7QYMQ2HOW0dQbGgpWEkwsPH4ZdzvzGJGubLIdbZUmBzKURpb+yVGOd/80uRgAW+Y/wkr3YwLUUCLn+Yk5OL7384jB8O/1gtnDp9WlFV8XKP2ox3uiIeI9dmkeCPG0vQ5Z33gdxIICcKyDHiem50lYDcaOAogxEj+g0GVVZPdyz18zlT4JlnpIPpfOGXmELAWwR81WnT6wdbn1ENRuCx3vNw7Zom4F6/8BMufhWoCQVf/AqXfngIuPqzwlCYX47E5mPRwjDG7XqsqkjQDDu/HggKrnUs1qI272zxN8b5+OuBQG4z9ZaqpiIB74H3wntS29Wf1b0qK4ovfq0YkAU3siEjsrLF0RP7nanDRSTQHpf8FQJCwHkCvmpv7IkEY/s+iniDBywJYtPxbtSMaqb4nqqDb5RIEPDQYiQFudi2hkxA86ap+O+5B0UkcL44eDSmiARXrymgFy9exFcHv8GXX31dLez78gDyCwpUvPMXLuDA17bjFRQWmh5QbRYJOE/2L5vzsHtfV+DQ33D52wCrAT/UxaFtRrQP15ba8kRFZu0cznQwRSQwZT35IgRuKAFfmX9aqyv0fawzmjdKhjF4BL7+MsfE4/qFH3Gl4EVcLVqI61cqBtEAXlu9E03qDVZvW+JCuJSV6/4AqogE2VH4+Ug84v/1Be7ZWGLTpJO/Mc7ZI/HQHBdGKGsEdy0JmHa+MeK98J70jffKe+a9k4G+kQ0ZkRWZuXPfzhzjTB3OKSoy3UB/MvIpBISAMwR81d7Ym24w5dFHEBc01Wr96dJ0g9h0fGSchTYe8kdQpW4OHo+wFtPxX+mHTINuX003qPvIOrQzuGYd0S5kAiJbzJDpBs4UAi/F8UuR4EZNNzh58hSKS0pQUlpaLVy6pJmxc0rBiZMnrcYrLSvD5csVDrJquSXBA5sLcMeaHDy9aCiu7f8dLuy9y2q4+tXvMeO5HogLtF45Vqmg3Oh068c708GU6QZeqiXktELARQK+8Cuj1w2WnzRTjAsea/KeHF5/iHpTfurkWZt38f23x9Aqajyamy3NlBiaarXDZ3k98//NRYLr2UYgpynePTBIeYb+48biakIB99FrNOMwrjqmwH2RgGnW5/vzXnhPvDdbG5nQioCMeBw9TpOduw4TzVlYfhe/MraeguwXAkKgJgR81d4ox4VLzBwXfqQ7LqyLmf/s67pI0DcDJ6o5LpyPL6PnolOTSaC4YFmPuvt/29CJaiWAO9J24bZVucqh4H9lZMMnjgszcnH3+E+tOhi0dz/tDeMR1Pc1m44L/7wuC/EtZ1o9r7Q3NSlRlcf6pUjgiwJvOd2gEonnvtVmS4IHthTiT6u/R8iwJTjyXhCu7L4XFz6/v0q4vPte5L1VHz2MyUgMSfNohWZZcUiB91y+lDMJAW8TqFyhZoRp0KoPXvVPby6ByNVQ9CWWeL2weppQ8NX+bNPUAzK4ePEy/r1jP9q3SEPTAG1pJm2wnAy+kW/b2DU/K5YigRr05zbDji+Hofn2r5UTw7syy8BAZ4Xcx984zYBxayISMK1Ms7lzQN4T7433yHvVN04xIAsKBGRT5ZkYRnmsY2pejztTh8sKNfoTkk8hIAScJeCr9oZLIK6f/XC1JRDLt9XF0iHdXfdJQJHAyhKIR2LmoV/YZCR5UCRob0hF3ae23LAlEH+x7Agi2i5C+2DnxHdN1JiM303baxIJqi6BWIS/LTqAxCYT0Da0upgi7Y2zpcd+PL8UCSoLvCyBaD531VffOUf2/s0FWDDhPRzum4Hip+fg9ODpODXohSqB+0qfmoWsHsuwru0874oEsgSi/ZIsvwoBPyJAH65P9V8ALk2qD0CtfcYYRnplQGr+Rl2/Ls3vkyLH43jZGROpT3ceUoPkZg2GVUmn0TDCrgdm88Gv+XdrIoEmFDTF8R/bYsO+MZj82RIV+J37uKKBLhDURCRgOug1mmnX75mfvDcKAbxXfSMDstCnV5jHd8eCwpyBre981ubXsfzOvMI8Y+H/V0+yfAoBISAErBLwVXvTstEULE4dAORHgD65zn7eRC2ByNUNXh/f3q5Pgk5hk3C4xzJc7L8ap/utwqm+GThZEYqSFiI/Zr5plQMug5jSdBoSPDTlgGb+TTsuBQfqt63IVlYEv3s1Fw9utr7KGff/6c08/HpNjkvhty/noo7ZkopcrpDLFqoVDjJy8fspu5HUdCraBdte3UC1H6ETQSuCuv/cbBIIuJTiH147akpzne3FaDR8K1oFWvdzIO2N1aLi8k6/FAlo0s/OgtFBp6ImHcxqlgTXgfITJ0CfAoVFRVVCUXEx9OkGJOxsvNpqSVBncz7+mpmHb/65Hhf7rMCph1fjZJ81VgN/OzdgNY70XIaHwiahlQeVT/POpqMCz7yidTCrrjDhcomQA4SAEPAIgeRnVsLoQNyLNnjPWV5i6HhEBQ03DUw55z6+2RiUlmhOaHmTH7zzFcLqV1oQcODKQbbl+s3mdZG977H1J+Ffy7QlEM0H/mrwnxOprV7AZQ71kBNZRSDQRQKeg+eydy1bvzHtlkIB75H3qm9kQBZkog/WyYrMbJ23pvv5rPVrWftkXmGekU0ICAEh4CoBX7Q3nG4w6dkngTzW5dE4vz8chZkBOL61Ht6bGYekENvOu5NCJ2Ji7FTsemgBcnotUyLB+f6rcX7AahzvsKSKSFAam46MiJcQ7wGRoG3IBCREvoDfzvxKG3Avy8L/rM6x60yXIsFvX9GmJKgBPldBcDLc/UblSgk8z/+Zn2dVLu4Z9zESIl5A+6DxoLVAlXYldCLaBaeq6QMNHn1TExgqRI3/zsiuFCA2F+CBjXkIazMTrYKs+w+S9sbVEmQ9vl+KBExq8kDvdjAtRYILFy/iwNcHqzktpCPD6o4L7cS7CRwXUiT4y4Zj2NP3ZZzuuhTl3ZfbDad6rMChNgvxUGPviQROFfiB0sG0XsxlrxDwPYG0Ua/BGDzKwcBwBFp7oCNUpaNRIVRyXn1CCIWCFJUGDogTmo+tIhJ8+O7XCDebZhBlSHFbIIhrNA7P9F6DkoMp2vSBnGhcdyNw6gHPwXPxnNbuzdE+CgW8F30wznvkveobRQKy0EUCMiIrb/giYFr5jC2FCz1t+ifzCvOMbEJACAgBVwn4or2h48Jnez6Ha9lRQK4Rl75pjqKNDVC6uT4OLG+GTs1S0TrUurjLOrBZUIqaBtcmdBSeaJ6KF1pOQ2b7OTjYfgEKYystCYpj52N39Bx0UHVndVP6NupNe6p628437jZD0Hg16L4/5T3TNINfrMgG3/DTF44t6+R7NxXg9owczeqAg3Rnw/Js/OrlXDywpcB07vs35uGXq3KU9YISGlbl4rczDiC411okNp+mBAEKA7QuaB02GZFtF+GPY3ZqjhV53eVZuH15Fu4xEx/qbCtG3Rn/QVTgcKsWf9LeuFp6bMf3W5EgbfQ6r3YwLUUC09KGhw/jhx9/rBZOn9ZMVFW8o0fxvdV4P+H0mUpT1tpsSfDgxjx80GUVTkfOQX7kIuRFLLYa8iMX40SLBdijKjTPOlrRO8JOF/jR62zndPlFCAgBnxJIn7XdYR3OwSlN5PWy7ulPJRSEjncoEnAev2ZB4Nx8Sct0xjUch4E9l6Ck6CxQOBxXvv0rrv4Yhqs/NnExhKljeQ6ei+fkuS2v58z/SaGp6p54b45EgoRQ7wkETCufsS7W6KKA5SdFAuYZ2YSAEBACrhLwRXvTKngSeiUk4/Q3sUokuHo4EiVbG6J4UwBy1gehf1yKTWsCvR9LXznNA5MRHpiMJo2GITRwGHqFjkZOzDwUmAkFFA2sTjkInYikZlPR8B9voO7TW1D3qc02Q70nN+H+4e9pg3xaAizLwh3rKk32rYkENOOvN/ItNGw7Fw07pKtQt8N8dO2yDK/1eR0v91mvwit91iOj9zpEdlqIgA7zK+Jqn39ddAB1thUpoYDWBBQl6CSR11dCwcoc3JaRg1/NOYh7xn4Mihj3jvwQ//fCPtzOKREZuSbLBQoEd643SzOtCDLz0KT9bEQ3TLbaNkp742rpsR3fb0WCBTO928G0FAl0RNeuXYNl4PQHy80yDv+3jFdbRQJWHPdtykPsoNcxpscS/DDlYZyZ3wYn57arEk7Pb4us1J6Y3XQSHms8wWtTDZwt8MwzsgkBIeAfBN545ROHIgEHit6aA28+kOYgOMKmJcEQNYBlPePOm/S4RuM1gaDwpAJ/pXgFLu35NfD1HW4FHstzcCspPKkJBY1cnwbAe9HrzvCAIVYtCRQTL04x0J+BNR8R1kQC5hnZhIAQEAKuEvBFe0MrgVZhY3Dko0TgWBSuZxlR9nYQijIDULqlPkb1/CcSDFOsDlwpEkQGpig/MI3/PshkxUXRgOHfkTNQ2iLd5JegJDYdb0fNqtavpgPC0O6rcNvaPG2VAq5UYDMcrRxwL8vCb9bmmOb02xII/rbwS0Q0HgVjwGAYGwxFVMOhiGgwBG81m4bT0XNRZtTC6eh5+KjZCzA2HIqoBkNVXMY31hukBvAPbjhmsiigUHBfZh5+tdrMooCihRILzNLP/3UfBsuy8P9WZuOu1yunLzDNdXaUoNHQTYhsMEQt2WutzZb2xtXSYzu+34oEG177zKkOJt+W6B0RVz5tiQS2Ubn+S20WCTjf5zcjNqF52lSc2n8PLh/8PS5+/Ycq4dLB3+PMvrvwcIdH0KQBHZBZzC/ykH8CPmPLDqXl/3wLxTwjmxAQAv5B4OP3v3HouJDlOCFknFuDc1fqe3Yk4g3jkNh8HEpLTpkA0QSfjv3cbUfiGuoCQeU5gaso/X4e1r0Qg1enx+I1JwPj8hgey3PoW0nhqQqLAteFAjLivfEeq043OKVYkIm1TpYrbB3F5fn5jC3rbMv/6biQeUY2ISAEhICrBHzR3rAui2mUinfXdgIKNL8Ep3aGas4Lt9XD8mHdrK5w0Cp4grIIaxWeitFD1mDh7B1oGzMBzRppDnObBCZjdNiEKiIBrQoYhjedVsU3AX0MxMTNwa/Sv8Ptq3PxixVZ+MXKbPthRTa4MgBN/62JA2rwva0If37lR4THT1eDfr1+DgtMxsDG41RazC0dKGgwzUy7Hlf/jAoYAsNjL6PO1iJwOXWeX5/eQEsG+hdQFgW0LLASeD//+3KuEhYoMOhppkBQ/4VPERE8ApGByeoFg2X7Je2NqyXHfny/FQl2vn/Qqx1MayLB5ctXcOHCxWrh4sWLVawEbMWjXwNza4JaLRJsysf/jdqOpS93Ag78ARf23mM1XP/6Drw504jwgNFemVvsSoFnnpFNCAgB/yDw/aE8GNmYV/gE0DsQ5p80hW8ZMsbrA1UOZFuHTETHqCkoM3NcuPPdbxAXaN3xkaPBr2mKQaG5QACUH/8ZTw1YgZC/p6BJ/ZEuBR7DY3kO881kUeDm1APeI+9V38iALMjE0X3W9HfW4XzG5kszmucB7XuKyivMM7IJASEgBFwl4Kv2JqbhRMwZ09ckEpzbF65EgrIt9fHJvBhVn7auWJIv0aCJA91bvIj0qTtw5Ici0229vPwjRNQfjmjDSEQEpSDOkIIvjLPAlQ3yK6Yd0DfB58Y56NSkqr+vdoZUxHRaigfX/oR7txapwTTf1NsL5qsO6INu/ZNTDP78yk9o0n4OOMDX6+dmbJ8NKfgsahaKzdLFNDKtTHPzoGRlCaFbRPCTA3haFwQ++4ZmTbCl0DTQ56CfaaGDQ66w8Ou1lSso/O8rubhz/bFq4gCFBgoEdWfuQvPwsYhsOExxs9Y2SXtjymIe+eK3IsEPh/IRHcIlkyqdL+kZV/+sSQfTUiS4fPkyvvvhML7+5lsc/PZQlcB9paVlCvilS/bjlZUdNz2Y2iwS3LepGE3WfYaCz/6Ky/vusioQUDi4tP9ulO6sgy4tnkVisHWHLdYKsrP7nC3wzCvMM7IJASHgHwTKj59Bm+hUu3PR2aHgesbO1gc1idcqZCK6GKfjeGml35hP3/8OiUGuW6PF6z4IrAgE/+y3AI3rDjZ1tPT2ytlPHstzVBcKNIsCXttVDrxH3qu+kQFZkImr53InvsM1q4NS1Js15hnZhIAQEAKuEvBVexMXlIYnug7E1Syj8ktw5fsIFG/W/BIcfT0Ij8QPR8uGExHfaDweaT8PryzdieICbSqa+T0tnP6WisP6lNZeoYHJSI+aijKzKQcUC0pj52NNxAy1HGJrM+tcLv0XnTgLf1+4Xw2gzZ0F6oN/h59bClBnewn+tmC/ZkFQIRCwvo4LGYeY4LFY2Xw6uNqCLlzwk2lkWpnmuOCxiA9QQ5/xAAAgAElEQVQZZxbGak5qlVAwBCH9VuLBdVmgEKFbFTBdFAtsBfN00xqhzpZCNBj7NiJCRyGqoWZ9Yc+PjrQ35jmtZt/9ViRgB4nmOOYemi07WTXpYFqKBFzi8NtD36kVDr46+A3MA1c9KC4pUaQvmuJVjcP4jFdSWmp6IrVZJLhr43Gkvf8C8P/Zew/oOoqs35d733vr3ru+73vfBGCY+GYAZ0nOQXJO2AYzBBsTDDMMDDAMjA1OMs4BTIYhGRNsk5MjaYCBmSHnOMaY5IAlB8lyNs72fuvfR1vaKnX36aMTdI70r7WOutVdVbvqV9W7du+urv7ovwIdBDq7ALMJ7rnqJOnV8uq0GJxxL/g8NTBrPn2ragjukAAJZJzAgQMH5XdDb4k7IwwLBlrjpy43oVHSpMpJEDyDYId3c5+Mg0DHuGpHQc2b5upXDxJzFNSnkwBtG+/LBnjV4PdDb5WDBw9lvJ9SIAmQQO4TyNR4079gmvRpP1q+e7NPbF2CVUVS8WIrWb+giWxa/Eu58Y9nykVD75fnF34oO7fv8QW7fev3cnb/m6VffmzRXnwecVCbq2TZkNlSPmB2jc8hYoo/FjG8puO10qvyld6+BbHFePG0vnPb8dJy5CL55eOrvBt+O8Xf3mxX7eOpPG68ny3z0iAt8kBeGH+K8rCY8FTp3WaazOp4rTezwb5mUNrtNq+MKCvKjLLjYV71b7r3pRwdyzAzoX2va6TJrNc9J4HnLDAzC6rKZb+2gDI+gzJulF/fu0xan3mPN3ugS4vYrIUe+eMD7zU43vh2uTofzFonAYyF6AZm4k9DXCcBCOJ1gZ07d9X67dr1vRw6XG28hMY7VB0vV50EP1u8Xpos+VaWv9NFDn70I9nz4U9Cfwc+OUpW/a2pnNJ5ovQvSO1sAl0RVhWO39YzMM+41Vtwss5XAhOSAAmknMDksY9EWlsGC+xFudFPJk4qnATqINhYuUihAoNT251B0C2vWOryUx1X7Sio6fyE7ES/elCfTgK0rdYpaIs1ZdBXGEiABEigrgQyNd50anaVLLn71MpXDgpl51stZP3C5rL1rQtl86rXZd++6jVl/Ory0jOfVM0iwJjWp/VUeWLgX2X3ufNk87D7ZF3Pmk/u4ST4rvttMrnDLOnVZpr3Ln4hpvXj12KU94pAh+4zpMXIRfKbez4TrCmGzwTCEYBp+t4P+89s9M4hDuIijfd6QYvqdQX6tp7kyYAsyLSfZsQsApQNZURZUWaU3W9c7pmPV8xiZcTih3gFoe3gW6Xp1Jfl/3vwK/nF0vWeE6CqfCjnsxs958Avn1gtx938ruT/br50bndV1SsQyA+fQ8d9gZ9MHON449fj6n4sa50EqNKUNBqYfk6CumP0T5mrToIjF5bLJf9YILKynRz6tlOkn3zXQWZdfon0aum/smvQBR3veNQLHn2FgQRIILsIPDL/X3GdBBj4M7F4YbJOguqvGLhrELgzCMZ4T1Li6bag8328p0Sx1+yqHQUBMwoifvWgvpwEeLqEtlVjMcxJgL7CQAIkQAJ1JZCJ8QY6raj5JPnL8PPl0Kp2It/1k4Prpsn+io8jFRsfSxtx0T1S1Gys9/S9d8FUGdv1Otl6zlzZds5c2Tp8rmw6ZU6N2QS4Od9Q6SjAjII+baZ5rwPY17ExDR83/JiS367/DZJ/3jxpOWKRtBj9tPfDPo7hnDdtv+nIqqn7Mb08xsuzb5tp3qwFOAgg075mgFkEKBvK6JX1nLle2VEHv/EMT/ytzsdsBfw6dZokbU++TfL++Ii0uHJpVRlbXfqktD5jjnToMTO2rgFef6hcGFEdBGEPFDjeROqCCUXKaifBI/NelSKnk9kOp/swqtA5/Dpp0LFcdRL83E7JScP+zxevk58tXiev/ftikTWd5PCqrpF+UlIonz57ktcGumhLEPuox2MXfGxalba13xZ9BH2FgQRIILsIfPjuN6HryuB6xuAPYyJRHR5Vj2i8ZJwEvVpMjH3m0Hm3FO/BujMIknV4qKGjui7QUbBOP48Y/9WD+nQSoG3jOQlg7KKvMJAACZBAXQlkYryBLu3a9Co566QpsnX1vSIH1iRU3FXfbpTubYulZ95V3mt2p7abIf8eMkd2DZ/nOQrgLMBNeNmJNV87wM06nurjhzUKftt2unQvmFR7zR+sBYDPEsIJ0HSEFDap/GHfcwzEnurr+IJtYasxXl7IE3mrHNdBgDKhbF4Zz5nrlRllRx36B9yDYc0CK8vbx+wHOAxQHi0ftihjM9d5EZuNgFl5JwTMWtAxHmMnx5uEumPcyFntJHj/na/TZmC6ToJDhw7J2tJS+ebblfLtylW1fjt3xqZ8Il5JWLxdu6qgp2omwTGLSuTHC0rkaKxeuqhUjlpQIkcuKJGfLar+NIjvez11cCIcvahMTn7pX3JgVVeRVYVyeFVRzd9qdRrUPC6ri+TQqiK58uwrpE+rGQk5bPQCd7eJXPDoKwwkQALZRaBi0w4ZEGdtGRgNmELoXv+p/r+uTgIsQIXp/VFeMaiLw9qvnjFHQbWDtNpR4P/qAcrol48eqy8nAeSjbWsZiTpVFgZq3hivj6CvMJAACZBAXQmka7zBg68+LSdLv7wpcvGQ2bLk0XekYlNNXRy1zPfd9ZK0PW6ENy0eU/XnnnCrN3Vfb7ztduPAu2rNKMD6AFhI8J2ut8iYDtdIX7zOlVfsOWLjO2MrX1GodM578fOKvTyQF/JE3jXWIMBsgm63Ccpiy6b7eO0AdQiaTYAxAK8wYF2aRMqnYwYcGHA06FgWb8vxJmpPjBYvq50EFeXb5cQe00IXL6yrgek6CbDOABYe/PjTz2r9Pvz4EykpXecRxY1/WLzS9euryCfrJMCsATgDCl/aKNd8vl1eXL9H3izfK0vW7pZRH22RFs+u8xwGqXIQIJ+jFpbJ4x9OFFnTvqZzwHMWdJUDy5t7v1rOg1VFIus6y8vzh6TMSRDVwEQfQV9hIAESyD4Cfz5/dtzFC/F+Zb80r0tQFycBZhBcesbdggUDbfCfQZD4jLYwgyfYUVDzZhplQxlR1qD86stJgDatenfWOAbUAMQWa8qgjzCQAAmQQLIEUjretJ4mvVvGHLB/OfceeW7Ru7J9W/WDwETLunfPfjnr5OulS/Mxnq7GjfXCQbfJ3nPn+96A40Z8o7OQoT7dx+cRcTP/QuFNnrNgYOvJ0jmvWDq0Gi34dGHs04T284SxYziHOIiLNHAOIA/khTw1/6otHAQDZgeWD2VHHfoEvHKgYxIWFOzearJ0bDZB2jcbJ51awmFhyxebVaifyoVTAesahL1eoHnrluNNoj0yfvysdhKg+Jf94W4pysOnEKs9YH77iRqYrpPg8OHDgs8XwhlQum59zd/69d6ihigP4pUHxFu3br3s3bu3inoyTgI4CH6ysFQmfLpVtu2vXgyxKnMR+XbnARnyennKHAXHLNogXZ77RLZ+009kdRcfJ0GR7Pvkl7L341/4npM1hbJzeQ85f+C4lHwOEW3q19b2GPoG+ggDCZBAdhLAk5N4r43BMOhVMCGtrxwk6iSoesWg1iKF+orBX6r0U6pmEKixo9vajoK/VH4e0XUUhL96UB9OApQdbapGn9Xbdh99A32EgQRIgASSJZCy8ab1NBnYdppMuOxB+edLH8v6DRulYnOF96WzTRWbBQuaHzwYvkChW5d33/xSOja/0lunBTq+f+tpMrT9DHn71NmBswngKPB79QA38bixL+t+u/d6wPtdb5W5na+XUe1nyrA2U6R/wQTpkV+9eC72cQznEAdxkQavFiCPWrMHKmcQeK8Y4BUInx9mEaDsqAPqouOWu8VMjP4FM+TywZfLzZecLePPukBOaHeVdGt1lfcJZF3gF68KYMzo23py6OKEbv74n+ON29tS83/WOwnm3v1yBANzdMIGpuskSA3Omrkk4yTAKwVTPqv59Kpm7rH/tu8/JL99tdx7FSHZGQU/XrhJbnz7rwGzCGKvF+z79Fey9xN/JwFmF2A2waPXnyu9WiS3gGH1BR/uHIKBiT7CQAIkkJ0EPvlgpXTNj+/o7ZY3LtDI8DMKEj2WiJOg+isGNXVw1VcMjh1hHAQT0+rciDkKJlbJa3PsiEpHQc3prmFfPagPJwHaB21qHQJ+++gb6CMMJEACJJAsgVSNN31aTpJJlz8km7dUyKbNm2TDxo2eowDOgnXrN3i/DRvLZMvWrbJnzx7vAWK8sk8d/6i0P35kjRvgvt4nBK+S10+5XXYHzSioXMzQ++pBN5+n/ZWLDOJVgQ3db5eV3W+Tj7vdKq8V3Sz/rPxhH8dwDnFicf3zwusFkKWLFPo7COZ7ZR7Y5ipBHcLG4775M2TOyCGycXFT2fz0sbLr1Zby4eLfymmFk+UE80U0jHX4heUVdo7jTbwemPj5rHcSfPLhyrjrEsDwSNTAzIyTYI+nVLaWl8ltH5XKkQujrSHwk4Ul0uvlMtkRMIPAbeaPt+yT3yxd5zkK4FzA2gWJrlfws0XrpfnSb2TVitNEVneuningrEHg6yTw4sScCPJdoax/r4+cXjQp6c8hRrngseAV+ggDCZBAdhL4ftdeOa3/1VIY7930VqMTmloYZiz4nYvqJAj+ioF+5tDOIEivg0DrUctRcJzOKKjpKMCrB97nEZ01CurDSYBpovFfNRjr9Q30EQYSIAESSJZAqsYbrEEw9qJ5sRkEWyukrLy8ykkAR4H+4DDAfln5Jtm+Y4fs27/ftwqbyrfLgK6TpVur4qobYej1XgUTpX3LUdKvYJy8ccodoY4CfHpw04DZsqlHzBlQ9UqA85oAZgXgywR4faCs8od9HPOdMVCZHs4D5A0ZkGUXKbSOAjgzUFaUGWVHHYJu7nvnzZRRp/9JNi5uJmWLm8qGRc1k72cdRco6y71Tz0/ZF9E43vh2u6QPZr2TYNfOPTJk4KwIBuaYhN5pzYSTANOR1ny3VtatWS3XvfVNZCcB1iG486ua00njtfR5b22Sopc2yh/erpDTXyuXJk/HnAZRZxf8eGG5jHz1MZE1HasdBCsL5eCKVnLoWxzDgoVFUtNJ0NX7POKBFa3k8MrqRQ6ltIvcPPqipGYTxN4tin0GzO/pE47hpgN9A32EgQRIIHsJzJz4eKRPIfbMT98rB/3zp8jpnWbKzopq3freK8ulX7PqRZGqZhBk4CsG6gCIuq3tKNAZBdX1QQ/YCEfBsDkCZwfeA8Wq071bTZY3/rGiqoNg0a1TimZJ34KpXpyoZYgaD2VFW8ZbqKoov1jQNxhIgARIIFUEUjXeYJr8pWfOlofvfUWW/fsb2VSxqeqVA3US2K06DCo2b5Zd39d8HWHJk297Cxb2az256kk59GT3yq+/dIjjKMAnB/ecN1+WDblbbu9ytbxbdJOU97hdynoEvCrgOA7CHArIA3khT+QNGZClnzkMchCgzNDxqIOfk6B/wXQ5tfNE+XBOJ9m0tImsX9BUNr+cJ4dXx2Ydv/rw6dI7BQudc7xJ1ZVTO5+sdxKgyNdMfiqSgYkVMP06qp9hkwknwbatW2XFF8tl2WefyZAnPpSfLF4n8W7aY2sRlMjbmxJ7slL6/UHZdeBwVQt/uX2/nPZatNcQ8NlDlOvdZReIrFYnQVc59HU72fP+j+XAF63k8OputZ0Eq7vJgRV5XpyDX7erciRISRdZ/uIgGdh2qtTlc4hoQ7RlFAMTfYOBBEgguwm89o/P4y5eCMdf7CsH4VMX/fR5vGMD8yZL//YzpcfvH5Er3iqTc9+qkD+8u1n+uORr6frbOTKg9VTp02xC7DOHziKFWyp0BkHsFQOstpzsZw7jlTfoPHQjZKMM4KVfPUAZbShbUyGXnX6XDG49VU5pN11Oyp8ib72wTGTvAe9XUbJFzux2rZzcZpqc3Ha69IszXTSoPMHHp8b9qkHM0TtO0DcYSIAESCBVBFI53vRqOVG6NB0j/bpMlDGX3yfPLn1LVq8p8V5DKN9U8zUEdRjo6wgby8pl27btsnv3HrnkvDulU9NRVQ4C1Z14Aq4r8gc5CvTziI8MuElOKBgnrVteKb3zxsr4dlPkxS7Xy+ruf/VmCJTgVYSA1xFqOAm63SaIi1kFSIs8kBfyRN6QAVlwDqhs7NsZBCirjtlBiwv2zZsh88acKpufOU42LGwmG5c0l/3LOwm+hibrO8vD156X1MNEZTigDcebVF07bj454SR43TMwwz+jpJ21utOEv9fSN2+KnH/yX72L14WSqv//+enXcvn9L8igaxfKUbNell88vSHUSaBfM2j9/HpvUcJky1G256A3u+CYOJ9KPGpRmQz9+9/l8KrC6s8eru4qB78siDkAvmwthytfKagxkwBxvmote94/Ug5+mV8VBwoAnsLi342Q3i3r9jlEVZpo16AfZhKgbzCQAAlkN4EdO3bLKX1nxp0Rhmu9b0GKvxKQN1m6n3y3HD/7M/nZ0xvkRwtK5L+fXCs/eGqtHLlonfxiyTppOuN1ufDCh6QicJFCuwZBassXdczSeDFHQfDnEfc89aHsGrVQNlz0iKwYMke+HHqPrBh6j5Rd8qjsGLVAdly5QLaOeFK+Gnavdw7nZ/S4Ie57pSo/3hblQxsG6W09Dv2NPoG+wUACJEACqSKQivHG02OtJ3t6DA+sOrUYJe2OH+ktPHj6gKvlxmsWyNtvLZMNZWWew2BjwOsI5ZvK5Y3XP5Oigtin/JCvq0Nxk43V/KEbraNg33nzZc+58+WT02fLn7tMlXYtRknHypvzTq1GS7uW+GLBaBlWMF7+PegOqTjpblnf705Z1/t2Ke1xe+0vFWDWQe/bZUO/O724SIO0Ni+UATIgCzIhG2VAWfQVA3UQoMxBDoL+rWOzCD6f107KlzTxZhHsfKetyJqugteSN33US87pO1765U+vxcPlE/Y/x5tUXTX++eSEk2DH9t1yar/477Sic0c1MPvlT5HhA2+SL7/6WuANLC9P7W/ThnUy9bF/yP91wb3yXxffKz+59c24ToJjFpbKuI+3ysY9ia2Y6t+0saM3fb7F+4xi2AyGoxeVyeKPxoqs6VD9qsHqrt4MAjgADn3dvsoB4DoJDn3TXvZ8cKQc+KJlVRxvAcPSzvLao6cJPIlhF7h7LpELHn0CfYOBBEgg+wlcN31h3EVoocO75xcnpDNcHWL/xwyCrqffJ7966jv56TMb5KiFJdLq2fUy4B9l0uflMjl26To5amGpHL10vfR6pUzW762ejVW1SOFxNR0ENv9E909oPVUw9uCH/UTT2/j4ogJ44efNKDjvTqn4rkJ2Xfa4bBl6j2w/+37ZMXxe7Hf2fNk6dL5sGTJPtpxxv2w98z7ZMXyudw4G4Pun3e29doDXE6yMuu6jDbVsQVssOos+wUACJEACqSaQ7HgDWxQ61m9Ga4dmV0rb40dIt9bj5KJzb5OH570sX3yxynsVYdPmCsGChjqrAAsfXjv9Cc/BEHRDDT3rOgpOaD1OHh1ws8zue730LhgrbVtcWaVTbZmw37rFlbLwxFtk93mxTyluOet+2XLm/bJ56H2yeei9lb/7vGM4580KOG++lwZp3fxUZ0MmZKMMKAvKFMVB4NWnYLqc1mWCLJ/fVsoWHS+b/57n3V94swhKusjVV5wnhc0mR579HTYWcbxJ9dVTnV9OOAlQ3Os9AzO+4RHVwMQ0+IHtpsn8+5+TZcs/l39/Hv+3bNkyifL7/PNl8up7H0uP65bKD8YukKNn/V1+/tQa74lV0M06jNdL3ttc3TIp2nuhdJccs7BEMEvBT/ZPFm2U7s9/IDu/7SOyynz2cHU32f95U9nzwdHeugNhaxIgzv5lTWo6CVYXyu4vu8lFJ49N2FEQ7YIv9vpEijAxGxIggTQT+OSjVdK1IP5q91jszr63GWYchJ0bWDBV+na7Xn4z/0v56dMb5FdLSuXaz7dLyfcH5cChw7Lv0GH5fNt+uejdCm+xV8wwOP/tCo+C+4oBjKZkPnMIh0DvFpNkULsZcna/m7wf9nGsrs4CNWLVoGtz/Aj585BbZNMfH5JtZ1d+sursebL1zPmy/bLbZOfU6bJz0tWy7aK7ZOuwB6o+aYXppB+cdpf0LJiQkvUJ0HbxFixEmdEX0CcYSIAESCDVBFI13uD1rm75xd4rXvZmGjqsc8tR0r7JSGnXZKQM6DZZJo5+QF762/uydu062bx1s1RsqZA135XKKf1mSFGLsXFviK2joFPL0d7TfDzRx5N+Tx7W4mo1xnOkY6vlwc38tT2vqb3o4fC5scUHdWs+Y4hXB5BGnQ/Iyy9vb5YBZlGgHC1j5QibQWDHZHzV4LEJJ8n3rzSRw990FvmuSGRjZ3n5oZOlUwssOD8+aac0x5tUXzk188sZJ8HHH6yUovz4rxzgQsKid7ajBu33LZjseQLPOfV6Oe+MG+W8oQG/ITfK8LNukX7Tn5Le1y6S3rPCf31mLZLm4x6WH898UX61dL38cuk6+eUS/Ep9f79YUiq/Wlwi75Sn/qn4Y6t3yX8+sVbwxQQ4CtwyHLlok9z+zg21P3u4uqvs+/exsvejY+TwymrnQY2ZBFjMcGUX2fvRT2XfZ7+p4STQzyEuuPWchN45QtuhDeP90BfQJxhIgARyg8D+/QfkD8P+KkVxPosHYwXfS8ZNcJDujnJ8UKtJ0nbkM/Kz58o8/Tfn65rv7Su1A4cPy8XvbvZmXP186TpZurxcLv/dnd7TedVDyaxBgAUTB7WbLnfMel6+XFYqWzfv8n7YxzGcQ5wodXLjxBwFsc8jYopov1ZjZOUZc7wZAlvPnifbfnev7HnkYjm0oqccXtNFDq8plEOf9ZPvbxsjW8+KPXWCk+C9U++UTq1GSe+QVapd2X7/ozxoOzVelZ+7RR9AX0CfYCABEiCBVBNI1Xij4xBsUyzGqq/CujquU3PMLhgpnVuMkrNOvk7uuGWpvP3mMrl51kLp2OwKz8nspzPdY9ZR4OrNbnnF3v3NwDbTvZkHPfOv8l5TwBcGLug02Vto0G+xQbvwIPYRBz+kQVrc9CMvyEbeqCtkufLxf1QHAeqFVw5O7DhWlt4+WLZ93kO2LesuL8z7rfTvPFI6NB/jyYQ8l0HU/znepPqqqZ1fzjgJDhw4KBeedXvcxa/UwIzSyXBBeJ7ApldI+7Bfk5HSJm+M/OiCOfJfl86V//dP98f9/eDS++XHt70rRy9cJ0c/uTb09+Mn1krThatl+dr1tVsoySNYwHDGv7dJ75c3yk+eWiv/8eh38t+Pr5Ujn1wrP3qiVJot/lJKvzpFBAYk1h0wv32f/Er2fvKLmsc+xbFf1jiGOO4x5CNri6T8oz4yrMdE6We+hRrWNlEMzMK8cV5fQJ9gIAESyB0CCx9/K+4itDBE8EQD+jlMV4Seaz1NTmg7XZrc+akcvWS99P9Hmew/VP0qgUvs250HvC/CHPPMRsmb+IJ0OvbySgMJixTWfQ2CEwqmykkdZsi/Xlzmiqz6H+cQB3FD6xTgNIk5CiZ5T5sGti6WVcPuiTkJzponexf8QWRdB885AMet9/uuixxe21m+/+sY2TLsAW9hKnUSwFBMxmhDm6Ht/IxLewxfNUBfYCABEiCBdBFI9XijDoO+rSd7zlA/Xde55Wjp0OwK7/WCwvwx3hoGRa3GygltqvU7Vv3vlz9DTmjtf4MMPYqbcdzP4FeYN0Z6F1R/hUfHCZQH+fYqmCSD2oyX1cPuke3D51XNEnOdA/o/4iAu0iAt8tC6ad7YQiZkazkScRDE8pkqXVqOk44txsiJXUfISd1GSMfmY7z/C/OiP9C1ZbL7HG/SdeVU55szTgIU2bvgA7xb1gCJamCig9l0QfuFLUdJh/ZXyQ/GPyP/Me0l+c+pL4b/prwg//u6N+WIe7+VI+5dGf93z0r5j7nfyt8++kK2VGyqbp0U7u07JPLBpv0y9eNt0unp9fK/562RI2aXysVLbxZZ8Rs5sLxFrd+ej46RvR//rMbxvR/9zJs5YOMjDmYcHFjevEZcxJFvmsrtY86WXi2vjmsAR77g82hgprBrMCsSyBiBLVt2yuDeM+IuYKjOXj/DxRoJQfsDW0+Vnp1nyq8e/lp+vKhUJn+2LbSO8B+c+K8yOXrpBvn1dW9Km99cLm2PHSFFTYsFn0Wsy69n84nS9dhieWj2v2rK3veNCH4mPHjXP724SFMXWUjT7rgrpXezK72ZBNvPekB2jL0+9sWZ1dWfp7WOgoOf9JdtF86WXefMr5pJkIyTAG0Vzck71usD6AsMJEACJJAuAukeb/rjNTK8jlA5Ow7jlr2PwENIHOtZAOfrNO9rX5iCf1b3Yvl939EyqN1Uwf9+4xjsYeSLzwtiP95YiFci3jrlDtl77vzYOjS6Ho3PFnHePuUO7zUKP9l6DDIhG2VAWbCv5+wWTo8+eTO9utgvmsH5UJQXcxrDUQAHgfLpVRD9a3RWlu5zvEnXVVMz35xyEmyu2CG/jbhCNowV7UxBW3TgrnnjpHMrXMghv5ZXSsfW4+T/3PiJHDF/rRxx/+povygOAo1z9zcy5ZkP5JsvPpdvVq6U9Rs2yMayshT9yqW8vFy2VpTLjs2bZN3GMnlpRamM/PtKef3Ni2X/B0fL3vf/y/vtef9H3hcNsGDhng+Oiv2wr7+oxyrjH/j4h/LFohYyuOPkQK+ptg/aTBVI0BYrYqMPoC8wkAAJ5B6BO29+LtJsAuiAqK+OqQ7R7QkFU6RLp8nyq0e+8ZwEsz7fHhfUqa+Vy48Wlkq3xatk6cL35LlF78uLiz+WFxZ/VOffi0s+lp3b98RkH94nhzfNql4cdtMskcP7vHM7d+wRxE1G1jOL3pcXHn1Tyi94ULYOeUC+v2OUSEmnank6kwBbfIFmVZHsLL5Odp71YEqcBNFfFSsW9AEGEiABEkg3gXSPN3rzjnfjdfq/a7/i5ho3zyd2mGVT1GsAACAASURBVCoPFJ8m3z6SL2ufbCmv/7WbXDJohPRqdXVS68Fg9lfX/KtkUrcZsmLoHFk+5O7Q34qhd3txkSaZmWNY6BbOgWHdxsvYoZfIZYMvl0Ftp9aYOYw1xnB/pUywD4eDjtV13XK8SfeVE8s/p5wEKPJdtzyfgIE5OW5HVE8gvIFhvz6tiuU35zwgR8xdI0fM+y62xX4qfshvztfy60kL5bF/vidffrVCPl+xXD7/Ij2/5SuWy9dffSGrvl4hX321XL5Z8XdZv3yWbF92suz/7Dg59OmP5NCnP6zcYr/uv8Of/VD2fnSkXDBwZKDHFEoCClaVSNgW01TRBxhIgARyk0BpSYX064KV+aufKvhd83gCg6cjiRoRMNr65E+QDh0myi8e/kaOWrROzn0rfIbW1n2HpP3fNsiPF5TIya+Gx60z9e/fksMr28thb4HYLt6+fJ/iKff7DsgOfN3g9Adk911XipSGOAlWF8rO8demzEmAtnKfpNVuV3xvfJKgDzCQAAmQQLoJpHu8seMTxh48fMQrarg5xqxmfWDZu+VMuXfqH0S+biebnmkmGxc1lc3PHC8rH8uTqcP/UPkU3v/1AysjaB+vQGBdmh75Y6VXnF8PvAbRcpQgTVB+8Y7HZg/M8Mq+4sE2sunp42Xj4qby0g195PSiiYLzyAMOEp1pgfEAD2aDZiTEk2nPc7xJ95UTyz/nnARr12yS/oVYPTmCgZkXzcCEJy3eb0DrqVLUcrQcf9oc+VHxK/KDCf9M6e+H41+WY869W5r//i4Zfd1T8tCDL8hjD70oj6b995I88vAr8vDDr8ojD78sTz74oDz7wBXyz7mF8urc1vLq3DZJ/d54oEAeu/oEGdwhfCYBFkmJZ2B6r5EUThb0AQYSIIHcJXDjzEWRPocIoyLRNQFgqPXMK5b2ba+Sn9z/pfx86Xr59ZJSebci9tTejxoWNTx6YYkctaBEhr2WJv2y8wU5vLJN9ZP9lW1Edr7gV5y6H9u5V7b/+THZMnSe7JxwjRz2e9UAMwnWdJFDy/rKtovvTPp1A88pYz7HWNsxUD0FF589RNszkAAJkECmCKRzvLE3ru4+HAY4hlkE+C17/kSRdV1kz6cdZePi5rJ+YTMpX9LU+90/+rS4s23d/O3//dtM9e6LYEfjiwRhP8Tx7GmzToLNK95+71Yz5ZROE+Xh8YOlbHFTKV/aRDYsbCYblzSTw58XyJM3D5ferWq+RoEHgfjFyzveeY43mbpqYnJyzkmAYt909ZKEDMx4nS7Kee/dmlZjpLDZSClscaVgnYJU/7q0HCWd8KmRpld4i51gP9O/ji3GSscWV0nHFuOkU4sxKfn1aDlFBgQs0AL2uAkIMyz1HAxMtD0DCZBAbhP4bnW59O08Ma6zF9c+FktSYyuKrkac7niNrOUoOXLmW/KzpzfIMYtKpcuLG+S9ir01wGEtAnwB5jdLS72vv/z3kyUy6o2Nsn3b97J9227ZkeRv+/bvq+UdLJfDJcPk8LetY7+SYSIHy6vOI24y8rwyl2yWbZc+KlvPjH0Le99zZ4us61jTWbCmUKS0o+y+9y/epxDt1w3qsiaBNzbmxf/yEIxStDnanoEESIAEMkUg3eNNvHEJDgI8Wf946WCR0i4ia7rK3s86SvkzLWT9gqbeE/hNS5vIuDMu9qbvx8sv6Lx+eUFt5rAt4gblE3QcdeibN1NGnf4n+XBOJ9n8zHGycXEzrw6oC+ok6wplxUuDvPridYSgvOp6nONNpq6amJycdBKsWVUWaTZBXQ1Mv84btWOGXZS5dA6exlT9ML3IjymOReWqswjQ9gwkQAK5T+D2G5+N9OoY9BAWfgrSIX7HoXOKmo2UX589X/7zyVL51ZJS+cnCUjl26Tq58J3NctuXO+T65dvltNfK5aeLSuVni0rlF0vWyf+Zu1KKTrlNfttzqpzS52oZ0vfaOv9O63ONDOo+VV7/5+fVjXWgVA5vudv7yYHSquOIg7hIU1eZg3vPlOF9r5Y1Z91b+XWD+bLtwrtl37PneLMXvPUJSjrJoa+7y575l8ZWwD57btJfN0DboI3ijW94VQxtzkACJEACmSaQzvHGbwxyj/VuOUOu/cslImvhJCj0HAUHvuwim1/O826yccM9f+wpgqf0btoo/+MJOxYDhK0c5ZfowoFwEJzeZYI8OflE2bComcCpgdkDcHKgDqgLnB+yrrO89cSp0jev5kyCKHWIEofjTWavnJx0EgDRHZ6BGX+hO8/AzE/MwAzqqHjKYhfgiGcU8Xy14Rj0DlKMaXW8IGaYRYA2ZyABEmgYBDaVbZeTek6L+6UD1QmJvD8JJ4E3M6t1sfzH1e/Ifz25Tn6xODZb4KiFJd7aA1h/4CcLS+SXS2JOgv/12Do5+vKnpUuzkd5Mro7Nr0x62/a4EXLGiddJ2cbgryvgHOIgbjIy2zW7Qvrnja3+BOI5c2XrWfM9Z8CO4mvl+1vHyvc3Fcv2kbfI1jPny9azY5/KSmYmAdpE2ydsiwVn0dZocwYSIAESyDSBdI43QfcM7vEerSbJTcXDZe/X+ER4oYguIPtuW9n2t+Pllj+dXWcngcqCrR3lp/GjbDETAvGeu6afbHvuWG/mgzcDYklz2flu25gTenWRSEmh7P6ym4wZPkL6pMFJwPEm01eNSM46Cco2bpWTI3xKSw2Xvq3r/q1rexH1LJggmKbDX3QGWMAFMwYsR3g90SbaPmFbGJhoa7Q5AwmQQMMh8NiDr0WaTQD9AJ3r6hGrU+x+98pP5RY2v0Jad7ta/tcNH8v/80iJ/OiJtfLThSXezAHMHjhmQYn89+Ml8j8fKpH/nvAv6dRmvPcaWZg+SvRcuyYjZfipN8n773wth/B+Q2XAPo7hHOIkmq8bHwtRDWxdHHMSnDtPtg6fG/udM0+2nvmAbD3jQdk67MEqx4Ge33XuPHnvlDulU6tR3urcUVe7RlugTdxy+P2PWQRoawYSIAESqC8C6Rpv7NgTtt+11Thpc/xYueycP0rJu71F1neOvX5Q1llWvdzL+0oAnti7eeAzifqJQcw06Jc/w1vjwI2Xrv8h7/x+o6R0QQtvwUXMIMDsgf1fdI7NHoCDYF0XKX23t/z57D9K1+aTatUh2bJxvKmfqyZnnQTA9dgDr0lRpTHoZ5jYY4kYmMl2ZqaP/x5SQhd8XrHX1vVziVAqCZBAugjs3r1Pzj/jVimq/M601dl++1gpGg7GeDoW8XQKfFHzK6Rd5yly5KgX5H/c/bX3Gdv/+eBa+R8PrvW+VPN/3/6F/PyPT0mngnHeejN+cpM91r7pFVKUP0b+eM7tcu3UBd4P+ziGc8nmj/RYqGpg/lj5ZtCdsu2M+2XzGfdF+u044z55u8+t0qlldCcB2iDKJ2tRLrQt2hhtzUACJEAC9UUgXeNNvPFIz+sq/22bjJXB3f8iD900VN5ZPEge/+sQOb3vX6Rn3pRa4xtu0K849VJZNG2APDerr9x40Tnyuz6jvTEQDgM4D/oV1G1q/wmtp3tpkQfywq+/z/phcFL8ccAVsm5hM6n4W0vZ/VGHytkDXUW+KxQp6SKvPHyyDO4+Qto0wQPE4FeMlUUiW4439XXF5PBMAiDbs2e/XHDmbQkZmIl0TMaNb4zXlVEiBibaGG3NQAIk0PAIfPDO19KtdXHcTyLqjTQ+VRumd2BQII46CZDOW2y2xZVS0GOW/Obs+fLTSxbJzy96So4fco+06zxVippdUWsGARZU1RWZ67JFGbTM2GIhxfZNRnqvFeDVAuzjmI2DNHWRhTS4Ge/Waoy80uUG2dzjDinvcXukH+Le3/FqaZ+Ak8Ctm61Dzf0xXtuijRlIgARIoL4JpHq8CRuL7DmMS1gHQF9Z7th8jLRrMlZ02775GG/tHcTTdJiyX3zGRbJuQTPZ8sxxsvnp473fd0+0ktf/2lXuG3WaFA+7SIb3GustFOh3g695YYubfc8ZUOlYOLnDZDm39xgZP+wiuesvZ8isC86T0wsneDMVbDo4E05sN0U+fqKftxCurC2KOQfWdZHyj3rJ1Vec5y1y3qFZ7Ktz+FqZTZ/sPseb+rtqcnomAbC99/ZXKTUwk+3MTF+t4IJYJHrBo40ZSIAEGi6B66cvjPzFmi5YJT/Op5QwUwmLN9W8YY05C7Cgof3BgeDGS5WRgycq1lnhytH/ESfZpy94ratjq9EyKH+cXN5mkve7rM0kCfsh3p/aTJSeeWMiv24Qey+0Nluti91iLRm0LQMJkAAJZAuBVI83Qbau33Gsw2V1pO5jDLCLCXqfTWwzXT54bIDseq2lbFzS3FskcP3C6q8hbH7meG8BwTVPtJJF0wbKKZ0mBX5GEbMNLht8udw9Yog8MelEefnGnvLxvR1lzeOtvE8YYuHELc8eJ+/P7ixndR/nOR1s+fvmT5fhA6+Q95YOkl1fdJMtn/WQxbNP82ZE4BWKzi2r1xZL9LPFVo67z/Gmfq+anHcSAN8NCXxzO4qB6XZS/h//xj8qo0QveLQtAwmQQMMmsHXzThk66FopjPjaQVHeGG9xpiC94z61UUMs6jaeEyJIrnscT/j9nBVuORAHcd30ifwPJwEMTbx20K7lqIR+SIcnXPE+gYgFscDeLb/f/2hLtCnaloEESIAEsoVAqsebRPQ04uJBmTsuFDpjGpwEJ7afKqteG+AtCIj3/3e+01YqXmxV7TBY0FQ2VDoNtj93rDxY/FvfrwpgBsF1F57rfZXAm5HwzPFS8fTxUr6kibcIIfLAQoT4bf/bcfLo5FNrfYqxf5sp0rHZWCnMGy2n971MTuo2Qto3G+PNhFD9jzqhbonyCIrP8ab+r5gG4STYXLFDzhx8QwIG5thQAzOow/J4cs6C2AUfbaErGJhoU7QtAwmQQMMn8PbrK6R7G3yxJtpNaJR1ZjAjQKd3qiETttWnOanU9XA4oKzI25WNYziXCqeEOglcGVH/j+ckSGQdGbQh2hJtykACJEAC2UYgHeNN1HEDTmw4haGzi/LGels/J3GfVjPkhXuHiWzsJLKmyFsk8PCqItm/orPs/rC9bHu1QCpeaCVlS5t7Mwo+mtNRTmo/ucZsAiyEOKzbePnqoXwpX3x8lTMADgF8yhBpkQfyQp6Hvu0onz5zkmDmgK1Pv9ZTvPELMwY6NK/pHIiNY+O8OtnXJWz6RPc53mTHFdMgnARA+earX0R+7UA7NDphoh2X8evmKIhd8NGm3sLAxDvKaFMGEiCBxkPgzpufi/y1A+hxOAHC9DjOdat8wh7lZrlXij6X644TKAemkmLhKhiF+GEfx8LK7+YT9n86nQQeR8/hUtvR4ccVXzNAWzKQAAmQQLYSSPV4E6afg86dYNYgcOP0z58uZ/Qslo+eHRj7ZOK6LrFtpcNA1nT1FhA8+FUXOfBlB1m+pI8Maju1hpOgb94MuXTwSNn2zwLZ/lqBbH+jjex6t623+OC+ZZ0EaeF4QF7eb2NnWXrnWdK7Zc3FEDEGYNzCuGt1PmYP9MxP3TgGBhxvsueKaTBOAiCNXfB4ElWzE/v9X21g1u2m172Y+X8wRyjB2BO9+O2CtsJ7rDQws0dJsCQkkCkCWKD0kvPuTMhR0D1/fFxnb++CCZ6BA/0C3W9/OIb1APBJ1nTqcX3CAn2ohqEeS4XcdDoJwNg1Dv3G1Zj+LvbakIvNZuqqoRwSIIG6EEjXeJMKfa55FLYYL93bXClX/O5CWXTXabLmjb5y8NvYJweltNJpUFoosqGLzJ54ofRuObPGOObNJOgxQbZ+2lsE8dQZ4G2xAGFRzPGAvDZ0ltWv95Vz+xdLP2cmAcqDGW9wFKjuh6PbbwaElr2uW443denN6UnToJwE+LzJpb+fnYCBOUqiGJh17ehMF3McxC74mqt4q5Jxt3gChTbk57LSc8EzVxLIdgLfrS6Xwb1mSKExRlw94f7fPcJqyng6AUcAnt7j3Xv8sJ8OIyfTuh/OBrwLGvVG3uUX+99/QUiw9Y9f2+mLNkPboQ0ZSIAESCDbCaRrvEnVGOC9qtZytPclBHw6sWe7K+X8Uy+Rm8cPl5cfPFm+fKW/LHvpBLlh7HDplT9BBvh8whCvLdw0+gLZC+fC+i7iORdKuoisLpLty7rLN//q5+V1Y/FwGdR1hHRrObHWpxi1PrFxdHLaxk2ON9l1xTQoJwHQrl5VJif3nhl5fQIYVVEMTL1AuA2eMeDHBmyjGq5YhwBthzZkIAESaLwE3nx1ufRsh1Wgo61P4Onx/PFVT+j9dJEeww21/enxhrCFEwTOgrr8XGcJZjsk8kQHbYU2Q9sxkAAJkECuEEjneJPsuOLOEOvUcrS0bzpG8EWBdk3HSteCUd5igvicYlGrcTVmEahs6PJOzcfJBadeIrdNPltum3iOTPzT7+WiIRfLKb0ul26tR3l5Ic+OLcZ4r8Jp2kxtOd5k59XS4JwEwPzGv5ZLjwQMTDwlgTEED1mmLoiGLgcswTTqEygYmGgztB0DCZAACTz2wKtS5H3tIKqjYFTcNQoaut5F/awDJJF9ywb6O7FFH8d4bYU2YyABEiCBXCOQreONLvgd9LANCwnq5wcx68Dqcd2HAxi2OL5GAEcAfpiV0L7pWO/rBJoecSCnR4RX+DTvVGw53mTv1dIgnQTAjQs+9jmtqAZm/EWwUnExNIY8qi/42tNR/Z0GY7y2ooGZvYqCJSOB+iBw86zFkV8fUwMH6wvAsGoMujYddQQ7MAwySv10OF4TQ1sxkAAJkECuEsjW8aZ/1cK3xVWfTnS/2gN9HfuEbe3ZvtDp7icX/fQ48kA8d1ZZOsYZzZPjTXZfLQ3WSQDst8xaUgcDk59H1Iu3LtvYBV97BVQ/haTHivKKvbbK7kuFpSMBEsg0gQP7D8rEUQ95i5mqvoi3haGDxZVS8VnBuujAXE6jC1Ml5iAYL5PHPCL79x/MdPegPBIgARJIGYFsHm8wKwxjC2zsPgUTvaf9cObipr4oD18YuCr0dTusv4OxE7o99qteJwx5IK8e+VcJPnWYqTGM403Kum7aMmrQTgIYLZNGP5yQgYmLCBccDcza3sh4iiN2wUebuaGGPr5kQAMzbdc3MyaBnCew+/u9csXF9yWsx/EKE97Nj6e3eD6m68Eq6hoQVn+jbdBGDCRAAiSQ6wRyYbzR18gwdp3QemrkV6X7FEzynAt4nQBOAzgbMGsAeSAvdURkYkzkeJMbV0qDdhKgCXZ/vy8pAzOTF00mLsx0yACj5C74fblxtbCUJEAC9UJgx/bdMuKie+rgKIi9X4lXoKjLazt+wQRsYDTqjX/ULRy8aBO0DQMJkAAJNBQCDXm8gc63v3TcEwTlyfEm966QBu8kQJNs3/590gZmUKdv7MeTNTDRNgwkQAIkEI/A9m111+NY0Akr/zd2fe3WH0zAJqpjQOOpgwBtwkACJEACDY0Ax5vaTmV3/Ej0f443uXeVNAonAZol+Qt+Mg3MyneiVDHg9QIamLl30bPEJJCrBOBUrNurB7FFVGPvbfIrNnDugoXe9CeyhYMAbUAHb65eRSw3CZBAFAIcb1LjKOB4E6W3ZWecRuMkAH5MIUrKwCy4ypuaiSkzeqPc2LY6XahnQXIGJqeoZqdCYKlIINsJ4BWy2FozxQm/Q6+LGuLdzMamu7W+qDsWdkxkccKYEwELZBXL5DEPe6/xZXs/YflIgARIIFkCHG+Su9/heJNsD6zf9I3KSQDUWJQktlo2DUw1GhPZJnXB58PAfISLXNXvNU/pJJDzBLAoLb5ek8hnbt2n5d3yijP6qadE9Gw64mKBKtTZ5RDt/9hnam+9dqns338g5/sPK0ACJEACUQlwvEncUcDxJmrvyu54jc5JgObAZ06876HmjUv4SZQaVN3yYWBOaRSLYWH2AOqKOmv9E9viCdQ4z6jnZ7KyWyGwdCSQSwQee+BV6dHuqkpnQeyVgqi6SZ+kY9E+fFYqHTfm2ZAn6qYLE2qdozJCPDhiwBisGUiABEigsRLgeBPfWcDxpmFdHY3SSaBNiAu+p2dgJr5wkxpbamA2xFcQUKfkL/ixHmMamNrruCUBEkglgTf+tVxO7j1TiursxBztfWsauly/EZ3L+lzLjrqgTvgGdiJOARsXTMEWjBlIgARIoLET4HhT01HA8aZhXxGN2kmApn3z1eUyuNeMOhuYcBbACIsZmLHFDfWiyYanSImWQcuOqUJqYKpDxBqPUfZhYIItGDOQAAmQQLoIrF5VJpf+fnblJxLrdlOseq57frH0rVyzQPVhonq0PuJrWVF21AE6WusURV/XjDPGYwmmYMtAAiRAAiQQI8DxJvYZRYxzHG8a9lXR6J0EaN61q8vlkvPurHQU1N3ALGw12jPOYgZmbn2XO2ZgTq264FGX5AzMYo8p2DKQAAmQQLoJ7N69T+68+Tnp1rq4Tq8f1LxJHu19uaVX/oSsnl2gjgHMGkBZ6/K1GbfeeL0ADMESTBlIgARIgARqEuB4w/GmZo9omP/RSVDZrnv27PeMou5txqfMwOyZP6HqXVc15urjCVOQTC0TXilAWVNlYIIhDEwwZSABEiCBTBJ489Uv5MzBNyQ1q0BvnOEoxUyxbnnjpFdBTYeB6s8g/ZqO45Cpcj3HQMEEr2woY92durqWQ2z2ANiBIQMJkAAJkEA4AY43On4kuuV4E96zsuMsnQROO7z9+goZOujaFBqYo3PAwExm1oAqhtgFD3ZgyEACJEAC9UVgc8UOuWHmIu+JOBZN1Zv+ZLZ6Ew5nKl7Fwpde4GDFN6DhELA38KlwENj8IAOyIBOy1aGrZUqmXkgLRpg9AGZgx0ACJEACJBCNAMcbvQ+ItuV4E61fZUMsOgl8WmHr5p1y/fSFKTYwRwmm8FcbmBMrDczYIiDWIEy9gRlbgLBPwcQqAzP2OsGolBjPesGDGdgxkAAJkEA2EHjv7a/kgjNvk6I8vIKQ+AK1QTff9ua8KG+s95pZz4KrBDoW67lY50Ei+lydAcgDeSFPrC8AGVoWK1uP1XULJmADRmDFQAIkQAIkUDcCHG/CnQQcb+rWr+ozFZ0EIfQ/eOdrOf+MW721ClJtYKqh5xqYfVNgYCIPPwMTMlVuXY1Km8674POLPUZgxUACJEAC2UYArz099sBrcnJvLFCb3Gr/Vv/Z/ZhurXa6Yvo/dDucwnhVoXtesXezj1kA9gcHAM4hDuIiDdJq3p1bjUqpztZ8vfLlj/eYgA1fDcu2XsvykAAJ5CIBjje1HQUcb3KxJ8fKTCdBnLbD4iSPPfianNRzWsxZYAw4NbiS3cY1MGFI5hfXMC5haHoGZn59GZjFHhOw4eJWcToRT5MACdQ7gbKNW+WOG5+V/oWT0+YsCBsLVM/Hbvxx858eB0BYGdRYO6FwiscCTBhIgARIgARSS4DjTWw9HzjmOd6ktm9lMjc6CSLS3lS2XW6/8Vnp23liStYrCDPk3HMx4xKzANSw1G1qZwa4cmv/H1t3oF/nSR4LMGEgARIggVwisGZVmdx09ZJKZ0FqX0OorTNrP1Wpjzg66wsOEtQdDBhIgARIgATSS4DjDceb9Paw9OZOJ0GCfL9bXS43zlwk/bpMSvlrCPVhPEaRqQYm6oy6gwEDCZAACeQygbVrNsldtzwvv+07s3LNgtQscBhFp2YqDj5niDUHUEfUFXVmIAESIAESyCwBjjeZ5U1pqSFAJ0EdOZaWVHif+RvsveeKhaUanoGJOhXlFwvqiE8aos4MJEACJNCQCGBl6oWPvyUXnnW7FOWPzXnnrzp1URfUCXXjFwsaUo9lXUiABHKVAMebXG25xlluOgmSbPctW3Z6Rtgfhv1Vuhbgpnp8SlfRztQTJ5UTMzDHe3VBnWBgoo4MJEACJNCQCRw4cFA+/mCl92WbU/td7elxOEmhE1U/ZutWHQPYouz40gzqgjoxkAAJkAAJZBcBjjfZ1R4sjT8BOgn8uSR8dP/+A/LJR6vkuukL5ZS+M8Wb5plzBuY4r+yoA+qCOjGQAAmQQGMjsGP7bnn9H5/LNZOfkiEDZ0kXfK0gf7w3Y6wwr/rrA/XlNEAZYjO9xntlQxlnTXnKKzPKzkACJEACJJAbBHJxvMHYiDGS401u9LG6lpJOgrqSC0m3Y8duee0fn8vMiY/Laf2vlq75OsNgnGSLgRlzYoz3yoYyzpz4hFdmlJ2BBEiABEggRmDXzj3yyYcrZe7dL8tlf7hbTuwxrdpp4DmCVa+nw3kwxhsz1OkMRwUcFijD5RfMkbmzX/bKhjIykAAJkAAJ5DaBbB1vMPZhDMRYyPEmt/tYIqWnkyARWnWI+/2uvfLJByvlvrtekj+fP1sGdJtSaWAWV777Oq7yu9hpMjBbwciMrS2AqbMwMFEGXPD3z/67d8GjjAwkQAIkQALxCVSUb5f33/laHpn3qkwZ+4j8/oxbZWC3Kd4rWlbXQt9i0UA88cdxvArg/8PigrEFBr00SFfpfMArbMgbMiALMiEbZWAgARIgARJo2ATqY7z53dBbON407G4VuXZ0EkRGlZqIFZt2yIfvfiOPzP+XTIaBOTRmYGKRKT8DM9y4VKPT38BEnp6BOfRWTxZkQjbKwEACJEACJJA8gUOHDsnmip3y5fJSefWVf8uCR9+UO258VqaNf0xG/el+ufjcO+S802+Ws397gwwZMEsG957u/bCPYziHOIiLNEiLPJAX8kTekMFAAiRAAiTQuAlkYrw5eJDjTePuZdW1p5OgmkW97OFixGqnK5aXyGuvLJMnH35dbr/pWZlW/KiMurSmgXn6gGvkpF7TvB/2axiYl97vpUFa5IG8kCfy5gVfL01LoSRAAiQghw8f9hYQ3L/vgOzZs08wcws/7OMYFrBCHAYSIAESIAESSIYAx5tk6DGtS4BOApdIlv0P2xFGpGdg7jYG5m5rYGZZoVkcEiABEiABEiABEiABEiABEiCBnCRAdkLx4QAAIABJREFUJ0FONhsLTQIkQAIkQAIkQAIkQAIkQAIkQAKpJ0AnQeqZMkcSIAESIAESIAESIAESIAESIAESyEkCdBLkZLOx0CRAAiRAAiRAAiRAAiRAAiRAAiSQegJ0EqSeKXMkARIgARIgARIgARIgARIgARIggZwkQCdBTjYbC00CJEACJEACJEACJEACJEACJEACqSdAJ0HqmTJHEiABEiABEiABEiABEiABEiABEshJAnQS5GSzsdAkQAIkQAIkQAIkQAIkQAIkQAIkkHoCdBKknilzJAESIAESIAESIAESIAESIAESIIGcJEAnQU42GwtNAiRAAiRAAiRAAiRAAiRAAiRAAqknQCdB6pkyRxIgARIgARIgARIgARIgARIgARLISQJ0EuRks7HQJEACJEACJEACJEACJEACJEACJJB6AnQSpJ4pcyQBEiABEiABEiABEiABEiABEiCBnCRAJ0FONhsLTQIkQAIkQAIkQAIkQAIkQAIkQAKpJ0AnQeqZMkcSIAESIAESIAESIAESIAESIAESyEkCdBLkZLOx0CRAAiRAAiRAAiRAAiRAAiRAAiSQegJ0EqSeKXMkARIgARIgARIgARIgARIgARIggZwkQCdBTjYbC00CJEACJEACJEACJEACJEACJEACqSdAJ0HqmTJHEiABEiABEiABEiABEiABEiABEshJAnQS5GSzsdAkQAIkQAIkQAIkQAIkQAIkQAIkkHoCdBKknilzJAESIAESIAESIAESIAESIAESIIGcJEAnQU42GwtNAiRAAiRAAiRAAiRAAiRAAiRAAqknQCdB6pkyRxIgARIgARIgARIgARIgARIgARLISQJ0EqSx2a6//no54ogj4v4GDBggEyZMkJUrV6axNLGs33jjDbn00kvTLocCSIAESCCXCEA3Wn39wx/+MKHid+jQoUb6hBKnILIdb1KQXVUWGJ/ABVsGEiABEiABEiCBxkGAToI0trM12qzxGbYPZ0G6AvKmsZcuusyXBEgglwm4TgLoyueffz5SleDgdfV6pIQpjGTHmxRm6zkHOG6kkijzIoHGS8DqKejcKKEuaaLkyzgkEEQAYzod4yJ0EgT1kBQcdxUbFKL7e/zxx70n+3hqpUZmup7084lQChqVWZAACTRIAn5Ogqi6eM6cOVX6W/V4piHZ8SaVsjlupJIm8yKBxk3A6ik6CRp3X8jW2uPhQH2N49nGhE6CNLaIVYbxxMBrZaerRn2CFS9fe57GnqXBfRIgARKoJmCdBOq0jfrKgepu3cLAyHRIZLxJpGwcNxKhxbgkQAJhBKyeopMgjBTP1RcB20frqwzZIjfzlky21DwD5Ui0o8FRoMbpcccdl/IS0thLOVJmSAIk0EAIWCcBZhDok4R4Dlt91QC6O1Gdn0p06ZLNcSOVrcS8SKBxE7B6ik6Cxt0XsrX2to9maxkzVS46CdJIui4dzaYJMk5hlGJ9AfvUCgYt/vdbANHmqYavbl0lXVFRIZg6q4ahxoPTAoazGz+N+Jg1CZAACWSMgHUSQGeqDjzzzDNDy6BrvUA/Wl0blAhykKc6hFV3Iy30b1iA7occTYst/ke6qLIRH/pcdTvGjTDZygFbBhIgARJIhoDVU1HtybqkSaaMTNu4Cdj+1rhJcE2CtLZ/XTqaPpWCAQdjzg1Yw0CNu6AtDMdPP/20Kqkth5vGKmmkUePTjWf/RxkYSIAESKAhEXCdBFbXht286w03nLpW17pskAd0utWl7r6ru20etjx+6eB40OM2ne6rM0PjuNsg2XQSKEFuSYAEkiVgdaS1P8PyDUqjuheOzrBgdafqctVryBsBW80PuhHno9i6qENdHa+QCbtbH/hBByMv6/RV5yzGF42H8sVz7ioPv/Jp/fBAUHlofGWhcXDeji3Yt/cXiA9OruMbdcGxIIYuf5TFrZ9N6+cg9yuLrUdQ2YLa1toAqL/9aT+x+fuxjdcutt5BbW9l1Pc+ZxKksQXQqbSTJSIGF5deoDad7cDuxYHOZo1AVSw2vXZOv3NQBCoXndzOYsDFiQtYz2Prp1isLO6TAAmQQC4RsPoVuhs6TvW3NVZsnaB3EQc6ESFM51sHgdXfkIP8rX51jTBbNuhn/I+AtFY3a3m9k+aPLZeVjSiQrcYxygB9b0PYuGHjcZ8ESIAE4hGwukj1WF3T2LxcvWXzhM6DbsRWg+o15GFvTlWH6hbxguxda3NrfLuFPnV1OeSrbJRH9b6mgy5G0LohbpgcxPeTgTzsmKP5u1vU3a2fysY5PzbKGun8zrsyUA43KAPULSwPnEf9XE4qw2/MgiyUTWVoXHcLubbudpx144KJDWFtgrTJtL2VU9/7dBKksQX0QkOHSSTYjm3TqaKDUrAd2y+On0zNF1s3wNDUiyJI4dg4UZW7K4f/kwAJkEA2ErAGghoEqnOtcWnLroaCGkFBOt/mrXFtPti3hpCro1V3B+l+m7+r+2HQqW4Pko3xRI0wN47Kdsvklp//kwAJkEA8AlZHQm9FCUFprG6DfeoXbBzr7FW9pnoP/6vtizSq+6E7oefdYMuEuJoW8aI6XpE35CsHyNV9zV/LB92vD++gr/U88sDNrhvseewjbw2QofVHepy3wabFeWULuVoGxNc8UEbUWe9LNB7KjPT4ab1UjqbV82CsZQRL6zhA/m797f2IO2bZsiF/W39lp1zjsdPy2q3lk462t7Lqez+xu9f6Lm2OybcdKZGi24vHpsNxXCh6wdpzuh8mU/PF1g24QHGxBBnDiI+LXC9o94J38+P/JEACJJBLBKx+gx5FgOGjOk8NIFsnNYLUQAzSvzBikA8ME798NE+bXg0mbLUMYbrfGrWaH7bqyEAeUWXbeGHjhpXDfRIgARKIR8DqONVriWxd21P1k9/NHsqiN5PQvTZoOsj2s4kRV/U24qg+xnGrk/1uUBEHOlRvRN04VrZ1XNjyWU5B44Ydn9x8VHaQTY/y6fjl1t/KdsuuZcSYp+0WNC7ZOMjTBsvAzwkDZ4Tm7/LXfLR93LYN46Jp7XjvsrP11/i6zUTbq6xs2NJJkMZWCOtoYWLtxRMWz+9cmEzN11UIfvn4HbMXlauo/eLzGAmQAAnkCgGr39SggSGlhoprSKgBBENLQ5D+VYMtyODS9JonZKo8a/DgfFCw8WycqHrf1t/q96jprUzukwAJkIAfAasjVbcmsrW6CflbvWdv5FW2PpF2da/qNcj2S4f0Vv/bG9lUOV4hGzL8guWkY4FfPK2fdZJgnED9MO6EjRnKAFsbrGw7c8DGQZlUhj3u7mvbIk8bVHYQf8s+yNFhy2nz9mNiz+u+lsGyw7mgfHEuE22v5cuGLZ0EaWyFsI4WJlY7rusd80sDBQClCVm4kNQYxYXnBs0X2ygBihN5w0sIBateR+TtKuoo+TEOCZAACWQrAeg0P4NGn9C7hooaC9Z4DNL5fvkGcXDjBuXpprflt+c0v0S21ihNdNywsrlPAiRAApaA1WewLaG34v30iTF0GOLaYG8mrS5GHPvU102nes29QbR5Y1/jWbvZ75ibDv9DpupdK1/TWwezm95yCnIkII2N5+YR738th62bm2eQAyVe3npe649y2qCyw+5zgtJqPkF1j5cuXvqgfJFOy+0y0zx1m0zbax7ZsK19J5kNpWogZQjraGFV1A7u1wlxwbo37Brf3boy4nVuKCKUWb1wbn72f6vwXDn8nwRIgARyjYAd1KEHNdgnVdZYU4esfVITpPNVd9p8NX9368YNytNNZ8tvz2l+iWxtOeONG1YW90mABEggjIDVZ1HtyHhp1Ing3nRrOvc4yqd6DWnDgjqDoT81JKJLNW6ijtewsms5sLXT8uPxxHnER95af5QP+zaobFtnez5oH+MjZKCu4GbvJZCnDSrflW3jKDs3rcbxKyfka7pEttYZ4pevykwkT42baNurrGzYVvf6bChNAytDWEcLqioMTu1YrlfUGqsaB4YqLjLE1QtTz7kywi5KyFWjV9NjizRQovD4WvnxlJErm/+TAAmQQDYTsMaFNUpg+KhO1MFeDTPX+AzS+Zre5hvEwo0blKeb3pbfntP83PHExgnbDxs3wtLxHAmQAAm4BKw+i2pHxkuj+hi6zjptoZ9xzE/3qV6Lp5OtbK2L6tREtlaOysY2KKjcsDhIa/W+yxP/uzOM/crsylDZiBsvYEzU+vjlrcds/ZGnpnFlW3lBaTWOXzktD00fZWvZ+eWrMqPk5caxdY9Sb5WVDdv4PSAbSpmjZQjraEFVgjLTDgbFp8FOm4J3DufsUy2NFyYzrHOqMoWjABe99app3vbisxeUnueWBEiABHKVgNVvdlBHfdxXDvTJlbtgU5D+VQes+8qCy8qWQR0S2OqYYA1gN601lO051fvxptXaNHZf02PLQAIkQALJELA6MqodGSWN6lh1CNgHbn72rOo1jR9UJ7XJkb8G1cfx0mp8d6uyw3Sq1jme3rZ6344POkZpWbGFnQ+ZyBvpgsqhspEmKOD+w84UUDk4hnEOedg2wP82BMm2cTRPN63G8SunHUNRx7oEv3w1Hy1TOtteZWXDNrgHZEPpcrwMYR3Nr2pQZKro3CdUMEa1c4Z1fKsYXCdC0EVpL+Swjm+N1bAy+NWNx0iABEggmwlY48I1Sqzug15VPe0an0E6X/Uy0rl62TJRgxS6XvPGVnW/Wy6bVmUgrg1+edrz8faDxo146XieBEiABFwCVkem0kmgek5tZ/0/6CY7ql7zi6fHgvJ26+z+r+mxDQqWU1AcHPeLZ8cr3LAHcQ4qh1+ebhnseIP41kFh4waNXUGyo6TVOEHlVJnoA3UJQfkiLy13Otu+LmVOV5qa1kS6pDTSfMM6mosEhiA6nXZu9ybc5hV0wdubfeTjxtPOja0NiKdyIccvwLDV2QaIGxTPLy2PkQAJkEC2EwjTg9B/qiPVOPIzEqyetvW1eSO9X4D+VueDq6N1JgPO+xljru63+Vsng5uvjadGNeKogwLn8T/qHpbW5sN9EiABEggiYHWka6Mmk8bqQOyrverO9lIZqteg24Ict1bv23xUVyKt1ZWad7ytyg7TqZaTez9g89f7BjtLTceLsLohD2XkjmVWtpVl93WsctPaOHbscW/YozBA+fFDefxCUDmViTqM/NKGHQvKF2ky0fZhZcv0OToJ0kjcdjQoQ78fFI8anXpBuBcTimgVIC4Aq1xxDrL0otV8bBzkoZ0b8VzFpmmxhRdSA+Lhf1UmmjfkMZAACZBAQyEAfRmm31w9bY1GZWB1vh7TrU0PIw56GwGGKHSs1cF6TtNCD9vzVkfbtFp+Tadb1f04D+PMGp2QZcvmGq5RjDmVwy0JkAAJhBGwOtK1UYPSRU2jN4dWnwU5AFSvQScivl+w+VibGfuqa119afNRvYs4Nr3KDktr64x6+dUDul/LYccEzR/nggLGL03rxrOyg9Jr2rA6WGeFG0/L6B638lQGyuMXgsppuQSlRX7ginHVOlhwPChfnMtE2/vVtb6OBfeg+ipRA5JrO5p29njbsA5tFZZfPujs9sK3hiCw2gtH02scv3MaR7comzoL/BwZDajpWBUSIIFGRiCekwC6UnUhttboU1RW5+sx3cLIi6LDXQeBpsdxdRTYcui+Ncg0jd3Gk418YLC5xmgUY87K4T4JkAAJBBGwOjLVTgJr/0KfuTd/tkyq11R/Qj+qTsfW6lM/u1wdAKo31ZaGjFQ4Xi0nyMANrY4N0NH2vHujbTmgHlovlA3M/cYCy8bmbY/bfZePjhvYgoXL1y2jnnePWxnaNn78ES+snOowQh6or7JDOrd8bv52rLftqmVLd9urnGzY0kmQxlawHVg7u7uF0YeLBBe1vZCDioWbeb24NC9Nrxep3sjjwnADyqTnkd5eHFAeuPCtIYoLDReElk2VC/JgIAESIIGGQgD6T3Wq1Yu2fqobgwwbq/NtOrsfpGcxBqgOt/HtPs5DH1sdDp0NQ8aW36ax+4gDHW7To07IA2OLX9DxJqjOfml4jARIgAT8CFgdCX0UJURNAztVdTi2QToNMlWvwca1N5Q2Pfahb4OC2sNuGvs/5Lh6XWWH6VRb5zA5fvlDXlidUD617bWstoxWdlDd4zmtkS/GFfxUns0rCgMtG8rjF8LKGYUB8vdrX7cf+cULaxMtt1/bRKm3X13r6xidBPVFnnJJgARIgARIgARIgARIoJEQsDd2qXYSAKHelML5GRbszRpuKFEudZ6q4zRK+dLleLWcUA84POyNP8of5gTROtk0Wi9NZ2+G9RhkubKDOCK963QGQxxTdshXb5oRX4Plr8fcraZDefxClHJCPvoE6q75uWX0yxuOd8sO5XVDutrelVOf/9NJUJ/0KZsESIAESIAESIAESIAESCBpAuokwI1qWIhykxqWPt3notwAp7sMzJ8E6CRgHyABEiABEiABEiABEiABEshZAnh6rk+L9Ul2UGXoJAgiw+MkUE2AToJqFtwjARIgARIgARIgARIgARLIMQL69B3TyeMFOgniEeJ5EhChk4C9gARIgARIgARIgARIgARIIKcI6KKt6iDATAL7fn1QZegkCCLD4yRQTYBOgmoW3CMBEiABEiABEiABEiABEsgBAnZBOjgIcPMfJdBJEIUS4zR2AnQSNPYewPqTAAmQAAmQAAmQAAmQQI4R0E/RwVmAfaxLECXQSRCFEuM0dgJ0EjT2HsD6kwAJkAAJkAAJkAAJkAAJkAAJkEAlAToJ2BVIgARIgARIgARIgARIgARIgARIgAQ8AnQSsCOQAAmQAAmQAAmQAAmQAAmQAAmQAAl4BOgkYEcgARIgARIgARIgARIgARIgARIgARLwCNBJwI5AAiRAAiRAAiRAAiRAAiRAAiRAAiTgEaCTgB2BBEiABEiABEiABEiABEiABEiABEjAI0AnATsCCZAACZAACZAACZAACZAACZAACZCARyAnnQRHHHGERPnhO6gTJkyQlStXsrnTSOCNN97wvk/rirj++uur2sk9x/9JgARIIF0EoowPQXEwbmQqQHdqObCfqkDdmyqSzIcESIAESIAEGieBBu0kUOML28cff7xxtnCaaw0nDPj6GdY0VNMMn9mTAAn4ErC6P9F9P13mKyQFB+kkSAFEZkECJEACWUQg0THHxs/k+BOGTMsEO56h8RLIaSfBpZdeKjCygn56A6udPZVPahpvl6lZcyg08PVTbHQS1GTF/0iABDJDIGhMwJih48GcOXN8x45PP/00M4UU8eRreVI5PlH3ZqwJKYgESIAEahBQnV6XrZ8tXSPzDP2jZaeTIEPAs1RMTjsJonRezCDQzp4tF1+W9oU6FSvMSVCnDJmIBEiABNJEwN48p/KmPE3FZbYkQAIkQAI5RiBXnNRhWPW+Kcp9Vlg+PJfbBBq8kwDN06FDhypHQW43V/aVnk6C7GsTlogESMCfAJ0E/lx4lARIgARIIL0EOP6kly9zTz2BRuEkCLow9QYX5zHFVJ0JP/zhD72F+CoqKmoQx6yEM888U3BevWzII2y9A40HzyLyw3RXTY8t8ov3RAvpMDVWy6t5HnfccV5+Qek1Hs6jjIiPY9iizjZgcUe8nqEMNC3+91v80TLVuLrV8tg4VpbdR1yXKWQirctf0ykHrQPqZsuN+qHMQek1H25JgAQaFwGrk1RPhRGwOi3VOhRyUQYrw5bFHocuQ9lVh+McdB7GBb9g62nPW3k4Dr1vxyTkC338/PPP22S19oPSKVNb9lqJeYAESIAEGiEBq5dVVzZCDKxyDhGgk6DSKNIbdzVuYIxpgIGmN6Z63t3CYPO7KdV4MDBdGXoOW9zU+gU4L8LSaR7I3w16zr6Ha49pfKTV40FblMG+q2uVnZtGlZ+No7J0C1Z+5bJ5uTI1rbYFmOm+Taf7SM8vWyg1bkmABKxOUj0VRkV1iZ+uwjENddGhSIsyqAy3PHocjgDrHNDjusXY4wZbT3vOyqvrmBSvrva8WydbFu6TAAmQQGMiYPVyFN2oOh7pgoLawNjaoLL0OOTBAax5wj7GGGbtepte47myVZ4eh76vy0M6v3TIUx3ikK9lt+XifmYJNAongXZqdDob7HFcMHrR4sZS9xHfxkMn1htP7cxIi7z9jDW90DSOfSoPGfbicp/eIH9Nh3j2PMoA41HPY4v4NqhsLZuWG3LtvsaDArEKA/sor573u2CVjd85sNK0tlzYt0a3lYs6QHnYetkyIa3K1DhIr/XB1pYZ5xhIgARIAASsTrI6PoiO6i9soYNVz6RKhyIfleGWR4+rnlMDCmWFTlQ9iHjujAJbT1s3Kw/54gd9qwFjjHVIuLoX/2u5EE/HJFdvaxy3TiqHWxIgARJobASsXo6iG1WPIl1Q0HHAtcFVFo5bm1jztFvV41aGnndlqzzkqfsa124xtuh4afPFWGHve2wa7OOcltetk82H+5khUPOuOTMyk5aincrtvH4ZW6PI7XC2g1tDyeaD4yovKI6V4cbRtNj6lddeMHb2AsoAw0/Tu8aaltHGcZWOpsXW72JFHriJxnnIRln8gsZBPDcoQ5ct4qmSctNZXvZpnM0b9YWSQVo3b5WJc1AmfiGszH7xeYwESKDhE7A6ydWXfrWHjtFfOnSo1YVueVQutn5GHPS13tC7OtLW09bLygsy4qwjwB2zVPcird94YdOi3G6dbFm4TwIkQAKNiYDVy1F0o44Brh62zFQnB40Bakfj5ltlQne7DxltntgPkq3yNF/Y2jo2Yqs3+EiPc26wtjnialqMHfYc0rt1cvPi/+knUPuuL/0yk5YQ1HltxuhwuLC0IyONXiAaTzs7zvkZPIinHi9sw4Lm5cbTsroOAJsXDECNZ41BXEDIz+9C0/Sok6Z166fH3TJpWmxRbpTNfRJl41jFZo9resjxu5iD0uksgiBDU2XY9KpIrEzItcc1HbbWeWKPc58ESKDxErA6xdWXflTSrUOj6O+wsUONKlf/2nraell5QQ5axNdxE/logK5VHq4zXONgq/odcaMwtmm5TwIkQAINlYDVy1F0o+pbq4ddNnrvETYGBN0DWDvZLU+QbJWH84k+pLPjT1CddExD/m6d3Lrz//QTyGkngXbiKFu/DqmdPcwI07z90tvmwXmNa4/rsaCLSeNqvHhyNL5u7UUXdJGHGYOaT9g2qG5Iowz9LuagdGqAxiuXfSpljVKViXyCQhiXoDQ8TgIk0LAJWJ3k6ku/mqtejqer/NLaY1auPR6mp1R2mJM4KN+g41ZemGNYdazV69DBWqYg5yzqZp3eURhbHtwnARIggYZKwOrlKLpR9S3SBQU/XY24Vpa1n20+1sZ2yxMkW+XhfNA4YJ0PVp46kMPuuawz2o4/Nh/uZ45Ag3cSwMByO7/i1c4e1BGRTi+URLb2wtF0QReplgWePsQNKovGQ94oFy5CXHC42FSGW089HqZgNF+7heJAXkgHfnpTj/zcEMbQKimbLpFy+cUNk6lybNu5XDQOtyRAAo2LgNVJUfSCn/6JQiyqDg3TU1Fk2/rYcgUdD5Nn0/vp2KA8bTrshxmeblz+TwIkQAKNhYDVoakaf/x0NXhaWdDJQSFonAk6rvLq8pBO71fiOd2j3g8F1YnHU0eg9l1f6vJOW07aedHRcKH5/cIuCi2YdnZs/QLyVVmJbO3Fr+nsMT9ZQWXBaxC42PWi0fz8tq4MjYP0YQGOB9fhoGndrZtPULkRzyopm07zjFcupPGLGyZT5di2c7loHG5JgAQaFwGrk6LoBT/940esrjo0TE9FkW3rY8sVdDxMnk3vp2OD8rTpdF/LHoWxpuGWBEiABBoyAatDo+hG1aNIFxT8dDXiWllBaXE8SEbQ8SB5VkbQOBOUp02LfX3lALIY6pdATjsJwi6cKFjjdXbb0e1aAVHy1jh6UcRLr04AO7UUjg77FF/zQrlxU4/ZBHYKqKt0NH4YJ5te40MmZOAVCZzHVs9pvXQbxjBISWleYeXS/P3ihsnUdLbtXC4ah1sSIIHGRcDqpCh6wU//uMSS0aFheiqKbFsfW66g42HybHo/HRuUp02HfThMtOxRGLvp+T8JkAAJNEQCVodG0Y2qR5EuKPjpasS1soLS4niQjKDjQfKsjKBxJihPmxb7WnbIYqhfAnQSxJnir5063poCQc2o6cMucqT1i6dTc3DTDkMUxpcbgi7GoDxtemvMwUkBR4bfAo56waKMbghTGEHp1PFhHSJuvvjf1g311xAmU+PYtNhnIAESIAGrk6LoBT+9bCkmq0PD9FQ82SiHrY8tV9DxMHk2vZ+Ote+Z+o1Fmj6qDI3PLQmQAAk0BgJWL6di/AEzP12N41ZWGNugcSboeJA8KyNoDAjK06bFPh6CIi5kMdQvgdp3ffVbnkjSo3a0eJlF6ez6hD9soY0wOVpW5BMU7EJP+poEtpo2zEFhn2K5sxU0PZSFX7BGn5vWxtcLFvm5ToQwhkFKSvODs8DNz8q1MxisURomU9MHKSk9zy0JkEDjI2B1UiqMtGR1aJieiqe/0Xq2PrY1g46HybPp/XSsdYhYp61Nh32rt6MwdtPzfxIgARJoiASsXo6iG6OMAX66GuysrDCWQTKCjgfJszKCxhl9QIh7gLAQRUZYep5LHQE6CeJ4q+xNOC66oAAnAC4A9+m4XmjY+hlWuEn2c0TYiyxILtLqbAPk78ZT2e5xrQOOa5wghWWdFYjrxgu7mG3+KhNbW7cgZWFftYAMG8Jkajwrwy2zxuGWBEigcRGwOimKXlD9mC4dGqan4slGy9n62JYMOh4mz6YP0rF6HOOOn4PX6m2/8cLK4D4JkAAJNCYCVi8nMv6EPSjUG2/XTraywhgHjTNBx3UMcOVZGUHjjD4gDHvoinFFZYfJsPK4nz4CdBLEcRIAvd7Eo+Oik8MQ0oAn8HrR4DwuTBu0s+sWT57UuMKFZPMnYw7cAAAgAElEQVR2lYZe/NhaBwOe6OB/6yAIk+2WSctnHQAoh5WPc0inZdDy2zjIR58aIZ592o9zYUpKlQXyhWNFmYIN6qZysdVzWm7lHaZAUM6gMms+3JIACTQuAlYnubrMj4TqkHTp0DA9FU82ymvrY8sfdDxMnk0fpGPdMcPOQLN6W8sehbGVy30SIAESaKgErF6OohtVDwfdVNuZbK49bGWF8VRdjfg2BB3XMrnybNqgccYeR9n9gr03CJPhl5bHUk+AToIITgLcuNqbeb143K2ft0/j4EZYb3z1mG5x3DoBtJlxTOMEbXFhq7PAla9p3Itf88fWXpAa325RNquIrFGI9H5l1DhhSgpMo8h2HQSQmYySsnXnPgmQQOMiYHVSFCNNdWG6dKg1mtzyRJFt62NbMuh4mDybPkzH+ul8LSu2Vq+7dbIyuE8CJEACjYmA1ctRdKO1vXEPoQ/isLV5Qe+6N9T2fBhj1d2Ib0PQ8bCxQdOHjTOoh83b1sme86uT5s9t5gjQSeBzcQXhh3Hk3uzjBh1GUdAF714MiKvOAk2rF4mfXOTryoTDAg4BTadGmetttLL98tZjqJde+JoG/0NB6awHdURAlhugXPQ80quyiaKkgupnZbvytKzYBoUwJRWUhsdJgAQaNgGrk4J0tiWg+lB1mj1n9+uqQ8P0VBTZtj62PEHHw+TZ9PF0LJy3dizDmIZxCsejyrDyuE8CJEACDZ2A1ctRxp94Dyj1XgBjhWsPW1lhXIPGmaDj8cYGyAobA6LUSR/KunUKqwfPpYdATjoJ0oMiPbkGXWjpkcZcSYAESIAESKD+CGAmmY579VcKSiYBEiCB7CJgb9yjOAm09HhopjfO0K3YR14Imqd7Q63HET8sqK7W/DRu0PFknQSaf1idosjQfLhNL4Hw3pNe2Y0i96ALrVFUnpUkARIgARJoMAQwYwAGnM5i86uYXafG7zyPkQAJkAAJkEAQAXWIuI6LoPg8nj4CdBKkj62XM50EaQbM7EmABEiABDJCQF+V83vtDAXAVNJ4cTJSUAohARIgARLIKgK46bezIPwKhzFE75sw24ChfgnQSZBm/trZ6RFLM2hmTwIkQAIkkFYCOksA4xrGNDujAK8Z6BMgOArsubQWipmTAAmQAAlkPQHc9Os9UdD4gHElXpysr2gDKiCdBGluTO3sdBKkGTSzJwESIAESSCuBeItOYbyDg0C/cJPWwjBzEiABEiCBnCEAx4DONIND2Y4TOGcdBO7X2nKmkg2soHQSpLlB6SRIM2BmTwIkQAIkkFECfl9zgNEHww6OBAYSIAESIAEScAlg7ND7oqAtvpTDccQlVz//00lQP9wplQRIgARIgARIgARIgARIgAQaDQHMGsC6NvbT6ZhhAOeAnV3QaIBkcUXpJMjixmHRSIAESIAESIAESIAESIAESIAESCCTBOgkyCRtyiIBEiABEiABEiABEiABEiABEiCBLCZAJ0EWNw6LRgIkQAIkQAIkQAIkQAIkQAIkQAKZJEAnQSZpUxYJkAAJkAAJkAAJkAAJkAAJkAAJZDEBOgmyuHFYNBIgARIgARIgARIgARIgARIgARLIJAE6CTJJm7JIgARIgARIgARIgARIgARIgARIIIsJ0EmQxY3DopEACZAACZAACZAACZAACZAACZBAJgnQSZBJ2pRFAiRAAiRAAiRAAiRAAiRAAiRAAllMgE6CLG4cFo0ESIAESIAESIAESIAESIAESIAEMkmAToJM0qYsEiABEiABEiABEiABEiABEiABEshiAnQSZHHjsGgkQAIkQAIkQAIkQAIkQAIkQAIkkEkCdBJkkjZlkQAJkAAJkAAJkAAJkAAJkAAJkEAWE6CTIIsbh0UjARIgARIgARIgARIgARIgARIggUwSoJMgk7QpiwRIgARIgARIgARIgARIgARIgASymACdBFncOCwaCZAACZAACZAACZAACZAACZAACWSSAJ0EmaRNWSRAAiRAAiRAAiRAAiRAAiRAAiSQxQToJMjixmHRSIAESIAESIAESIAESIAESIAESCCTBOgkyCRtyiIBEiABEiABEiABEiABEiABEiCBLCZAJ0EWNw6LRgIkQAIkQAIkQAIkQAIkQAIkQAKZJEAnQSZpUxYJkAAJkAAJkAAJkAAJkAAJkAAJZDEBOgmyuHFYNBIgARIgARIgARIgARIgARIgARLIJAE6CTJJm7JIgARIgARIgARIgARIgARIgARIIIsJ0EmQxY3DopEACZAACZAACZAACZAACZAACZBAJgnQSZBJ2pRFAiRAAiRAAiRAAiRAAiRAAiRAAllMgE6CLG4cFo0ESIAESIAESIAESIAESIAESIAEMkmAToJM0qYsEiABEiABEiABEiABEiABEiABEshiAnQSZHHjsGgkQAIkQAIkQAIkQAIkQAIkQAIkkEkCdBJkkjZlkQAJkAAJkAAJkAAJkAAJkAAJkEAWE6CTIIsbh0UjARIgARIgARIgARIgARIgARIggUwSoJMgk7QpiwRIgARIgARIgARIgARIgARIgASymACdBFncOCwaCZAACZAACZAACZAACZAACZAACWSSAJ0EmaRNWSRAAiRAAiRAAiRAAiRAAiRAAiSQxQToJMjixmHRSIAESIAESIAESIAESIAESIAESCCTBOgkyCRtyiIBEiABEiABEiABEiABEiABEiCBLCZAJ0EWNw6LRgIkQAIkQAIkQAIkQAIkQAIkQAKZJEAnQSZpUxYJkAAJkAAJkAAJkAAJkAAJkAAJZDEBOgmyuHFYNBIgARIgARIgARIgARIgARIgARLIJAE6CTJJm7JIgARIgARIgARIgARIgARIgARIIIsJ0EmQxY3DopEACZAACZAACZAACZAACZAACZBAJgnQSZBJ2pRFAiRAAiRAAiRAAiRAAiRAAiRAAllMgE6CLG4cFo0ESIAESIAESIAESIAESIAESIAEMkmAToJM0qYsEiABEiABEiABEiABEiABEiABEshiAnQSZHHjsGgkQAIkQAIkQAIkQAIkQAIkQAIkkEkCdBJkkjZlkQAJkAAJkAAJkAAJkAAJkAAJkEAWE6CTIIsbh0UjARIgARIgARIgARIgARIgARIggUwSoJMgk7QpiwRIgARIgARIgARIgARIgARIgASymACdBFncOCwaCZAACZAACZAACZAACZAACZAACWSSAJ0EmaRNWSRAAiRAAiRAAiRAAiRAAiRAAiSQxQToJMjixmHRSIAESIAESIAESIAESIAESIAESCCTBOgkyCRtyiIBEiABEiABEiABEiABEiABEiCBLCZAJ0EWNw6LRgIkQAIkQAIkQAIkQAIkQAIkQAKZJEAnQSZpUxYJkAAJkAAJkAAJkAAJkAAJkAAJZDEBOgmyuHFYNBIgARIgARIgARIgARIgARIgARLIJAE6CTJJm7JIgARIgARIgARIgARIgARIgARIIIsJ0EmQxY3DopEACZAACZAACZAACZAACZAACZBAJgnQSZBJ2pRFAiRAAiRAAiRAAiRAAiRAAiRAAllMgE6CLG4cFo0ESIAESIAESIAESIAESIAESIAEMkmAToJM0qYsEiABEiABEiABEiABEiABEiABEshiAnQSZHHjsGgkQAIkQAIkQAIkQAIkQAIkQAIkkEkCdBJkkjZlkQAJkAAJkAAJkAAJkAAJkAAJkEAWE6CTIIsbh0UjARIgARIgARIgARIgARIgARIggUwSoJMgk7QpiwRIgARIgARIgARIgARIgARIgASymACdBFncOCwaCZAACZAACZAACZAACZAACZAACWSSAJ0EmaRNWSRAAiRAAiRAAiRAAiRAAiRAAiSQxQToJMjixmHRSIAESIAESIAESIAESIAESIAESCCTBOgkyCRtyiIBEiABEiABEiABEiABEiABEiCBLCZAJ0EWNw6LRgIkQAIkQAIkQAIkQAIkQAIkQAKZJEAnQSZpUxYJkAAJkAAJkAAJkAAJkAAJkAAJZDEBOgmyuHFYNBIgARIgARIgARIgARIgARIgARLIJAE6CTJJm7JIgARIgARIgARIgARIgARIgARIIIsJ0EmQxY3DopEACZAACZAACZAACZAACZDA/8/ee0BHcaVp/97db/f//c/mnd3Z3Qm7O+sxKIsMEkGJIIKxydhgj+2ZcfYAkpBEEiLaJucgEMHk7DFOGEzGOJERwoBIygEJCUmACM93ntsqqdV0d1UHiW703nPqdKqu8Lu3bt371BuEgBBoSAIiEjQkbdmXEBACQkAICAEhIASEgBAQAkJACAgBDyYgIoEHV44cmhAQAkJACAgBISAEhIAQEAJCQAgIgYYkICJBQ9KWfQkBISAEhIAQEAJCQAgIASEgBISAEPBgAiISeHDlyKEJASEgBISAEBACQkAICAEhIASEgBBoSAIiEjQkbdmXEBACQkAICAEhIASEgBAQAkJACAgBDyYgIoEHV44cmhAQAkJACAgBISAEhIAQEAJCQAgIgYYkICJBQ9KWfQkBISAEhIAQEAJCQAgIASEgBISAEPBgAiISeHDlyKEJASEgBISAEBACQkAICAEhIASEgBBoSAIiEjQkbdmXEBACQkAICAEhIASEgBAQAkJACAgBDyYgIoEHV44cmhAQAkJACAgBISAEhIAQEAJCQAgIgYYkICJBQ9KWfQkBISAEhIAQEAJCQAgIASEgBISAEPBgAiISeHDlyKEJASEgBISAEBACQkAICAEhIASEgBBoSAIiEjQkbdmXEBACQkAICAEhIASEgBAQAkJACAgBDyYgIoEHV44cmhAQAkJACAgBISAEhIAQEAJCQAgIgYYkICJBQ9J2074ePHiIO3eqUFl5F+W3bqOstFItfM/v+BvXkSIEhIAQEAJCQAgIASEgBISAEBACQsARAiISOEKrgda9e+ce8nNLcPrEFXz12XF8tHwvpk/ejlHDV+Hd1xbjlYGzMfjZaejf/X30jpqEbu3HqYXv+R1/4zpcl//hf7kNbovb5La5DylCQAgIASHgGQQePgTu3buPqrv3cLvyLirK76iF7/kdf+M6UoSAEBACQkAICAEhUN8ERCSob8I623/w4AFys4txeF8ali/chfj3VmDwsx8iqu1ohATEITQgAaGBiQgN5GsCQgPiEaKWkQgJsLfEq3Vr/sdtBCSobXLb3Af3xX1y3zwGHosUISAEhIAQcD8BTvJvFJUhPS0TB/acwaY1BzFvxk4kJ6xDzFvL8frQ+Xip70y80Hsa+nabgp7hyWrhe37H37gO1+V/+F9ug9viNrlt7kOKEBACQkAICAFzAg8fPqwVoW+bidC3zUVoUaHNmcl7QESCx9AKSorL8c3BdMyb/gleGzwXUW3HqAm/EgPURH4kQvzj0E4tsWjn784lTm2bAoMmQPA9j4HHwmPisfEYpQgBISAEhIBzBIoKy/DjtxexduU+jBu5Fi/3n6UsvkIDKe7G1wq/SvylgEsB2J7wW/0/JRxXi8aBpv9xm7Qo4z64L+6T++YxSBECQkAICIEnm8D9+w9wo+gWzqdlYf+e09iy7jDmT9+J5MT1iHmzrgjdr9tU9IqYoBa+ryNCv7lc/Yf/5Ta4LW6T2+Y+pDQuAiISNFB9FxaU4vNPflTm/z3DkqtFgWrLgHoRAxwTFihK0EqBlgccqPIY6arAY+axSxECQkAICAHbBOgecOKHDCxbuAtvv7II3TokKaFXs+ZSIkC9i7+14gNFZh4Dj4XHxGPjMUoRAkJACAgB7yZQVFCK749ewNoV+5FULUJHd0hC+yCTtbF231GvFJZ1rZCrrY+tiNDcJrdNEZr74j65bx6DlCebgIgE9Vi/DCJ4+MA59WQnun2S6ck9LQX8R7rZOsAxQcCIZQKPUVkaBCSAx86nU4f3p6nAiPWITDYtBISAEPAaAmVllTjw9VlMGrMBfbpMRvtATtITq60CaA3m/r7ZkW3SZc1ktZCojo3HyGPlMfPYpQgBISAEhIDnE2Bg8hM/ZiB18W688+pi9OiUXC1Cm9yRTZZo9WiBXHMvMblAU4TmMfBYeEw8Nh6jlCeLgIgE9VCfOVk3sHLpHgzs+UGNxQCfzjsyuPOkdXnsmoUBz4nnlpNdXA/kZJNCQAgIAc8mUFV1DyeOXcYHE7biuahJNa4D3tDH1/bl8erYeQ4c3PGcpAgBISAEhIDnEGDmsoNfn8WUcZvRL3pqrSigrAI8Q4Q2WSAnqmPjMfJYecw8dineT0BEAjfW4U/pWZiatBldQsZVT6rjvVYYsCVSmJ5KJaBLu7HqXHnOUoSAEBACTzqB4uJb2LrhCF4dOEeZdJosBrxd/OVTqHh1Tjw3iUXzpLdiOT8hIAQ8mQCDzx7/IQMfTtiK5ztP9qoHjbUi9Eh17DyHY99fkoC6ntzgdI5NRAIdQEZ+TjtzHWNiPkJYi1EmU1MvcCewJQIY/V65IwQmqnPmuZOBFCEgBITAk0YgK7MIC2Z+il4RE03BBgOePPFXi0fTM3yCOleesxQhIASEgBBoGALMTkOh9veD54GBaDXrXaNjck9bz1ww4Dnx3CSQbsO0JXfuRUQCF2heycjDhFHr0am5ySeofrIRPOrT2tY/FrVLDNr6my+1vzVMpxGnOjMymDh6A65ezneBqPxVCAgBIeAZBK5dKcD0SdvQud1Yrx+wGb0XaAM7njPPnQykCAEhIASEQP0QuH61EAtnfYbeUZOq05Q/eSK0skAOSMCzkZPUufKcpXgHAREJnKinkpJyLJz1KSLbjFGDx/oQB0wT/1qBINQ/Du0DRqJDQDw6BiagU2CiWsICR8F80b7nOlyX/+F/tUGiSVyIqfmsfe/6q0ksIBOyISMpQkAICAFvI1CQf1OlgjWJAyZfS9f7x9q+3N629MRfe/9172/szxNVatx503eiMF+iWHtbO5bjFQJCwHMJ8IHajMk7zNyTvdd1zei9RxOh6ZLNc5eHip7bPrUjE5FAI2Hg9eGDh9j16TEwr6jyRzWbfBu9SGytR1GAvzEVISf3nOxHBI1BVPA4dAlOQtdm49GtWXLNEt0sGfYW83X5X26D2+I2uW3ug/viPrV92zo2R75XqRQDExUjsiIzKUJACAgBTyfAbDTrVx9Q6V+Vqacb+3etD7UUaU2pZ0fWEYDNRWBz0beO8Bswsqb/1vpwblvbj7teTf15gmJCNmQkRQgIASEgBJwjkJdbAgqvpthliXX6cXf12/a2o92DLC2Q7f3H3b9p8wQymD99J/LzSpyDKf+qdwIiEhhEnHmtECPfW6GCiFANc/Wi0QZ0vFg4YQ8PHK0m8ZoYEN1sghIBzCf77nhvEhYmKLGB+6JwEB44ykI0cH2wSUZcyIzspAgBISAEPJXAD0cv4JUBs93uVmAakJn609CAkcoKLCxoFCLtCMBG+nlz4Zfb4jYpInAfvDeZ79fVexX/rz0BIiOykiIEhIAQEALGCdy+XYX1qw6gV/gEtz9k1Pp4TQDQPj8iQgck1LFEriNCB5hZHzeoCJ2IZyMmKjZkJMWzCIhIoFMfDx8Cn2z/Dt07jlcXtnbxOfvKi5gXbsfARDVQ7FJtIUBRwMjgsD7W0fbNY+GAk8fGY+SxOnue2v9ocUF2ZEiWUoSAEBACnkKg5MYtFUW6QzAn2O7xBeUTmhD/WGUdwEEY+1STNZjJEkyzAHNXX26+va7NktW+uE/um+5mPBZ3WYuREVkxajXZSRECQkAICAH7BL775ie8NmhudcwB1x8yauNr8zG6pQjd2YYVspH7jiZCcxvWRGju33zf2vE4+6pE6IAExYispHgOAREJ7NQFo40mxa9Vg0c2YmcvANPFFIcOgQnK3J8XoPnAzshF21DraMfFY6RrAo+ZMRdc6RBMHUC8YkmmUoSAEBACj5vANwfT0b/7+9Xib23cFmf6efaPnIwrq7Cg0egcnKREX60/baj+W9uP+X55LOFBo6utxdwxuDPFKyA7MpQiBISAEBACjxLgeHfapG1KWHWfCG16eEcBuK4IbXJJNu/7tfuBK6/m29PEg8igsTUiNO+XrswPzO+3mghNZjJXeLQ9PY5vRCSwQf3EjxkY1PNDl6wH1MAxIE4FFqQixwuVF5wrF2xD/lc7Vh47gyOGBLgmFtCqgEzJVooQEAJC4HEQoEkjUxp2bJYIRl02H6Q4856DtbDA0eoJvqf28VpfTosGHiuP2ZlzNf8P2ZEhWYqZ6ONoybJPISAEPJXA4f3nMKjXNDeK0NWuyR4tQrs2RzDdX0wiNNmRoZTHS0BEAiv8t2/6BhGtx7hkfkrTHz69oQm/NkBryAm+u/fFc+C58Jw0v1fzAaPR91QKyZaMpQgBISAEGpIAU/q98dICl7LSaFYDjAEQFTQW3bysjzfdj8arY+c5mNwRnHUtM2W1IVNJl9iQLVn2JQSEgCcSYHBXCqd0y3KXCM2YZebWae4e37u6PW2Oo6zW3ChCkyFZSsDcx9fSRSQwY3/37j3Mfv9jdWE7617AdIOcSGsuBa5efJ72f3YGPDclFjgZ/Zts2XmSNZlLEQJCQAjUN4HD+9PQK3xitUDg+KTYJA7EKTNLb7QMs7yX1A7sxqlzciUODbNBkC0ZSxECQkAINEYCVy7n463fLXLJekAz3a8Vob3TApkCOs+BDxC1czL6MLF2PZNVAZmSrZSGJyAiQTXz0psViH9vhdMDSPrthwUmomtw0hNhOWA5oLT8rMQCZbrqfB5xDizJnOylCAEhIATqi8D6VfsR1oIuU46b2WsDHPp/0lxfm1xb9one/JnnxHPjOTo7qCNbMiZrKUJACAiBxkTg0L40PBsxyYU5hCmoOftgzWrA2+8pPH6eC8+JInTt5N8xkZ5zBbIlYykNS0BEAgDMW/r6kPloXz1AcrQhdwhIUBfCkzh41OukeM7sBMjAUW5cn8zJnnUgRQgIASHgTgL3qu5j5tTt1a5jzg1SGLyVfVxj6N9r+vPqJ0CO9+lxijWZk70UISAEhMCTToDCaCclQjse48ZShNYbc3vr766L0PGKsYjQDXs1NXqRIPN6EV58foZT6h+VMWYA8NaL1t3HTRbOqIVUCVkHrAspQkAICAF3EKisuIMxMR9V9+2OCQQcuDH2CqM4u7uf9Jbt8dzJQBvEGhcMTHEKyJ51IEUICAEh8CQSqKq6j1lTd1THHnDsHqP1p6aHjKbA5t5yb3DlOOmq5+xDRVps01WZzMleSv0TaNQiQea1Qrz4nHMCARv5k2p66mwHwKdQZOJMB6CEgudmgHUiRQgIASHgCoGy0koMf32Z09lpwoJGPbFxZYz27+zPGX+GLLQBrSOvzGbDOmBdSBECQkAIPEkEKivuYmzsGhGhnczY5qoITfasAyn1S6DRigTXrxbihd7TEeqEmTyD9hkdaDXW9cjIkQEl12VdsE5YN1KEgBAQAs4QYIyTP/1xqVMCAVMDRlWnq22sfbe18yYTZ9ImUihgXUjcGWdasvxHCAgBTyRQWlrhmggdaBKhrfW1jek7JUIHuiZCsy6k1B+BRikS5OUU48XnpjvkYqCZn3Kw1Bh8U13tqMiIrBw1VzVZFEwH60iKEBACQsARAhwwOCsQMLgSBy2u9n1P6v/JRgts6IgAXCMUyGDOkaYs6woBIeCBBFwXoRuvC5ute2NU8FgRoT2wrfOQGp1IUFJ8C394cb7DAkGHgHh0aZYkA0gHTYvIjOwc8WulUMA6Yl1JEQJCQAgYIUDTQ+dcDEyxZUT8Tda9v5ERY8/QN9RRoYB1I+ahRlqyrCMEhIAnEqDrlKsitNxnHr3PkImrIrS4tdXPFdOoRII7t6sQ93aqg2aoMSrXpzxhevTCtqUKWn5PdqZ8qTGGB5Z8+sS6Yp1JEQJCQAjYI8AgRib/UFMKP6MT2NCAOHEvcFD4Zf9ushJzXChgHUnAKXstWX4TAkLAEwkwCKsrIrTluFg+W59TuCZCS6Bcd187jUokmD5pu4MCQSzCAkfpPl2Ri936xW7JhSyNDt65HoUC1pkUISAEhIA9Aox2TAsko/0LLZvoY89Aq5b9lHw21p+THRk6aiXGupIiBISAEPAWAkznasqUY1yENndRlnuKsXuKxsk5V+VEVUeSete9V1WjEQk2rTnocK7sMAlQ6PYBNJkaHcjTpDU0IB6sOylCQAgIAWsEmDeZaZGMmsBz8MYMLGId5tjATRvAmb+SIVkaFwpMKawk17W1lizfCQEh4IkEZk7lA0ZHReh4EaGdsFLT7i8mEdpxV2XWlRT3EWgUIsF33/yEsBaJCAkwbh4pGQxcH0BqF7vlqyOZD1hnrDvWoRQhIASEgDmBQ/vS0KkFLZSM9+0dJUChW8VfkzuZ8SdsrCvWGetOihAQAkLAkwlQ0OTDKqP3mLb+MSJCuyAOmM8XakVoo67KpgeLIkK774p64kWC3Jxi9O/+QfWTplhDT7HDAiXFofmFWh/vydioRQGfEvaP/gB5uSXua/myJSEgBLyawJXL+Xg2YpLhvp1PuzsGJLh1glwffaO3bpNsjVoUsE9n3bEOpQgBISAEPJHA4f1pCHNAhFb3GCVC199DNm+9Pzh73F2bJYPCvtF7C8Uc1hnrTorrBJ5okeDB/QcYNWy1Q2ZCEoOg4To3R2IUhAYkIHHYarBOpQgBIdC4CTCI1JsvLzTct/PpDgcazg5U5H/G7gumwZyxpz40333rd4tQWXm3cTdmOXshIAQ8jsC1KwXoFT4RIQEjDT/QEhHa2H3Cmfsp2Rp/sDhS1R3rUIprBJ5okWDz2sPg5NJIwzIpgPKUyZmL15X/MOuBUYWQdck6lSIEhEDjJrBg5qeGg9CyfzHFIKi/AYwrfeCT9F8+9XEkRgGD07IupQgBISAEPIUAhcs3XlrggAgdKyK0m1wM7N0PHbEooAjNOrwtGdJcuqyeWJHg4k856BqaZFgF7BAQL4GsGuAit+wATBFoGeoAACAASURBVD5H9PfSdwWhoss6Zd1KEQJCoHESOLz/HDoEU/zVj0NAgaC99O0NakHBPp3MjYm/caouWadShIAQEAKeQGD+jJ1OiNDjG7SftRxLN4bPtTEK9OcLnFNQKBAR2rUr6okUCe7ff4DhbywzbEUQ6kQqrK7B4xHuOwbhPmMQ6T9OOgcXBAZGMWUdGBEKaE3AumUdSxECQqBxEbhRVIZBvaYZjkPgTN/eGAZb9X2OjvTpjE/AOmXdShECQkAIPE4C3xxMR8dmDMSqL0JzzMo0sJy81nefKts3WQKaRGhj8wXWIeuSdSrFOQJPpEiwY/NRwwJBiH8cmJMz2oFJLgWCnq0nYeX8r3FwdxoS3/gIUQEiFDjbiZE964B1YVQoYB1LEQJCoHERmDZpm+EnPBwgsF9xtl+S/7nmnkH2RgfadDtg3UoRAkJACDwuAiU3bqF/9/cdEKHjJM2hA3Mnd91TTSK0sfmCCnze/X2wbqU4TuCJEwnycorxfOcphtwMaA7pTKrDCN+xmDFuRw3twrxSDIqcji6BSTIgdaHDYF0YMVGl2wHrmHUtRQgIgcZBgGlQjboZUGyMCBoj/bEL/bE7BnSsAyPCL8UE1q2kum0c17KcpRDwRAIfTtgqIvRjvmcYve84KkKzbqU4TuCJEwmmT9pu6CLnZJRB84w2SPP1KBIsmvYpKm5XKOKMuP/O4KXiduCGzsVoIEM+eWJdSxECQuDJJ8DgQ68Nmludr1rfH7GTZDJw6t5mfp9z13vWhRGhgLnIWccSaOrJv57lDIWApxH44egFEaHdMIZ3133DyHYcFaFZx1IcI/BEiQTnzlxHeMvRhkwcQwOcNxOiSDD//U9QeKMQd+7cwYMHDxuPSBCcjG7B9ed/ZdyMKE7VNetcihAQAk82gfWrDhh2IRMfUdfcBIwMzhxZxxEfUsacYV1LEQJCQAg0FAFmM3hlwGyHRGhHXJQd6S9lXeP3L9aBIyI061hS7jp2VT1RIkHi8NWGU5ZQgXL2IjcXCSpv3240IkE04y4Ej0fXlhMRHZikFnd3aKwTo+ogI5eyzqUIASHw5BLIzyvBsxHG81VHBY91um93d38m20tWdcE6MWJNQFcy1jXrXIoQEAJCoCEIrF99wPDcQURo45P4hrj/OSRCByaAdS3FOIEnRiT4/ugFhAYy4qX9YBZ0M+jgpJuB1uAbo0hAUSB00Eo0nfUDnk45C7/JhxDedR6iA+snMBjrSD8+QZyqc9a9FCEgBJ5MAvOnG0tHxf4iLHCUx5jZa/cLeTUNKlk3+n0601YlgnUuRQgIASFQ3wQK80vRMyzZUBwzCp2eGAy3S9B4RPmPUy7PzLbmytLZwdhqDOTurn1bHje3y+3r3UNN8Qn03RApQrOuWedSjBF4YkSCEW8uN2SOygj6nYNdCzDY2EQCWhBQIPjV9iz8cmcefvnnHPzi03z8z0cXEBkxE9FBrvG01gGwjoxkO6B5KuteihAQAk8egauX89ElxFjmE6Y7lFRUnvWUx7xvZ90YSXXLfp91zrqXIgSEgBCoTwLzlAidoGvppEToIM8ToTmx7t1uCt4evATvDUlxafnTkGUY2m2WEhmMTM67BCWhV+tJbtm35bHzWN4csBjdW0xA1yB9oSAsyKgInQDWuRRjBJ4IkeDEDxloHxSva0VAFdAdT5oam0jAzuI3079XAgGFAm35z0/zEfDOx+juP1ZX6TMfLBp9z7rSN1GNU3V/4sfLxlq8rCUEhIDXEJgxeYehQLTsJyKD6qcfMtpfyXr6AgXrSL9PN1kTsO6lCAEhIATqi8C1KwWIajvG4AMpzxOhKRAMf3k5Ms7n4v69B3j44KFyf2acNGeWhw8forSkAmuW7FdjentCAa0XnguZgu8PXnDLvi2Pl+dSVXUfX31yEt1bTkRXxkOzE1jRERGadc66l6JP4IkQCcbGrjHkTxTqH2fIdMVeQ+RvjUokCB6PLi0m4h8/PIZ/25aNX+/Iqln+YUs2/mvYF+hRTyIBOyjWmd6gkrEJ2AakCAEh8OQQuH610JAVAZ/wdAhwLlONXl8vv9sfmDnDh3Wl53agWROwDUgRAkJACNQHgemTtjkkQjsbx8yZflLvP0y5PjByOgpyb9YHGsxK/rOa69g6jgi/sRj99tp62bflRt/ot0i5NNg6Fn7PunFEhGbdS9En4PUiQcaFXIS3MpbRIDxotFsCWjU2kaBby4n41xnH8FTqFfztR1fxj+uu4f9ffRVPrbwO/xfXoQcDGtpR+Jz9jRc960xPJGAciojWo8G2IEUICIEng8DCWZ8ZEn/ZP3QOrp8+yNm+S/5nW1xgXen36bQmSADbgBQhIASEgLsJZF4vVFYEDRHHrD7uB5F+4zDqnZUor7zlbjR48OABvth5FBQibD3B5zxowohNbt+35QZp3fDWwMW6IoHG2Gg8s87txiIrs8hyd/LZgoDXiwTzZxgLauVOf9XGJBJE+41FyMiP8Zu9ufjrlZfx1JJLeCr1Gp5acQ3/PHofopjpwEBgEe0CdvTVqAmRCnY1Q/yMLK5v+SgEvJJAUWEZno2cZCiYFFMgOdqvyPq2J/ENwcZI2ioGmeodNQk3isq8sg3LQQsBIeC5BBbM/NQBEdr9cbdc7Wc5D0mOXYPzF39Cbl4eyisqwGxrlZWVLi0lJTeRcfUydn58ENHNk+2KBMnDN9Z7BTsqEjCemVERmm1Ain0CXi0SlBSX4/nOkw0NJPlE2tWLUvt/YxEJov3HIazfUvjszULTQ7l4em82/m3HNfx77Od4un8K2gTFIyIgEdHNJriNrcbY/NWINQEHlH26TMHNkgr7LV5+FQJCwOMJbN1wxHAg2i4uBqI172vkfcOIB6wzo4Fp2RakCAEhIATcRYBzh57hE3TnDnSLoqDpSW4G2j2qc0ASXntuDk6cOoNTZ8/i1JmzOH02DafP8tXJ5cxZnDx9Bucvnsf8aTtAawVtf5avSqRoIJGAAQyZ6cDyGKx9Zl2xznRd2gJGolfERBQXu98Sw13t1BO249UiwZc7jxkaSKpYBM30o2Naa3DWvmsUIkFQErqEvo+AzefQ5Eg+mh7IQdNvCxE89UuENvkTQpsMQzu/mOoOtH5FAmVNYCQ2QUA8dn163BOuKzkGISAEnCRw7959/H7wPIQEMBit7bRG2gDOWh8t3zXMZN8VzsYGcvGqLbBNSBECQkAIuIOAEqED9TMaqNgoHixCRwWMw+Rxa3E6LQ3pF84roYCTfC4nTp02tlSvz/+kpZ/D+QvnsX3bXvTuMAkMTmirj/dUkYDHa1iEDkyAiND2ryivFgni3l6hKxJwIOmOjAbmF8oTLxIEJyM6MAktZxxAk6MFSiBo8k0B/NadRNuWo9DOd4QavJOtu+I8mPO19t5Ijm2mQ2SbkCIEhID3Ejj2/SXdJzyaeOBqOlsOgtifh/uMeWyLKRe08Uk9fUT5n8d5zGRmbwBprQ+3/M64WehIHP8hw3sbtBy5EBACHkOgquoeXh04B6EGRWhPtCLQ+tLIwDFo7TMCL/WbhlkfbMKZs+eRcfmKWnLz8pGXr79cy8zExUsZyLhyBRvWfoXhby1CWMsEhPiOtCkQcP+eLBIYtSZgG2BbYJuQYp2A14oEmddMQUeMmCy6OpDULkjt9UkXCRiHIPTtjWhyOM9kQXAoFz67r6FV92kIaTJMmfG09Y9B+wbMS25kQMm2wNQmbBtShIAQ8E4CH07YashXtGOgaxkN2I/36/gBRr+9Bu8nbsPUhK0NvkyJ34J3Bi9Vfp98KqTdY2y9ch2KBPwP//s4jpmsyIzsyNDWsRr5nnWoCT62XhnAkG1CihAQAkLAVQInfsxAaKB9KzX2RSGPISBu5+DxCKdwbbHwuyiL2F90840IGg2OxVv8dhg6NovH6VMXUFBYiIJC4wH5bpWXIyc3DwVFhXjntYUI+O930NaX4/t4u327NZHgxo1iZGZlISs7u86SmZWtjovxBVjuP3igBAx+b23dmzdLa6qZ/3HE3UC77zBALuvQ1n1F+759UDxOHJMU6jXALd54rUiwZd1hQwNJRrrUGo27Xp9kkSA6YBwiesyD766raHLIJBI0+SYfzd9di5Bn/qQuuA6B8cqCoIsbXTiM1A3rUruwbb1yQMm2IUUICAHvI1BWWmk4zkxUkHMTVO1J/Mykj+stfZQj5O/ff4AfDl/EK73mItLP9jnxN67Ddfmfx12YeosMHbWE0Pp6Pu1hHdrqy7XvGW+GsYfYNqQIASEgBFwh8IESoRN1+x1XRWitnzP62jk4GW+2m4r10XOwPnpunWVD9FwMD30fXMd8e1HVmWLa+MYgqs1oJRLkFxQgv6AQDx+YJuR6rMpu3UJ2Ti7yCwsw7I0laPGM6UEg3cHM92X53lIkuFtVpdwdjp981M3h+KnTOH7yFChIsJTcvIljJ09ZdYfg92np51WGBa7rrEjA4zUmQieCbUKKdQJeKxIMf32ZrqsBBxmRQWPcHnTkiRUJgsaja+vJCProJCgMMA5Bk6OFCJy9D+18Y1QMAl50HNw1tAkW98e61AaOtl7pcsC2IUUICAHvI3Dw67OGXA1oxWQ5aDH6mZPtRR987nFwsq4W4eXuc8CAVJbnwu/4G9fxtEKW9sQNy3Ox/My6tNWfa99TKGDbkCIEhIAQcJZAWVklnosyljUnKnhsg41zuzZLBpejzy9C1UsrUTF0RZ3l7ksrkdZvCXo1n6DWM+9DOZlv4zsCkW4SCZo/MwzMBqcXENhSJGDaxCtXryHtXLqa5HOib75czMhAVVWVqrrbt+/gp4sX6/yurXv2XLqyRtCsDpwVCRwRodkm2DakPErAK0WCvJxidA2hKUmc3cEFf2fQO/MLyh3vnREJ2AHQlIgL37vjONy9DVoRtJ6wqyYOQdMj+fDdlo427cahnc9w1XF0tTB5cvcx2Nse69JQnYeMA9uIFCEgBLyLwJRxm3UtxFQslMDRTg3gaK7/++fno7zstkeC2fv5aURZEQn4HX/zxEKWZGrEXcKyf+dALjyQJrP2zUJpIca2IUUICAEh4CyBA0qE1nc1MInQ7p87WPZ/2ucuwckY1GoSrg9ahtIhqSh5se5y88VUFLywHK+2nazmENr/tNewgNHo1i4Jp09dhCuWBDFvLkNoU32BgPu1FAlYJ7RduHfvntVFm/RrdUdRwda62jpqm066G5jYjFdu0ZrYbOuVQZLZNqQ8SsArRYLdX5wwFHSko465jHaBOfrqqEjADqBLs2S80GoShraejB7Nkx/xL3L0GNy9PuMQdPzdajQ9mFu77MtGy37zVBwCXlw0DW1oCwLL82Sd6g4oA+LBNiJFCAgB7yFQfus2+kVP1bUkoFDobJwZBvtLnbvbY6HQpH5ot1noHFhrTcD3/M6Tze3JlGwt+2sjn1mXuuJvwEjVNthGpAgBISAEnCEwacwGQyJ0mJMitJH+zto6kcHjMSz0fVAMsBQItM+3hqxAUqcPEWHlQR2DyPZpPxVnTl1CXkG+c+4GBQUY/fZqRNlJe2h+7NZEAmfqRO8/zloS8Fg5X2Fd6s4ZAhPAtiHlUQJeKRJ8kLxF90LnpDaynia1jogEFAj6t5yIz3rOR87g5UoN/K7PIrzRbqrHCAXRgeMQFTkTfjsv1QQrZDaDZvFbEfLMMGWt4e4MEeadjdH3vOBZp7bUQO17PnViG5EiBISA9xBgQKl2OtZhvMY76ARUstef0Cx+z6enPBpK7Ksr6pjv85j5nScXMnXF5YB1qvXftl/jwDYiRQgIASHgKIGK8jvo02WyARE6VtfU3t49xpnfGJhwZsQM5WKgiQKWr5VDVyC162wV1NByH+4UCSKfIJGAnEzpEO1bqtGdjW2DbURKXQJeJxJUVd3HkD4zdHNo88lEFyuKm+XF5cxnh0SCZsn4vNd80Keo9MVUpRTeHroC6f2Xom/LicrCwMgxRAclIdp/LOgSoF7NnjQZ+b/Ndcio+QQ0W/o9KAyoOATfFCBg6VG0C4xTcQhcGZTb3K+TLhesU/2nTvGqjbCtSBECQsA7CKQu3o3QQPsBpZSrQZBzrgbsizgAOrQ7zaOBjHrzI0SYBTDke37nyYVMjQ4uLe8JyuVARem2P5Bj22AbkSIEhIAQcJTAiR8y0N5AVoPHMd6lJcGOHvNqRQK6HFgsFUNWYG/vhVbdDTxBJOAT/6zsHFy4dEmlVGRaRW25cCkDV69fV+4FrLe7d+/i8pWrNb9r6/H1wsVLYPpGrbhiSaDda4yI0GwbbCNS6hLwOpHg+tVChLcapfvEqT4vdKMiQedmyRjSYiKy+ixF6dAVtWZEQ1JRPmg5xrSdCnYOWkO29RodmISIiJkITtwFnxnfIXDMHoR3mQNaANj6j9Hv6WbQNv7PNQJB08N58Pn0ElqHTUS7psMR4m/MP8no/tyxnv4FH6faCNuKFCEgBLyDwDuvLtZ1I+NTZmddDdj3cCJ70FGRgFGiHc0mwPUNRpe2rB1PEgnoY1r1wORranmc5p/J1FmRgPViJMUtc1qzjUgRAkJACDhKYNnCXQZE6BiVuctdbrWMQcbUhXQR4FjfWjwyfsflWN8loEtB8aDlKOqXgqI+S01LvxQUD1yOshdTcWFgCp5tMeGRh4sUCZ5vPxWnz15GXkkR8m/cUPEBjDCqyW5Q7W5gtB+3dDfgxP/kmbMqiwEzGVhbarIblNzEsRMnwUwIluvxewYvvH/f9JDPVZGgVoSOsWutRhGabURKXQJeJxLs+fKkrhWBetpUjz5FjogEv2sxEVfD56G437IakYCdQGHnBRjdYgoidQIr0oIgMnwmfrPiPH7xaT5++Umuev2fNZcQ3mWusixwduId7T8OYQNS4LMvqzYOwaFctHxpaY2bATMKOLv9+vifuuAN+BgxEAnbihQhIAQ8n0BRQSl6dEpGSID9YLSuZDVgf+SISPDw7j3c2XESZaM/RlnCdlSsOIIHN0wpnGwRfZBbioolB1E6chvKxv0Zdz4/C9xzLF2hp4gEn2dXYsDBQoTvzsMr3xThaOFdW6ethBejg0tb9wW9LAdsG2wjbCtShIAQEAKOEHj7lUW6c4cQF0Vo876N4gBTGvLpP9Majgh9X03wI4JqBQPGKosITsY7babgavdFyOu8ANlh85DVcS6yOlQvHeciu9M85EbNR06PRYhvO1WJDnwISXGB+wkLTEL/DlOR/vkx3Fh1EDcm7URVWo4hPO4SCTiZz8svwOWrV1WWA2Y60JbLV6+pNIta6l4GLMzMyq75XVuPr/x/YdGNmmN3VSRgnZji3ti3VOOcgW1ESl0CXicSLJj5qa4ayKdNzB9qfsG6871RkYAXcPdmyTgQOhNFYfOR23kBcrssQHanucgLn4+J4TNAXyR7x9bdfyz8477ALz7Lx6+2Z9Usv/g0D00nH1IpC2kNQDcEe9ux/I3WCZ3bf4CArelocsSU7rDp0UIETfwMIU2GKzcDplZxl6JquX9XPmu5YW37rsaqNsK2IkUICAHPJ/D90Qu61mEUf13tkxwRCTjZL+6zBCUDU1AycBmK+y5BWfx2PMgvswr0/uVClL67Ua1XMmgZSgakqPeV676zur6tLz1BJFiVUY5fbMvCv27JxL9vzcS/bMnE0x9n42ihdZ9NVy0JeJ9h3eoFmGLMCrYVKUJACAgBowSKCsvQrUNSvYvQ2rhWG/t/32cx7g5dCcYTYFDCtP5Lsa7bHAwPfR89W0xA3+YTsLrdNFymEGAmCiiRgEKB+dLBtM61jnOxsd10DG4xEd2bT8A7IVOxoutsnOq3BMV0aR6QgpK+S1AasxUPK2wLuxo7d4kE2vbc/eoOkYD1YkSEZhthW5FSS8DrRIJhr6cgNCDBrtkInzjUR+pDrQMwKhJw/ahmyXi5WRK+C52BvI5zkcuOIHw+Sl7+CBffXIeBbaynNNH21T1gLH6RuA//ui0Hv96RVbP8fHMm/n7DNfhvO4824z5HRM/56BY0XsUr4Kv2f6uvwcnoFpSEFrMO1aQ7ZDwCvzUn0LZ5Itr5jkD7gPh6ZWj1uAzGKVCpEHWeOLKNsK1IEQJCwPMJrF2x35D462owWqMiwb2LBSh5YblpMYs4Xdx/Kcritz0iFCiB4O31ShioE3Bq8HLcfGU1aGFgtDxukYACwS+3ZeE/t9WK0hSof7YlEy8dKbJ6Gu4QCYwFpU0E24oUISAEhIBRAj9+e7FBRGhtXMuHf9MiZqB8SK2bMUWCsiErTILBkFSc7LUQxzvMRkHHecg2FwN03nNd/udMh9n4occCFA9JVdukq0LJC7XZEYr7LcXt7fpZvhqDSOCICM22IqWWgFeJBJUVdzGgxwe60Uk5wdUu1vp4dUQk6Bo8Hq2ZaSEgDm8Ej8HB3gtR/s5G3By2GZXDt+DTwctUIBIqj5bHSuuALmHT8POFp/DU8iv4+zVX8bON1/EPa6/hL1My8I+brsHnSJ5por83C8HLfkD719crCwEtyGE3CgIW26blQeg7m2stCA7lweera2jd7UO0azJMBQbsXI+WGJbH48xn1rE9SwJGK2VbYZuRIgSEgGcTSBq51lDGGkYqdqa/0P5jVCS4eyTj0Qm/Jhb0T0GpmVBgUyDQ1h+0HFWnsgxXwOMUCVZWWxBYCgQUCWhRELY7D3esxFpwVSRg/bBu7fXp/I2Za9hWpAgBISAEjBJYu3Kf7v2FVkx0r3XVelbLaHZxQArKGHxQuw9or0NScaNfirImzrUmCGgWBXzl79pni3VzOs5FXtg8FD2/1BTkUNu+9jp4GW7+YQ0e5NkXqN0pEjx48AB37tyxutyrjjGg1RldDqyvexe0HtCKOywJWKesWz1LNd5f2Fak1BLwKpEgO+sGInSCFmomqdqgsD5eHREJtPQbbfxjEOw7AgPajkX2O+txa9hmlP5pk3qd3HU2wi2yFdAdoEvIVASvOoHfHMjDX6+8jKeWZuCp1Ktq+T+rr+J/9ufD53CeykjQ9GAOmnyTrxa/Ty6h1ZQ9CO+zWGUuUO4IQUnKeqC7z2hE9FoA36+uocmhXFM2gyP5aP7mRwh55k9qkBYRNNqlgXh9MLfcpr5papxqK2wzUoSAEPBcAvRTfLn/LF1/0dCAkS5bNxkWCb65jGKabWoDLstXWhSM+hhVP1xF6XsbbQsKL6aieOAy3D123XAFPC6RQHMxsCYQUCT4j62Z6LQrD5X3awdw2km5QySghRjr2J5QQL9RthXNt1Xbv7wKASEgBGwRGNdAIjTHqZFB4/FRtznq6f4j9w8KBAOWmeIOaCKANvmnO0H4PORFL0Thc0tQ1CcFRX1TUPjcUuR1X6R+U4KBtr4mIHSap9ZT2RAs7lO0fKtYdMAWFvW9u0QCBhpkdoLTZ9NwJu1c3eVsGtJ/uoA7d00P7SoqK5GWfh5nrKzL/zM2gSYUuEMkYL0YFaHZVqTUEvAqkeDY95cMmQyFqxRZE+ptouuISMDGae4L09xnBCZ3+xAVw7fgZrVIcP2tdRjabooKQKImw0FJ6Np6kikt4dEC+BzMwf/uy8XP1l3CPyd+jf98YxsC+y5As0mfg4IAXQUoEDQ9aJr0Nz1UbV2wPwdBH51EyJ+2oHP4NER2moaQF1bBb9VpPHPIFIegydFCBM7cq1wM2vrFoGNgYr1xU+dmYdXgzHfRzSaoCLR6qiD9V9lmpAgBIeC5BG4U3UK0jr8or/WOgQku901GRYLKfRdR+Oxi609otIHYoOUoGcylNiittUEht3P76FXDFeCqSHD7/kOrE3l7B7Aq4xZ+sf1RFwPzODi0JGjx52xU3qsfkYD3AtaxvX6droRsK2wzUoSAEBACegTu3bvvgAj9qOWtI2NUZjN4qc1k5A5erlKeW94Pil9Yjpyo+SbrAPPJfse5yO+5SGU2sEx9qH0uHrwcBb0WI6tTbUBDzdIgJ2I++PsjQsELy3HzpZW4f9m6mxjZuUskqKqqUgIBsxWcOHXa6lJeUaGq62ZpqcpqYG09/v/c+Z9AqwQWd4kEtNY2KkKzzUgxEfAqkeCLncd04xHwKURU8FiXB5P2OgZHRQIeT4h/nBr8tPGPRRu/WHz54lLcrhYKbg/fjD1DlqtIpV35xL/FBLSYd6QmXgAn/T77s9Hq5RT1tD+06TCEcKFrQNsktP7DagSlfA+fvVngpL+JuXXBkXy1nSY7MsCMCMyO8MuPc/Drj7Pw2/158NuShrZtx6Kdzwh1AdVnLAd7TB39jUztPXFSpqkBCWCbkSIEhIDnEjifloX2QXQfsp3ZoK1/DMKCRrlsCmpYJNh/EVmhs3Gj/7JHB16aSKD3OiQVRX2XIqvDHNz+sf4tCQruPEDiiRJ02JWH0F15SDhegtxK/cGOZkHAQIXmooD5e8bD+b+rr8B/83XcrSdLApqEso5Z17b79jjVVthmpAgBISAE9AjcKCpDt/bj1BjcVr/iLhGamQZeaz0JhYOWodQsHoESC4akoqDXkkcFgk7zUNin1mXg5pAVKBu6UqVNZ+p0vud32jZoXVCTAUETGjrMRX6PR0Vt/q+o/1LcOpphE5O7RALuoLSsDHn5+SrLATMd1C75KLl5s451wI3iYpvrlpfXZhFyl0jAOYauCO0fp9oK24wUEwGvEglWpezR9StiJ+BKHm0jk1VHRQJuk6YuEUFjlFVBK98YPNdyNK6+uVa5G9CioGL4ZszsPgfhwePRcvp+M4HAZB3Q4g8ra9wB6nR0viNUusIQv1i0i56OFmN3qmCGTQ/T9aAATQ/losm+HPz6k2z8cke22SAwG//1cRZa9JuvxAZuMyporMuDcCP83LGOobzagQlgm5EiBISA5xLYv+e0rqsB+yd3+IsaFQnKMvJwLWq+CijllFCgBIIUZLefg2u9luBWXrHhCnDGkoBxAvofLMQ/br6u3ALoGvDPmzMRtScf18rv2dy3FqTQgH0DMAAAIABJREFUnkBAseDv117FUwsv4aUvaRHxaEpHd7gbaH6jde5v/o+mraLLAduMFCEgBISAHoH0tEyEBtKNqf5FaKY0HBQ0Dl+1GY+CgSl1hAI+6ac7QZ2MBR3notAspgBFgZz+S3Ci8zTsD52AfSETcCzqQ2T3W6xEA3OhQFkUaCIBsyOEzUPxwFprAooURYOXYW+b8cjce9YmJneKBDZ34sIP7hIJjIrQbCtsM1JMBLxKJPhw4lZdkYBP7LsE60T3d9Hk3RmRgBNjmskzICBzsTbzGYExnd9HeU1sgk3I/eMa9J30FX7Dyf2BHJP7wKE8NH93nRICzAdPVk0ymw43CQYtx6DN0BQEzz8Cvz3X8avduSrg4X/tqH1S9OuPs/Eva68isNNUhPgMR1ig58chMBcXWMesa3Mmlu8ZhIRtRooQEAKeS2DLusO6/TqvbXcEUzUqEpRUlOH8/C+QFTJbpaylH+kjppy2LAk0gaDDXGR2modzq79G6W2TmaWRWnBGJPgy57ZKV2j+9J/vmcIwck+eVaFAsyCwFYOA/6cFgRIIFmfAZ80FHDl7CXhYPyIB+3fWsWU/bvmZ/TrbjBQhIASEgB6BA3vONJgITZFgcHAS1jaNwWctxyCn32JlCcB7B8WAOjEFOsxFXvSimvsKJ/Vno2dia0A81jYdUb3EqNct/iNxosu0OhYFtByw3F7Bs0vU9ig25A9ciq9aJ+Gjp4che1+aTUyNSSTggwbL+4nlZ4rQbDNSTAS8SiQYNXy17mDSHcGtzCej1t47KxJwW0rNChytTCpb+cVg+8BFuDPCFJ/g9rsbsfuDPfDdn4NnGFTwSD6C47aojAPt/GiCGadSE9JkhsEFOwQk1Lgx1GnofiOUdUCoTwxCI6ag6cid+MvUK/iXDddV7utfbM3EP224jr9aehFBnaago19cvbpnWGPo6ndGglxxMMk2I0UICAHPJTB/+k7dft0k/rqW2YB9jlGR4FZ5OU6kp+GnOZ8jK3SOcaGgRiCYg8yweUhf+TVO/ZSO27dvG64AZ0SCRT/dUikKLUWCGqFgd12hwCGBYEkGfNZdxFc/nMW1K5etnoc7LAlYP6ZAv/riL9uMFCEgBISAHoFNaw7q3l84fo5yQ0YvTSTY5BuLdU1j8HFwIq49vxBlL61EXreFdSf1neaqIIYUEMqGrkB6j9lY7xODdT4x2OgbC26DC99r35/qOqPGoqB40PK6bgcd5iK38wKUDl2JrH6L8WmL0UpgWEeRYH/DiAS8zzHeQKnFwu8YrNC80KXA1rp3qwMccn13WRLw/sI6rjNXsmKpxnkD24wUEwGvEgne/f0ShOqkvqvv9IdsaK6IBPx/t2bj1WSfIkH35om48PtVyqKAbge339mAKSnf47+/LUTw2D+jnc9wmASCWBWsz/R/k9jA9zS7Dw8cXROQ4xELg6bD0dY/Dn836SieWnldiQUUDJ5alYl/GrVX/Y8DM2273vSqlwaRbYVtRooQEAKeSyA5cb3uIM5d4q9RkYADk4yrV3D83Fn8NPcL5HReoLIUWAaieuRzdXqr7G4Lkb7qaxxPT8PV68bjEbCWnBEJ5qWXWbUk0EQDWhRE7clDdsV9rL1cbhKL7cUg0FwMFmfAd+1FfHUsDefOnkHJTevptNwlEhgVf9lmpAgBISAE9AjMm9FwIjSD43UPTsJ031hspVDgE4OtgfG40HMuciMX1IoEHeaqewrvHzdpZTAoBX8OHqXEgC0UBXxjscw3Fim+sVjrGwv1HbcVEI/cAUtMFgVDUpHXta7wwACGl5+djx3BiUqkWP/0cGzuPAH5V3NsYnKXJUHVvXtIS0+3GrCQAQpPnTmLymqhoKzsFk6ePmN1XQYu/OniRbcHLuTcxqgIzTYjxUTAa0QCRrp8bfBcXbOhDgHx9T7hdV0kMJlV8ulY8ybD8PshK1A6YqtKiVj23kbkxe/AgDF/RgtaDygLgroCgeVEntYJ/I7B/GhlwO2aiwUhviPQrP1E/OPY/fjLhefxVwvS8c8Ju9Gy9ThEBXiXm4H5ubOu7amCNBtim9GipMpFLwSEgOcRiHlzuW5AWmaIMb/2nX1vVCQgJeZxvph5Ded2f4cbr6xCyQvLbadENHc9GLwchW+swdkjx5GReV1txxHqzogEH566ib9bf025B2jCgOXrz7dmouXnufjNx9nQczH4B8YgoIvBuovYXS0QFBQW2jwNd4kErFfzbEDW+vfQgASwzUgRAkJACOgRSE5Y12AiNPuvyOAkdPKPxWQ/0+SeQsGOgARc6zhHxbjRMhLkdze5GtCK4ELPOdjgE6PEgVF+sejtH4tw/1iE+ceip38sYv1iscY3FhuaxuBst5k1Lgwq24FZKsXMjnOxM2iUsiCgQLC191R8ueMLFBbbjonjLpGA90umOTx55qwSBCgKmC9Mi6hZ1N26Va4yIZj/rr2neHDhUgYePDRl0XGnJYFhETphnV6zajS/e41IUHX3Hl7oPQ0hdvIouytCqd4A1B0igQrS5BOPFq8tx99tvooZ4/ei6t0NKi1i5bDN+G5oCjoGxKGNXwzCAkcZGiBrYkGXZuOV1YH2pJ1cKBRwwNU8ZAKat0tW4kOIb4xS1vTO11N/141UGjBStRm2HSlCQAh4HgEOAF4fOl/XQsxd4q8jIgFp3f4pF0Wvr8FNpjs0FwL03g9ahsLhG3A32/bgzFZtOCMSzDtdgqeWXMLPN1+3KxT8x7Ys/NKoBQEFgh/PKgsCewIBz8OdIoGe+EsLMbYZth0pQkAICAF7BGLeajgRmmNlWvcyixljj432i8Umnxh8HJCA6x3n1AYt7DBXpTM0uRqsxMnO07Cq6QgM9YtFS/9YtPaPVQ/6OHbne343wD8WqU1H4Ifw92tEgsLn6sY5UCJBQCLoYrB9yEx89cUe7D10SKU5tMXIXSIBt880iOXlFWCqwzpLeQXu3LlT5xAoGNhal1YJWnGnSMD6MSRCvyUitMbfa0SCu3eqMPhZIyJBoqEJtSsTX7eIBH5j0fGllSpt4f8eysN/rrqEb+N3ovJPG5VQwPSIi3vPRjt/53KDa4IBA0FxMq2eyPjFKLFACQbVFgruCAbmCktX/tsxMLGOxYTlUycKSmwzbDtShIAQ8DwCzEf8Ut+ZuhZiHQOc6wct+xdHRIL7V4pQ+s4GlAxc5phAoAkIA1JQFr8dDwocS6fkjEjwzbUb+P+WXsRfLLusKxRYWhhon82DFPoqCwJjAgFblTtFAta1ZV9u/pkWYmwzksva865nOSIh4EkEqCNSUGSfYd6HWL53lwjN+42WeYsTfC5/8ovBNv/4R0WCnqaUhUxxeLbrDLzhM0KJAZbHpn1u4R+Ll3xG4MeID2pEgoLedVMqZnaYg0/8E7H9rfn4as9e7Dt8WKUhtFcn5iJB4purVNwey/umtc+cByUP32hv0275zd0igZ4IzbZiEqHdcvhevxGvEQkqK+6id+REHUuCGHQK9HyRINpvLMIGpMB393U0OZwHn4M5+Pf9+eg1fi9K315ncjsYtgnF723E8LBpiAhyNVvD+JqYBVqHw1zUDRG/wVrn4q7vWNf2cmpTJGCbYduRIgSEgOcRaGgLMaMiwcPb91CWuAPF/ZfaFwh0XBCK+y3FrcmfAw+MP/V2RiQoKSpE3K5zeGpJBv5y2WX8u45FgSYMaK8UCJSLwZIMmAQCUwwCPQsCrUW5VSQITNAVf2lVKBZiGn15FQJCwBqBWhGaKRAfTafK7ziR54M0d41LadKuPa3mtoN8Y/BBq3HICZtbx5IgL3qhykRQNmQFzj2/QLkX0ALB3nHS/fi7XnNRPmSF+u8jGQ5CZ+PIu8vw5cH9OPjNURQXl1jDUuc7BunNzslFQVEhPhy7BeE+Ywyx8FaRwIgFsojQtU3Ea0SCivI76BUxwXtFguBkRAcmobvvGIQ/twi+X1xRAgFTHTb5pgD+Hx1HszZjsbz3bNyuznZQMXwzzvzhIzzfcqLLaR1pMRDiPxIMlsiFJptUPN3VMT6O7RgRCdhm2HakCAEh4HkEbt++i37dpjZYv25UJKg6lWU/UCGDTfVdipzI+bjRP0UN2Ky6I1SLCPczbPvzW9aKMyIBo0mfO3MasbvO4y+WakJBpl3XgxqBYHu1QMAghQ5aEGjH7k6RwEi/zjbDtiNFCAgBIWCLQEOL0No4mAHy+BCume8IvNduPK4OSkF+57qBC7Mj5qPkhVTcrA5eOCxkvFqfWcsig8aq8Tm3w/ec2Db3HYFXWo9F4QvL1X94v8mNqrvNnPD5uPHKSqSt3oUyg2l3792/j9y8fOTl5yP93GW81H0WovzH6c4NnmSRQETo2ivKa0QCb7YkiA4yTcbDI2ej/cAV8Pv4IpocyQcFgqbfFMBv42m0aT8ebZsMQ1jQSPz46kpUDq9Oizh8C9b3W4xIF60JOgcno0fzZPy+zSS82maSSsXI77ROzRtfjQwmxZKg9mKXd0LA0wg0tPhrVCS4s+c8igekWLci0NIcdpyLrLazVBqqG/2X2RYKBi1D1YlMw+idEQkYnPVSRoZJKPjqPP5iSQb+SlkU2BcKaiwIqrMY7D6muRgUGT5ertjQIoGIvw5Vj6wsBBolgduVd9G325QGE6G1cTSzHIQHJWFCpylqUn9r6Ark91hUm92A946Oc1HYZ6m6b9wasgLn+y3GC63GIywoCfx/3W2NR9/mSTjWZ0GNFUFRv5RaywRur8NclWaRAXaZBvHuZ2cN1/nNm6XKmqCouAi7P/sR0c0noGuwfQvmhhMJgDcHLDYkXGjM7L0amTewzbDtSAG8RiTw1pgEFAgiO02Hz/Rv8est1/GrHdn49ac5+O2ebCUQ+G5PR5vwSQhpMlyZGbXwHYFXQ8ej8N2NKBu2WbkeMDViYuQMRFSLDfYuAGu/UWD4Y9sp+LHPYtx4MRVFL6biyHOL8Ls2k9FZpyOwtj1P+U5iEkgXJgS8m4CnigSVn58FXQUesQ7QBIIOc5AZtQAZsZvUQC270zwU2RAKKDbc/eGa4YpyRiTgxplb+sLFizVCwVM1FgXWgxnWCAROuhiYn5CIBOY05L0QEAKeQID3l57hyQ0qEnCCzwdwSzrPQumQFaA7AQMUWpvU0xKtuNrajC4ElwakYEKnD9G7xQREBo9XS6/mEzCqw4dI67fEJBBUx7zJ7WJmRVAtEmiiQ8ng5SgZmILKdd8B9x/oVgUDBebm5SEnNw8UCuZ/8IlK9W5vrB/hNxaj3lqNhw/1t697AHZWuHPnLv7QZz6iAtxj+WxEJGCbEQtkU6V4jUjwuMyGrF0kVNDmv/8JCm8UovL2bTx48BDvDF6KSGsmOsHj4fvBN/jFZ/lKIKBI8KttWfj1Jznw2XEBrbu+j5Amw5RAwNSF9Edq7jMC83vNAoMXUiAoH74Z5/+4BgNaTzI0qefEn8IAlcyo4PEY3HoSzvRbgttDV5hMm15MxZ2hK3G0zyJlXWCuWlo7X0/9zohvkZgN2el95Sch8JgJeKq7QfmfzyC/6wKTdcCQ1JrXor4pyO4wB1lh83B+5dc4eSEdF+Z8jqzQOXUtCrT/vJiqnu7cPnrFMGlnRQLuoI5QsOs8lFCwnDEKTBYFFAa05R/WXlNpDuvGIHDMgkA7qYYWCcTdQCMvr0JACNgi0NAiAcfSDBq+rtscNaGnK4G50Jxr7nKgPf2vToXI9SgolA1JRXr/pdjbeyG+7r0QZ/stQemQVNDaQG1rSCryey6ua5XQYa5yfauTpveF5SqmTsWiA3h4pzZbgC1WxSUlypqAbgeZmTl4d8hSRPjZdjugVd7wV5fiauY1FBXdQNGNYrcvhUVFuHDpEn737Gx0FpHAVtXV6/deIxLQnJI57xsySqmtybFRkYBWBB07zcDP11zGrz/ORo0P6I4s/HxHLpq+uAKhz7ynhIHQgJEq7gBVLqY9bB8Qh8MvL691OxixBR8PSlGTf/On/ybV0iQK0NKgS3AyBraZjLjw6VjaewH2v7wCl19ahRKLp1w3h6Yiv28Kftd8olIrbZ2rJ39vJEop2wzbjhQhIAQ8j0BDi79G3Q3KDlxAZtuZaoJf1CcFFAdoLprdfg4yO81D+so9OHH+HE6nncPJ9DT8pISC2cjuNFcN4Lh+4fNLwac9jDhdeTrLMHxXRALuxFIo0GIUUBT4103X8S8bruP/rrqiBAKftUxz6FiQQmsn4k6RQMRfa4TlOyEgBBwl0NDuBnwo9/t2U3BzyAqUWggEypqgr4WLgCYURC9EMZ/+DzHFKKBYUFG98L0SGyg8v5Bq1W2Brga83/D/5qIE1y8ZkIJ7Z/TvP7xv0JKAC4MY/vBtOp5vPxWdA627HXQJGo/nO03BV18dQfqFdKSdP+f2Jf3CeezYvg8920zUdX8wOlcxYkkg7ga1V5rXiAQ85Hd/v0Q3n3ZDROx3SCQIm4m/WXIBP9uUWSMS/PuWTPyfjzLx2+cWIbTpMIT6x4EBSqhA0g+IkVHpdvBC23HIfWc9btHtYNgmlL63EbO6zsaAlqaJPS0FKBK80HYyEiJmIPX5hTj88gpcf2u9clWgJULliC0oeXUNciLmQfnNVndcNH3Ki5yPj6LnIbrFBGVxYPQi85T1WNe2IsHyewZnZJuRIgSEgGcSqI0+bf9abugUiDeyC3BlwDJktZ6JLFoOdJiLrHazaywIjqenIePKFTDX86XLl3H8XK1QkBUy27R++znIbjUTV15ZhbKbxtMguioSsKbrCAWMUbA0Q2U+eColQ1kXPFUTpNB1gYD7c6tIICkQPfNilaMSAl5GoKFF6M7NkvFSi2Rk9VusXA3qTNg59qYVQPdHYxPw/pITMR+Fzy01iQXV66pJ/5BU9R1FgJyo+XUtCDSRodvCuuJA9Tif4kJu30W4cfiCoZqjNQAzHVAouFFShI2r9isz/65W4pdxvhLmPxo9w8cjMWY5xiWsxLj4Fe5bElYiflgKuoaORWTg2JoYDa7OP0SENtQUalbyKpFg1PDVCA20n0OZT+SZgsTVhmTv/0ZFAm0bP0s6gqdWXcdfr7iCv1l5BU+tuIa/nnMWzdsmIdQ3Fsw8wAtOWz8qeKya/DbzGYEPo6ejgm4Hf1yLm0NN/k3XBy3D2ui5WPH8Qnz7u5XIetskJDArAjMiMJYB3RRK/7QJt4ZvRvm7m1DUZRFyO85T0VBVRNT2c5DbdREq/rQZ+4amYnCbyW5ItVh7Dtq51Ncr65h1bVckCEwA24wUISAEPJMAcyAzJzEFPXvXsrvyWBu1JCi+VYozX3yDq0NXmoJDtZ+D672XIP2jvVACweUrYFRolnv37uFixmWcSDuLnxbvwvUei5HVfo7635VXV+PM3u9RVllhuALcIRJwZ5pQkHbmNEbvPo9/WnHJ5H6QkoF2my9iV40FgXMuBuYn5E6RQM9CjG3FlMfaeFpJ82OV90JACDQOArUitO2xojtTIHZployBgWOxL3SidZGAk/cXUpWFmRKeOcnXFgrRHeYiO3ye+p0pEvOiF6n3/E6tz3W09asFAgoHygqhWhgwFyYYE+FI+0m4/rWxIIa379ypEQkYoyC/oADJMeutxifgnIWZF1r7jECL3w5Di2fqZ2njG+PWTGxGRAJJgVjbP3iVSPDhxK26IgH9+rvUczA+R0QCuhy07vg+/nbiN3hq2WU8tfwK/mbWafj0modQnxGIshAIOKnmxdcpcJRyO2gXEIu9AxejfMjKGqWQZkw0Rap8az0qRlAU2FQjClAgoFBAwYDvM99aj0O/W4Flnafju5AZyGEnRNOkbotQ8sd1uDlss3JpuPD6WowIm6biGHhDjALWsRbDwdbkgoIS24wUISAEPJdAzJvLEarz9JjWVe4QHI2KBLQQOJV+DqdOnEbaJ0dwbtshnP7uhBICaDmgCQQaVZNQkIET587i9DfH1fppn36DkydP48xP51FVVaWtqvvqLpGAO6JQ8NOFi6BQ8PWxNCw/fA6bvz2HE6fP4uyZMygoNJ6a0d6Bu1Mk0HKM2+zXAxLANiNFCAgBIWCPwMOHUIJiQ7kpUyQYHJyEDb6xyHh2HkqHVscRMJ/A06XghVQUdFuEnI7z6k76NQGgWjCwKgxUr8P/5ndZiJLBqbhp6WbwYqoSKa49vxAbm8Qga68xkYCiPeMAaNYEFAku/HQVL/ec/Uh2AU0ksNVPu/N7d6Zr1xOh2VZMIrS9ltV4fvMqkWBVyh5dkYAN050NytrA1BGRoAufePuOQJugeAR0ng6/6Flo1WosQnyGIzxodB0LAvN98Uk5B0vMjbqh04dKFDBXCBmgpGjAciUEMF0iXQsoClx7cx0OvJSKxb3n4b1OU/Fsy7EI8R+p8q92DhiJ14JH4+Xg0Vj27GyUDd+sXBm04IhF723E3J7zlMhiHvfA/Lg85T3rWK8TokjANiNFCAgBzyWQnLhet193l4WYUZGAtHLy8nDizBklDJw4l6beZ9CC4J7JgsCSqCYUHOd/uH7aWZx0YiLuTpGAx6iEgouXcPr0KZX54Ozp0zjtxHFZnq/5Z3eJBEYtxNhmpAgBISAE9AjEvNVwIrSyJAhOwhqfGHzRaiyKXzDFGODYXWU6GGp62He970L8EPEBvm89RYkEOZ1siAWaaGD2SnGA2XSOtZmKb8Om4urzC1SGhLKhK+tYLzAuwp6247Hmt8OQc+S8Hqaa3ysqK2tEAi3bwZ4vjpnSIlqkYqebNB/WtfWPqbfFXfd+be5iSIR+S0RorUF4lUjwxc5juk+cOHGkub7WIOrj1SGRQJvM+sUg1Ge4WkJ8R4AmTjTVMXczsDxWWhm08o/F5rbvo6THEtXhKB8lqpA9FiOvxxJcfnMdvh6yHPN7zcXbHaegZ4sxaOtvEhda+o5Aaz9evLFqQt3GPxYt/WLUwpgHCZFTlKsCRQYKBbRIoBXCJ4NS0KfVRBUk0fKYPOWz5pJhTyjg00m2GSlCQAh4LoH503fqigQmCzHXUyA5IhLg4UOUlNzE1WvXcPnqVfXUXS8IKoWCvPwCtf7V69dRWmo8FoFWQ+4WCbhdHlduXr46rmvXM1FW5vhxacdn7dVdIoE26LTbrwcmgG1GihAQAkJAj0Bywjrd+4s7J6J8gDXJLxabmsbgVNcZuPVStTDQZyGORX2oxINNfnFY23QE1vnE4POgMTgbMk1N/GssB8zdCsysCigOpIdOx65mY7HeN1Ztg1YLn7UYg+8j3q8RDLjP9B6zse7p4djcazIK841bjNGagBZmmjWBJhQsnLbTqtsB3aVp+cyAgO5ewgJHufWhr2EROmGdXrNqNL97lUhw7PtLaFedJtDWIIITYtMT+gn1JhQ4IhJwUm0twJ6RQS8FhNDARMS3GIcCxhOImA+mUOFrUcd5mNduKro0H422fnFo4RsDS1HAnJEmFJh/x1SLg9uOxQ+vrlDuCYxhQLGAVgknX1uN19t/gPBA1wfm7hYWoptNUHVs7ZzMz49thW1GihAQAp5LYMu6w7qDOF7XHIy42pc4JBI8JmT1IRLU96m4SyRgHdftw00Ct/l3tBBjm5EiBISAENAjMG9Gw4nQvD9FBCehp38sPvKJxdaAkdgfOgFfthoHc2GAE/uN1QuFgi0B8ch+fhEKn12C3K4LVTpDxiHgkhM5X8UlKOi1BPl9l2BHcCLW+ozABp8Y0+Ibq8QGig5KMGg5BvtDJ2Krf7wSEj5bshVFN4v1MNX5vby8vI5IkMu0iFk5GPZyilWhwN7DTlfu2e7erlERmm1GiomAV4kE2Vk3ENFqlF2hgBNHqlmuNEy9/zoqEtAigEolj40LBYKIoDGGjtHkdhCPha0n4WqHOcjvOA/XOszByjZTEOIfi1ZmlgLmAyltX/yO5jUM1mEyCzIdg7YuLQoiguKxecCCOkEPaVGQ8/YGTOo6W1kUMLWiHpeG/N2UxuTRAaR2XhQI2FbYZqQIASHguQT27zmtm9qW13Vk0Bi7lldG+h8RCeqnHbhDJOCAkHVc24db79/pM8o2I0UICAEhoEdg05qDhkRojtON3EP01qElAS2A4/xisaX6aT+FAE0Y2Oxr+n4Nf/ONBT+v94nBpd7zUPbSClMawxdMGQ1UQEKmMRySquIbXO+7CBv94rD+mRHY4B+Hjc0SsP63w02fq/fBfa1tGoN1Tw/D9ldm49C33+L23Tt6mOr8/vDBAxW0kFYE2sK0iMd/OI++Hd9HFw98eKhXL/yddax3f6EIzTYjxUTAq0SCyoq7GNDjA4ToRLWv7zSIjooEbJyc7HMARHFAS3dopFFz4NQxMFGJAf2DEvFOs7EYGJQIug5w0Ro8RQG+p3BAUYCTaG1f2n4Y7I/f0c2BKcW0/9AlgcvU6GkoeHeDEgtoUcDUi3RBWNdvMXo0n4AoC38kbbuP49WadYbGQnEIGKnaSmWFY52jdAxCQAg0LIHzaVloH8TsBnE1/Zn5tcz39HkMCxrlBpFgLA7sMhbEqWEp1O7NGy0JyDTSzzU3P97rWMesa8v6r/0cp9oK24wUISAEhIAegQN7zjSYCM2xMEUCjs3D/WORUi0IaMLAOt9YzPKNxXt+sejhH4t+frGY7ReLDU1H4ETnaWBcgTqxx8wCHvK3tOhZWPv0MGyOTMbn8zdj1+bPsDNpJbY+9z42Bsdj/dMmwYAiwsYWifhi46fIzMnRQ4R7D4E7Dx7WWW6W3UJOdTpETSi4UVyEzR8dQOeAJFhLi/g45gJG9+mICM02I8VEwKtEAh7ysNdTdOMShATE1WsaRGdEAjZkNlIuRhu1tp6WsqOVfwxa+MWAr9oE31wU4OSfAoRpXxOs7sv8GOiWoQ2+uD26H/yhfTLO/XG1cj+gUEAXBLofHHl5JV5qNxVhgUkqVWJk8Hg8riwIFFxYx9qxW3tlPAK2FSlCQAh4NoEbRbcQ3SHJ7jXN/on9oNYnOvvKiezuncf5Z1QwAAAgAElEQVQ9Gog3igRf7TzuskjAOtXuddb6dH7Hfp9thW1GihAQAkJAj0B6WiZCA5kC0faY0V0itOm+NB6MoN/SPxYv+cUi1TcWs6uFgV7VD/NoaUAhobV/LEL9Y/EHnxjsDZ2IsiFWsiFUCwVlQ1fgaNgU7IhPwe5dX2P3wQP4at8+9bpn337s2lgtGPSeik2tR+HPSSvx3ckTuF+dqtcWp5tVD9D3QCHafZmL9rvy1NL6izy8/W2himOTa2ZNwLg2+YUFmBi3HhE+ronCzt7Dnf0f5z5GRGi2FbYZKSYCXicSLJj5qfLTtzWI0L53l+mQtQbprEhgbVt637FhRwSNrhEFtPPjoJnWApoowO04I0BorhDadikUdG+eiF0vLjVlTKiOU1A5Ygsu/XENFnWZjaWdZ2FMxw/RvVkyHocbgjGToUSwrUgRAkLAswncv/8AL/efpfu0xx3BpehusGXtPo8G4o0iweaP9oFs9e5n9n43ElSKrga/GzAbegEkPbqC5eCEgBBoMAI3isrQrf04uymz3SVCa/2bNkalENCp2sKXwgBFAe5LG2/zleu08YvB6hajcfOF5TYtCUoGL8fuzlPwxadfYc+BAzh+8hSuXL2GH44dx979B2sFg737sfuz3di9bz+KivTdba+W38PTH2fj51sy8R9bTcvPNmcifHc+8otvIjc3t8blgBYFWlrE3/Wa80haRO38PfVVV4T210Ro9wb2bbDGXg878jqRYM+XJ3UHk7wIwwNtpxd0tQE3pEigHStdDtihaKaYdBfgoEr73dlXCgtdg5PQwcz9oJWvydxzwbOzVCDD8uGbcfPdDSh7eRUqhq5A5dAV6vXzXvPRs/mEBrUo4PGybi07WvNOl+85mGRbkSIEhIDnE0gaudaQ36i5KOpMn8eJ7IzJm1BS6lggp4Yk6G0iAVlOn7QJES6KBKxby37c8jP9RdlWpAgBISAEjBBgylrjIrTjlr627kNa3CyOVS3Hq5afKSBMDRiJwv5L6qQx1FwPmM6wsN8S7Ow7DUe+/Q4/XbyEslu11lS3bpWbBIMfTYLBl3u+xpmz54zgwbXye/D5JAe/2JaFX203Lf++NRNdvi5A+d0q5Ofn1xEJKBQU3ijCvq+Oo0fLiega7Po8xBZDd35Py2c+aLC8p5h/ViJ0/9nggwspJgJeJxJcv1qIcJ3ghax0mvu4s4GZb+txiATcf1TQWGVVwNdubhAIzM+J72mKo10w7MSa+47AiPDJuPLmWpS9+hFKGECl2vTp5oupuD10BaZ0moaIBu4kWLfacVp/jVNthG1FihAQAp5PYO2K/YYsxPTSxlr2aZafowKS8HKfGTh5+ox6IuKJT6S9RSQgOz5VIksyJVtL3kY/U/xl3Vrvz2ufvDHbD9uKFCEgBISAUQLjGkiENu/vutAt1szFQRMGOFGlgMA03owRxs90TXjHNwbp3WaAgkDxi6l1Fn6X3nkGPnlvMa7l5SC/oNCmG8GdinIUFhSg6t49Q3hsiQSd9+Tj7gPg5s2bdTIdaPEJioqLsGTmp1azHZhz8JT3RkVothUptQS8TiSoqrqPIX1m6FoTmFIM1o/C9bhEAl5sTP9XnxcdB2rmHVsznxEY2GoMLkYvQGl1lFVGWi0ZmoryQcuxrv10hDegSMDgi+bHZ21QSTWQbYRtRYoQEAKeT+D7oxfs+ozyOucgi4MrZ9yqzPvMUN+RmDNjC9IvnsdPFy4iMysb+fkF9bLk5eWjoqLCoQpwh0jAfXLf9XVeZEZ2ZDh7xmaQqTljR9+zTrUnb9b69Nrv4sC2IkUICAEhYJTA2pX7dC3VeH9xRwYdre9jn0ZXYfZdoQFxqn/j+NrSAphj2vaBozCQ2RD8R+LzlmPwecuxjyybmsRg96zNyC7Mx82bperUvy28gwEHCzHwUCEGHap+PVyEH4uNCQTciD2RoOohUFV19xFLAgoFTIuYlZ2LEa8s83ihwCRCj3nEoqP2vmISommpxrYipZaA14kEPPQPkrfoXvCsfFefOmkXu+Xr4xQJLI/F3Z95MTE6K7MHsNPkwswHX7X7EDe6LkJRvxQUD1yGwueX4kbkAixu82GDWRKYLnQjT5sSVBupbebyTggIAU8mUFRQih6dku0GL2SfzswtrvZ5HfzjERoUh1nTNuP4ydM4d/4c0uppOX32LM6kncOt8nLD+F0VCbgv7pP7rq/zIjOyI0Oy7ODvelBJ1q3loM38M4MWso2wrUgRAkJACBgl8OO3FxtMhLa8P/EJtqUw8Mg6fADoPxKrq9MhMo1hnYUpDX1jcPTjfcgrKkJVlUkEWHrxFv5243X825bMmuXvN17Hsou1rgjl9x4iu/I+cqoXvi+8U2tOb08kuPvgoUJcdKPYqjVBQVEBTvz4E/p1/ACdPTgtIucORkVothUptQS8UiTY/cUJhOqYnHNySz9+y4vRHZ+fZJFA48NOjRcVB2nMqBDXPAl5Heciv+M85IXNQ2HHeTjffjZebjERnZ3I2KDtx9FX1inr1nzwaPmebYNtRIoQEALeQ+CdVxfr9uu81iliOtpvaOtzsEC3qja+MWjddAQG9pqK5NGrMXfmVrcvs6dvwZdfHkZa+jmTUHDLmFDgikhA31QKBNwn981jqI9zI7MBPacohmRJpmSrcXb0lXVq2Y9bfma/zjYiRQgIASHgCIGiwjJ008mgw/7GHSK0o32ftn6nwATMbxqDTc+MAFMY1ln+dxg2thmF0z+cws2y2qB6yy/dwr9syayJJcCYAv+6JRMrLtWKBMN+LMbTf86G384ctfjuzEGrL3Jx+ZZJaDAiEty+c8eqSECLArodbF17UIkEnhyfwIgIzTbCtiKlloBXigR5OcXoGmI/WikveJql6yl42gXqyGtjEAk0HvSZYuqY1v4xSGyRhIMh03EidCY+b/chXg4ejU5BY1waHGr7MfLKutR1NWCdh4wD24gUISAEvIdA6uLdunEJKBAydasrE1L6gmoT0FZNR6DFb4eh5TPD3b40f3oYundKwmefHcS58+mGLQqcFQk0CwLui/vkvnkM9XFuZEaRReNIpkb6cGvrsC5Zp7rib2Ai2EakCAEhIAQcJfD2K4sMuCm7JkJb69+MfEc34g4BiXijVQK295iMLd0mYUt09cL3XSdiZ9JKXLxyBVVVVTWnbkQkoDsChYT/3JZVs/xyexaOF99V2zEiEjx8+BCFRTesCwV5eSgoLMSUxE0e63ZAEZrp4rX7lbVXuimzjUipS8ArRQKewvDXlyE0IMFupbMhuNPHSLvYG5NIwAEc07lwct7SLwah/nEIDxipBnT83CmQT5DqN04CufM4WJfWLm7z79gm2DakCAEh4F0ETvyYoWsSymvdHUFp9VIhmfcprrxv2WR4tVBwSLk1nD13Dnzab684IxJwm9w23QA+++yQ2if37cqxG/mvyWLPdVcD/WC0HODFgW1EihAQAkLAUQLLFu4yIELHuCxCa/MEh16DkxEROAYzZ6zHvkMHsWff/jrL7r37sffQIRVnxvy8jYgEgw8V4t+21lobUCD4rx1ZOOGASMB9VlZWWhcJcvOQV1CASxev49XecxHp71oqXIe4GbBeqxWhTVnbbN3XGBSXbURKXQJeKxJsWXfYUFyCDoGuD2AsG21jEgm0c9cGcRwUMq8rX5mOMayBRAIeB+vS1gWufc/AI2wbUoSAEPAuAuW3bqNf9FSE6Pmm+8e55HLAvoRWSVraV70n2Frf4uxrqxqhgBYF53CWMQrsCAWOigRKIEjTBAKTBQH36ezxGvmfqf+nYON6Kl7TU544u8fLNsG2wTYiRQgIASHgKIETP2SgfaBeZiz3iNDauNnoa7jvWHwwZgtOnTkNCgJ7LJbdX+/Ddz/8iNu379Q57YYUCWhNUFBQaDWIoZYWcf/uE+jZaiK6BtVP0HijPC3X0+Yv9u5tbBtsI1LqEvBakSDzWiGi2o7RNT9no3DFh9WysfFzYxMJqMTR7eDRwTQH6w2jGhrxWaW1A9sE24YUISAEvI/AlHGbdcVf9kPhga65HGj9emTwWBV7hZPd+lg096i6FgX2XQ8cEQnquhjUtSDgvuvjnLhNxqshO42js6/qKU+gEVeDBLBtSBECQkAIOEOgovwO+nSZbECEjgWDDTrbpzn6v0i/cfj98/Nx+XImcvPycPnKVWRYLpevqEw1lufdkCIB911eUWHTmkCLT7B09uce5XbAutR3NRip2gbbiJS6BLxWJOBpxL29QtflgANKPu129MK1t35jEwk0FvQb5cCTC3O7umOQqG1b75V1+KhIUdfHiK4GbBNShIAQ8E4CB78+qzuIo/DrzgBTnKjq9T/O/k4RlVH5ecwUCqI7jVPuAIwbYMuiwKhIUGtBwBgEh9S2NRcD7rM+BVx3MtMLKEV2tCRg25AiBISAEHCWwKQxGwyJ0GFuEqH17htdgsajZ+tJOLj3FApvFKmn9Ll5+bBcOAGnub9loUjws62Z+PWOrJqFrgXmgQvpbvDzbbXr/GpHFv7747ruBgxmSDcEbTv/sS0TXfbkQ8tuoO33wYMHyMu3bU3A487OyUXsa6keIRTwPsW61J07BCaAbUPKowS8WiTY9elxQ9Gw6UfvzgCGjVUk4AVHjszrqtf5ufN37pN1yMGivYXRr9kmpAgBIeCdBMpKK/F8Z/2nPewHooLGuhTA0J19lL1tcbIe6m9K76e5Hnz+2UGVnvAMYxRYpEf8f+2dabRmRXnv9X67K+vetbhf89F1TaLdwDUoNvMoEHGKKMZhOeRGJTcDMnUztSKKMqgRRDGi0YhyJYhRxBujiUxqjChEBZTYyKTQAzQNMnU31F2//fa/z9N1ag/vdM47/Gutc2q/e9fw1K+qnqp6du29uxgJqh0Et/U+3UhavKRQjxiQ1zgNBE1l7eca4wl12KTTuYaBgDZB27AzARMwgUEJXFcZodsfOegZocc/z2UXwacv+mb1hQAMAXV/bPNnu3/uLrptS/qvn787/Y/L79n59zuX3Z0uvn3hDf0v/dYD6b99YSHMbpffk3b74t3pBxt7d81/+cjW9LtXcG4hjf/+hbvT3l//TXpi++I8H3n00cbdBBs2bki3/PiO9JqDzk2HrVi6HRnlsefd1Q2F9jHmlETbsFtMYKqNBA9vfiy96vD3d7rzxF3wciPq/y7SvBoJRsWv33Sou/ZOznah9yfahJ0JmMD0Ejj3rCtb7/agD3j5YL+6ZDnCsxjuGQp6hk4ZCvgCwa3aURAMBW1GAgwE7EIgrr5isGAg6O0gIM/lKGu/eVKHbbqd98zQJuxMwARMYBgCjzzyeHrFoWd3WjOM2wjNOuLkP/vMzt0DdQYC7sznhmQx+Nvbt6T/8olfpmf/7bqdf/y+9OcLRoJXffOB9OwY5pPr0u985s50644XF/7mse3pdy+7Kz37kwtpPPuSX6ZVX70vbX16sZFg+/bt1QsU6+TlPJ9F/MrlN6bDV65NL9ljecaifozQtAnaht1iAlNtJKA4F11wdesbS5mEsD1+VLsJbCRYuk5f7SJoeZFZVb8r11RtYXET9xkTMIFpIvDjH65L+6zs3XlvW0CO+n0z/S5yu4aXoWCXdxTsz+cRb+gZCm67PXGH5qmnnkonvPXSxB0mpc0x57hGmJ/ddvsOA8EN6aj911aPMcCJtDFGTIuBoMt7Znq6/eREm7AzARMwgWEJfLAyQq9pNU6O0wjNHfbXHnJe+ul//Gf1+cCmBfcD6zcktvmX3GPbnkk/2PBk+t4DT+z8+7f1T6bfblsIjxHgu+E6xz958KkU1/8/37x1UZi7Ht1WyrI69/CWLY27CXi3woZNG9M5p16RDvr94d9do7GwX7+bEXpNok3YlQlMvZFg3R33p4NfyJ3m9u3o3JEexQTKRoKlMRJQV112EVD3tAHagp0JmMB0E9i2bXv609dd2PpNa54z5AV6/U4cljM8C+NVOx49WHiZ4fXptl/cnn7ys1vTrbffnv7ijR9Ph4bPSHHMOa4RhrDaQbDzHQTVIwbLvbWzv3GBumt7VpRvV9MWaBN2JmACJjAsgZt/dGfad/f2Rw542d04Htt6yR7vTryL4Gv/8L3WxwzYRbDlkYVdAcOWfVTxt23bVr03odG4sWF9WvfLe9LbXnHhsnwWkbpre2EhRmjaAm3Crkxg6o0EFOuMEz/faXtq9W6CETxPXzISvPOYjyc+Y0Lnn/e/UU3CUaad3kWwcnXVBspN3GdNwASmjcCVl3+39aW0unu+lG+iHla39XYUrC28zPD6dPsvfp5+dvtt6a/e9IlFRgLOcY0wGAh4AeJOA0H1ksK1IzGAD1u+rvF7b5xuN+zzMlragp0JmIAJjILA1q3b0ltf+zet7zOTEXoUNxajXmT9cO4ZV1Z32psW2VzjRYDbtk+mgXTz5ocbdxMgPy9jvP5fb0lHv/Dsal0UOYzzmDrrYoTmPWa0BdqEXZnATBgJbr5JlsH2SccovnRQGQk++LW08cGNO984et7pV6Wj/vC96eUvfv9c/x39ovdVE1wW+MMqAeqKhUDz30k9S+BNtgSWu7jPmsD0EXhw0yPp5R2fHZ223QQ9QwF3OXZ9R8HXr74+ffe7N6XXH3l+Onzlgv7kmHNcI0x8SeG0PWKgMYE6a9brvRcW0gZoC3YmYAImMCoClRG6w/tQ0K+jNEKzK+ztr/5Y9bnDBzasr31RIQvsahfBlsnVfdu2bkv3N7xsUQYQ3k9w6YX/tIvhW+PAuPzORuiVNkK39amZMBJQyHe989LOd56GfY4VI8GFH/hqtVXo4Ye3VIyfeHxruu/uB/1316Z01WXfTxgLhjEU9Lbltht9uNNE3duZgAnMFoGLP3xNpx1iLDbHsS10XBMYpRsfPXjh778rHfTCNemI/c5Ih6xc/AxndW6/M6owhKXMPLYw7FgmWZbSp67aDARc54WFtAE7EzABExglgYceejQdffB7W19gOMrdBHqB37e/cVPrYwYyEvDs/28fe2xi/9Zv2NBo6KAc969fn+697/70jmMuTocuwdcOuu4i4Ks5tAHagl09gZkxEvz79+/Y8bKr5oUlnX6/Id+Kfcjzz0zHv/Vv0/qNG6oO8Oijjybe+JkSbwKd57+Fhvb+k68Y6jup1FHb86q8i4AXnFH3diZgArNF4J67NqbDVy3cca9bWFY6fcV0fOkgLsZ37ihY0RuzXvQHJyQMAIfusdhIwDmuEaYyEFSPGEzPSwpjufdb0a7bqzt4q85MtAE7EzABExg1gY996Ot9GKGHf98LO8Jee/B56c5196QH1jfvItBd+F//prejgF0Fk/gnOdv8Bzc/mD7y3quGWhPEMaTpGMN53VwhnscITRuwayYwM0YCirnm+M917vQH7376UM9wshX+7z71T4nGv+nBTZVlkG018/z30MMPpe1P956fevdfXz6QQmDiTN3Ezlx3TCenzu1MwARmk8AF7/tKp6/XoCMO2X3x4rppMjEJ12Qo2GfHywwpR52RQHqQsNyNJ+4klKEfGagjlaPJ32flmkTd25mACZjAOAjcd++mdNiL0Ufjv7GIjuRdZa8+4IPpjl/clda3PGrQtuietuusk8494x8GWhP0M74QtusNRuqeNmDXTGCmjAS3/fSedNAfdvvSwT4rBn/W6Mg9z0oHrDg1rVpxYjr9xM+mr1x5Q/rGV/8t/b+v/vtc/33jH3+QrvvWf6TPfPTb6agXnDXQ4wY8S0TdNE0ge9dOquqaOrczAROYTQJ33bm+024CdMIoP3Pb78Rk2PC9NzH39F7p0Qlt0dc7CIbNbznid/2crXYRUPd2JmACJjAuAuef/eW+jNDDGmb59OGXPndt2vzIQ9UuZF5MOOt/3ES944670xuO/HA6bOXwOzLqxi7qph8jNHVv105gpowEFPf8s6/q1OnZojrod1BpjHya70XPOyG94H/+dfW313Pflfb+vRPn/u9Fzz0x7fN7pwxkIKDzUyftjxnwvOqaqq7bm7hDmIAJTDOBi86/urNOH8WLaesmIeM+f/ieaxvfrYChgDDjlmNc6VM3XXU7dW5nAiZgAuMkcPevNqRD9z5950tkm25OjcIIzW6CI1e9O335iuvTPff+unqE4L5f359m8e/Xv+49IvGjH/08/flbL04HPe/0sY5d/RihqXPq3q6dwMwZCR74zUPplYe9v/WFJCgDJiws9geZFJUsVqTnPxicMNDWX+qiyySSF45Qx9S1nQmYwGwTWP/A5vSyDi+Z0gSP7frD3vEZZExwnPLjD9QFdaL6afLR7dQ1dW5nAiZgAuMmcGFlhF7dqp+Ymx64+6kDrRc0NrCQ3fv3T0h7P++EdMxR56Q3vfqC9MY/Pn9m/97wqvPSIS86Lb3guceng3c/bazjMnXTZf3AY8rUuV03AjNnJKDYX7ni+52+dMBkha2Nhw74fOf+1QuYei+Sapr4zNs1OipGlK4T9d4ksv0FZeLIFw2oYzsTMIH5IPDFz17XWafvu+LkxGRMEzP75cX7UnGhLqgT6e8mH91OXduZgAmYwFIQ2Lh+S3rpge/pdGMR3cV6YVDdiS5kzbH3805Me/3eu9IfPvf4tNeM//GyXdYE3ATsuiboly910jSu6BpGaOqaOrfrRmAmjQTbtz+djn/HpzpPKtlGNMi3UOnwWK+YAPlvgcGBK9f0pUR77yHoPomkbqljOxMwgfkg8MQTW9Pbjv1o2mfFKZ0mAwf0qYP6nZQ4fHfDA3WhSVqTT91Sx9S1nQmYgAksFYEvfu66zi89H9YI3bu5eGInndikL6ft2rg+19uXEXrl6kRd23UnMJNGAor/n7/4TXrJPms7Wwf3W3HKQHefxmUZm5dJKB0c9l0UHlZA6pS6tTMBE5gvAj/43i/SfnuwLbTLi01PrL6SMi96dFLL2fVLNdQpdUsd25mACZjAUhJ4/PGn0lte85G+jNCDzv25KbZvxzlvl3nxpIdh5wTjwDjGKOqgHyM0dUxd23UnMLNGAhBccdmNnXcTsB1m0BcZjqPxz0uaXV9UiCJkKyp1amcCJjCfBM7r423ULDyH2Ro6Lzp4XOXsbQHtZtDhRbTUrZ0JmIAJLAeBH37/jiUzQnNz7NDdz6gey+XR3Fn+G2SXdtcxqV8jNHVs1x+BmTYSPL396bTmrz/X2VDAQnSa347dtWNNSjhYd7WCYiCgLqlTOxMwgfkk8OCmR9KxR5+XVnW8EzPoo2SToiOnVY5+HiGjLqlT6tbOBEzABJaLwLlnXdnpSzq9eevwRmjuhM/637jGsH6N0NStXf8EZtpIAI4H7t+cjjnyg50nlT1DwWBfPBhXZ5jFdA9ceVpnAwGTSOqQurQzAROYbwI3Xntb5zs+7BBjayd3bmZRj05imXrPiJ7S6U3TesyAOrUzARMwgeUksPnBR9MxR32g83phnxUnDfQ+s0nU29MkU88I3W2XWrV+OOoDibq165/AzBsJQMJzjge+YE1ataJbo8JQMOinEaepoy2XrLDtuoOAOqPu/Kxq/53bMUxgVgl87ENf73zHB0PBfitWp5fs2f1le8ulG6c9XxjDGuZddDyPGVCXdiZgAiYwCQS+d/3taf89edlqt/XCsC8ynHadv9Ty94zQ3V50Th1Sl9Sp3WAE5sJIAJovff76HS8l6dbxqx0Fu3tHwagVwIF9GAjo4LzxmrqzMwETMAER4OVDx735453fSL33809I+/uLB2PfTQFjWHczEKyu6tAvklKrtm8CJjAJBHpGaF6S227sXDBCe7faqNcLeXoYCPozQq+2EXrIDjU3RgI4nX/2VZ3vPkk5+B0Fo7v71s87CODPXSbqzM4ETMAEcgK/unN9etnBZ3feGspkjs9P5RMP/x6Nju/n015sAaXuqEM7EzABE5gkAnyG9R1v+lgfRmhefN7fp7897vQ/7vSM0O2Gm976YXVVh/6k7nA9a66MBE8+sTWd9Oef7tNQwB0otqraSjioUoMdDF/c8Q6TDATUFXVmZwImYAIlAjd859Z0wAt4AWr3HWJMNKzP+5+g1en/nn5ne263yRt1RZ1Rd3YmYAImMIkE7v7VhnT0Qe/t/Bl19J+N0KMbV/LxBrZdxxg+l07dUYd2wxGYKyMBqDY/9Gj636+/qLOFkEbZ2050Sjp8z7W+C9Xnc70w229F15dY9SaZ+6xcnf7sDRdVdTVc83ZsEzCBWSfwxc9eu2M3QTdDgbeHjm4ih4Ggn+2fGAjYRUCd2ZmACZjAJBO48dpb04F9GKGr3WqVEXp0OjZfLM/bb95z088OAsYY6oy6sxuewNwZCUD2wG8eSq9/xfl9Gwr4nBaf3eCTJfPWUfstL4xgBTMUZ1cLIAYC6oY6sjMBEzCBLgQ+fM5X+tbnvHBqnN9w7ldnTlt42MGwL/2+YnWiruxMwARMYBoIYNDk3Vhdd6vxTpbei3K9+3jYMW3BCN3tPTfUEXVlI/ToetZcGgnAd89dG9OfvPz8tE8fW1i00PWXD9qNJP18wUBcqQvqhLqxMwETMIGuBLZu3Z7OOPHzfT5KdmLiE1YYM4edzMxb/J4BuNvOjZ36feWadOZJlyXqys4ETMAEpoXAh87hfWbdt7tjOOXTuzZCt68V6sbOnhG6/13I1JXd6AjMrZEAhPfevTG9/hUX9NX5NeHBUkgj9q6CBSUAC5jARpy6+r0dBBdUdTK65u2UTMAE5oXA4489lY5/+6f6NhRw9+Hg3U+3Lu+wQw4dD6uud9Wk/3kJLXVDHdmZgAmYwDQR2LZ1ezr9hL/va2zBUKDdx3ULYZ9fWD9EFoPtQrYRehx9aq6NBAC9955N6fWvHMxQsGrH5DI27nk+ZvIIE00Mu/qVgeCVF1R1MY5G7jRNwATmg8CWLY+lv/qzT/Y1mZOeOsAvNGzcUcHWTxiJV1cfAwF1Qt3YmYAJmMA0Enj8sSeHMkLP82shlysAACAASURBVNqgn7IPZ4R+chqb1kTLPPdGAmrngfs3p7e/4aK07wATICZK3Dk/bE53FXBnibIPsnsAdkwg3/7Gj1V1MNE9xcKZgAlMBYEtDw9uKOAZez9+sPjuDkxg09UwoHA7DQQP20AwFZ3HQpqACdQSeGTL40Mbob37ePH4ApNhjdDUjd3oCdhIsIMpE8tT/vIzAz160JsQnZQO5E7UnBgLqk69x9qqzP1uPV2YQK5Oq//qs8mde/Qd2ymawDwTQKcM9uhB7yWrB+5+ajVpmecJnSZusJDO7sfXIwbW7/PcE112E5gtAsMboc9o3LHVz133WQl76B5n2Ag9od3ERoJQMU89tS195AP/WH2iie9s9jMhUth9nn9S4qV9WMVmcYKpiSNlpKwqdz8+bPkMFqxhbmcCJmACoybA9tDec6S8I6U/XaXnSQ/ZfX4ndJS936/T9MaBkypjOy8ppA7sTMAETGCWCPDo1FBG6JU9I/SsLPIHLQfrpANXDmeE9mNs4+1ZNhIU+F71pe+lg194+o7PnnT/fF9cKDO5YiF9+IwYCzAOUJbKODCgAQU+fJ4EtjC2MwETMIFxEuCFU9Wbqfv4hFXU4xzvt3J+HidDz1ePj/XxJu9defU+QcVnDv0Vg3G2bKdtAiawnAR4CWvvizo2Qg9iJBjKCL1idTrzpM/7RbhL0AFsJKiBfPNN69KxLz13oBdgadLE3ahVK3gM4dR02I7PbE3T7gLJiuyUgbJQJpWvX5/tpzCFrZ0JmIAJLBUBvpt84AvQYf3vEJPO46V9s/pFm8oIvMfanS8mVJn70fGwhbG/Ub1Urdr5mIAJLCcBDKEYRNkZ2+9uNenW3jvN5uczvKwnBn2HGYy1C3nrVu9CXoq2byNBA+UHNz2S1p5yWXX3e5DJpZRAb8J1UnVHijd36lEELcIHscKNKw4y8YeMyMpdNDrmIJNGlR927CCAJUztTMAETGCpCdx47a3p6IPeO/B7Z9CBfL0FY8E0Gn3zMUPjD2WhTJRtUD3PF2pgC2M7EzABE5gnAhhGD6iM0BgL+ruRJp0rI3Sup2flNwZ2yggflbkfVhgHYGwj9NL2LBsJWng/80xKX7vqB+mo/d891K4CdQZNNPdfuSYdsvvp1RZ+lMCRe561bC8zUd6H77m2kgnZhpkwqqz47B6AHQxhaWcCJmACy0Xgnl9tSO9408d2GAr6e0+B9FpPh5+Y9l+5Oh1avbNgut4/0zMOvLuSnTKsGnDS1uPRe/8ATGFrZwImYALzSOCG79yaXnbw2QMbodGnC0botdV6QIbcaTQUSHYeX5MRWmNovz5GaNjC2G5pCdhI0JH3vXdvTCf/5Weq7arD7CpQ55AlDaWw34pT0kErT60+vcUdfBkN1MlGqSBIU0YB8uLTVuSNDMiCfJJNsg7iw4g/mMHOzgRMwAQmgcATT2xNH/vQ19P+e67ZsU20vzs/uT7k04AHrjytehShp7sXf+JplDp8kLQ0lnA3B1kH+ZxhXm7u7MAQljC1MwETMIF5JvCrO9en49788R03FAc3QqNrF4zQvd29g+j95YijsQYDOmWgLIOvKTBCr6mYwtZu6QnYSNAH82eefiZ98+s/Sq8+4pyq4WpRnU+eBvm99/NPqDqTjAZY3tjuzyKeiZ2MB+r0vcV+T3mUjhUOn7ikQVqkSdq7GgV6eQ8idx4H+enUMIIVzOxMwARMYNIIfO/629MxR31gqAmd9J92F1QG391Pq17+h+6Vbo76eCmOY77cyeGFsz2dP8yETcaUno6HHQztTMAETMAEegQef/ypynC63x6rR2aEPmjlrmPKUowh/eTBeEP4aqwZoREahhihYWq3PARsJBiA++bNv00Xf/jr6ZAXnT7UtlVNMEs+RoNofeNzg9z9YaKHdY6FPn+8UDD+6TxhCEuc+KlC0pRBopTv4Od6205hAhsY2ZmACZjAJBPY/OCj6dyzrkxMRnhvyuD6Twvonn5lCz+6F31cPVZWGXp7E6m4gO9nIlYXNqb3Er5Cs0fvsTHyRobe4wSjMQTDCFYwg52dCZiACZjAYgI3XntbOvbo80ZohN6x63iijdCDv9dmYeztGaFhB0O75SVgI8EQ/O+6c31672mXpwP+15qxGQsWOk6chPbuBmnB3zMoYFToGRZ65xfCl9IY3bmecYC3WsMCJnYmYAImME0Efvj9O9JbXvORSo+P4nEy6deoi/ksLsbbA3c/tTIc1O0SqzMGxPNxdxhGCNIkbfIg75ivZBnGhwnPhcIIVnYmYAImYALNBHhR93lnf3nERuje3H7BCH3GLruNo9E4jhmDHsf0NO7w+UIZoTXeDDO+KK6M0DDzS86b29ZSXbWRYASkb/3pPen0E/6++vwTW+1XPb//z2ypk0yLTxkpK8YByn7bz+4dAUknYQImYALLQ4AtjV/83HXppQe+p2cs2PGOllHqZBl2lWb1eNaKk3fZJRZ3isWdYbvsDqt2CCw88yoDsdIdld97fGx1xQQ23va5PG3TuZqACUwvgR987xfpbcd+NO2zgkcQRrc+YDyRrs+N0Hy1pvSochdjgYwBpFEyQpNnzFsyDOpXRugVqytGsLKbHAI2EoywLn5x+33pnLVXpMNXnbnjjtRotq8O2vHGEY+XVXFHiTJSVspsZwImYAKzQmDj+i3pwvOvTofuzeNkfLJpYTE+Dp0a09QOgF13hy3sEIthx3vc2/J52N5nVCxgYmcCJmACJjAYAV7u+sXPXpdedjCf4e19QWzUOrzVCL1i9S6PK+9ihF4RHlFeUiP0mooJbPwC3MHa1jhj2UgwBrq/ue/B9Hef/HZ67Us/WFkNWVSP0no4asXSlp62muJTJspGGe1MwARMYFYJ3P2rDen8s7+cDnvxGTuMvqO7A9Smc5frunQ9ZabsMLAzARMwARMYDYH1D2xOF51/9Y6bieMxFjSNHzIk7GqIXtiR0BR3VNf0gvOXrFpbsYCJ3WQSsJFgjPXC1swbr7stnXnyZenIfddWW42q7UZT8DhC9TjBCp5xXV3JThkoi7ebjrHBOGkTMIGJI3DfvZuqNywfXd0BGt0LDkc14RpFOjwLijGbMvI2acpsZwImYAImMB4CvL/rgvd9Jew8nh8jNDuRKbvfYTaetjXKVG0kGCXNhrQ2btiSvvG1m9Kpx3+2er5Td2yYnGFVG8VEb5g0es/G9iaKyPZHB7w7nfquz1UyI7udCZiACcwzgYceejRdefl301tf+zdp393RlWtmYIfYmqoslImyUUY7EzABEzCBpSFwz10b08Ufvia9/NCzd7yzYEYfU16xuiojZaXMdtNBwEaCZainzQ/9tvq+9IXnfy297XUfrZ597RkN1ux8sUnPcDAO48FJlVGiyo+dAjsmujx/+6d/cmG66IKrK9mQ0c4ETMAETGBXAlu3bks3/+jO9MGzrkyvOPTs6lvY0/JImYzTvFsG2SkDZaFMdiZgAiZgAstDgLf5Y6j909ddmPZZ2fuaDPp6mJt/yxlXYw1loUyUzV8sWJ62NUyuNhIMQ28EcZ9++ul0/68fSjd+59Z06cXfTKf85WfSn7z8vHTo3qelVStO6j2isLL3iUUmotXOA3Yf8GKRxr9TqrBVHOKRRvVm1ZOqtMmDvMiTvJEBWexMwARMwAS6EXjkkcfTdf/ys3T26ZenVx3+vrTvSu0wQEePw8jb37OjyNB72eyaSjZkPPv0/1vJjOx2JmACJmACk0Ng27bt6cc/XJfOPevK9MrD3lfN86fPCH1yJTtloCyUyW46CdhIMIH1tvWpbWn9/ZvTT27+Vfrna36c/v7Sf03nv++q6lGFv3jbJ9JbXvuR9LqXnZeOOeoD1fadI/Y9M/HHdiXOcY0whOXxBuKSBmmRJmmTh50JmIAJmMBoCDz22yfTzT9clz518TfTn7/l4+mI/dZWX0aQoZbF+vh3iPUeGSNPvsqADP/nrZ9Il378n9PNN61LyGhnAiZgAiYw+QQe2fJ4uv5ffpbef+YV6dVHnrNjPOGG3+QYoXvvs+l9BQgZ+eoZMiO73fQTsJFgCuvw6aefSU8+ubV6ieBvH32i6ox0SI55sSDXCGNnAiZgAiawPAQ2bXwk3fRv/5ku+7vvVC+vffMxH0lH7re22kqqT8nKgNDb5dV1hxg7wxb+emmdXKVNHrxkljzJGxnsTMAETMAEppsA83sMvZ/+xLcqw+8fHfCeBaNB9QU1GQ7GsYONHWnaldbbmYwRGhn+4m2XpE9//FuVbMhoN1sEbCSYrfp0aUzABEzABCaQwPbtT1fPZN5+673pum//NH3p89enCy+4Or1n9RfSCcddmt7+xovSm/74Q9XjZn98xPvTSw96T/XHMY+HcY0whCUOcUmDtEiT5z3Jw84ETMAETGC2CWzasCX9+/fvSJd95tq09uTL0ptf0zNC81LdkhG6/VHlHY8oV+8q29UITZoYuMmDvMiTvJHBbrYJ2Egw2/Xr0pmACZiACUwBgWeeSdWzmzwK9sTjT1WPBvB4AMec47lOwtiZgAmYgAmYQCTAO8Ue3PRo+vmt96Vrv/2T9A9fuDFddP7V6T1rvphOeOeuRuhXH3FOOvrgs6o/jncxQr/z0ioOcUmDtEiTtP3eskh8Po5tJJiPenYpTcAETMAETMAETMAETMAE5ozAM888s2CEfiIYoZ+IRmhboeesWbQW10aCVkQOYAImYAImYAImYAImYAImYAImYALzQcBGgvmoZ5fSBEzABEzABEzABEzABEzABEzABFoJ2EjQisgBTMAETMAETMAETMAETMAETMAETGA+CNhIMB/17FKagAmYgAmYgAmYgAmYgAmYgAmYQCsBGwlaETmACZiACZiACZiACZiACZiACZiACcwHARsJ5qOeXUoTMAETMAETMAETMAETMAETMAETaCVgI0ErIgcwARMwARMwARMwARMwARMwARMwgfkgYCPBfNSzS2kCJmACJmACJmACJmACJmACJmACrQRsJGhF5AAmYAImYAImYAImYAImYAImYAImMB8EbCSYj3p2KU3ABEzABEzABEzABEzABEzABEyglYCNBK2IHMAETMAETMAETMAETMAETMAETMAE5oOAjQTzUc8upQmYgAmYgAmYgAmYgAmYgAmYgAm0ErCRoBWRA5iACZiACZiACZiACZiACZiACZjAfBCwkWA+6tmlNAETMAETMAETMAETMAETMAETMIFWAjYStCJyABMwARMwARMwARMwARMwARMwAROYDwI2EsxHPbuUJmACJmACJmACJmACJmACgcC5556bnvWsZw30F5KZ6UPxgdU8uUsuuSTxN69uLowE11xzzc7Ov9tuu018Xd9www075eV4Od1yKwYU0l577bWTB8eXX375ciJx3iZgAiZgAiZgAiZgAjNAwEaC9kpc7rVAu4SjD6G1x7wZRiLJuTASHHfccTsXmTT0SV9k2kiQ0qZNm3YxDkhByadO7UzABEzABEzABEzABExgUALRSMBdY+bgXf8GzXPa4mnuPU8L5nksc94uZ95IwGJTFS2rEP4kOxsJUjrttNN21pu2+lCX0eADJzsTMAETGAWBI444YqfOYcyQ3umSdtytRtzlmEhpnBtl3pM0FnWpB4cxARMwgX4JRCOB55X90pvd8OMYU6eN1swbCZjoUdE8ZhAncrfccsvE1pUnZqmqL+ot3zEQjT6jnAxPbGOwYCZgAktCIDcS9GNMjsZL9NZy6KZxTGg8Fi1J03MmJmACy0jARoJlhD/BWY9jTJ3g4hZFm3kjwXOe85zKSHDsscdWADAWlBafRTrLdNITs7Tzjh47CnLnjpsT8W8TMIFhCeRGAvTMunXrOiWrcWU5ddM48vZY1Kn6HcgETGCKCYzCSMBYoXEAnxtaueOcdjQTRuNL1LPE4SYmaxbpdNYxGKIVPk9Xv0mfG6NxLCMf0iKPksvzZs6tciArN1dxkiU3gCsvnSd/lZE4HMdHvCkDZVEekq/txi1pUA7FI23yjmnn5ZPMlBE2yKg1oWQr7RhUmRQ/+nkes/57po0ENDpVrhqS7vjQ0EqdWBWed5y8YZMuDVYdSPFyn3h0uthpiMtvzpc6fcybYxzhVJbSwjnmqzKSR3SkxbXYSThuUiDKUwogplcqG1zbOm5Mo+5YMub1FNmoTuvS8HkTMAET6EogTgw0ESlNIPL0tEMt6viSvszjjfp3k64eNK+obzUWDZqW45mACZjAJBJAX0t/DqPnNBaQFnPt3DF3Vz5x7RD1bExDYeUzLtXNe1nvaN6s8LlfkinmrbVDjKf8dC4f2zRultY5ioPPdWTU2Bqvccz50nqIdZryyOPoN2NvaT2n64zjTWzytVJTfnmdzvrvmTYSqMHT+NSAYodomgDGcHSSuoZNI6xbtBNPjbTOJ93cghbz5lhODZfG3uQkayxfF1lKCkRy54qhqbMrTl3HbZJd16K8SgcWKhss7EzABExgVASkX9FfGjvyyUMpL4VF30r35fqyFG/U58aRd91YNGrZnZ4JmIAJLBeBURkJkJ+bbtLFcf4edWk+147XmOPyx3iidUtcg3AtX0wTTnNjfMIrLmE1RiFXvl6JeXOdsIpLOnIqUz62xXFT6Us+1gmMoYqLbKxfZCAhnzhu5lzIO6ZP3kqbuPxWuUtjdcyXY8KrbMgW047rpbYy6/o8+DNrJKAhqPHkDU8WpabFduw4pMNf7DA0cqVD42ta6KM04nWO6ahqwDTU6GLeHMuRv+LE9HQdP4ZRZ8JXvJIsdUqN9BQvVwwqOx1THZ7w5EXYunhR1rbjKJfqknThpY7eloavm4AJmEAXAnHCEHVwna4lTfSQdF3Us7m+VP6E51o+cULXRV2v8LmPfo9xo/6VHE15MxGK5USvNuUdOXSRL5fXv03ABExg0gnEOeuwei6uPZgn85s/zZl1LjKJehY9XpKBcUjz4HxNw2/icb1uvIpl1NoAGWLeyFbn6saXOJ7kBgjSyndGxLyVV5Rf5/Djeobjkovy52EkM35cpyidWC+UI3eKXzem5uFn8ffMGgli48obR+wspc5IRceGR8crNWw6Y10j0gK3pBDUkBSGNKKLeUf5ovIpdUbSUJr4ctFSp3PRV7pMOOs6WewksdxRvpgmHY6y18kZw9Ydw1xKUZxz+eri+rwJmIAJ9EMgTnaIh/5C7zTpMI0z6E6c9FTUl5IBXZnrM4WXn0/+FBcdHY0DCi9fkyx+l/JGZ6s8ipP7pbzrxiLJZd8ETMAEpp1AXBPkerHpd938Ny6MSZsxROmUFvFRz5b0sPjGdBgTcPhKu2ms0jyfsDFczDueV57ylUc+vsRxs7ROivLFdYnSxY/843mNeRpf47V4LBnycJKZsa/Oac1EGrlT/LzMebhZ/r3r6nSGSqpGU2ocNGRVfl2HjB2nLgy4NOnLGxH5k3dpC4sw13WMmDfH0SELspfKFTtjXEzHfEqdOKafH4tTLF+UL+aTxx3mN/mJrWTAb+I5TH6OawImMN8ENGagZ3CakJV0rUhpgiG9JF0V9SVhmRhKn+GjN9HXuqZ0iF8ab6JspB3jxmvEz/MmbF3ejAcaU4ibTxKjrs/HIjGwbwImYALTTACdKd3dj9+kE6NOV5q5bhazqGfzm5oKgx/DKe/SuRgnHmuswJeL8Zvm83VlUJqMMXWuLq7CR/46h98WT2Hb4lMXda4ubj/516U9C+dn0kgQjQD5pEeVJgsVjVATLl3Djx1HE8B4XcfqILHT6VqbX9c4Y94cRxctlLkyoYNTHjprLFO88881mOTpxjzicV0nJR1dY5KJLDHPmEY/x6QRlSvHpB3zi+WGO3+wtDMBEzCBQQlIl6PXcFFvlu7+oKukA2V81e9cHylt9FgpLfKLi/WonzlWunVjkdInXJ630m3KO45FKgsyxbyjTBUg/zMBEzCBGSAQ9R86Fl3X5a9pzsu1OG/N73JHbFHPRv0bw3Acxxzp+Si7xok2Pxq+Y94c1zmlqXwVTmMPfp2ri6vwsQw6F+VS/C5+5KfwuczKA7+Ut653ia+ws+rPpJFAd4Co4LoJmRbUhCk1oNhAmzpOlw6ixoMspEV+LH6jAlEY/La86eDIzeQvOsmSnyeMJopq9PKRA6UYO1ZMU+FyRpGfwuCjCAlbxz2mXTqOcsYJMYYB5aPJblSYlMPOBEzABAYlIP2JnpGTri0Zm6UDo+6Rjor6Et1aOq885MdJZdTh0onovTqHvi3lEXVkqQxKL+Ydw7WNRYpv3wRMwASmlQD6Wvqzab7fb/kYG5RuHCfydKKeza/lv5Wexpgou6518ZVuzLup7EpT+Sq+xk38OlcXV+FjGXQuyqX4XfxYBoXPZVYe+KW8db1LfIWdVX9hNjRDJdTEThXc5kermjDEBhobna7Lb+ogTA6Z4HWRR+nht+UtI0icNMaJaLzTHtNlUht3UORckJXJYnQKU+pkyBmVoMLKh00/xoI40Y2TZMmD0UBpU/b4m7LZmYAJmMCgBKTL0TFy0rWlMUK6L+oe6aeoL6OeqjPGKj+lGfPT+NE0ySS+wsW828YS5Yuv8uPL9RNfceybgAmYwDQRiAtFdN4oXLyxpXEhjhUxj6hn8zl4DBeNvrqJFmVvihvTiccx76ayqwxxfCGd0rgR0+e4Lq7CxTLoXJSrbk2jsHV+W77EK+Wt9LrEV9hZ9RdmQzNSwlLHVEU3+XkjjA20qePUdRCUQZ4fC1vCM/HkuiaghIuuLe+4mJbcmojGyWVMMx4zUSV/FuLIFOXMF+e6liuGmB6KCTkojyaqitdFHqUVO2udcQH5lLZ8yjCIclS+9k3ABExAuhy9Ihd1bdRJcbIWdY90UtSXUa8p3Tq/FLaUZim+5K/LW+m0+VFnt41FJTl8zgRMwASmiUDUu03z/a5lYo6tuTV6WbqZcyVDcVc9WwoXz2k90FVOwsX4HNc5jRtxfCGsyoZf5+riKnzkr3P4isfaYhCn+LnMMa26vGP+TfFjWrN4vDAbmpHS6U4MjYMOQ6Ov+9PCmrD5XZquHafUQVACapzcuUeOOJEU6rrG2SVv7QjQol6/B+lM5Kf4yB1lVTn66SSUP68HlbnJjzxKilRxo6zI149sSsO+CZiACUQC0uXolOhk+Iy6VWNHPm6U9GXUazHd0nEpbCnNUlzJH/VhTE/pdPGVfpexSGHtm4AJmMA0Eoh6Ep03rJMullGA+Ww0GuTpRz0bx5k8HNfQ36QlFw3WWg/oWhc/5t1Udo0bcXwhfZUVv87VxVX4yF/n8DXXj4breL3tuC1f4tflzbUu8dtkmPbru86Gprw0sbM0NdhYTE0AaQxxYdq145Q6iCaQpNlk2Yt3xePCvEveykNKSI053u1SOVEsdLYmBRJ3PkRFoXSjYiAs5W7quLAsxZVMJV9lIl7MLw8b024Lm8f1bxMwARMoEZAuR6dEp4lZ1HeavKALoyvpvKZJSIzLcSlsKc08Hr8lf9SdMb04xpTil851GYtK8XzOBEzABKaFQNSTcf47iPxxHsuxXMwjnud61LPM6UvzeM7J0JDP5eNaok5+GSoYx+IYEfOui4uMdeOQxh38OlcXV+EjG53Dj+uSKHMMwzHjMWy6GO3zuHV5E65N7jytWfy962xoyksYO2c+easrWmwg0YLXteOUOkhMs67T0eHVAPFjuC55R4OIFAQdpeR0XQaFUhhNhJElOskYO2jsuHVGEM4rbixbTDs/jov/JkWpCbrSx+9a33me/m0CJmACEJAuR59EF3U1x9JT6KjcSSdFfRnHJeI3OckQDRIck24+AcrTkV6MecexpE5X5+nE3zF+Vz0e4/vYBEzABCadQJyzo6/RdV3/GA/ktBBHX5fm49LR+Vw86lnicj3qa+a3nNO13OAb8yUc5ZFchCW+xhHSiLo85h3Pq0zyicdfHF+4pjELv87VxVX4yF/n5IsZabCWiWMojJR/Sba2fMmjS97kkTOXfLPu7zobmvLSqhPQSbpWKOHUkIgn17XjqIHGDhInlTTw2PG4RqNUh1feMUzXvOOWftLJrZMqC8pC+cAoKh+uxU4SDSXEVzzCRBdZk69440eFVlKUMZ38OMoCIylsZJaxQzKVfufp+bcJmIAJdCEgXY5+yZ30HfoRnUQY9E/upJuivoz6N57P48axKKYtPdc0rtXlUZdmnnfd765jUV18nzcBEzCBSScQ553S4V39qNPjGBIXsyp/XBvENUPUs9L3pfwZh0rpkj7n83VFngbX8xtqMW+O65zSiuUlrMocy5OnURdX4SJ/nZPPGBYNBUor9/O1C/EVJpdZaeM35V2qC+SZJ7d4NjSlpY+dL06wuhQnNgR1oK4dp66DxDTVUKOvBbDOxYV717yRVfHxmSjWuTxsjKdjypJ3AF3LO1kXhdSk0Ork5Hzc1aD8ox8VXSwXiiSXvykfXzMBEzABEZAuR9fkTjoJHaMJS9TZCi89letLpY3uqpvkxTEjTta6jG3RYJznXZeuZMZn7EA2dHaM33Usimn52ARMwASmiQA6T7q7X1/6UsZj4utciUHMizi4XM/yO+p0xhzitc1vuU6aGm9UFuIzhpXWCHneJZk5p7Tysikv/DpXF1fhIxOdy33m+jBhnFJ6jFeMb5Sh5BQulzmGbcobnqQf86zLK6Y5S8eLZ0NTWro4EaqbhNUVLXYSNfR4rqlRNHUQGrWuq7Hym06szk4j5xryy3XNm/BqvHSeNoeCIB/lSb7EJy6ylpzkLnUyysB5TZoVNi9jKd22czDIFUKdoiMs10oKsC0fXzcBEzABCERdnRNBt0i/SW/mYfitMLm+jEZVdC76VmMA19B1ihvHAuUhIwVhCCtdhx/jcj3PmzAaJ/C5rvjIgCxxTIjjXT9jkWS1bwImYAIm0J2A9Wx3Vg65tARmxkiwtNgmJzdN/uoW+ZMjqSUxARMwgckl0GQkQOporIu16AAAGbZJREFUDC0t5AmjhX6+UOcaE0Hpa4XL/bp0ic+1PLx+s8iXfKW8o5FCcXIf2fJxxJNXyNuZgAmYwPgIWM+Oj61THo6AjQTD8VvW2Gx3ZaLH5E53pZZVIGduAiZgAlNKoM1IELeTMqkrOS28Swt1wpd2X6G/MQDUpRnzQefHnQMYB9hlQLqSvynvcW1FjTL62ARMwARMoDsBGwm6s3LIpSVgI8HS8h5pbpoUNt19GmmGTswETMAETMAETMAETMAETGAkBGwkGAlGJzIGAjYSjAHquJLkOVKUCX/xbpKeLx1Xvk7XBEzABEzABEzABEzABExgtARsJBgtT6c2OgI2EoyO5dhT4rlSbWeVX7e1dOzCOAMTMAETMAETMAETMAETMIGBCdhIMDA6RxwzARsJxgx41MnrLdT4NhCMmq7TMwETMAETMAETMAETMAETMIH5JmAjwXzXv0tvAiZgAiZgAiZgAiZgAiZgAiZgAjsJ2EiwE4UPTMAETMAETMAETMAETMAETMAETGC+CdhIMN/179KbgAmYgAmYgAmYgAmYgAmYgAmYwE4CNhLsROEDEzABEzABEzABEzABEzABEzABE5hvAjYSzHf9u/QmYAImYAImYAImYAImYAImYAImsJOAjQQ7UfjABEzABEzABEzABEzABEzABEzABOabgI0E813/Lr0JmIAJmIAJmIAJmIAJmIAJmIAJ7CRgI8FOFD4wARMwARMwARMwARMwARMwgdEReNaznpX4O+KII0aX6ISndMMNN1Rlptwc200fgYkxEtBx1InGgZEGetxxx40j6ZlJ85JLLkn8jdINqyTULnLFeu655xbbS1t+69atmyslPcq6dFomYAImYAImYAImYAL9EdD6Jp/L9pfKdIVum49PV2nmU9q5MBKcdtppc2fB67c577XXXhUjFt+jdMMqiVEaCa655pqiYWGU5XVaJmACJmACJmACJmACJiACNhJ4J4HawjT5c2EkqFtoTlNFjVtWKbBZNhLU7T4YN1unbwImsLQENm3aVO2KQvfvtttuO42DHB977LHp8ssvT4QZhxvWMDoOmUizbqeYx8dxEXe6JmACJtAjoDk2+tbOBKaFgI0E01JTY5ZTCmzSjAR1xR5kwT9InLr8fd4ETGAyCWAAiIYB6bbcJwwL+lG7STQSNO0Us5Fg1C3A6ZmACZjArgQ0/thIsCsX/5psAjYSTHb9LJl0UmA2EiwZcmdkAiYwYgLxkSKMADxqxjkW7vxhQODdNNJ3+LfccstIpZhEI4HKW9LvNhKMtPqdmAmYgAksIiAdPIyRgN1v6HAZfUlTu+MYd9oc41+M+5znPKdKT+mSXp18vM+LsTMa4NmVp3xVPv1GlqaxMIZX/sij88jZ9o60uniUE6exrTTutbHy9R6BqTAS5BVdauhMBmkw0dEw1OByPzZkxSFdGn3sBOStBqdw0Ve6pEc4NXJ1PsLm8iOXwhG/KY/YyUiLcko+OhET4OjoyITJFQGdm2u5k2wqR/TzsKW0CU9e5FlKP8rPMRNyGCsfONTJRv6SDz+6WLfxfJ4f1+I55SufdKg3/c55xrQ5Vr1RXjsTMIHJIqD+iY4s6SNJG3VCrlsUZlA/ps3xJDjpN/SdnQmYgAmYwNISkA4edLxhLNHcX2nlPnPpkmNtFNcEeTzN4Tlfki/OkfO4/I7X45jXNBYqHQwBGrd1LvrIVnKsJZp4wIKykJbHvRLBbuemykjAwkyVHhuRjvOJYVxIKoz82JDpQE3pEoeGmhshQKz0aJA6lq8Oq7SRp6mjEi7PI3ayUh50TjmOmzoNcsXwxJNskjn6Shc/KoEYJh6Td35Xrk1+xSduLluUDzmji3Ubz8f8VMfxnPKTTzowFzfVWUxTx5RN8fJyKox9EzCB5SGAUUD9s+0OBBJGfTrK/hz1jXTQ8hBZyFVc0Hd2JmACJmACS0tAOjify3aRgvFJc1TNlbVW4Fq88Vaaw8br8YZeHhcZc/kII9lZzOtGGvmX1hxxzGsaC5WmyqW5ODzIM65N8vGcvGVYID7XxQP58nWWx70urawcZqqMBGpMNHjdJcKn0avBcS13amx541c4XScNGpPSptHxW/mWLFrKF5/rikvn0LHSVzr8phPgCJN3YMmFHzsZeaAA1BniojqGQw51ZKUhGUgjXlNeKkepM8W0kVWyE5fjyJ98ootxyQMGUe6oZLgmZkpDcufpIqdkVlj8mB/H0dXFIYwWDMhQ5xQG5WRnAiYwWQRi3y/puFxahac/R50Ww6FrmYBID0mHoQdz/aJ4SpewdWHQc+jNOJlBDnRMrgOVbvTRm3HcIC9+5+WOcktfyld6CpPrWF3HJz+FU3x+R10ew3OscDDQWKqJHdcoez75y9PwbxMwAROYBQLSh016tq6c0r3MT+vGKs1PySeOO3E8Ks3vyTOOJbl8MW+tPaKcyKOyNeUdZSJ+jJOPW1wnL40XuUxxLp+nm8cln7pyx3L4uExgqowEVDYTq5KLjTy/rkaeNzTCMclRY62b8MROlodRXPy6yZ3yJ0xJBuSIHTymE/Omw9Q5dSYmXqWOTDzJUUpH5Sh1JrElXl3aCkM60UX5uVZScJxD+XEdDtFJ5pxbVBIxfMyP4+jq4hAmxispLMJIRk9sI1Ufm8BkEEA3SY/l+mIQCdFL0qtKN/dzfUU+UZfkOojrjCHSJXl6+p2PM5KfMkbDgsJHP8ok/Rmv61hpKkyJGWNRW351Y47yQV82cSS+nQmYgAnMMgHpw5KebSo3OlhxS/NzxWVs0LgSxwCOiV+a9ytuzCPKF8/XjUmkoTzIJ455TWOhytQkl9YVUSby03gSy6myyEde5dHETeHtlwnsuqIrh1mSszQCVWieYbxGoy05JiJt8fOGRjqaALVNVCRDHk555uejjIpL2Dr54wQ3GkJiJ4vnY/osaiVH3QKX8DGtPJzilzoT8tMpmxbHdQvwmGdTh6ZskgEWcmKHH12X/Mg7uro4CtOkeCLjujpUOvZNwASWh0CcrEhnDdJf44SLiRcTDukl0ov55Ho56rxcB8VrjBlRD3NN+g5dGK+JJnGkJ9FnKhu+JlRc51p0MU48z7HyzHUs5W3KL+pTwomP0leemrgSXmEwwChfwjWNLUrPvgmYgAlMKwHpw1zPtpUnrm2k7+viaAxg7JNrmtcqDL50fZQvLrSb8o7z4zjmxfEunic/8UDmOhfHGIVBDsVtMlww1ihcPh4qLfvtBKbKSMBko841NUZNRmLjVzpdG1GpsZKG4jctgJU/nbDJKVyUM5arrkPUyVbKS/LmnabufCmN0rk6GaL8uZKI6dSFKzEh3iD51cWRHHWGCq5rURDrRvHsm4AJTAaBfGErvcZEickIE67SbqZcevV3xpy68FGfxAlUnS4jD03YSotqySCdFyd6XIsTtrpFteLmY6U4IHPuFCfXbbF8dWNPlClPW3nilwwe1JV45HnnMvq3CZiACUwzAenDfnVd1MNt5S+FVb65fs7TkoEhyldKL4/Hb8ZI5RPn+U1jocI3yVXKvynNXLZooM6v+Xc3AlNlJIiNNy9eU8MhHg0yjx/jqMF28eOEUOGbGrrybzIkUJ64SFX5oowcl5zSlyxd/FwWxWkqR8wbpYA8hEe5qDOSTnRR/sgthuE4WgfjBFhly+uupDxIJ+aX86qLI1miDHFSzGRW5YvnFc++CZjAZBGgr6vPSrdFn8UpYejbueOcwua7BGLYqBdiuDodFO+2lBbNSjvGj+GkC3PjgeLhE55yEzYaN1Qeypw7pZvr2K4LeMXP5VKe+fmYf2liGq/72ARMwARmgYD0Ya5n28rWNm+N8UthlW9J95fiRvlK6cU48Vj5xHl3HMvieeIpfJNcpfyb0ozycKyxqSmPPI5/70pg1xXdrteW9Jcqk4aTO12LjTcP09Rw6uLHOGqwXfzY2BW+qREq/6YwlGfQDqH0JUsXP2epOHUysoDGsKCJo8KX/Fg3kXE8XzpWWlEGlS2Xt8SKNGN+sZ64VhcnyqItV0xe5eLdstKiQuHsm4AJTBYBdAALeOkR6Rj5LKjjQhzpm3RIXjqlG/VTXfwu+kfpS76oC3UuGiQUvs1X3Jie4pTKEO8MtRlG67bDKs+oS5Wn/H6YKI59EzABE5g2AtKHcazoUoZ+dGQprPIt6f6Yv3bPRflK6cU4Oo432OK8u24sJF4XuUr5N6UpeeRrvdJWdoW3v5jA4hX54jBLckYTFRpO7nQtNt48TFPDqYsf4+QTxTz9ut9dGrryb5vccZ30mLjKRRk5Ljml3/Y4QymuzjWVIy6SFU53q5CZ65Kd69FF+VEkda5uUqqy4UdXUh5cj/nlvOrixHTjhFcGAd3tyndfxHg+NgETmHwC6AR0lSYP0rfxrnvUE9J3bX68W16ng6TL2tKK16Vz4u6GQSY8SrMUV3JFHVtXhlIN14VtylPpRNY6Z98ETMAEZo2A9GHUs13KGOekcZwqxZUuj+MRc3Xy1lhSisc5xY3yxbyb5u91Y0DdefITj9KYJBlL40PdWkFxot8ljxjex4sJ7LqiW3x9yc6ogVKpudO12HjzME2NsSm+GhETx0Gc4jc19Kb8Y56lcE3lUtzYkbSw1bWufl05ooUQIwTGlFIeUYaYZxf5CU+6koE4ciUmXBskv7o4ygs/TsYxfsTfgxqSYvo+NgETmAwC0bAZ73ZHPSGd1MVXqep0nnRZl7QUhji4mCby9euUXimu5FJeeX5RH5fyjbLFsE15Kp3IWufsm4AJmMCsEZA+jHq2SxnjHLykv5VGnKtGgwDH5B0NB4ojP8aN8sW8m3aUxbE0jgF1YwP5ikdTmerGBxn5YzlVFvlxTdGUh8LbLxNYvCIvhxv7WU1UaDi507XYePMwTY2xKb62lzd1oDyv+LtLQ1f+hKUzllzspFjv5JrKpTCxMzR1ZIUv+XXliJbEpkWyFFFexih/kyFG8eMuCuQUu7zu65RHzI/j6OrixDAca+cAPjwpUy5XHse/TcAElpeAdEWTnskllP6P/TvqiTp9nacTf9fpIMk3yI6vOFkbZMJTp9+RW3JFHVtXhlhOHdeFbcpTcSNrnbNvAiZgArNGQPow6tmuZZSOZpyq202gOTT5xLlv1M9xbRHzjnFz+ZQ3a6TSeIg8yKXy1eUdz5O3wjeNZ3XjQzxf4oGcGtvJpymPyMHHiwksXpEvDrMkZ9QQqdDc6VreeGO42BHyxtgUX4vAtoZEg6MjxDtO5N+loSt/wtIZSy52UiaEck3lUhh8WdaQsdSRCSNjAmXJF/x15YidMeeq/OP2H9KJ4aL8yBbLVoqf8xG7vO6jXEoHP+YX5eBaXZwYn2NxUn3h97PwyNPzbxMwgfET0KSgH4NvvAMiCaMOyfWkwjT5MX7UQVH/1OnopnSlo9t0EeHQl9FgrLjIkLuSjo06vW5iqXRiuaJ+b8qzFFfn7JuACZjArBGQPmScYlxo+4u6NC7EmUej2zWGcE03tsgjn0PDMV5HXytt/HiN+PlcO44F+doBOZBHZcOPYx7HuhbPI5POl8Yk1X0cW3QOn7LHNU/kQT6aC3TJI6br48UEFq/IF4dZkjOaqFCpudO1vPHGcE2NURPBukVqbFB0MDqFHJNE5Y9seYPu0ghjfMKTR10nzdNvKpdkxI8LWzpP7DTkRbrqzPhSMEpDDJA1XssVROzoXIvpikUME+XnOrJp4k0+UcmU5BI7/OjIV/nF8zG/KAdhIiPJEOPGY7FSHrFNxHA+NgETmAwC0vP02bb+LYml9/Dl0Evq96UJl8LV+XU6KOof9F6/riRrnkbMI+oslScfX4hfp2M1Cct1b56n5CJ8dE15KlydHtd1+yZgAiYwCwSkD7v6ua5mXMnnpXladeMVY5r0dB6H31zT9ZK+Z7wqxdM58tVxnHfXjYXUp8Ln5Yx13TQ+ML418YgyNeUR8/PxYgKLV+SLwyzJGU1UaDi507VS41XYpsZYauBxEtnWgdSYS3dwdK2pEUr+2BEVL/ql9JvKpbLLL5Uzps8xE7k4eVTc2KEUBy640jWFwaej1j2WEOVvkq9OLrHL675OecT8OI4OY0mUm+MS87zM+eQ3puljEzCBySBA/9akAT/q+JKEUa+hm6KL13I9onDKD/0Q9X+TDiKsdKb0q9KTr4U+40UsQ9SfubyKK32Z6yzpvShnHqdJx9blF2XK027KU3nX6XFdt28CJmACs0BA+rCrn+tTGDBmcF4LetJirGO8qhunIjvm6TEux8pHY0c+Dig+6wbyiWMsuxA4Xzfm1Z0nTXFQ/son+lxTuHhex/BgDq9xlbDIr3FTcZvyUFr2ywQWr8jL4cZ+Vg2USs2drtU1XsI3NUau00hiQyo1GiY8NHp1AmQhTlMH7NIIo/zq5JKFvMizroO3lStnxcSVThMVATIiAwqibmLK+agAiBNlgo3KoTLnaapMpCMX5eccv+P2JuJQF3VyKU/86IgjOeL5mF+UX2FQHpFNnq7CofiUftt2W8WxbwImsLwE4qKV/qtJELpAf/lYUNIBMgCQBjqaOJzDoavIR/qOMFHXcCzdEc8TVwYArhOfdKT7SJ98NP7g65qoRt1FWF0nbtSrmiTl8Sir4uga55An50C4PD8xkKwqJ+HydHUNOesc1xSuLozPm4AJmIAJjJeAdH2Tvq6TII5rdWGW+jzjkcaWfBxealmmOb/FK/JpLs2Eyl43CZtQcS1WSpV1VApGE2ODMQETmHwCTFi00FYfrvMxaOaLW5UQQ2FbOlxnoR9dk5GAcLkhoyQbBgTyz12+cC/FzeUhDcqZh1W5m8YndJ8mj3l8/S4ZCMhT15smnTYS5DXs3yZgAiYwOgLoWHR0kx6OC+r8phhjHGNE0zyYG5Poe8IuhUMe/nJjeMw7Gi5KY2kM6+N6AjYS1LMZ2ZWmSdjIMnFCIyUgpUfd2ZmACUwXASY9LJa5ux7v+DORYcJE/+4ycSAdJk3S4Vr4Ko3SxKnNSABJ4g2y40u1QNmiTEzOmnakUY66nWJKp0nX5fnBgfxKBgnJKFZNk1MbCUTLvgmYgAmMngDjl3Rxabwix6iH8zCMLcSPO4SjlIwtbWFi+FEca9ccY3ud07jWFKYurs8vELCRYIHF2I7UWJsmYWPL3An3TSAqvaZJcN8JO4IJmIAJmIAJmIAJmIAJLAEBFv1axGPcjnffuRYNBBiuc6cbZhgKCBuNCKRFmlwjj3gtT2eUv+MuAQwG0eDPsYwIyBXLO0oZ5iUtGwmWoKZtJFgCyENmgWLhDmBUerZADgnV0U3ABEzABEzABEzABJaNADe7WDA3/bGw5gZZ7jgnQ0BdfAwES70YLz1Cl8uHUcNuOAI2EgzHr1NsGwk6YVrWQHFLlhQNRgM7EzABEzABEzABEzABE5hWAtzlZ2EdH79jcY9xoMsCv/TImR67KxkXloITc3Tkpxyat1M+yhl3FyyFLLOah40ES1CzNhIsAeQhs0ChSNHkW7KGTNrRTcAETMAETMAETMAETMAETGBqCNhIMDVVZUFNwARMwARMwARMwARMwARMwARMYLwEbCQYL1+nbgImYAImYAImYAImYAImYAImYAJTQ8BGgqmpKgtqAiZgAiZgAiZgAiZgAiZgAiZgAuMlYCPBePk6dRMwARMwARMwARMwARMwARMwAROYGgI2EkxNVVlQEzABEzABEzABEzABEzABEzABExgvARsJxsvXqZuACZiACZiACZiACZiACZiACZjA1BCwkWBqqsqCmoAJmIAJmIAJmIAJmIAJmIAJmMB4CdhIMF6+Tt0ETMAETMAETMAETMAETMAETMAEpoaAjQRTU1UW1ARMwARMwARMwARMwARMwARMwATGS8BGgvHydeomYAImYAImYAImYAImYAImYAImMDUEbCSYmqqyoCZgAiZgAiZgAiZgAiZgAiZgAiYwXgI2EoyXr1M3ARMwARMwARMwARMwARMwARMwgakhYCPB1FSVBTUBEzABEzABEzABEzABEzABEzCB8RKwkWC8fJ26CZiACZiACZiACZiACZiACZiACUwNARsJpqaqLKgJmIAJmIAJmIAJmIAJmIAJmIAJjJeAjQTj5evUTcAETMAETMAETMAETMAETMAETGBqCNhIMDVVZUFNwARMwARMwARMwARMwARMwARMYLwEbCQYL1+nbgImYAImYAImYAImYAImYAImYAJTQ8BGgqmpKgtqAiZgAiZgAiZgAiZgAiZgAiZgAuMlYCPBePk6dRMwARMwARMwARMwARMwARMwAROYGgI2EkxNVVlQEzABEzABEzABEzABEzABEzABExgvARsJxsvXqZuACZiACZiACZiACZiACZiACZjA1BCwkWBqqsqCmoAJmIAJmIAJmIAJmIAJmIAJmMB4CdhIMF6+Tt0ETMAETMAETMAETMAETMAETMAEpoaAjQRTU1UW1ARMwARMwARMwARMwARMwARMwATGS8BGgvHydeomYAImYAImYAImYAImYAImYAImMDUEbCSYmqqyoCZgAiZgAiZgAiZgAiZgAiZgAiYwXgI2EoyXr1M3ARMwARMwARMwARMwARMwARMwgakhYCPB1FSVBTUBEzABEzABEzABEzABEzABEzCB8RKwkWC8fJ26CZiACZiACZiACZiACZiACZiACUwNARsJpqaqLKgJmIAJmIAJmIAJmIAJmIAJmIAJjJeAjQTj5evUTcAETMAETMAETMAETMAETMAETGBqCNhIMDVVZUFNwARMwARMwARMwARMwARMwARMYLwE/j9e5wcq8jA4SwAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": {}, "source": [ "![image.png](attachment:image.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 👉 Install PyCaret\n", "Installing PyCaret is very easy and takes only a few minutes. We strongly recommend using a virtual environment to avoid potential conflicts with other libraries. PyCaret's default installation is a slim version of pycaret that only installs hard dependencies that are listed in [requirements.txt](https://github.com/pycaret/pycaret/blob/master/requirements.txt). To install the default version:\n", "\n", "- `pip install pycaret`\n", "\n", "When you install the full version of pycaret, all the optional dependencies as listed [here](https://github.com/pycaret/pycaret/blob/master/requirements-optional.txt) are also installed.To install version:\n", "\n", "- `pip install pycaret[full]`" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'2.3.4'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check version\n", "from pycaret.utils import version\n", "version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 👉Dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agesexbmichildrensmokerregioncharges
019female27.9000yessouthwest16884.92400
118male33.7701nosoutheast1725.55230
228male33.0003nosoutheast4449.46200
333male22.7050nonorthwest21984.47061
432male28.8800nonorthwest3866.85520
\n", "
" ], "text/plain": [ " age sex bmi children smoker region charges\n", "0 19 female 27.900 0 yes southwest 16884.92400\n", "1 18 male 33.770 1 no southeast 1725.55230\n", "2 28 male 33.000 3 no southeast 4449.46200\n", "3 33 male 22.705 0 no northwest 21984.47061\n", "4 32 male 28.880 0 no northwest 3866.85520" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from pycaret.datasets import get_data\n", "data = get_data('insurance')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1338, 7)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 👉 Data Preparation" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 DescriptionValue
0session_id123
1Targetcharges
2Original Data(1338, 7)
3Missing ValuesFalse
4Numeric Features2
5Categorical Features4
6Ordinal FeaturesFalse
7High Cardinality FeaturesFalse
8High Cardinality MethodNone
9Transformed Train Set(936, 14)
10Transformed Test Set(402, 14)
11Shuffle Train-TestTrue
12Stratify Train-TestFalse
13Fold GeneratorKFold
14Fold Number10
15CPU Jobs-1
16Use GPUFalse
17Log ExperimentFalse
18Experiment Namereg-default-name
19USI3ff5
20Imputation Typesimple
21Iterative Imputation IterationNone
22Numeric Imputermean
23Iterative Imputation Numeric ModelNone
24Categorical Imputerconstant
25Iterative Imputation Categorical ModelNone
26Unknown Categoricals Handlingleast_frequent
27NormalizeFalse
28Normalize MethodNone
29TransformationFalse
30Transformation MethodNone
31PCAFalse
32PCA MethodNone
33PCA ComponentsNone
34Ignore Low VarianceFalse
35Combine Rare LevelsFalse
36Rare Level ThresholdNone
37Numeric BinningFalse
38Remove OutliersFalse
39Outliers ThresholdNone
40Remove MulticollinearityFalse
41Multicollinearity ThresholdNone
42Remove Perfect CollinearityTrue
43ClusteringFalse
44Clustering IterationNone
45Polynomial FeaturesFalse
46Polynomial DegreeNone
47Trignometry FeaturesFalse
48Polynomial ThresholdNone
49Group FeaturesFalse
50Feature SelectionFalse
51Feature Selection Methodclassic
52Features Selection ThresholdNone
53Feature InteractionFalse
54Feature RatioFalse
55Interaction ThresholdNone
56Transform TargetFalse
57Transform Target Methodbox-cox
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from pycaret.regression import *\n", "s = setup(data, target = 'charges', session_id = 123)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agebmisex_femalechildren_0children_1children_2children_3children_4children_5smoker_yesregion_northeastregion_northwestregion_southeastregion_southwest
30036.027.5499990.00.00.00.01.00.00.00.01.00.00.00.0
90460.035.0999981.01.00.00.00.00.00.00.00.00.00.01.0
67030.031.5700000.00.00.00.01.00.00.00.00.00.01.00.0
61749.025.6000000.00.00.01.00.00.00.01.00.00.00.01.0
37326.032.9000020.00.00.01.00.00.00.01.00.00.00.01.0
.............................................
123837.022.7050000.00.00.00.01.00.00.00.01.00.00.00.0
114720.031.9200001.01.00.00.00.00.00.00.00.01.00.00.0
10619.028.4000001.00.01.00.00.00.00.00.00.00.00.01.0
104118.023.0849990.01.00.00.00.00.00.00.01.00.00.00.0
112253.036.8600011.00.00.00.01.00.00.01.00.01.00.00.0
\n", "

936 rows × 14 columns

\n", "
" ], "text/plain": [ " age bmi sex_female children_0 children_1 children_2 \\\n", "300 36.0 27.549999 0.0 0.0 0.0 0.0 \n", "904 60.0 35.099998 1.0 1.0 0.0 0.0 \n", "670 30.0 31.570000 0.0 0.0 0.0 0.0 \n", "617 49.0 25.600000 0.0 0.0 0.0 1.0 \n", "373 26.0 32.900002 0.0 0.0 0.0 1.0 \n", "... ... ... ... ... ... ... \n", "1238 37.0 22.705000 0.0 0.0 0.0 0.0 \n", "1147 20.0 31.920000 1.0 1.0 0.0 0.0 \n", "106 19.0 28.400000 1.0 0.0 1.0 0.0 \n", "1041 18.0 23.084999 0.0 1.0 0.0 0.0 \n", "1122 53.0 36.860001 1.0 0.0 0.0 0.0 \n", "\n", " children_3 children_4 children_5 smoker_yes region_northeast \\\n", "300 1.0 0.0 0.0 0.0 1.0 \n", "904 0.0 0.0 0.0 0.0 0.0 \n", "670 1.0 0.0 0.0 0.0 0.0 \n", "617 0.0 0.0 0.0 1.0 0.0 \n", "373 0.0 0.0 0.0 1.0 0.0 \n", "... ... ... ... ... ... \n", "1238 1.0 0.0 0.0 0.0 1.0 \n", "1147 0.0 0.0 0.0 0.0 0.0 \n", "106 0.0 0.0 0.0 0.0 0.0 \n", "1041 0.0 0.0 0.0 0.0 1.0 \n", "1122 1.0 0.0 0.0 1.0 0.0 \n", "\n", " region_northwest region_southeast region_southwest \n", "300 0.0 0.0 0.0 \n", "904 0.0 0.0 1.0 \n", "670 0.0 1.0 0.0 \n", "617 0.0 0.0 1.0 \n", "373 0.0 0.0 1.0 \n", "... ... ... ... \n", "1238 0.0 0.0 0.0 \n", "1147 1.0 0.0 0.0 \n", "106 0.0 0.0 1.0 \n", "1041 0.0 0.0 0.0 \n", "1122 1.0 0.0 0.0 \n", "\n", "[936 rows x 14 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check transformed X_train\n", "get_config('X_train')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['age', 'bmi', 'sex_female', 'children_0', 'children_1', 'children_2',\n", " 'children_3', 'children_4', 'children_5', 'smoker_yes',\n", " 'region_northeast', 'region_northwest', 'region_southeast',\n", " 'region_southwest'],\n", " dtype='object')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# list columns of transformed X_train \n", "get_config('X_train').columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 👉Model Training & Selection" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Compare Models" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 ModelMAEMSERMSER2RMSLEMAPETT (Sec)
gbrGradient Boosting Regressor2702.768023242056.44094801.57040.83480.43970.31130.0270
rfRandom Forest Regressor2736.745524862762.23054970.69590.82130.46740.32940.1110
catboostCatBoost Regressor2865.446225334554.77265017.85740.81930.47740.34190.4420
lightgbmLight Gradient Boosting Machine2959.558425236477.04565013.08920.81710.54270.36850.0930
adaAdaBoost Regressor4162.232328328260.09555316.61460.79850.63490.72630.0090
etExtra Trees Regressor2814.296428815493.02605339.08790.79640.48890.33500.0990
xgboostExtreme Gradient Boosting3302.321531739266.60005615.59410.77010.56610.42180.1400
llarLasso Least Angle Regression4315.789538355976.50806173.87400.73110.61050.44150.0050
ridgeRidge Regression4336.230938381496.80006175.95410.73090.61930.44540.0050
lrLinear Regression4323.613638380061.20006175.71640.73080.61750.44320.5930
brBayesian Ridge4333.688138381669.36296175.94760.73080.61510.44500.0060
lassoLasso Regression4323.068838375137.80006175.38010.73080.61400.44310.0060
larLeast Angle Regression4450.267539682987.58966267.89240.72320.64670.46930.0060
dtDecision Tree Regressor3148.340243766011.64916584.71980.68550.53310.34550.0070
huberHuber Regressor3455.299748908984.40596971.26420.65450.47900.21740.0150
ompOrthogonal Matching Pursuit5754.776857503216.42907566.70930.59970.74180.89900.0060
parPassive Aggressive Regressor4164.784361324373.48357747.83320.58400.47240.25860.0070
enElastic Net7369.057390443346.80009468.67820.37910.73770.92560.0050
knnK Neighbors Regressor7805.8425126951808.000011221.65350.12180.83980.91470.0070
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# train all models using default hyperparameters\n", "best = compare_models()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse',\n", " init=None, learning_rate=0.1, loss='ls', max_depth=3,\n", " max_features=None, max_leaf_nodes=None,\n", " min_impurity_decrease=0.0, min_impurity_split=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0, n_estimators=100,\n", " n_iter_no_change=None, presort='deprecated',\n", " random_state=123, subsample=1.0, tol=0.0001,\n", " validation_fraction=0.1, verbose=0, warm_start=False)\n" ] } ], "source": [ "print(best)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sklearn.ensemble._gb.GradientBoostingRegressor" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(best)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create Model" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 MAEMSERMSER2RMSLEMAPE
03001.229437001480.25906082.88420.77900.49840.3140
13389.888549305179.57327021.76470.71330.55740.3361
22926.019142025684.66666482.72200.46790.62150.4025
32744.714434078761.45075837.70170.71540.54120.3740
43924.481659489464.32077712.94140.55750.64550.4796
53322.543542747575.44536538.16300.72500.48690.2928
63158.704749369669.16527026.35530.66410.45110.3089
72405.297031318616.64405596.30380.82780.44970.1434
83021.546139091793.37756252.34300.74750.51170.4381
93588.977253231891.58897296.01890.65710.56790.3653
Mean3148.340243766011.64916584.71980.68550.53310.3455
SD410.79538481549.4829638.33900.10050.06310.0878
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# train individual model\n", "dt = create_model('dt')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,\n", " max_features=None, max_leaf_nodes=None,\n", " min_impurity_decrease=0.0, min_impurity_split=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0, presort='deprecated',\n", " random_state=123, splitter='best')\n" ] } ], "source": [ "print(dt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tune Hyperparameters" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 MAEMSERMSER2RMSLEMAPE
01710.086718253568.89624272.41960.89100.34350.1349
12342.961833002910.78565744.81600.80810.44620.1421
21992.688423279759.59444824.91030.70530.46720.1580
32250.271125594847.87505059.13510.78630.42460.2126
42157.451624978154.43904997.81500.81420.43630.1531
51991.328818794342.27884335.24420.87910.33990.1565
61688.393520093049.82254482.52720.86330.31370.1210
72060.814526178263.62995116.46980.85610.46130.1332
82088.226023545921.72294852.41400.84790.37410.1592
92233.198527217915.96315217.07930.82470.43020.1662
Mean2051.542124093873.50074890.28300.82760.40370.1537
SD206.30664191347.7243423.09020.05140.05290.0238
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Wall time: 975 ms\n" ] } ], "source": [ "%%time\n", "# tune hyperparameters of model\n", "tuned_dt = tune_model(dt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ensemble Model" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 MAEMSERMSER2RMSLEMAPE
01776.479918836339.80374340.08520.88750.34810.1376
12300.353230644279.55475535.72760.82180.42430.1539
21924.225820323874.47934508.20080.74270.43670.1694
32163.461522106257.53694701.72920.81540.38460.1967
42173.851425725889.54175072.06960.80870.44480.1605
52161.040618397565.93044289.23840.88170.33260.1567
61726.266119731367.89774442.00040.86570.33100.1356
72079.348624270253.89624926.48490.86650.42050.1367
81986.667520824366.80004563.37230.86550.36570.1718
92103.886925488147.23155048.57870.83580.41280.1513
Mean2039.558222634834.26724742.74870.83910.39010.1570
SD174.74023663777.6927375.72450.04170.04120.0180
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bagged_tunned_dt = ensemble_model(tuned_dt)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "BaggingRegressor(base_estimator=DecisionTreeRegressor(ccp_alpha=0.0,\n", " criterion='mae',\n", " max_depth=6,\n", " max_features=1.0,\n", " max_leaf_nodes=None,\n", " min_impurity_decrease=0.002,\n", " min_impurity_split=None,\n", " min_samples_leaf=5,\n", " min_samples_split=5,\n", " min_weight_fraction_leaf=0.0,\n", " presort='deprecated',\n", " random_state=123,\n", " splitter='best'),\n", " bootstrap=True, bootstrap_features=False, max_features=1.0,\n", " max_samples=1.0, n_estimators=10, n_jobs=None, oob_score=False,\n", " random_state=123, verbose=0, warm_start=False)\n" ] } ], "source": [ "print(bagged_tunned_dt)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sklearn.ensemble._bagging.BaggingRegressor" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(bagged_tunned_dt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Voting Ensemble" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 MAEMSERMSER2RMSLEMAPE
01684.928918347418.56224283.38870.89040.34220.1300
12268.635331524193.39445614.64100.81670.42710.1416
21926.869121534874.63784640.56840.72730.44810.1605
32159.711923453407.47754842.87180.80420.39880.1923
42139.003425136877.94845013.66910.81300.43840.1554
52052.605717787615.21154217.53660.88560.32960.1540
61677.841519736734.14144442.60440.86570.31870.1243
72027.892425005479.82755000.54800.86250.43400.1293
82014.010021739953.64154662.61230.85960.36480.1631
92135.503026042026.25105103.13890.83230.41660.1543
Mean2008.700123030858.10934782.15790.83570.39180.1505
SD186.21083922992.8879402.27330.04610.04630.0192
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "blender = blend_models([tuned_dt, bagged_tunned_dt])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VotingRegressor(estimators=[('dt',\n", " DecisionTreeRegressor(ccp_alpha=0.0,\n", " criterion='mae', max_depth=6,\n", " max_features=1.0,\n", " max_leaf_nodes=None,\n", " min_impurity_decrease=0.002,\n", " min_impurity_split=None,\n", " min_samples_leaf=5,\n", " min_samples_split=5,\n", " min_weight_fraction_leaf=0.0,\n", " presort='deprecated',\n", " random_state=123,\n", " splitter='best')),\n", " ('Bagging',\n", " BaggingRegressor(base_estima...\n", " min_impurity_decrease=0.002,\n", " min_impurity_split=None,\n", " min_samples_leaf=5,\n", " min_samples_split=5,\n", " min_weight_fraction_leaf=0.0,\n", " presort='deprecated',\n", " random_state=123,\n", " splitter='best'),\n", " bootstrap=True,\n", " bootstrap_features=False,\n", " max_features=1.0, max_samples=1.0,\n", " n_estimators=10, n_jobs=None,\n", " oob_score=False, random_state=123,\n", " verbose=0, warm_start=False))],\n", " n_jobs=-1, verbose=False, weights=None)\n" ] } ], "source": [ "print(blender)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sklearn.ensemble._voting.VotingRegressor" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(blender)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stacking Ensemble" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 MAEMSERMSER2RMSLEMAPE
02137.434916935113.31774115.22940.89880.34730.2396
12723.007528256992.10765315.73060.83570.42160.2516
22569.887720111251.03084484.55690.74540.43240.2948
32610.210321629398.57724650.74170.81940.40610.3187
42488.733623836624.95264882.27660.82270.45030.2510
52618.461017348168.39924165.11330.88840.33560.2596
62284.533618712209.23194325.76110.87270.35190.2613
72554.460423822535.50814880.83350.86900.42460.2414
82447.761118035323.77854246.80160.88350.38170.3028
92596.618724474708.09004947.19190.84240.43450.2704
Mean2503.110921316232.49944601.42370.84780.39860.2691
SD165.44953532975.1686378.32880.04320.03930.0258
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stacker = stack_models([tuned_dt, bagged_tunned_dt])" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "StackingRegressor(cv=KFold(n_splits=10, random_state=RandomState(MT19937) at 0x1D89F110A40,\n", " shuffle=False),\n", " estimators=[('dt',\n", " DecisionTreeRegressor(ccp_alpha=0.0,\n", " criterion='mae',\n", " max_depth=6,\n", " max_features=1.0,\n", " max_leaf_nodes=None,\n", " min_impurity_decrease=0.002,\n", " min_impurity_split=None,\n", " min_samples_leaf=5,\n", " min_samples_split=5,\n", " min_weight_fraction_leaf=0.0,\n", " presort=...\n", " min_weight_fraction_leaf=0.0,\n", " presort='deprecated',\n", " random_state=123,\n", " splitter='best'),\n", " bootstrap=True,\n", " bootstrap_features=False,\n", " max_features=1.0,\n", " max_samples=1.0,\n", " n_estimators=10, n_jobs=None,\n", " oob_score=False,\n", " random_state=123, verbose=0,\n", " warm_start=False))],\n", " final_estimator=LinearRegression(copy_X=True,\n", " fit_intercept=True,\n", " n_jobs=-1, normalize=False),\n", " n_jobs=-1, passthrough=True, verbose=0)\n" ] } ], "source": [ "print(stacker)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Analyze Model" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6d3160b6c19441cf8b489ec2a9391d60", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Hyperparameters', 'param…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "evaluate_model(best)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACd20lEQVR4nOzdd3gUVdvA4d9sSyFNEkghUhUiAoIgotQAakIXFdTXggpGQUUIRYoSLPBSVLoi7VOMQVB6DYJRwEoQBXlB6YQkBFIgPVvm+2NhSSBAAkl2N3nu69qLnXbmObvs5JlzzswoqqqqCCGEEEJUAhp7ByCEEEIIUVYksRFCCCFEpSGJjRBCCCEqDUlshBBCCFFpSGIjhBBCiEpDEhshhBBCVBqS2AghhBCi1BISEujcufNV8xs1asS2bduYOXPmdbd/9tln+fXXX8s8Ll2ZlyiEEEKIKq1Lly506dLFLvuWFhshhBBClKmVK1fy1ltvAfDrr7/Ss2dP+vTpQ1RUFM8++6xtvRUrVtC3b1+6dOnC9u3by2TfktiISufvv/+2dwi35KuvvuKnn36ydxi3zNm/B3D+Ojh7/CB1qFBK36KvEkhJSaF3795FXoUZjUZGjRrFtGnTWL16NTpd0Y4iLy8vVq5cyfjx45k7d26ZVEO6okSlk5eXZ+8QbpmLi4u9Q7hlleF7cPY6OHv8IHVwdDVr1mTNmjVF5jVq1Mj2/p9//sHX15eQkBAAHn/8cT744APb8q5duwJwxx13kJ6eXiYxSWIjhBBCCEAp8xK1Wi0Wi+W6ywEUpez2LV1RQgghhMCa2BR+3br69etz4cIFDh06BMC6devKpNzrkRYbIYQQQpQLg8HA1KlTGT16NBqNhnr16uHq6lqu+5TERgghhBCUtpUmODi42CuZLrXO9O3bF4vFwvbt2/nqq69wd3dnyZIlnDlzBoClS5fesKybIYmNEEIIISiPMTYajQYfHx8ef/xx9Ho9tWrVKjJ4uDxIYiOEEEKIcvPyyy/z8ssvV9j+ZPCwEEIIISoNabERQgghBOXRFWUP0mIjhBBCiEpDWmyEEEIIgbTYCCGEEEI4GGmxEUIIIQSVpcVGEhshhBBCUFkSG+mKElXW/1It9Ftrwv1jE9VmmPjsT5O9QxJCCHGLpMVGVEnL/mfmqQ1qkXkRW+GRuibqeMvPQghRFVWOFhs5gguncCFfZdtJlds9IcsI/6ZZ+OssBHsqDGmhwcNQuh/k0G1qsfN7roS/XiiLiIUQwtlIYiNEhcguUKk5z0y+ubilKpuPm/m+f+n+K18wFj//2PlShyeEEMKByBgb4fC6f3utpMZqR0Lpy7zNpfj5fm6lL0sIISoDFaXIy1lJYiMc3o+nr7+8umvpy6zrXfz8271KX5YQQgjHIYmNcHjFj4a57GwunM22lLi8tFyVrILil/2aBBb1RnsUQgjhqKp8YhMVFcWMGTPsHYa4hn/T1RL9J41PKXky0nW5mX2pxS8rsMCy/0liIyqxfCMUXGOQmajilCtezkkGDwuHNWePmde3lyzJcNeX7EdoUVX+OHv9dbRVPt0XTu1CDnzzM1RzIeCHePj8D+sp7Orf4FQqWFTQaeCTl6HADM3qQLvG9o7afuKPwNc7oWEQ9GgF2fng5Qa//gtGEzwYAj8fgmoucEcg1PO3bnchB1LOQ31/0BQ6aFgscPQM1PAC72r2qdNNunJcjbOmNk6R2MyaNYsNGzZgsVgICQlh9OjRLFy4kNtuu40///yTf/75h8aNG/PGG2/w0UcfcfjwYZo0acLUqVPx8PAgNTWVjz76iF9++QVXV1cefvhhXn31VQwGQ5H9/P7774wePZpJkybRpk0bDh8+zNSpU/nnn3/w9/fn9ddfp127dgD07NmTNm3asH37drp27cqYMWOuGf8rr7zCfffdx0svvQTA+fPn6datG2vWrMHDw4PZs2ezfft2VFUlLCyMIUOGoNfrSU5OJioqioMHD+Lt7U3nzp154403UBRn/e9WOm/vLHnLyfMbLByLKJqRTPrFzISfVLQKfNJVwwtNNexKuHGZ7/5koV8jpcjnPOVXC+N3WdAqMLeLhpeaSfYj7MxigbHRsPA7SMsErRYm9oOpa+B8DgC1rrWtyQKDPi06T1Gsf9Dr+cND98B/nyn6B/tW/fYvjF4KLjqY+RI0umZ0JVdghGFLrMnJk+3gzZ7Frxe5BGast9Zx6nMwvJd1fud34Pv9pdvnbdUgO8+aFIL1TOg/7WDyszBlNSyIhdyLLWIt68Pu6db3Z8/DkAVwOhVG9oE+95e2tqKEHP7o/Ntvv7F161a+/vprNm3aRM2aNfnss88AWLduHePHjyc2NpbU1FQiIyN55513WL9+PcnJyWzcuBGAkSNHoigKa9euZcmSJcTHxzN//vwi+/nrr78YM2aMLanJzs5myJAhPPTQQ3z33XeMHDmSd955hxMnTti2SU5OZsOGDbz++uvXrUNYWBjfffedbfq7777jnnvuwc/Pj5kzZ3L8+HFiYmKIiYnhwIEDLF68GIC5c+dyxx13sH37dj777DNiY2P57bffyuRzdQYFJR82w/FM+HTv5UunjGaV8TtVTBbIN0PEVmthphLkSgfSYOuJyytaVJUxOyy2sl79rhSBCVFePv8epqyC1EzrQDSTGcbF2JKaUlNV67Z7j8G01bB4W1lGCz0nQdx+2LIXnv64bMr8aB3M22xtXRm2BH78++p1Tp21rmdRwWyBEf9n7Y5LySh9UgOQnn05qQFrmV/8CA+MhVkbLic1APFHYY717xBvLoYVP8FPh6D/h5CcXvp9lzvpiqoQBoOBtLQ0Vq9eTadOnRg3bhwajYaoqCjat29P/fr1AWjcuDEGg4G6desC0KRJE5KSkkhISOCvv/7io48+olq1alSrVo1XX32VqKgoW0Jy+PBh1qxZw5tvvkmbNm0A2LlzJ9WrV+eJJ54AoFWrVnTs2JH169czZMgQADp37oyr640vyenatStTp07l+PHj1K1bly1bttCzZ09UVWXt2rUsWrQIHx8fACIiIhg3bhwRERG4uLiwZ88etm/fzv3338+6devQlOUZVAns27ePgoJrjLQtZyZTE0Bb4vW/3pvOfWZr4rlnzx5UmnHpx2myqMTHx2MwAYXmX8s//xzGNzUTsB63CpdlvlhWeWnUqBFAue6jokgdyk9A/N/XbpEpA6fjD5DconrZFGaycO+5C7ZfXcGpFPaV4nO91ncQ/Nch/AtNH/1pD+nV8oqsUy3+BCGFZ6iw9+ffUIzmEhwJSk5NOFdsWalrd8EDfbnw7ylsF10WmPh752/k1fMr9X5atmx5K2HegPMmM4U5fGLTvHlzoqKiWLFiBZ9++ilBQUEMHz4cAC+vy9fmarVaPD09bdMajQZVVUlLS8PNzc2WOAAEBgaSmpqKyWR9NlB8fDxNmzZly5Yt9O7dG7C2xhw9epROnTrZtjObzYSGhtqmfX19S1QHDw8P2rVrR2xsLH369OHAgQN89NFHpKenk5+fT0REhK3bQ1VVTCYT+fn5jBgxgvnz5zNnzhzGjRvHgw8+yPjx40u837LQtGnTCtvXlZQfTXCd+9dc6f2ut9Ey2I/4+Hjuv68lT54xs+ygteXl1Xs0tGzZksX7zNzoOis/Vxjy0J1FuqL6J5v5+tDFsppryvXg8tVXX9GoUaNyPoCVv/j4eKlDeQqsB2v2QUKhkfAuOsi/hWeeaRRry0bdmtQa/wy1apXhsebtJ2DictBoMLz/TIk/1+t+BxMC4Pt/ITkDWt9J/Tf6gfsVN6kKuRveWmVtaQG4/06ad2prfe+3CM5llr4uOuWq5l+lbxvrWJzTaUXm+773PMfJxOv95+DRKZCTD0+15+7HHrZ2jYky5/CJTXJyMnXq1OGzzz4jJyeH5cuX89ZbbxEaGlqisSYBAQHk5uaSkZFhS25Onz6Nt7c3Op21+n379uWVV17h8ccfZ82aNfTu3Rs/Pz+aNWvGggULbGWdOXMGF5fLP5rSjHUJDw9n/vz5eHl50a5dOzw8PDCbzej1eqKjowkODgYgNzeX1NRUXFxc2LdvH88//zxDhw4lISGBd999l/nz5zN27NgS79eZDWoKc/aWbN3YxxXaBhdt3YnpoWV6RxVFgSAP63eVU4KLQf4vXHPVd7usp5bpnazjdQI95GAkHEBQdfh3Luw6CIeT4O7bwd8Hwt+DxHSoW5PUWh74Nq4PsX9CRg6cu2DtsgLQa6FDY3DRW5OBN3tAywZw8hzc7gtu17iL5c2KehJe6mrdb8BtZVNmo1pweB4kplnHBumKaeGt5grHPoVvf4aa3tDjvsvLTnwG46Phn0S4py60CYFjZ+BIEuw9DsdTrIOG6/lbxzDl5sNbfaFLM0jPsnYD/psIKBDWAnIL4ORZazfhgQR4rRvc3xDi4+Hh5pCwANKyoEFA2dS/jDnzTfkKc/jEZv/+/Xz88cfMnz+f4OBgPD098fLyQqstWRdFzZo1ad26NdOnT2fs2LFkZWUxf/58wsLCbOvo9Xo8PT0ZNmwYU6dOpW3btrRr144ZM2awefNmHnroIU6ePMngwYOJiIigT58+pa5Hu3bteO+991izZg0RERGAtZUpLCzM1iKj0+mYNGkSSUlJLFy4kEWLFlG9enVGjx5N9erV0el0eHtf485yldDsrjqa+Jl49bsb38uma53iu+hqeRb9oT4QpOFGzUAh12h9D/asHD96UYm4Gqx/ZLs0uzzv8Ce2t8fj4/G9srXj75PWP8htGoJBf3WZDYPKKVjg9tJ3vdxQNVe48wYxe1eDF7tePd/dBT568eb2e5uH9XVHYNHyQoKtA4mvt43DqhzHOIcfPNy1a1d69uzJwIEDad++PatXr2bKlCmlKuO9997DbDbTq1cvnn76ae655x7eeOONq9YLCwsjJCSEKVOm4O3tzezZs/n222/p0qULQ4YM4bHHHruppAasyVOXLl04c+YMbdu2tc0fMWIEPj4+9OvXj27dupGVlcXkyZMBeOuttzh37hxhYWF0794dPz8/XnzxJn+ETurle7TULcHdgE9cKFl5LQMUBja9/o/3QkHl+HELUay7a0OHu4tPaoSoBBRVldusVpRFixZx5syZKtOVVBaSs1UCP7nxQJuDL2ho5GvN00syLqLBZyaOFpMM+bvDiZe1uOjsl9zIGBvH4ex1cPb4QepQkUzKS0WmdeoiO0Vyaxy+xaYySE9PZ//+/axcudI2OFmUjK8r3O554/U8XUqXiKTkXmN+DpzOKlVRQghRScjl3uKijz/+mJUrV15z+cSJE3nnnXd44oknuPvuuyswMuen1yp831/LhJ1mog8Wv84dPpcHB5eU5hqrq8CpTKjvU6rihBBCOAhJbMrAsGHDGDZs2HXX6dy5cwVFU/k08FH4soeOD0MtDNpiYedpyDJazyea14RNj5X8XjeXaK+R2NT2hPsDi18mhBCVmVwVJUQF86+mYW3fsuk9fagOLP+n6DwNsOVxDa52HF8jhBD2UzmOfTLGRlRJ77fXUrvQ2B1/N9jznIYQX/lJCCGEM5MWG1El3XmbwvGXteQYoZqhcpylCCHErZCuKCGcnKIoVDPceD0hhKgaKkdiI+3uQgghhKg0pMVGCCGEENIVJURVs+63XHb8XUDz+nqe7uhu73CEEEIUQxIbIUrgi09Pc3BdMmaNlk/9ffFy19DjPld7hyWEEOIKMsZGVEqWMnwEWlqakUNrk9Gq4G42c1faeY4mm8qsfCGEcAQqSpGXs5LERlQq209Y6PhjE1w+NjNnj6VMyvw2LhuAY+6u/OPhjlGjEHbv5daa1BM5/G9bCpln829pP+cPnefEmpOQeUvFCCHETZJnRQnhcHqsNJNrtj5i4fXtZp5vouB5C/epST1nZOfaVLbVrcVZgx6A28wmFtey/nRO7j3PVyP3YzaDm5uGgYtb4OVf+i6q397/kyPzD1kfVuWpxTSrfFqEVKMZRV/6R1AIIYSzkBYbUWm8ud1ErrlQEqNCrvHWuqTiNqejyTORrtNxqf0nXavj0O4MAGLnHMWIFpNOR1aBwv7vzpZ6Hye2J3Fg0b+YFQWLAkqmQvYfObcU95VythzlhO8MThimkdJ/Naql7LrqyszxFPjyRzh42t6RCFElSVeUEA7kQr7KzN9VuGJsTYevTIyNM2E0X/8P+enzFp5bkc/j0XnsSzbb1v/u12yig2qQY9Bh0mqwAC5mC/kpuQCcT87HqLUmNka9nkN/WPuRjPlXd4OZC8yoxYz9OXfgPBZFwajTUKDTYFLAklRgW55/NocTkT9xqOcm0tccK9XnApCz+QgpYctR0/JQgZzlB8nZcvSG26kWC2pB6VqO1M93Yu7+MZZ3VoG5FF2Bh5Oh+Sh4dg40Hga3D4LZG0u1byHErZKuKCEcRmaBxfo7tADKxeRBhUPnYHKKmWPpFmIevXyb4fRclXWHLdTxUuhYR8Pj0Xn8clrFs8DI779cQKtRiOxoIFZ1x6i5mP8rCl4WC/fm5GEMuo31CxLIzTJi8jCAChpV5WxiAR+8eIDzaSZCWnny/Ft10eoUdr73Jweij6Fz09Lj83bUbHabLZaCs7mXDyGKgkmrgIsWc5aR3Y2/xXjqAoaL7UXnN5yg7pJQVFXBq30Abg28UC0qmWuOoBotePW9A0VX9HwlY8IO23sFFVAxHjgL4Q2u/Xm+F0fB+9tQCkwYnmpGtaX9UbSXy1UzcjGu/RtN7dvQdbKWY5y+FfPIVYACG//lrilazJ8Z0T7/4I2/wC174fzFVirVAgmp8MZC+H4frBx9eb3ENNj6J9x9O7S648blCiGqHElshNPKNarotXDqvMoTK0xgArQa6zgVsLbeqCooCssOqPyTUYCvh4bwegpTdpo5k62CxUIjD5V/z1rATYepoIBEvQ6TXseIny3UVVUUVUVVrKlH8wvZBOcVsGxeHiRno/H0QNVax6xozGb+KdBx0uBKc7I4uDuTjbOPYj5+nuO7zqJxc0FrMrO6/w/U6VATk1EloE41zm9IsIYLmLUK6HQkxaQRu3ItllQjPoUrrcI/A36wNhNrFTxDvNCcuYB6LgctFpJq+uAeoKdRt2B832uPotNQ8HeqbWMtJhQga/R3uDSqjnnzQcz/nMPi5orZpOD+TFPyNv2LeenvqCgoaCiI+QPLlgO4tA5AubcOBb+dxvz7KZTz2daELMALxd8b7Z//osVysRlbg7bAiHnA/8Hxs2gn9L5chTmxsGEv3FsX5b3HQaNBPXsBMF9MvApZ9Su0jISzF6B+APz6L+RdbM26KxjGPQb/6Vgm/5+EqOqcufupMEUtrm1clKktW7awdOlSEhMTAejatStjxozh2LFjvP/++xw5coSQkBBuv/12TCYTUVFRmM1mFi9ezNq1a8nLy6Ndu3ZERkbi4eFh59o4hg92mHj7ezN6F4UCrWLNCowW0CigKBeTGijyd1KnWJebLZBrtrbw6LWQXQAGLS1TM/lb0ZDn5mLbrkFOHjULjCTrdXibzdTPyad6fgFuZjOoKi4mk+1QoFgs1Ew5h0WvI8nLE51ej/+Zs+jMZrQFZpSL4WgLjGgtFlBV6hy5AMCZIHfyXXWoGgWtycJtGfm2cj0y8/EqyEMBzIAWC5dH/FxuMNZgQYcZd6zber7XnoItx8jemYAOULCgxVxoOwuuWK/kUoF8DOgwo8OMBbCgtZWuYMaTDNu6egoAFSMuqOgBEwYud59ZUNBc/BBVQPvtq2j63IPadSqa7/fb1jM1a4Dmy0GYW7wLZlDIRUvO1QnO9fw+tdxab+Lj42nZsmW5lF0RnD1+kDpUpBzljSLT7uosO0Vya2SMTTlLTEzk/fff56233mL79u0sXLiQLVu28MsvvzB8+HDuv/9+vvvuO1544QU2bNhg2y46Oprvv/+eBQsWsHr1avLy8pg2bZoda+I40nJVxn9vRgUKNBf7ghUFDFpr4gKFkptL3VLq5df5AsgzQZ4ZcoygKBjMZk5qdRh1uiLJ0HE3F/xMZprk5nN7vhGvAiM6i8W2j0stOQB6owktoDWZqZmdg1tOLlqLBY3Rcjn54XLxigo6s4rOrBJ4OhutyVqu1mw9b1IsKrpcMwUaLRcUF7IxXEwqLMX2gquAptA516E1J8nfmVBoedF0QVMkyQEdpotJjVIkqbFuq6UAVxRU9BSgwYQWMy7koMFkS2Iul6cWKdsUtQG+Pwjf/6/ol/nXKcyvLbuY1OShJR/F+ilSYpv3lHxdIUSlJ11R5axGjRp8/fXXBAUFkZGRwYULF/D09GT//v1kZmYycOBAtFotbdq0ITQ01LbdmjVreO211wgICADgjTfeoHfv3owdOxYXF5cKi3/fvn0UFBTceMUKlG3SYNCEUGApJi/XXExojCpcGsCrARTNxTReBbMK2kstO4DFQoFRtV3OXZhZAZ3RiKJocDeZ8DSZSDfo8SkwWhMLswW3/HwUVFzz8q2DgPU60ny80RlNqFcMoFUBtFowm1E1Cue9DXifL0CxgFdGPmk13CgwaDBrwDXbjOZifmDSadEYzehQUbmcclguVs/aOKWgw2Sbf9ZHT1CRvSuY0aLBggYV9WI6cqksWw/eNQYOKqhY0KClaKKmwYQJAypGW+JmQYPm4noqCpmucDbhGI0upjyX1jNjINOchzcqWvIK7VWhaBp4bQcD9GTHx99wvZsVX45lVwRnjx+kDoWVZ8tPZemKksSmnGm1WlatWsXatWtxc3MjJCQEk8mEXq/Hz88PrfbymWlgYCCpqdbxEMnJyUyYMIGJEyfalut0OpKTk6lTp06Fxd+0adMK21dpfOlpZsw2E2hVclBIzlEv/ygVBYyXWyOsA4otKCYNnu6QpVMK/WkG5WK3lWr7C6/ialHRKyoNMnNJc3XF3WzGxWLmvF5HmkFPtl5H3fPn8c7OxmC6fOWQSaclw8vL+l6vI7eaOx4Xsi630mAdZKwzWlAVSK/uQk41Ld7pBbjlmPFPzMasUTC7KLYx0HApNgUzGhTUi2NZrF1TCrCm+V10/fMoJlWHDjMFBj0Pf/IQFya4cOGrA1gPWda2GFCxAGY/H5S8HPT5uVi0WnRdGuHWIYjs0bFXpROKHlQjGHEFVDTkFEqutKhoMOJ21T5AQbm/PtW/eA6/hv6op8yo8+MwZxdgcvVA+2JbfN/oiPmhD1H+Ol9oj1f2I15Dn9aEDHz0xuvdJGfpQrgWZ48fpA4VSxIbUQKxsbFs3bqV6Oho/Pz8AOjduzdms5lz585hNpttyU1KSortvZ+fH+PHj+e+++4DwGQykZCQQHBwsH0q4mCeaKzlicaXk8JP95p59btCfwiv/H2q8PVjWp5orOPwOR2hi/JIuABuOngxRMOyPwpI1elAUaiXl0+T7Dw6tXHlu5+NmBQNwVk5KAqYNRqwWGj8SHVeua8Gn73+N/qL42zMisJt9wdw7vDlFq4WT9Qi/0gGx39KRWO24Fe/Gg3u8cKUZUTvqSe4UwCpv59l33/3oVwcH6Sq4PGYD/Xw4vhn/wKgN1tTmFz0eAe7U/OFRqgmFY27Fp1Bg8t+hcFtm9Lm0El6eOfQZXQIbnd4k9e1PpavDmLCggtm28eib1ML/59fLPaz1d7tz4XeX6KaQfF1p9qUh3F7sSXGRb9hOZyK7qnmFLwcA78dwaLRo+nTHLdXHsSSkI7xla/hYmsWaNBHhaGd0Ovy1zK+F8r4XmgoevDR7XwLvJ6//GUVGkPEEw9CvZrQoj5YVBg0F3IKoGEQLBxyo/8qQogqRhKbcpaVlYVOp8NgMFBQUEBMTAynT5/Gx8cHHx8fFi9ezAsvvMBff/3F9u3beeihhwDo0aMHCxYsoF69evj4+DBv3jy2bdvGt99+a+caOabHGyrWxEZVrX/8ruhNqeai4b4gayJ0h5+WI5Hu7D9joZa3Bn8Phdz0dNYeLSAo30SA2UT/3l70C/ci+XQiF/6XieHiDe0KVNDqYfwTnug1CqpGS5a7OxqLBYtGQ7dufnj9kc2xv7O5q6UnYYODURSFjIQcTPkW/BpcPfi7eog3+z782/a3XFHAkmai8ZdtqD3kLpI/3c+FGX9gRoMGlQZzOuHTu36RMsYCT50xoarVqR9w+Wft1sofs1aP1pxfJNfT1rj208lduofgm/gWloTzaJv4oxis5RkG3n95+5+GYfkrCaWmB5pa3tZ5gLbTHRifXoKakE5Kt3rULpTUXJenG4QEwUHrAHtcXSH6dWgYCE2uaKEMbwFHkqHx7eBecd2yQlR20hUlSqRHjx78/vvv9OzZExcXF+69915CQ0M5ceIE//3vf3nvvff44osvaNq0KS1btkSvt47zeOGFFzAajQwYMIDMzExCQkL4+OOP0enkKytONb2CQQsFORZr/wzWK6AMbgqR92p4vLGGuj6Xf7QGncK9tS63+Mwc5M39P+SiKPBUBzc83KzjdzzcteQVukuvRrWw392V7ALwraZcHKajYNFqQVUxZhp5OvLqrkKf4GsnEq7VXdDqNVgK3dRPX+3i/ht5c8fHbcnqW48LG49T7YFAvHvVK7acev5X/99wbepH3R/6kbHsIJYVf8GZTBR3PR5D7y+mhMs0NT3Q1Lz2FXiKVoO2Ra2rt6vnh8vPIwE4Gx9P7evu5Qo/vgtzN4OHK7wWBq6G4te7zUPuYSNEOZDERpSIq6srU6ZMuWp+Xl4eBw4c4IsvvrDNGzNmDD4+PoB1PM3gwYMZPHhwRYXq1Nz0Ct/20vDUt2ayCg2v6XS7wqQuN/5v7uGm4eWwalfNzywAk6Kgu3h11SHPapx1M3Cbm/UA4Bdo4Gzixa4nRcH1tmv8Mb5R/P5uZJ/MvhzPPW5F42sfhEf7oCs3KxH3tkG4tw1CndEJ499n0QZ4oK15dV3troYXRPWzdxRCCCcnl3vbiVarZdiwYezcuROA/fv3s2vXLtq0aWPnyJxXjwYa1vXT46q1tnw0rqGw5rFbe+Bj325eJHm4kWHQ86+nO9v9q9M8O48D/7M+UqFPZD30Fx+yGdzQnbserH5T+2kx/h4UnbUctaEFj/vL/n5FilaDoZm/YyY1QghRRqTFxk70ej1Tpkxh5syZjB07lurVq/Pmm286ych5x9Wprob1nQ8ReEczQvwUNMqtNa0+cK87zz3uw5hN+SS7udD0Qja35xUQ/3MmTe52p/ZdHoxY2oysdCO+tVzRam9uf7d3C6b3bz0wXjCy/rf1txSzEELcDOmKEresTZs20kJTDnwMZhrXKLvGyEe7eZP8bxI741NRFQWd2ULInZcHrbp76nD3vPWfkltNN9xqusFvt1yUEEJUWZLYCFECEa8F4LMwmUP/y+WeFtVo3cHb3iEJIUQZkxYbIaoMjVbhqYhAe4chhBDlprJ0RcngYSGEEEJUGtJiI4QQQohK02IjiY0QQgghqCxjbKQrSogK8vt3qexclUxelunGKwshhLgp0mIjRAV478W/ISETgB++SGD01/eiM9zieUVyOmRkQ4g8GFUIcevUG6/iFCSxEaKcpZzOw5KQZWsetWSbSDmRQ9Cdpb+7cPrv5zj3fRL+mUdweX81ZlxQvHW4Zcwt26CFEFWOjLERQpTI1h3nURXF+uRxrA/xTknILXVis/eZH0n66hiKAjmW09SkNipa1PPgFTobz+9fL4fohRDCucgYGyHK2cI9sM/3Nn6t6UdCNXfS3Vw5sS+rVGXkHs8iedlxTG5a8jz1pLrXREWLgnW4X07cmXKJXQhRlShXvJyTtNgIUY7++5ORPw1uVPe1nkMc8vHinvTz1Gta+m4ok07B5GZ9qOd5XTWSLT4E5mWgABoKyjJsIUQVVFm6oqTFRohyNGYnaCyXp1VFIU+jwVLKh3O61fXArC+6zRmD9bEOWky4c+GWYxVCiMpAEhshyklOgQVQOe+iI83DBYsCOosFVwVO/HG+VGWZTRZS/d0x6qw/WQvgZbmAnmxULFjkpyyEuEUqSpGXs5KjYQVITEykVatW5OTk3FI57du359ixY2UUlShvbnoFClRMeh3pnq6ke7vRLDMLL6MZS2puqcpKP55FnruBczWrcbZmNQp8VB7I+oPqnMWTdHKpVk61EEII5yJjbJzIjh077B1CqSRlqmw7ZibLCA/U0pBjUThwzsKuUxY+PwCqRcUHE3XdwdtFxbfARL2CAmo3cuPRDtXIOJbDlGlJpGi1BKdfoEFOFnpFpUXvQLoOaWDv6t1Qvpki4+/Ou+jJ0WjxshgxlvKcQu+qg4vdVya9FvfcfNsyV3K5QPk+bfzA4n85sOAfDK5aXBKyUAtUbh/QgDuHN8HgbeDsmhP8FhlPqgnw1NE9uj2kF5AY+SNZf6XjElId3yfvwLQvBfNfiejS0zEnn8dwpyfnTxlw7XA7hvwclB/+Bnd3TIqe3FwNmnPpuAS5ounaBMPdNXF5uAGKxnnPJIUQ5U8Smwr05ZdfsnLlSlRV5cUXX6R///707NmTp59+muXLl3P27Fm6detGx44dmTZtGunp6fTq1YvIyEgAWrVqxbJly7jjjjvsXJMbO5Gh0nJBPqm5gKKgYEbVK6DTYP1rr0K+hXRVQ3qOCgUWQEvNfC1eR3P4+FcT7Y6mYlAh2GLGS1FQzGBS4c/o49xWy42WfYLsW8kb+CPJDEYLGKwDfhumZ9LoQiYWoPqdpUtEjn3wJ77J2WR5GXDJN1E3Ndm2zIgOk9a1LEMvImX3WXa/+ycAOYDGoqK1qGR89g/HYhNpPaYpf/XZzoUgD1zNZpS8ArY9vIm7slNJzzKjAue/O03KnP34cB5vMkihJqCgxGXjQQ65mw+ShRZQcCUF0KAnGy0FZP4VAJu3ASrVnmlG9aV9yq2uQlRlztz9VJgkNhXo+PHjrF69muPHj/Pqq69Sp04dAL777js+//xz0tLS6N+/PydOnGDp0qUkJSXx7LPP0qdPHxo0cPwWisI2HzHbkhq4eEdLs3r5f5yigE4BowoaxfqyqORotfhiQpuWj169fB/MPIP+8nYo/PRtksMnNkGe1jphUWmYlkn48STA2v979GTpHqtw5sdkvDPy0FnMABx2q0O1/AI8zdlk4Y2PWroxO6VxctWpItOXvhWLVkPm8SxOfnaILG8XzDoFnTU8vPPy0WRZJxRAhxkjOlzJJRcPLjVlqWgxo0WHGQ0WLGgxokcLVCODdOpf3JsGMJPz1X5u+7y3tNoIUQ4ksRGlNnz4cFxdXQkJCaFHjx7ExsYC8Oijj+Ll5YWXlxd+fn707t0bT09PPD098fPzIykpyW6Jzb59+ygoKP2lxLo0N6Ce9a/gpSuArvxjdOlqIVW13bzO02TGDJx30ZGt1VDNbF3JLc/a9aIxm1EsFjS1VOLj46+5/+stqyixSV7gWhvMEJSTT6q7O1qLBe/8fHLT04iPTy92u0aNGgFF62Bq54b5ZPbllRSF07pAapgzMVCAO+fKrc75DXKs38/FmwxqLn5XqgKqq4a85mD+ScGk0+KSb03YcnU6VAWUi1mQBQUNKma0GCgA25ggFQ2WIvvTXpw242Jt6UN7qdIY63uw54895VLPa3GE/0u3wtnjB6lDYS1btiyTciozSWwqiE6nw8/PzzZds2ZNfv/9dwC8vLxs8zUaDZ6enkWmVdV+T/Bo2rTpTW3XEvC93cySvWYy8qFrfQ15Kmw5Dn+kqFgsKnosuBWYcDGayNVp8DGb8caErrqO0Y96cdtZHR8vv0CWRoPBoOPh3Fz0qoqpoT9vTmqC5hpn7fHx8Q7x4085bIL9Fqpn51MrpwCLRoNFoyHHbKZRveq0bFm/2O2++uorGjVqVKQO2e/ksGrdOlyNFuuts1SVYONZ3DBixowS5Fl+dW4Jful/c3DBIdQ8Mxc0CmbAtU41Ok29j5ptanDI7U9+XHqcLA8XtCYL1ToEk3+vPz6fp5CfWkC12t54hQbjec9tKOO+xnw4k3zFFUNdDzRnClC8XXC9vRra08lofDwxW/SYThiplptKnq46qnc1XMPuxHtSKPVqed0w5LLiKP+Xbpazxw9Sh4olLTaiFEwmE+fPn8fb2zq2IikpicDAQI4dO4ZSynuaOIs+IVr6hGiLzPugg/Vfs0VFqzHcoARv+jzkRcYFM2fOGKlb53b0Og1arXN8XvfX0oBiId3Lha9DgmiRmE6drDw8zRZ8apVuTIzeS4+h4GJSY7HQ7MJx3C1GAAyo6M6UX1cUQKPIu2kUebdt2mJW0RT6HhqNu4e6r91F2pFMfBt5YaimJz4+ngZvPnx1YY+/TelvTyiEKG+V5SGYcrl3BZo9ezZ5eXns27ePjRs30rNnT3uHZDfaEo6RUBSF27x1hDR0w9VF6zRJDcA/6daxQ6pWg8mgZX+QDxkGA+fcXCltI5xGo2DIM+GbloNfeh4u5stjdBRMKMaKvfOwppjvwcXbQOC9vhiq6Ss0FiGEKExabCqIwWDA19eXsLAwfHx8eOutt2jSpIm9wxLl6K7qRbMX88VkLsPNFXf/0rXY6KrpcDOZsWgUclx1nMj3507TcbSY8eZ0pTnTEkLYjwweFiUWFBTETz/9BMCrr75aZNm6detKPL179+5yilCUB29XDbXdjJzM1aCo0CjF+uBLndlMgcVyg62vlu+i5VRtb0x6LRqzF/6njnBnzhEsaEmjHn43LkIIIa5JEhshxA0dGWxgyIocslYcB4MBs0ZDQFY2+37I574OpUtF0gI8MOmsY5YsWg3/ejfCN8f6CExVo73+xkIIUUXIGBshypFOozCirYGGGeepd/4CDdIz8MrPx0UpfYtNy5F3F5n2zzkPaKxX1BsksRFC3CrlipdzkhYbIcpZvUAdGXo91fMvXvKtqgQ39rzxhldoOrAh5nwL/6w4QXAtlboHUjBf/AlXmxpe1mELIaoY6YoSQpSITqsQXNeNo0lmdKqKRaflvi6+N1VW8yEhNB8SAoC6uDPG7UfR1KmOrnHNsgxZCCGcliQ2QlSAyE+asHP5aVJO5hH6VBDu3je6h8+NKS4GDOEhZRCdEEJUnvvYSGIjRAVp16+WvUMQQohrqixdUTJ4WAghhBCVhrTYCCGEEAJnvhKqMGmxEcJB/XzaQuR2E18eMGO2VJbebyGEo1JRiryclbTYCOGAdp3zYOj3l+51o/L6NjMJEVqqGZz3YCOEEBVBWmyEcEDvHwouMp2RD0+tN9spGiFEVaBe8XJW0mIjhANKK7j6p7nxmB0CEUJUGc7c/VSYtNgI4YCKO8CYVVBVZz6PEkKI8ieJjRD28sPfELcfLuTAo/+FeyPhyx8AsFzjzOmbf0r/jCkhhCgJGTwshLh5oe9Yk5orPTsTy5huUL34zb45pPJEo/INTQhRVTlvMlOYtNgIUdGW7yo+qbmo1dI/uNYBZvk/4DPTRMgiExuPymBiIYS4kiQ2QlSkCcug/4fXXSUwJe26y88b4VA6dF+p8vYOU1lGh9misv6Iha3HpctLiKqmslwVVekTm6ioKGbMmFHssk2bNjFo0CAA5s+fz6hRo4pd7/Dhw7Rq1aq8QrymxMREXn31VTp06EDfvn3ZsWNHhccgLsrOsyYlQxfB0eSbK+PjtfDu8huupjeXvCXmg19vLpRrabzETM9VFh7+xsLT68s2aRJCOLbKMsam0ic21xMeHs6CBQvsHcY1vfXWW9x9991s376dyMhIxo8fT3LyTf5RFbdm0CfWpGTWBug8AUyl7AbKK4Dh/1eiVd3MJtofPVCidVUgKatsWlf2plj4J/3ydMzBMilWCCEqVKUaPBwfH8/MmTM5duwYgYGBDB8+HICkpCQGDx7M33//TVBQEBMmTCAkJIR169axfPlyli5dWqQci8XCJ598wsqVK9Hr9fTq1cu2LDExkaeeeorQ0FDi4uIYNWoUnTt3Zvbs2Wzfvh1VVQkLC2PIkCHo9Xrmz59PQkICmZmZxMfHExAQQGRkJG3atLluXY4dO8bhw4f57LPP0Ol0tG3blnvvvZctW7bw/PPPl/2Hdw379u2joKCgwvZXVuLj48u0vMY/H8Dt0sSJs/z5/S5M1auVeHv96XSalXBdBbgn8QQ76jcu0frbdx8kxDO3xLFcy4ELrkDhkcnqLX+OZf092IOz18HZ4wepQ2EtW7Ysk3KK48ytNIVVmsQmLS2N4cOHExkZSffu3dm1axcjR46kdevW7N27l3nz5tGgQQMmTpzIrFmzmDdv3jXL+uabb9i2bRtLly7Fw8OD0aNHF1menZ1NYGAgsbGxWCwWZs6cycmTJ4mJiUFVVUaPHs3ixYuJiIgAYOvWrcyaNYtp06Yxd+5cpk6dysqVK69bn+PHjxMYGIirq6ttXp06dTh+/PjNf0g3oWnTphW6v7IQHx9f9j/+Fx+Cd5ZZ33dtxj1d24NSioNAczNoPwXzjVtXTIrCppAWJS76sXZ34aq79QNSS+DFPSZMFzvXq7sqt/Q5lsv3UMGcvQ7OHj9IHSpSZUlsKk1X1M6dO6lVqxa9evVCq9XSoUMHPvnkEwwGAx07dqRRo0bodDpCQ0NJTEy8bllbt26lX79+BAUF4eXlZUtQCgsPD8dgMODi4sLatWt5/fXX8fHx4bbbbiMiIoJVq1bZ1m3WrBmtW7dGr9cTFhbGqVOnblif3NzcIkkNgKurK3l5eSX8RESZersffP8urBwFG8aVLqkB0Grhl/+Ch+sNV83T6TniF1CiYmt5UCZJzSV7ntPwQCB0uh3+eE5bZuUKIURFqVQtNv7+/kXmNWnSBBcXF7y8vGzz9Ho95hsMzkxNTaVGjRq26aCgoKvW8fX1BSA9PZ38/HwiIiJQLv6xU1UVk8lEfn4+AD4+PrbtdDpdie4e6+rqatv+kry8PNzd3W+4rSgnnZrc2vat7oDERdDjA/jx2mNoDCZjiYqrpoddT5XtuUnTGhp++k+lOd8RQpSCM18JVVilSWxq1KhBSkpKkXmLFi3CaCzZH4nC/Pz8SEpKsk1fWS5gS2K8vb3R6/VER0cTHGx9cGFubi6pqam4uLiUet+X1KtXj6SkJAoKCjAYDACcOHHCKZozxXV4usEP74Om7zWPIlvvbX7NzV208Ogd0LC6wpj7NWXaWiOEqOoqx/Gk0pyatW3blqSkJDZu3IjZbObHH38kOjqanJycUpfVrVs3YmJiOH78OFlZWXz22WfXXFer1RIWFsacOXPIzMwkNzeXSZMmERUVdQu1sSY29erV45NPPqGgoIBdu3YRHx9P165db6lc4SAWDL58DGlZ7/L7VvVZE9H5mpt9HgYxPXVMbKuVpEYIIYpRaRIbHx8fZsyYwfLly+ncuTOffvop06dPx9vbu9Rl9e7dm0cffZRBgwbRp08fGje+/tUpI0aMwMfHh379+tGtWzeysrKYPHnyzVbFZtq0afz777889NBDfPjhh3zwwQcEBJRs7IVwcC91hYIVkPc17P4QTN9ATgz8Pp0O7ie5VnPOI/Vk3IsQonxUlvvYKKo8LlhUMs5yBcK1fPXVVzyf+Bgmrk5i1BHO03vs7N8DOH8dnD1+kDpUpH+UondFb6hG2imSW1NpWmyEqEwMmqvPN7TOewIlhHAClaXFxnlO/yqZuLg43n777WsunzVrFi1alPxeJqJyae6dzU/pRbtRH7z64jwhhCgzlaX7RhIbO+nUqZM8+0lc0+QmJxn1b1P+OGM92NxTE1b0kvE1QghxI5LYCOGAquks/PKM/DyFEBXHmbufCpMjpxBCCCEqTWIjg4eFEEIIUWlIi40QQgghZPCwEKJs1Z5v4lQmKDzOAv/DOP5dL4QQlYl0RQkhysyb26xJDYCKhoF/3GHfgIQQwklJYiOEA1j415VzFLIKKkvDsBDCGVSWG/RJYiOEA8gzXzlHod1XV80UQohyo17xclaS2AjhoP48Z+8IhBDC+cjgYSGEEEI4dfdTYdJiI4QDKO5w0v7oAdD0hSZDYdUvFR6TEKJqkTE2VYzJZOLMmTNVdv+i5I6kmxm4xcySfSUfI2MpZl6BRmvt6P77FPSdClv3llWIQghRadktsfnjjz/o2bOnvXZfamPHjiUuLg6A3bt306VLF7vtXziuU+fN3LFIZdE+lRe3qDy83HTd9VVVZX+KqdiBegEX0ovOeOqjq1eyFJcSlZOjyZCeVXH7E0JUqMoyeNhuY2xatGjBunXr7LX7UsvIyKjS+xcl02NV0cPB1pPXXteiqlSfY+Z8fvHLux7eX3RGahZMXQULvoOQIPg3GQ6dBp9qED8N6gfcYvTXEfAinMmwvh/VB6Y8V377EkLYhTN3PxVW6sQmMTGRp556itDQUOLi4hg5ciQHDhxg+/btqKpKWFgYQ4YMQa/XYzKZ+PDDD9m8eTNeXl707duX2bNns3v3bnbv3s3o0aPZtm0bADExMSxbtowLFy7QuHFjRo4cSd26ddm9ezfTp0+ndevWrF+/HldXV/r378/zzz9/w1hffvllmjdvzs6dO0lISCAkJISoqCiCgoIwmUwsWLCAdevWkZ+fT8uWLRk5ciQ1atRg3bp1rFmzBqPRSEJCAk2bNmXv3r3s27ePxMRE2rdvj6qqzJkzhw0bNmA0Gnn++ed59tlnAUhOTmbKlCn89ddfeHl58cILL9CrVy8ATp8+zfTp0/nnn3/IyMigUaNGvPPOO9StW5fk5GSioqI4ePAg3t7edO7cmTfeeIOPPvqoyP6HDRtW2q9NVJBDqSVfd9Iv105qAPxyimkdGb3U+u/hpMvzMrLhPzPg5/+WfOelsWzH5aQGYNoaSWyEEA7rplpssrOzCQwMJDY2lsmTJ5OSkkJMTAyqqjJ69GgWL15MREQECxcuZN++faxYsQJFUYiMjCy2vJUrV7J06VJmzpxJ3bp1WbJkCUOHDuXrr78G4PDhw3Tt2pXY2Fh27NjB6NGjCQsLw9/f/4axbtmyhXnz5uHt7c2wYcNYsmQJ48aNY/78+ezYsYOFCxdSvXp1pk+fzujRo1m0aBEAf/75J3PnzqVx48Z4eHjw8ssv06VLF/r378/u3bu5cOEC7u7urF+/nl9++YWhQ4fy8MMP4+fnx7Bhw2jbti1Tp07l2LFjvPHGGwQFBdGqVSvef/99QkJCmDZtGkajkXHjxrFo0SLee+895s6dyx133MG8efM4e/YsL774Im3atCEyMpJDhw7Z9l+R9u3bR0FBQYXusyzEx8fbZb+qejdFf1bqNWM5dqomEFjsstvTz/HEXz8XLZviBxkDZJ/P5GA51fm2//1L/cJxqCp7Srgve30PZcnZ6+Ds8YPUobCWLcvzYStVtMXmkvDwcPR6PbGxsSxatAgfHx8AIiIiGDduHBEREWzatIlhw4bh5+dnW/b6669fVdbGjRt5+umnufPOOwEYOHAgq1atYs+ePRgMBrRaLQMGDECn0xEaGoqbmxunT58uUWLTrVs3atWqBUCnTp3YsWOHbZ/Dhw8nKCgIgMjISDp16sSJEycA8PPzo3Xr1tcsV6/X89xzz6HVamnbti3VqlUjKSmJlJQUkpOTGTx4MBqNhoYNG9K3b19WrVpFq1atmDBhAj4+PpjNZpKSkvD29iYpyXr27eLiwp49e9i+fTv3338/69atQ6Ox7/jupk2b2nX/NyM+Pr6cf/zXVvcPE/9kFJ6jXDOW+S1UYmaZyS1mGE6O3oBZo0FrvjwAWQF4rA18+wsE+lgzneQMcDNQbdlIWjarW0a1uMK998KMbXAh1xrHgNASfb72/B7KirPXwdnjB6lDRaqyXVGX+Pr6kp6eTn5+PhERESiK9QNRVRWTyUR+fj5nz54tknwEBhZ/dpqWlkZAwOXxARqNBn9/f1JSUggODsbDwwOd7nKoOp0OSwkHTV5KuK7cLi0trUg8bm5u+Pj42K488vX1vW657u7uV8VkMpk4e/Ys2dnZdO7c2bbMYrEQEhICwPHjx5k1axZnz56lfv36KIpii2nEiBHMnz+fOXPmMG7cOB588EHGjx9/w1iE41jzKNy15PL0vTWvva5Oo3DhDS3/t8/MoK1Fl6V6eDHhoSeYvHnZ5Zne7vDNKOsAXi830Gqt773doTwTYEWB9KWw838QVB3uKP53LIQQjuCmExtFUfD29kav1xMdHU1wcDAAubm5pKam4uLigr+/P8nJydx1110A17xcOSAgwNZqAdZEIDk5merVq99seDcUEBBAYmIijRs3BiAnJ4eMjAx8fX1JSUmxJWql5efnR40aNdiwYYNtXmpqKqqqYjQaGTVqFO+88w5du3YFYMGCBfz+++8A/Pvvvzz//PMMHTqUhIQE3n33XebPn8/YsWNvsbaiooT46vjtP2bG71R5IAii2l7/J6bTKAy8R8crW01ceXF4jsG16IyFr1r/vc3j8rzC78uTRgMd7q6YfQkh7MKZr4Qq7JZO87RaLWFhYcyZM4fMzExyc3OZNGkSUVFRAPTo0YMlS5Zw7tw5MjIybONXrtSjRw9iYmI4fPgwRqORhQsXAnDffffdSnjX1b17dxYuXEhSUhJ5eXl89NFH1K9fnwYNGhS7vsFgIDs7+4blNm3aFFdXV7744gvbvWcGDx7MihUrMBqN5Ofn4+bmBljHr6xcuRKTydoXsWjRImbNmkV+fj7Vq1dHp9Ph7e1dqv0L+7svUMuWJ3Q3TGoK0xYz78htNaxvbqsGswfC423LJkAhhChGZblB3y1f7j1ixAhmz55Nv379yMvLo3nz5kyePBmA5557jqSkJB577DF8fHzo2LEjf/111WOM6datG+np6URGRpKenk7jxo2ZO3euLQEoDwMGDCA/P5+BAweSlZVFq1atmDFjxjVbasLCwpg6dSpJSUk88sgj1yxXp9Mxc+ZMpk2bxueff45Wq+Xhhx9m0KBB6HQ6xowZw/vvv09OTg7BwcE8+uijrFixApPJxFtvvcWkSZMICwsDoH379rz44otX7X/cuHFl/4EIu1IVrjpd2tC4JVi+tXYFCSGEKBFFVdVya33av38/tWvXxsvLC4Bdu3bx3nvvsXnz5vLapRBOM1CvMO10U7F3H1ZHOO/j3Jzxe7iSs9fB2eMHqUNF+k35tMh0a/UVO0Vya8r1kpu1a9cybdo0CgoKyMzMJCYmhgceeKA8dymEU9IW0ygTXEHDZ4QQAsCCUuTlrMr1dHDw4MF88MEHhIeHo6oq7du3v+a9bEorIyPjuo9keOGFF2zdOEI4uqvPMFQOvljcyBshhBDXU66JjY+PD9OmTSu3si/dk0YIZxd6O2y+4vEL1QzyjFohRMVx5gHDhcmRUwgHsKavhmq20wyVz5r/a89whBBVkDwEUwhRZgw6DVlvasguUFm1Ioa7bmtk75CEEMIpSWIjhAOpZlDQVI7WYCGEk6ksXVGS2AghhBCi0iQ2MsZGCAeSb1I5WuBDhlGuiBJCiJshLTZCOIjMfAs15lrItzwMO1W+rW6ib0P5iQohKoYzDxguTFpshHAQT663kG+7/bBC/3X2jEYIUdVUlmdFSWIjhIPYmVB02lRZTp+EEKICSTu3EA7CZLZ3BEKIqsyZW2kKk8RGCEdx8ZjS4cgB2pz8hz+C6sKZO8Dfx55RCSGqiMrSSCyJjRAOQgG6/vMXWxZ+gEZVydPp4Rs9pH9p79CEEMJpSGIjhIPIMUPnw/vRqNbzJleTETKMdo5KCFFVVJauKBk8LISDUIHtdzTBolgPLgUauZeNEKLiVJZnRUlicw3Jyck8+eSTtG/fns8//7xC9hkVFcWMGTMqZF/CMZzOtDDtNzMDNpoA+K5hM2qPmc1/O/YkqZqXdaWXP4H5W+D4Geg9CUb9n/0CFkIIByddUdcQHx9PTk4OcXFxaLVy5izK3uf7zQzYXPS8yDMvhzWff0jL08fI1rtYZy7YCguu2HjuZsheVjGBCiGqBOmKspNZs2bxyCOP8NBDD/H666+TkJCA2WxmwYIF9OzZk4ceeoiJEyeSlZUFwIQJE3jppZdQVRVVVRkyZAgTJky47j7Wr1/PBx98QHJyMp06deLs2bMkJyczbNgwunTpwqOPPsratWtt67/88sssXryYJ598knbt2jFixAj27t3Lk08+SYcOHRgzZgxms/Va3oMHDzJ48GAeeeQR2rZty5AhQ0hNTb0qhuvVSVQOY3Zc3dhbPSeL0Fcm0Of5kWhVSzFbXZRTAP8klmN0QoiqprLcoE9RVdVputJ+++033nvvPZYuXYqHhweTJ0/GaDRyxx13sHnzZj766CM8PT15//33MRgMTJw4kczMTJ588kkGDBiAqqpER0cTHR2Nh4fHdfe1bt06li9fztKlSzGbzTzzzDO0bduWiIgIjh07xhtvvMH7779Pq1atePnllzl37hyffvopOp2Oxx9/HD8/P+bMmYPFYuE///kPEydOpF27dvTp04cnn3yS/v37c/78eYYOHUqbNm149dVXiYqKwsfHhzfffJMvvvjimnWqSPv27aOgoKBC91lV/Of3OzmU5X7N5TNXLeKNn7YUu0wF/op9E1P1auUUnRDCEbVs2bLcyv5OKTrsoqv6fLntqzw5VVeUwWAgLS2N1atX06lTJ8aNG4dGo+Gxxx7jtddeIyAgAIA33niD3r17M3bsWDw9PXn77bcZO3YsFouFGTNm3DCpudKBAwdITk5m8ODBaDQaGjZsSN++fVm1ahWtWrUCICwsjJo1awJQv3592rRpU2Q6KSkJgDlz5hAUFEReXh4pKSn4+PiQkpJy1T7XrFlzzTq5uLjc3Ad4E5o2bVph+yor8fHx5frjLytr66n0Xm3mUFrxA/VWN2ldNLFx0UG+dSyO8mRb7nmoQ8UEepOc5Xu4Hmevg7PHD1KHinSdNmKn4lSJTfPmzYmKimLFihV8+umnBAUFMXz4cJKTk5kwYUKR1gydTkdycjJ16tShdevWeHl5odPpbuoPdXJyMtnZ2XTu3Nk2z2KxEBISYpv28vKyvddoNHh6etqmFUXBYrH+l9m/fz9vvPEGOTk53HHHHVy4cIHbbrut2H1er07C+TWsrvC/F60/wQKzisvHRW893DTphPWN5Vu4eKUUqnr5vRBClCFVUzmOLU6V2Fz6o/7ZZ5+Rk5PD8uXLeeutt/D19eXtt9/mvvvuA8BkMpGQkEBwcDAAS5cuxd3d3fZ+wIABpdqvn58fNWrUYMOGDbZ5qampFO7FU0rwx+bMmTNMmDCBRYsW0aRJEwAmTpxIcb2Bfn5+jB8//pp1EpWLQWv9/1Mj6zxnPbypnX6WET9e/P9W+P+WJDVCiCrkwoULRRoOSsKpBg/v37+fYcOGkZCQgLu7O56ennh5edGzZ08WLFjAuXPnMJlMzJs3j6FDh6KqKkeOHGHBggWMHz+esWPHsmDBAo4cOVKq/TZt2hRXV1e++OILTCYTZ86cYfDgwaxYsaJU5eTm5gLg6uqKqqrs2rWLbdu2YTKZrlq3R48e16yTqJwMCjx86E/+njaMA9OGc/v5qweVCyFEeVGVoi97Onr0KN27d6d79+6cOXOG8PDwEv/tdqoWm65du3L48GEGDhxIdnY2devWZcqUKdx1110YjUYGDBhAZmYmISEhfPzxx4D13jCPPfYYjRs3BuDRRx8lKiqKJUuWoNOVrPo6nY6ZM2cybdo0Pv/8c7RaLQ8//DCDBg0qVfx169Zl4MCBvPLKK1gsFurWrUvfvn35/fffr1r3hRdeKLZOJY1ZOB+DBqLvbU+D1DN0OPY/Yu9sypTm+fYOSwhRRThSV9T777/P2LFjmTZtGv7+/jzzzDO88847REdH33Bbp7oqSoiScJaBelfy+NhEduFhNqqKOlJvt3hulbN+D4U5ex2cPX6QOlSkTYalRabDC561UyTQt29fVq5cSZ8+fVi9ejUAvXv3Zs2aNTfcVk7/hXAQV51iyHgaIUQFUh1scEp+fr5t/OrZs2dtF+HcSJVNbB555BFycnKKXRYeHs7YsWMrOCJR1fm5w0m5B6MQwk5UreOcTD399NO89NJLpKam8uGHH7JhwwYGDhxYom2rbGKzZUvxNz4Twl6md4J+6y9P31vTbqEIIYRdPf7449SuXZsffvgBk8nEu+++S7t27Uq0bZVNbIRwNE+E6JhywczUnZncfZuJ75/1tXdIQogqxOJAg4cBWrduTevWrUu9nSQ2QjiQUa21BB/eSKNGjdAofvYORwhRhTjSGJsWLVoUe3+4PXv23HBbSWyEEEII4VDWr7/cL280GomNjUWr1ZZoWwfKz4QQQghhL6pGKfKyp1q1atledevW5eWXX2bz5s0l2lZabIRwIDtOmXghsQ+uZ+DfEDM1q5XsDEUIIW6Vve82fD1HjhwhNbVkd2OXxEYIB6GqKh2+BjBQYAb/T1TUEfaOSgghKl7hMTaqqmI0Ghk5cmSJtpXERggH8fUB841XEkKIcmLv7qfCCo+xURQFLy8vPDw8SrStJDZCOIjjafaOQAhRlVkcIK+JjY297vKHH374hmVIYiOEgyiQBhshRBW3dOnSay5TFEUSGyGcickBzpaEEFWXI3RFXS+xKSlJbIRwEPkme0cghKjKHOmqqOPHj/Pll1+Sk5ODqqpYLBZOnDjBsmXLbrit3MdGCAdxm97eEQghhGOIjIzEaDTyxx9/UKtWLQ4fPkzDhg1LtK0kNkI4CN2Vt6xRVbvEIYSomlRFKfKyp+zsbCZOnEi7du3o0KEDS5Ys4e+//y7RtpU6sYmKimLGjBnFLtu0aRODBg0CYP78+YwaNarY9Q4fPkyrVq3KK8Rr2r17N//5z3/o0KEDvXv3ZuXKlRUeg6hYI3+mSDKjqBbQPwaP/hf8X4Dqz8KAWfYLUAhRqVmUoi978vHxAaBOnTr8+++/eHl5YbFYSrRtlR1jEx4eTnh4uL3DKFZWVhbDhg3j3XffJTQ0lMOHD/P888/TtGlT7rzzTnuHJ8rBA59fPcDG3VgAJhVW/3Z55udx1sE4McMrLjghhKhgderU4YMPPuDRRx9l3Lhx5OTkUFBQUKJtK01iEx8fz8yZMzl27BiBgYEMH2498CclJTF48GD+/vtvgoKCmDBhAiEhIaxbt47ly5dfNQLbYrHwySefsHLlSvR6Pb169bItS0xM5KmnniI0NJS4uDhGjRpF586dmT17Ntu3b0dVVcLCwhgyZAh6vZ758+eTkJBAZmYm8fHxBAQEEBkZSZs2ba5bFw8PDzZv3ky1atWwWCykp6ej1Wpxc3Mr+w9OOIRfzl58U6j5N0fvUvzKm/8o/4CEEFWOI1wVdUlUVBQ//vgjjRs35oknnmDXrl28++67Jdq2UiQ2aWlpDB8+nMjISLp3786uXbsYOXIkrVu3Zu/evcybN48GDRowceJEZs2axbx5865Z1jfffMO2bdtYunQpHh4ejB49usjy7OxsAgMDiY2NxWKxMHPmTE6ePElMTAyqqjJ69GgWL15MREQEAFu3bmXWrFlMmzaNuXPnMnXq1BJ1K1WrVg2TyUT79u0xGo288MILBAcH39oHdRP27dtX4izZkcTHx9s7hFIJ0DYk2exm7Yq6mNzckZpc7LrpzQI56iT1c7bvoTjOXgdnjx+kDoW1bNmyTMopjiNdFTVv3jyeeOIJAJ5++mmefvrpEm9bKRKbnTt3UqtWLVvrSocOHfjkk0+Ijo6mY8eONGrUCIDQ0FBmzbr+GIWtW7fSr18/goKCAIiIiOD3338vsk54eDgGgwFVVVm7di2LFi2y9QdGREQwbtw4W2LTrFkzWrduDUBYWBjR0dElrpdWq+WHH37g6NGjDB06lNq1a9OzZ88Sb18WmjZtWqH7Kwvx8fHl+uMvDyeaq7h8bAbVAop1FHFgxsUHvt0ZCKfOASp0bsZtG8bjDLVzxu/hSs5eB2ePH6QOVdmzzz5LnTp16NevHw8//DAGg6FE21WKxCYtLQ1/f/8i85o0aYKLiwteXl62eXq9HrP5+rd3TU1NpUaNGrbpSwlOYb6+vgCkp6eTn59PREREkYd1mUwm8vPzgcsDoAB0Oh1qKa50URQFg8FASEgIffv2Zfv27RWe2IiKYdAqTL4fxvx6+dKonQ0ag3FFMZdLCSFE2bP3lVCFRUZGMmzYMHbs2MHKlSuZNm0ajzzyCGPHjr3htpUisalRowYpKSlF5i1atAij0Vjqsvz8/EhKSrJNX1kuYEtivL290ev1REdH27qJcnNzSU1NxcXlGuMjSuCff/5h/PjxLFu2DI3GeuGa0WjE09PzpssUjk+54hpFi0YrSY0QosLY+0qoK2k0Gpo0acKxY8c4duwYu3fvLtl25RxXhWjbti1JSUls3LgRs9nMjz/+SHR0NDk5OaUuq1u3bsTExHD8+HGysrL47LPPrrmuVqslLCyMOXPmkJmZSW5uLpMmTSIqKuoWamMdDZ6bm8v//d//YTab2b9/P6tWrSoykFlUPvKsKCGEsIqNjeWVV16he/fuHD9+nMmTJ5f4tieVosXGx8eHGTNm8NFHHzFlyhRq1arF9OnTWbt2banL6t27N+fOnWPQoEGoqsrjjz/OTz/9dM31R4wYwezZs+nXrx95eXk0b96cyZMn30p1cHFx4eOPP2bq1Kl8/vnn+Pv7M2bMGLvcT0dUHIM0zggh7MiRuqIWL15Mv379+Pjjj0t9RbCilmbQhxBOwFkH6r2308Q7vxSdp45w3nMPZ/0eCnP2Ojh7/CB1qEif1/umyPTzxx63UyS3plJ0RQlRGbg6zsmSEEI4Lec9HXRicXFxvP3229dcPmvWLFq0aFGBEQlHEOxt7wiEEFWZxYG6om6FJDZ20KlTJ3bs2GHvMISD6d9Yw9ObS/YsFCGEKGuOdIO+WyFdUUI4CI1Gw0cdACwoWIjrZ++IhBDCPs6ePcvLL7/MI488wrlz53jppZeKvf1KcSSxEcKBDGutIzroG34P3UfH2tKgKoSoOKqiFHnZ08SJE+natSsuLi54e3sTEhLC+PHjS7StJDZCCCGEcKjE5vTp0/Tr1w+NRoNer2fkyJFFbp57PZLYCCGEEMKhKIqCxXJ5zGFWVlaR6euRtm4hHMjfZ80MTOyNMVHHfy0mIu+Tn6gQomI40uDhhx9+mBEjRpCZmcmyZctYsWIF4eHhJdpWjppCOJAmn6uA9TljI36Ap0JMBHnKz1QIUf5UjeNkNq+88gqrV6/GYrHw008/0b9/f5544okSbStHTCEc2OgfYGkPe0chhBAVa9SoUUydOpU+ffqUeltJbIRwYKv+sXcEQoiqwt4Dhgs7ePAgqqqi3ERMktgI4UAanE3iqF8AqqKgWCxky/h+IUQFcaSuqBo1atC9e3fuueceqlWrZptfkku+JbERwlEkpvL77LH86xfAv36BXHBxY/Bjg+wdlRBCVLgWLVrc9KOFJLERwlFMWIabsYDl9zzIwRpBdDh6wN4RCSGqEgfqinrttddueltJbIRwFEeTGPh4BNEtOwCwKUQehCqEqDiO1BXVs2fPYuevW7fuhttKYiOEo8g3k+52uS/ZorGOr/k3zcKd1WWsjRCi6nj77bdt741GI9999x01a9Ys0baV+mgZFRXFjBkzil22adMmBg2yjl+YP38+o0aNKna9w4cP06pVq/IK8YYSEhIIDQ0lJyfHbjGIClD/Vdh1CJ169Z01Gy628Pk+kx2CEkJUJY70SIXWrVvbXm3btuWdd94hLi6uRNtW6sTmesLDw1mwYIG9w7iuuLg4Bg0aRGZmpr1DEeVp92E4dgaAPJ2+2FVe3FKRAQkhqiJV0RR5OZL09PQSP9270nRFxcfHM3PmTI4dO0ZgYCDDhw8HICkpicGDB/P3338TFBTEhAkTCAkJYd26dSxfvpylS5cWKcdisfDJJ5+wcuVK9Ho9vXr1si1LTEzkqaeeIjQ0lLi4OEaNGkXnzp2ZPXs227dvR1VVwsLCGDJkCHq9nvnz55OQkEBmZibx8fEEBAQQGRlJmzZtblifTZs28emnnzJw4EAmT55cth9WKezbt4+CggK77f9mxcfH2zuEEvP9+nfqXnyvMxf/LBQLqlPV6RJnjPlKzl4HZ48fpA6FtWzZskzKcXRXjrFJTEykX79+Jdq2UiQ2aWlpDB8+nMjISLp3786uXbsYOXIkrVu3Zu/evcybN48GDRowceJEZs2axbx5865Z1jfffMO2bdtYunQpHh4ejB49usjy7OxsAgMDiY2NxWKxMHPmTE6ePElMTAyqqjJ69GgWL15MREQEAFu3bmXWrFlMmzaNuXPnMnXqVFauXHnDOt1///089NBDJc5Qy0vTpk3tuv+bER8f71w//oZ3wfRYAG7Ly7o8X1VtVyk08VWcq0444fdQDGevg7PHD1KHiuRIg4cLj7FRFIXq1avToEGDEm3rWG1NN2nnzp3UqlWLXr16odVq6dChA5988gkGg4GOHTvSqFEjdDodoaGhJCYmXresrVu30q9fP4KCgvDy8rIlKIWFh4djMBhwcXFh7dq1vP766/j4+HDbbbcRERHBqlWrbOs2a9aM1q1bo9frCQsL49SpUyWqU/Xq1dHpKkXeKW7E0x2+GgYKKGYLtTJS8cjPtSU19wfCnwO0dg5SCCEqzurVq21jbO677z4aNGjA66+/XqJtK8VfzrS0NPz9/YvMa9KkCS4uLnh5ednm6fV6zGbzdctKTU2lRo0atumgoKCr1vH19QWsfX75+flERETYbvusqiomk4n8/HwAfHx8bNvpdDpUVS1d5UTV8FR7WLiVV3+JZenyeVgUhZcfe5lF93fhl/9Uip+pEMLB2XvAMMCECRM4c+YM8fHxpKWl2eabTCaOHj1aojIqxRGzRo0aV3XZLFq0CKPRWOqy/Pz8SEpKsk0X1xV0KYnx9vZGr9cTHR1NcHAwALm5uaSmpuLi4lLqfYsqzs3Agyf3A6BRVV7+9TsW3d/FzkEJIaoM++c1PP744/z7778cOnSIRx55xDZfq9WW+E7ElSKxadu2LR9++CEbN27kkUceYdeuXURHR3PPPfeUuqxu3bqxYMEC2rVrh5+fH5999tk119VqtYSFhTFnzhzGjRuHTqdj0qRJJCUlsXDhwlupkqiKBoSS+v0/+OZYx9kcqnF1a6EQQlRmTZs2pWnTpjz44IMEBATcVBmVIrHx8fFhxowZfPTRR0yZMoVatWoxffp01q5dW+qyevfuzblz5xg0aBCqqvL444/z008/XXP9ESNGMHv2bPr160deXh7Nmze361VMwok93pZHfvRl+I4NpHh4887DT9g7IiFEFeIIXVGXJCUlMXHiRHJyclBVFYvFQkJCQonuZaOoMuhDVDLOcgVCcZTpRW/EpwHMI5zz/MOZv4dLnL0Ozh4/SB0q0sz7txaZHvrrQ3aKBLp3707v3r3ZsmULTz75JNu2baN27dqMHTv2hts65xFTiCoi0M3eEQghRMVTFIWXX36Z9PR06tevT69evXjqqadKtK0kNnYQFxdX5Br9K82aNeumH9cuKpd3HrR3BEKIqsKRuqKqVbM+N6927dr8+++/tGzZ8oZXNV8iiY0ddOrUiR07dtg7DOGAGt0Gh9Kt7zXAwOZy/xohRMVwpMSmWbNmvPnmmwwdOpSIiAiOHz+OVluy42GluEGfEJXFwZd0vOT1Gy/VSebCGxo0DnSgEUKIijJ27FgGDBhAvXr1GDt2LBaLhenTp5doW2mxEcLBdPY4TqP6LlQzBNs7FCFEFeJILTaKoqDRaFi2bBl9+/bF29ub+vXrl2hbabERQgghBKqiFHnZ07fffsuYMWNYuHAhmZmZDB48mOXLl5doW0lshHAwaSZXkvL09g5DCCHs5ssvv+Trr7/Gw8MDX19fVq5cyeeff16ibaUrSggHUmueicScnpACPvEm0t+Qn6gQomLYu5WmMI1Gg4eHh206MDCwxIOH5agphANJzIFLD2zJKLA+VFVxoIONEKLycqTExsfHh//973+249/atWvx9vYu0baS2AjhwAoKzLi4yM9UCFG1jB07lqFDh3Ly5EnatWuHi4sL8+bNK9G2csQUQgghBKrGcVpsGjRowJo1azh+/Dhms5l69eqh15ds7KEMHhbCgTlQy7AQopJzhKuiCt+V//z58zRo0ICGDRuWOKkBSWyEEEII4SD2799ve//SSy/dVBnSFSWEA9GZjDz216+4G/NZc/d9KIqXvUMSQlQRjjB4WFXVYt+XhiQ2QjiQgb9t5//uC8Wk0TBu20rMZ7qhD/axd1hCiCrAERKbwm72itBK3RUVFRXFjBkzil22adMmBg0aBMD8+fMZNWpUsesdPnyYVq1alVeI13TkyBFeeeUVOnXqRPfu3VmwYMFNZ6/Ceaxsej95egMmrY4poX3IH/+lvUMSQogKY7FYOH/+PBkZGZjNZtv7S6+SqLItNuHh4YSHh9s7jGJZLBaGDx/Oo48+ypw5c0hOTmbIkCHUqFGDPn362Ds8UU6CPzEVmXYxGXH7fDtk5cA3xSfeQghRVhyhxeaff/6hTZs2thP5+++/37ZMURT+97//3bCMSpPYxMfHM3PmTI4dO0ZgYCDDhw8HICkpicGDB/P3338TFBTEhAkTCAkJYd26dSxfvpylS5cWKcdisfDJJ5+wcuVK9Ho9vXr1si1LTEzkqaeeIjQ0lLi4OEaNGkXnzp2ZPXs227dvR1VVwsLCGDJkCHq9nvnz55OQkEBmZibx8fEEBAQQGRlJmzZtrluX1NRU6tSpw3PPPYdGoyE4OJhOnTrx559/SmJTiZ3OBne9Ae/cbBTAiIIW4Ntf7ByZEKIqcITE5uDBg7dcRqVIbNLS0hg+fDiRkZF0796dXbt2MXLkSFq3bs3evXuZN28eDRo0YOLEicyaNeu6N/n55ptv2LZtG0uXLsXDw4PRo0cXWZ6dnU1gYCCxsbFYLBZmzpzJyZMniYmJQVVVRo8ezeLFi4mIiABg69atzJo1i2nTpjF37lymTp3KypUrr1ufGjVqMGvWLNu00Wjk559/5tFHH72FT+nm7Nu3j4KCggrf762Kj4+3dwg3oRk5ru6XJ1UVBVCBPU5ZH2f9Hopy9jo4e/wgdSisZcuWZVJOZVYpEpudO3dSq1YtW+tKhw4d+OSTT4iOjqZjx440atQIgNDQ0CIJQ3G2bt1Kv379CAoKAiAiIoLff/+9yDrh4eEYDAZUVWXt2rUsWrQIHx8f2/rjxo2zJTbNmjWjdevWAISFhREdHV2quhmNRsaOHYtOp7NLYtO0adMK3+etio+Pd8off+3dJpLTjRTorPdrUFAxKwr6p9o5ZX2c9XsozNnr4Ozxg9ShIjlCi01ZqBSJTVpaGv7+/kXmNWnSBBcXF7y8Ll8uq9frMZvN1y0rNTWVGjVq2KYvJTiF+fr6ApCenk5+fj4RERG20duqqmIymcjPzwewJTwAOp2uVAOAMzIyGDlyJCaTiXnz5uHq6lribYXzORGh4z9P7+Cre9sD0H/vz+S/EIp+0Wt2jkwIURWolSOvqRyJTY0aNUhJSSkyb9GiRRiNxlKX5efnR1JSkm36ynLh8iVo3t7e6PV6oqOjCQ4OBiA3N5fU1FRcXFxKve/CEhMTGTx4MI0bN2bChAm3XJ5wDgN/3cZ//tiJUaul3dH/4fLXdHuHJIQQTqVSXO7dtm1bkpKS2LhxI2azmR9//JHo6GhycnJKXVa3bt2IiYnh+PHjZGVl8dlnn11zXa1WS1hYGHPmzCEzM5Pc3FwmTZpEVFTULdQG8vLyeP3112nTpg2TJk2SpKYKeaHfq5g0Gnxys+kzYCTU8bV3SEKIKsIRHqlQFipFi42Pjw8zZszgo48+YsqUKdSqVYvp06ezdu3aUpfVu3dvzp07x6BBg1BVlccff5yffvrpmuuPGDGC2bNn069fP/Ly8mjevDmTJ0++leoQFxfHiRMnOHPmDBs2bLDN79SpE++9994tlS0c2wlff3q/cHnAuty6SAhRUZw5mSlMUeWub6KScZaBesVRphe9l03+G2AwOOf5hzN/D5c4ex2cPX6QOlSkiWG/FZmesLm1nSK5Nc55xBSiipDTDiFERbFUkhYbSWzsIC4ursij2a80a9YsWrRoUYERCUelqRSj4IQQzsB65yznJ4mNHXTq1IkdO3bYOwzhBHQ6rb1DEEIIpyLng0I4kNoeYL3XsEpNt5t/uq0QQpRWZbkqShIbIRzIiVd0fOq/hi0P/s2ZIdKgKoSoOJLYCCHKhae2AF+X698hWwghRPHklFAIIYQQTt1KU5gkNkI4EKPZwlunumBJNLDvLhO3uctPVAhRMSrLs6KkK0oIB+Lz3xxOaX05jScBM0v/rDMhhKjq5HRQCAcSdD6V/+z9CRWV9Xe15N/kutwZIM8KE0KUP7lBnxCizN2beJyJDz8BQPj/9pBx9BwE1LJzVEKIqqCyjLGRrighHMjWhvfY3m+6614UizxTQQghSkNabIRwIDl6g+291mzmgouHHaMRQlQllaXFRhIbIRyISXP5EQpmjQaTVhpVhRAVo7KMsZGj5g2oqkpiYqK9wwDg9OnT9g5BlLP+e3fZ3vc4EI9XfpYdoxFCCOdTYYnNH3/8Qc+ePStqd2Vm5syZLF++HIDExERatWpFTk5Ohcfx9ddfM2vWrArfr6hYBwJut73/s1Zdsg3V7BiNEKIqUZWiL2dVYYlNixYtWLduXUXtrsxkZGTYOwTAGoeqykDSyu5gzctXQCV4++JqLLBjNEKIqkRFKfJyVjdMbBITE+nYsSNRUVF06tSJDRs2MG3aNMLDwwkLC2PGjBkYjdYbiZlMJqZMmUJoaCi9e/fm888/p1WrVgDs3r2bLl262MqNiYmhd+/ehIaGMmTIEI4fP25b78knn+Sjjz6ic+fOdOvWjc8//7xElfn111958skn6dSpE/3792fjxo22ZZs3b+aJJ56gY8eOvPjii+zfv99WvytbYZ599lnWrVvHl19+yaZNm1i2bBmjR4+2Lf/qq6/o3bs3HTt25OOPPwbgo48+4oMPPrCt8+KLLzJmzBjb9GuvvcbatWsB+Oabb3j00Ufp0qULI0aM4Ny5cwAYjUYmTpxIly5dCAsLY9SoUWRkZLBt2zaWLFnCDz/8wHPPPVeiz0I4pzyd3vZeBaoZ8+wXjBBCOKEStdhkZ2cTGBhIbGwsu3fv5vjx48TExBATE8OBAwdYvHgxAAsXLmTfvn2sWLGCxYsX8/333xdb3sqVK1m6dCnTp08nNjaWe+65h6FDh5KXZz2IHz58GC8vL2JjYxk5ciRz587lzJkzN4zz3XffZdCgQcTFxTFixAj++9//kpWVxc8//8zkyZMZM2YM27Zto3fv3rz22mu2hOJannnmGcLDw3nyySeZMmWKbf65c+dYsWIFn332GcuXL2fv3r20a9eO3377DYCcnByOHDnCnj17AMjLy7Ot891337FkyRKmT5/Oxo0bqVWrFmPHjgVgw4YNHDt2jPXr17N69Wry8vJYtmwZXbp04YUXXqBjx4588cUXN/wcRCWhKFzQu9o7CiFEFWFRlCIvZ1Xiq6LCw8PR6/XExsayaNEifHx8AIiIiGDcuHFERESwadMmhg0bhp+fn23Z66+/flVZGzdu5Omnn+bOO+8EYODAgaxatYo9e/ZgMBjQarUMGDAAnU5HaGgobm5unD59Gn9//+vGaDAY2Lx5M15eXjRv3py4uDg0Gg0bN26ke/fu3HvvvQD07t2b1atXExcXx4MPPljSj8BmwIABGAwGGjVqRJ06dUhMTOThhx8mIyODhIQEjh8/TuvWrdm/fz/Hjx/n1KlT3HHHHVSvXp01a9bw9NNP06BBA8DaktOxY0dOnDiBi4sLp06dYv369bRv354ZM2ag0dh3fPe+ffsoKHC+7pD4+Hh7h3CTml1+q6r8deoQ1fQn7RfOLXLe7+EyZ6+Ds8cPUofCWrZsWSblFKfKXe7t6+tLeno6+fn5REREoFz8AFRVxWQykZ+fz9mzZ4skH4GBgcWWlZaWRkBAgG1ao9Hg7+9PSkoKwcHBeHh4oNNdDk2n02GxWG4Y4+zZs5k/fz5jx44lPz+fRx99lNdff5309HQaNmxYZN2AgABSUlJKWv0ivLy8bO/1ej1msxmdTsf999/Pb7/9xokTJ2jZsiV6vZ7du3dz5MgR2rdvD0BycjKffPIJCxYssJWhKApJSUmEh4eTnZ3N2rVrmT59Og0aNGDs2LE0adLkpuIsC02bNrXbvm9WfHx8uf74y5Nhay4Fl7qjFIVWte+gZcuA62/koJz5e7jE2evg7PGD1EGUXokTG0VR8Pb2Rq/XEx0dTXBwMAC5ubmkpqbi4uKCv78/ycnJ3HXXXQDX7D4KCAggKSnJNm2xWEhOTqZ69eo3XZGCggISEhJ47733UFWVv/76i5EjR9K4cWMCAgKuumQ7MTGRe+65x9YicmmcEMD58+dvKoZ27drx888/c+rUKaKionBxceG3337jwIEDTJs2DQA/Pz+eeeYZevfubdvu2LFjBAcHc/LkSVq1asXjjz9ORkYGCxcuZMKECXz77bc3FY9wPnqzyZbYaC1mCixyRwYhRMWoLC02pTpqarVawsLCmDNnDpmZmeTm5jJp0iSioqIA6NGjB0uWLOHcuXNkZGSwaNGiYsvp0aMHMTExHD58GKPRyMKFCwG47777broiiqIwbtw4Vq9eDUDNmjVtyVj37t3ZuHEje/bswWQysWbNGo4ePUqnTp3w9fXFw8ODuLg4VFVl/fr1RZIuvV5PdnZ2iWJo27Ytv/32G2fPnqVBgwbcd9997NixA7PZbGsx6t69O9HR0Zw6dQqLxcKyZcsYMGAAubm5/PDDD4wbN47U1FS8vLxwc3PD29sbsHazlTQO4bwKX4lgQSHTXe48LISoGBal6MtZlfrOwyNGjGD27Nn069ePvLw8mjdvzuTJkwF47rnnSEpK4rHHHsPHx4eOHTvy119/XVVGt27dSE9PJzIykvT0dBo3bszcuXNxc3O76Yro9XqmTJnCxx9/zEcffYS7uzv9+/enTZs2AIwZM4bJkyeTnJxMvXr1mDVrlq077K233mL+/Pm2K7HatWtnK7dr166MGTOGpKQk2yDfa/H19aVWrVoEBASgKArBwcH4+PgUKa979+5cuHCBN954g7S0NOrUqcPMmTPx8vLiqaeeIiEhgSeffJL8/HxCQkKYMGECAO3bt+frr7+mb9++rFy58qY/J+HYtKoFjcVivY8E4GbMA9ztHZYQQjgNRS3Dm6Ps37+f2rVr28ag7Nq1i/fee4/NmzeX1S6EuCFn7s/+vNXHnHP3Il+np056Cg3m/Ic2bYsfq+bonPl7uMTZ6+Ds8YPUoSIN6X+wyPTcr0PsFMmtKdNnRa1du5bc3Fzefvtt8vPziYmJ4YEHHijLXQhRqa25uzWrmt4PwAPHD/Ffvf4GWwghRNmwOPFN+Qor08Rm8ODBfPDBB4SHh6OqKu3btycyMrJMys7IyLjuIxleeOEFXnzxxTLZlxD2srPe5TOkn+s2wkimHaMRQgjnU6aJjY+Pj+3qn7Lm4+PDjh07yqVsIRxF89PH2NqoOQAPHjtItY7Oeam3EML5VJaroso0sRFC3Jq9AXXos+9XFBV+vb0+bVr52jskIUQV4cxXQhUmiY0QDuQD9X+8H3QHRq2W11L2guKcA4eFEMJeJLERwoEMer8D1b76ikaNGtGy5SP2DkcIUYU48/OhCpPERgghhBCVZoyN3K9dCCGEEJWGtNgI4UCWHTDx1v5OaPapPJdt5N0Och8bIUTFqCyDh6XFRggHMnRZOqeq1+SErz+z4nLsHY4QogpRUYq8nJUkNkI4kBRPH9v78+7V+P2fLPsFI4QQTki6ooRwIArWh18CoKpkphfYMRohRFVSWa6KkhYbIRyIa0EeqCqoKh75uZg1MsZGCFExLIpS5OWspMVGCAfy4m/buTP1DFqLhVPevqjhYfYOSQghnIokNkI4kFd+3UaTMwkAnPKuzhFjFztHJISoKuSqqCpGVVUSExOr7P5FxaiZdcH2vtaFdCxaOfcQQlQMC0qRl7Oq8MTmjz/+oGfPnhW921s2c+ZMli9fDkBiYiKtWrUiJ6fiLsctvH9ReZ3x8La9T/LwRlGNdoxGCCGcT4WfDrZo0YJ169ZV9G5vWUZGBj4+PlV2/6JizGoXzr7A2riYTNTMzOAtYzYgT/gWQpS/yvJIhRInNomJiTz11FOEhoYSFxfHyJEjOXDgANu3b0dVVcLCwhgyZAh6vR6TycSHH37I5s2b8fLyom/fvsyePZvdu3eze/duRo8ezbZt2wCIiYlh2bJlXLhwgcaNGzNy5Ejq1q3L7t27mT59Oq1bt2b9+vW4urrSv39/nn/++RvG+uuvv/Lxxx+TnJyMv78/zz//PN26dQNg8+bNLFq0iJSUFBo0aMDw4cNp0qQJiYmJ9OrVix9//BF3d3cAnn32Wfr168f58+fZtGkTiqKQlJTE0KFDAfjqq69Yt24dGRkZ9OnTh2HDhgFw/vx5pk+fzi+//IKrqyuPPfYYzz//PIqikJGRwfTp0/nzzz9JS0vj9ttv56233qJ58+ZkZmYSFRXFH3/8gbu7O/fffz+jRo1ixYoVRfY/ZcqU0n3Lwml806wNGe4eACiqhdd1ch8bIUTFqCxjbErVYpOdnU1gYCCxsbFMnjyZlJQUYmJiUFWV0aNHs3jxYiIiIli4cCH79u1jxYoVKIpCZGRkseWtXLmSpUuXMnPmTOrWrcuSJUsYOnQoX3/9NQCHDx+ma9euxMbGsmPHDkaPHk1YWBj+/v7XjfPdd99l+PDhdOnShd9//53IyEg6dOjAvn37mDx5Mh9//DHNmjVjw4YNvPbaa3zzzTfXLe+ZZ57h8OHD+Pj48Oabb9rGupw7d44VK1Zw7NgxBgwYQGhoKM2bN+edd97B29ubtWvXkp6ezptvvkn16tXp1asXs2bNAmDFihVotVo+/PBD5syZw8KFC/nyyy/RaDRs2bKF3NxcXnnlFTZt2nTV/ivSvn37KChwvnupxMfH2zuEm/LYX2cZEP8DLiYTcx98mH8DdVTTedk7rJvmrN9DYc5eB2ePH6QOhbVs2bJMyqnMSt0VFR4ejl6vJzY2lkWLFtm6RyIiIhg3bhwRERFs2rSJYcOG4efnZ1v2+uuvX1XWxo0befrpp7nzzjsBGDhwIKtWrWLPnj0YDAa0Wi0DBgxAp9MRGhqKm5sbp0+fvmFiYzAYbK1FzZs3Jy4uDo1Gw8aNG+nevTv33nsvAL1792b16tXExcXx4IMPlvajYMCAARgMBho1akSdOnVITEwkODiYn376ia1bt+Lm5oabmxvPPfccK1eupFevXgwePBhXV1d0Oh2JiYl4enpy9uxZW9wHDx5ky5YtPPDAA7ZEx56aNm1q1/3fjPj4eKf98b+xayhvdfsP+To9H2yKwRg5ipYt/ewd1k1x5u/hEmevg7PHD1KHiuTM964prNSJja+vL+np6eTn5xMREYFy8YNQVRWTyUR+fj5nz54tknwEBgYWW1ZaWhoBAQG2aY1Gg7+/PykpKQQHB+Ph4YFOdzlEnU6HxWK5YYyzZ89m/vz5jB07lvz8fB599FFef/110tPTadiwYZF1AwICSElJKdVncImX1+Uzab1ej9lsJjk5GVVV6dOnj22Zqqq2dc+dO8f06dM5duwYderUwdvb21anAQMGALB06VLeffddmjdvzvjx46ldu/ZNxSecz3NPvs6fteoC0Ne/Futy8+0bkBCiynDmK6EKK3VioygK3t7e6PV6oqOjCQ4OBiA3N5fU1FRcXFzw9/cnOTmZu+66C4AzZ84UW1ZAQABJSUm2aYvFQnJyMtWrV7+ZugBQUFBAQkIC7733Hqqq8tdffzFy5EgaN25MQEDAVZdMJyYmcs8999haRozGy1ehnD9/vtT79/PzQ6vVEhsbi8FgAODChQu2K6jGjh1L3759WbBgAYqisH79eg4fPgzAkSNH6N69Oy+99BJnz57lww8/ZNq0acyePfumPgvhfP6tcTnRT/b0QTWctWM0QgjhfG6qn0Or1RIWFsacOXPIzMwkNzeXSZMmERUVBUCPHj1YsmQJ586dIyMjg0WLFhVbTo8ePYiJieHw4cMYjUYWLlwIwH333XdztcGaeI0bN47Vq1cDULNmTVsy1r17dzZu3MiePXswmUysWbOGo0eP0qlTJ3x9ffHw8CAuLg5VVVm/fn2RpEuv15OdnX3D/QcEBNCiRQtmz55NXl4e58+fZ/To0cydOxewjlNydXVFURSOHTvGF198gclkAmDVqlVMmjSJrKwsfHx8cHFxwdvbu1T7F86tVkaq9ZEKQI3MC1jkVlNCiApiVoq+nNVNHzVHjBiBj48P/fr1o1u3bmRlZTF58mQAnnvuORo2bGi7GigkJKRIl9Il3bp14z//+Q+RkZF06dKFPXv2MHfuXNzc3G66Qnq9nilTprBixQo6duzICy+8QP/+/WnTpg0tWrRgzJgxTJ48mdDQUL799ltmzZpFQEAAer2et956i//7v/+jU6dOxMfH065dO1u5Xbt2Zdu2bbz22ms3jOGDDz4gNTWVXr160bdvX/z8/Bg9ejRgbbFZunQpHTt2ZOTIkfTo0YP09HQyMjIYMmQI1apVo3fv3nTt2pULFy7YrrQqzf6F8zriGwAXu3fPeniRozXYOSIhRFVRWZ4Vpaiqqt54tdLZv38/tWvXto0r2bVrF++99x6bN28u610JcRVnGahXHGWa0ZbYAPzc7ixt2hQ/Rs3ROfP3cImz18HZ4wepQ0XqMTChyPT6hcF2iuTWlEs799q1a5k2bRoFBQVkZmYSExPDAw88UB67EqLyUlVS3G9+vJkQQpSGRSn6clblcufhwYMH88EHHxAeHo6qqrRv3/6a97IprYyMjOs+kuGFF17gxRdfLJN9CWFXioJvzgWghr0jEUJUAVX2qqiS8PHxYdq0aeVRND4+PuzYsaNcyhbC3hRU1EIHl+q3yRgbIYQoDbnkQggH0uBcsu19rYxU7mrkfZ21hRCi7JgVpcjLWUliI4QDWfpGEHXTzlD/XDJT+svDL4UQFUfG2AghylybWjo+aPIDjRo1omVT57wiQQgh7EkSGyGEEEJglsHDQgghhKgsnPluw4XJGBshHMjL7/zFc6ceo/W2pvQe8Ze9wxFCCKcjLTZCOJAFnnfZ7jy81v8uzGYzWq3WzlEJIaoCZ36MQmHSYiOEA/HIz7O911nMfLcv7zprCyFE2ZHLvYUQZc479/IT3PUmE665+XaMRgghnI90RQnhQM55eNne5xpc0GilxUYIUTFM9g6gjEiLjRAOxGAudGhRFCz2C0UIUcVIV5QQoswFZ6Ta3t+efq7Ic6OEEELcmCQ2N2AymThz5oy9w0BVVRITE+0dhihnZwt1RZ3yro67MdeO0QghqhKTUvTlrCo8sfnjjz/o2bNnRe/2po0dO5a4uDgAdu/eTZcuXewSx8yZM1m+fLld9i0qTqOU07b3jc8kkGHwtGM0QgjhfCo8sWnRogXr1q2r6N3etIyMDHuHADhOHKJ87ap3l+39gYDb0almO0YjhKhKTChFXs6qxFdFJSYm8tRTTxEaGkpcXBwjR47kwIEDbN++HVVVCQsLY8iQIej1ekwmEx9++CGbN2/Gy8uLvn37Mnv2bHbv3s3u3bsZPXo027ZtAyAmJoZly5Zx4cIFGjduzMiRI6lbty67d+9m+vTptG7dmvXr1+Pq6kr//v15/vnnbxjryy+/TPPmzdm5cycJCQmEhIQQFRVFUFAQJpOJBQsWsG7dOvLz82nZsiUjR46kRo0arFu3jjVr1mA0GklISKBp06bs3buXffv2kZiYSPv27VFVlTlz5rBhwwaMRiPPP/88zz77LCNHjuSuu+7ixRdfBCA8PJxu3brx+uuvA9C3b1/Gjh1LixYtWLx4MWvXriUvL4927doRGRmJh4cHmZmZREVF8ccff+Du7s7999/PqFGjWLFiBZs2bUJRFJKSkpgyZcrNfNfC2SgKKnJzPiFExTA6by5TRKku987OziYwMJDY2FgmT55MSkoKMTExqKrK6NGjWbx4MRERESxcuJB9+/axYsUKFEUhMjKy2PJWrlzJ0qVLmTlzJnXr1mXJkiUMHTqUr7/+GoDDhw/TtWtXYmNj2bFjB6NHjyYsLAx/f/8bxrplyxbmzZuHt7c3w4YNY8mSJYwbN4758+ezY8cOFi5cSPXq1Zk+fTqjR49m0aJFAPz555/MnTuXxo0b4+Hhwcsvv0yXLl3o378/u3fv5sKFC7i7u7N+/Xp++eUXhg4dysMPP0zbtm3ZvHkzL774IsePH+fChQvEx8cDkJCQQHp6Os2bNyc6Oprvv/+eBQsW4Onpyfvvv8+0adOYOHEiX375JRqNhi1btpCbm8srr7zCpk2beOaZZzh8+DA+Pj68+eabpfnKbtm+ffsoKCio0H2WhUufvfNpdvmtqnL0nz/x0VazXzi3yHm/h8ucvQ7OHj9IHQpr2bJlmZRTmZX6Pjbh4eHo9XpiY2NZtGgRPj4+AERERDBu3DgiIiLYtGkTw4YNw8/Pz7bsUstFYRs3buTpp5/mzjvvBGDgwIGsWrWKPXv2YDAY0Gq1DBgwAJ1OR2hoKG5ubpw+fbpEiU23bt2oVasWAJ06dWLHjh22fQ4fPpygoCAAIiMj6dSpEydOnADAz8+P1q1bX7NcvV7Pc889h1arpW3btlSrVo2kpCTatWvHtGnTyMvL4/fff6d79+5s2LCBnJwcdu3aRZs2bdDpdKxZs4bXXnuNgIAAAN544w169+7N2LFjMRgMHDx4kC1btvDAAw/YEh17atq0qV33fzPi4+Od98e/3Vhksm5IC1q2dM5xNk79PVzk7HVw9vhB6lCRjE58iXdhpU5sfH19SU9PJz8/n4iICJSLH4SqqphMJvLz8zl79myR5CMwMLDYstLS0mx/4AE0Gg3+/v6kpKQQHByMh4cHOt3lEHU6HRZLye7scSnhunK7tLS0IvG4ubnh4+Nju/LJ19f3uuW6u7tfFZPJZMLPz4/69euzd+9efvvtN3r27Mm///7L3r17+emnnwgLCwMgOTmZCRMmMHHixCJlJCcnM2DAAACWLl3Ku+++S/PmzRk/fjy1a9cuUZ2F81MAtdC0qyUfcM7ERgjhXIw3XsUplLo5QFEUvL290ev1REdHExcXR1xcHJs3b+brr7/GxcUFf39/kpOTbdtc63LpgIAAkpKSbNMWi4Xk5GSqV69+E1UpmYCAgCKXTefk5JCRkWFLaJRbyFjbtWvHr7/+yp9//sm9995Lq1at+Omnn9i7dy8PPvggYG0R+vDDD22f23fffcdXX31FcHAwR44coXv37nz99dds2LCB6tWrM23atFursHAqtdPP2t5Xz8miQKu3YzRCCOF8bqqfQ6vVEhYWxpw5c8jMzCQ3N5dJkyYRFRUFQI8ePViyZAnnzp0jIyPDNn7lSj169CAmJobDhw9jNBpZuHAhAPfdd9/N1aYEunfvzsKFC0lKSiIvL4+PPvqI+vXr06BBg2LXNxgMZGdnF7vsSu3atWPt2rX4+/vj4eHBfffdx+rVq2nYsCHe3t6Atc4LFizg3LlzmEwm5s2bx9ChQ1FVlVWrVjFp0iSysrLw8fHBxcXFtp1ery9xHMJ5bV7wAU/+sZPe+3/jz49HojHJVVFCiIqRoyhFXs7qpp8VNWLECGbPnk2/fv3Iy8ujefPmTJ48GYDnnnuOpKQkHnvsMXx8fOjYsSN//fXXVWV069aN9PR0IiMjSU9Pp3HjxsydOxc3N7ebr9ENDBgwgPz8fAYOHEhWVhatWrVixowZ12ypCQsLY+rUqSQlJfHII49ct+zGjRuj0+lsfan33HMPFouFdu3a2dZ54YUXMBqNDBgwgMzMTEJCQvj444/R6XQMGTKEDz74gN69e2Mymbj33nsZP348AF27dmXMmDEkJSUxZ86cMvo0hKMZ2eNZ1t/dCoACrY5hGrkqSghRMXKdN5cpQlFVVb3xaqWzf/9+ateujZeX9S6qu3bt4r333mPz5s1lvSshruIsA/WKo0wzwqUkW1XZ2MVI+L3u9g3qJjnz93CJs9fB2eMHqUNFcnkztch0/ozrjzl1VOXydO+1a9eSm5vL22+/TX5+PjExMTzwwAPlsSshKjdFHoMphKgYBU58U77CyiWxGTx4MB988AHh4eGoqkr79u2veS+b0srIyLjuIxleeOEF203yhHB2rgWV5ToFIYTDqxx5TfkkNj4+PuV2NY+Pj4/tnjRCVHYN67jYOwQhhHAq8nRvIRzIXWdO2t7XP5dMrQDnHF8jhHBCilL05aQksRHCgfw9rT6hBf+jK6f436Ra9g5HCCGcTrl0RQkhbo6iKAysu49GjRph0NazdzhCCOF0JLERQgghhFN3PxUmXVFCOJjvMuvyxXHnvH+EEMKJKVe8nJS02AjhQJTpJqA1ZMKs6SbUEfITFUKI0pAWGyEcWPIFk71DEEJUGZWjyUYSGyEc2E8nb7yOEEKUicqR10hiI4QjqyRj+YQQosJIB74QDqzsH1ErhBDXUElOpCSxEUIIIQSVJbORrighHJgiLTZCCFEq0mIjhAOTvEYIUWEqR4NN5W6xiYqKYsaMGcUu27RpE4MGDQJg/vz5jBo1qtj1Dh8+TKtWrcorxGv67rvvuP/++2nfvr3ttWnTpgqPQwghRFVROS6LqrItNuHh4YSHh9s7jGs6dOgQffv2ZfTo0fYORdiRdEUJIUTpVJrEJj4+npkzZ3Ls2DECAwMZPnw4AElJSQwePJi///6boKAgJkyYQEhICOvWrWP58uUsXbq0SDkWi4VPPvmElStXotfr6dWrl21ZYmIiTz31FKGhocTFxTFq1Cg6d+7M7Nmz2b59O6qqEhYWxpAhQ9Dr9cyfP5+EhAQyMzOJj48nICCAyMhI2rRpc8P6HDp0iM6dO5fthyScj/OeNAkhnE0lOd5UisQmLS2N4cOHExkZSffu3dm1axcjR46kdevW7N27l3nz5tGgQQMmTpzIrFmzmDdv3jXL+uabb9i2bRtLly7Fw8PjqhaT7OxsAgMDiY2NxWKxMHPmTE6ePElMTAyqqjJ69GgWL15MREQEAFu3bmXWrFlMmzaNuXPnMnXqVFauXHnDOh06dAhVVZk/fz4Gg4E+ffowYMAAlAq+scm+ffsoKCio0H2Whfj4eHuHcJOaUfjo8s/RP4l3vo/fxnm/h8ucvQ7OHj9IHQpr2bJlmZRTLElsHMfOnTupVauWrXWlQ4cOfPLJJ0RHR9OxY0caNWoEQGhoKLNmzbpuWVu3bqVfv34EBQUBEBERwe+//15knfDwcAwGA6qqsnbtWhYtWoSPj49t/XHjxtkSm2bNmtG6dWsAwsLCiI6OvmF9cnNzqVOnDo888gjTp0/n5MmTDB8+HE9PTx5//PGSfzBloGnTphW6v7IQHx9fvj/+8rTdePngYrHQsO49tLzHOX+mTv09XOTsdXD2+EHqIErPOY+YV0hLS8Pf37/IvCZNmuDi4oKXl5dtnl6vx2w2X7es1NRUatSoYZu+lOAU5utrffJyeno6+fn5RERE2FpSVFXFZDKRn58PYEt4AHQ6HWoJ7rjm5ubGZ599Zpu+88476d+/P3FxcRWe2IiKZTCbKNDprROKUsmH9wshHEvlaLKpFIlNjRo1SElJKTJv0aJFGI3GUpfl5+dHUlKSbfrKcgFbEuPt7Y1eryc6Oprg4GDA2tqSmpqKi4tLqfd9yenTp1m5ciWvvfaabV/5+fkYDIabLlM4B43FUmTaYDZTSX6mQghHVznymspxPti2bVuSkpLYuHEjZrOZH3/8kejoaHJyckpdVrdu3YiJieH48eNkZWUVaTm5klarJSwsjDlz5pCZmUlubi6TJk0iKirqFmoDXl5erFy5kpiYGCwWCwcPHmT58uVFBjKLyqlB6hnb+9oZ5yjQaO0YjRBCOJ9Kkdj4+PgwY8YMli9fTufOnfn000+ZPn063t7epS6rd+/ePProowwaNIg+ffrQuHHj664/YsQIfHx86NevH926dSMrK4vJkyffbFUA8PT0ZMaMGcTGxtKpUydGjBjBwIED6dSp0y2VKxzfIV9/vHOy8MzN5qybBy6W0rc6CiHETVGUoi8npaglGfQhhBNx5oF6yjTj5QOKqvJtOPRtordvUDfJmb+HS5y9Ds4eP0gdKpIyLrvItPpBNTtFcmuk814IR6UoaOS0QwghSkUSGzuIi4vj7bffvubyWbNm0aJFiwqMSDiMK5p/LddYTQghypzz9j4VIYmNHXTq1IkdO3bYOwzhBB6+094RCCGqjsqR2VSKwcNCVBZeOrA+01tFC3i4yrmHEEKUhiQ2QjiQ82/q+Mx/9f+3d+dhUZXtA8e/7G5v4iuooCJvXu+l+TOSHcQEwQJUBNfUXNAit9RySVuI9BXLJXckLTM1LJdccN/QXBIUFFNseTVzBVEWE0Rg4Pz+4Of5OQoqNDrMeH+ua66LOefMc+77nBnmnud5Zg672qahGS9FjRDiKTKOi3vLUJQQ1U1ts2L+afXwX8gWQgidM+Bi5l7SYyOEEEIIoyE9NkJUI9n5GgZfDYWrZvzcTEMLG3mJCiGeFuPospEeGyGqkfqxUIQVRZjT8ht9RyOEeKYYyRwbKWyEqMZSr2r0HYIQQhgUKWyEqMb+uKHvCIQQwrDIAL4Q1ZiJfPQQQjwtBjz8dC/5tylEdSbXVBBCiEqRHhshqjHpsRFCPDUmxtFlI/82hajGFOmxEUKISpHCRojqRFG07pooFWwnhBCiXEZf2HzyySfMnTu33HXbt28nIiICgMWLF/Pee++Vu93Zs2dxc3N7UiE+0p07d+jZsyerV6/WWwxCP0yRykYI8ZQYye/YPNNzbIKDgwkODtZ3GI80b948Ll68qO8whB5oTA34v4sQwsAYx/8boypsUlJSmDdvHufPn8fOzo6xY8cCkJ6ezogRI0hLS8Pe3p6oqChatmzJ5s2bWbNmDStXrtRqp7S0lNjYWNavX4+FhQVdu3ZV1129epW+ffvSoUMH9u/fz3vvvYe/vz8LFiwgISEBRVEICgpi5MiRWFhYsHjxYi5fvsytW7dISUmhUaNGjBs3Di8vr8fK6fDhw/z22284OTnp7kAJgyFDUUIIUTlGU9hkZ2czduxYxo0bR+fOnTl8+DATJkzAw8OD1NRUFi1aRPPmzZk8eTLz589n0aJFFba1bt069u7dy8qVK6lTpw4TJ07UWp+fn4+dnR27du2itLRU7VH57rvvUBSFiRMn8vXXXzN06FAAdu/ezfz585k5cyYxMTHMmDGD9evXPzKn3NxcZs6cyYIFC/jPf/7z9w5QFZ06dYqioiK97PvvSElJ0XcIVaRdwP7650lSivUUig4Y7nn4f4aeg6HHD5LDvVxdXXXSTrmMo8PGeAqbQ4cO0bhxY7V3pX379sTGxhIXF4evry8tWrQAoEOHDsyfP/+hbe3evZvevXtjb28PwNChQzl27JjWNsHBwVhaWqIoCvHx8SxduhRra2t1+w8//FAtbJycnPDw8AAgKCiIuLi4x8opOjqa/v3707Rp08c7CE/Aiy++qLd9V1VKSsqTffE/SQnaVcz/OLTGtY2VnoL5ewz6PPwfQ8/B0OMHyUFUntEUNtnZ2TRs2FBrWevWrbGysuK5555Tl1lYWFBSUvLQtrKysrC1tVXv3y1w7lW/fn0AcnJyKCwsZOjQoZj8328AKIqCRqOhsLAQQC14AMzNzVGUR48vxMfHq5OGxTNKUdCYm+k7CiGEMChGU9jY2tqSmZmptWzp0qUUF1e+H9/Gxob09HT1/v3tAmoRU7duXSwsLIiLi6NJkyYAFBQUkJWVhZVV1T9p79q1i1OnTuHn56e2mZaWxvnz55k0aVKV2xUGxMQEc00JRvQyFUJUZ0YyFGU0X/f28fEhPT2dbdu2UVJSwoEDB4iLi+P27duVbqtTp0589913/Pnnn+Tl5bFkyZIKtzUzMyMoKIiFCxdy69YtCgoKmDZtGp988snfyAYWLlzIjz/+yP79+9m/fz8vvfQSo0ePlqLmGVNiJj02QghRGUZT2FhbWzN37lzWrFmDv78/X3zxBbNmzaJu3bqVbis0NJRu3boRERFBWFgYrVq1euj248ePx9ramt69e9OpUyfy8vL49NNPq5qKECr5HRshhKgcE+VxJnwIYUAMeaKeycxireu1xAdoCHGuoceIqs6Qz8Ndhp6DoccPksPTZBKt/Q1Y5UNLPUXy98jgvRDVWImFDEUJIZ4SI5ljI4WNnuzfv5/IyMgK18+fPx9nZ+enGJGojiwtjOQ/jRBCPCVS2OiJn58fBw8e1HcYorox0S5kOrWQl6gQQlSG0UweFsIYjHQCUACFgCZ6DkYI8WyRi2AKIXRt4avmtL2xihYtWhjEZEMhhKhupLARQgghBAbdTXMPKWyEEEIIYSx1jcyxEUIIIYTxkMJGCCGEEEZDhqKEEEIIIUNRQgghhBDVjRQ2QgghhDAaMhQlhBBCCBmKEkIIIYSobqSwEUIIIYTRkMJGCCGEEGUX4b339ghJSUkMGDDgKQRWOVLYCCGEEMJoyORhUSFFUSgqKtJ3GFVSWFio7xCqzNy87GVpyDncJTnon6HHD5LD/SwtLTF5jB6VStNRk1988QXx8fGYmZnh4+PDhAkTGDlyJH379sXX15c5c+aQlpbGV199RWZmJkOGDGHLli262TlS2IiHKCoq4vTp0/oOo0oMNW6A5s2bA4adw12Sg/4ZevwgOdyvdevWWFlZ6ay9u5Txf78k+PHHH0lISGD9+vWYm5szatQovv/+e3x9fUlMTMTX15djx46RkZFBSUkJBw8epH379jqI/v9JYSMqZGlpSevWrfUdhhBCiHtYWlrqO4QKJSYm0rlzZ2rUqAFAjx492LhxIx9++CHDhw8nLy8PgBYtWpCWlsaBAwfo37+/TmOQwkZUyMTE5Il8KhBCCGGcSktLH1im0Wiws7OjtLSUXbt24eLigo2NDYmJiaSlpeHi4qLTGGTysBBCCCF0wsvLi61bt3Lnzh00Gg0//PADXl5eALRv357Y2Fg8PDzw8vJi5cqVvPTSS5iZmek0BumxEUIIIUSVJCcn4+zsrN4PCQnBz8+PHj16oNFoePnll9WhJj8/P5YtW4arqyu1atWiuLgYPz8/ncdkoiiKovNWhRBCCCH0QIaihBBCCGE0pLARQgghhNGQOTbC4GzZsoUFCxZQv359AHx8fBg5ciQZGRlERkaSnZ1Ns2bNmDp1KrVq1eLWrVt89NFHXLlyhXr16vHpp59iY2NDcXExU6ZM4ZdffsHKyoro6GgcHR31mtuOHTtYunQpxcXF9OvXj969e+s1nvsNGzaM7Oxs9UcEP/jgAy5fvlxuzElJScyZM4fCwkJeeeUVRowYAcBvv/1GdHQ0eXl5ODs78/7776vtPSl5eXkMGTKEuXPnYm9vX+nYKvvceho5TJ48mdTUVGrWrAlAREQEHTp00FluurZkyRL27NkDlL1mx4wZY3DnobwcDO08PBMUIQzM9OnTle3btz+wfMyYMcqOHTsURVGUL7/8Upk3b56iKIry2WefKcuWLVMURVG2bNmiTJo0SVEURVmxYoUSHR2tKIqipKSkKAMHDnwK0Vfs2rVrSkhIiJKbm6vcvn1b6dOnj3Lu3Dm9xnSv0tJSJTAwUCkuLlaXVRRzQUGB0qlTJ+Xy5ctKcXGxMnLkSOXQoUOKoihKr169lJ9//llRFEWZPHmysnbt2ica96lTp5TXXntN8fT0VK5cuVKl2Cr73HrSOSiKovTu3Vu5fv261na6zE2XEhMTlcGDBytFRUVKcXGxMmzYMGX79u0GdR7KyyEhIcGgzsOzQoaihME5c+YM27Zto2/fvkRGRvLXX3+h0Wg4ceIEAQEBAHTp0oW9e/cCcPjwYYKCggAIDAzkp59+QqPRcOjQIYKDgwFwcXEhNzeXjIwM/SQFHD16FDc3N+rWrUvNmjUJCAhQc6gOLly4gImJCaNHj6Zv376sXr26wpjT0tJwcHCgcePGmJubExwczJ49e0hPT6ewsJAXX3wRKPsGxd1PwE/Khg0bmDhxIra2tgCVjq0qz60nnUNBQQEZGRlMnTqVPn36sHjxYkpLS3Wamy7Z2Njw7rvvYmFhgbm5OY6Ojly8eNGgzkN5OWRkZBjUeXhWSGEjDI6NjQ1vvfUWq1atomHDhsyYMYPc3Fxq166tDmnY2Nhw7do1AK5fv652S5ubm1O7dm1ycnK0lt//GH0oL57MzEy9xXO/v/76C3d3dz7//HNiY2P54YcfyMjIKDfminLRR46RkZFaX0etbGxVeW496RyysrJwd3fn448/5ptvvuHEiRNs2rRJp7npUvPmzdU384sXL7J7925MTU0N6jyUl4O3t7dBnYdnhcyxEdXWnj17mD17ttYyR0dHFi1apN4fOHAgoaGhjBkz5oHHm5qW1e1KOb9oUNEF5O4+Rh8qE6c+ODk54eTkBEDNmjUJDQ1lzpw5DBkyRGu7hx3b6prjw2Irb3lVnlu61KRJE2bNmqXef+2119i6dSsdO3Z8YNuq5vYknDt3jnfeeYd33nkHc3NzLly4oJNYn+Z5uDcHR0dHgzwPxk6OnKi2OnbsyLZt27RuM2bMIC4uTt1GURTMzc2pV68e+fn5lJSUAHDjxg21275BgwZkZWUBZT/tnZ+fj7W1Nba2tury+x+jD/fGWR3iuV9qaipHjx5V7yuKgr29fbkxl3dsbWxsqkWOlY2tKs+tJ+3s2bNaQxV3Xwe6zE3XUlNTGTFiBG+//TZdunQxyPNwfw6GeB6eBVLYCINSs2ZNVqxYoV4pd82aNfj5+WFubk6bNm3YvXs3AFu3bqVt27ZA2bcXtm7dCsDu3btp06YN5ubmWstTU1OxsrKiUaNGesiqjIeHB8eOHSMnJ4c7d+6QkJCAt7e33uK5361bt5g3bx6FhYXk5+ezdetWpkyZUm7MrVu35sKFC1y6dImSkhJ27tyJj48PdnZ2WFpakpqaCmifp6elsrFV5bn1pCmKwuzZs9X5ZRs2bMDPz0+nuelSRkYG48ePZ+rUqQQGBgKGdx7Ky8HQzsOzQn55WBicEydOMGvWLAoLC3FwcGDKlCnUqVOH9PR0oqKiyMnJoVGjRkRHR/Pcc89x8+ZNPvnkE65cuUKdOnWYOnUq9vb2FBYWMm3aNH755RcsLCyIjIykZcuWes1tx44dfP3112g0GkJDQxk0aJBe47lfbGwse/fupbS0lF69etG3b98KYz569Kj6dVcfHx/Gjh2LiYkJv//+O1OnTuX27du0aNGCqKiop3K14pCQEBYvXoy9vX2lY6vsc+tp5LB27VrWrFmDRqPB39+fUaNGAZU/7hXlpkuzZs0iPj6eJk2aqMu6d++Og4ODwZyHinJQFMVgzsOzQgobIYQQQhgNGYoSQgghhNGQwkYIIYQQRkMKGyGEEEIYDSlshBBCCGE0pLARQgghhNGQwkYI8cy6dOmSvkMwWLo6dhkZGU/k+lri2SWFjRBVdP78eYYPH467uzvOzs507dqVtWvXquvXr19P9+7dH3jcvn378Pf3f2B5v3798PT0pLCwUGv5ggULaNWqFc7OzurN39+fmJgYneYzYMAAvv32W522CVBcXMzrr7/O9evXiY+P5/XXX9f5Pqpi7969vPvuu/oOo8o8PT1JSkp65HaTJk1i+vTpOt23ro7djRs3CAoKUp/zsbGxrF+//m+3K55tUtgIUQWlpaW8+eabtG7dmoMHD5KSksJHH33EzJkz2blzZ6XbO3fuHBkZGbRq1YrNmzc/sL5jx46cOHFCvX355ZfExcXx/fff6yKdJ+rrr7/G29sbW1tbunbtqnVJDH26efMmpaWl+g7DIOnq2N25c4eCggL1/pAhQ1i6dCnZ2dl/u23x7JLCRogqyMnJ4fLly3Tt2pUaNWpgamqKh4cHEyZMoLi4uNLtrV69moCAALp37/5Yb/zNmzfHzc2N33//XWt5Xl4eTk5O/Pe//1WX/fDDD/Tq1QuAI0eO0KdPH7y8vHBxcWH06NFabyx33d978+233zJgwAD1/qpVq3j11Vfx9PRk5MiRXL9+vdw4b9++zTfffEPv3r0B7V6sBQsW8MEHHzB06FCcnZ0JCwvj5MmTvPnmmzg7O9OrVy/S09OBsl6HqKgounfvjrOzM4MGDeLKlStAWZE5d+5cgoKCcHZ2xtfXV6vgO3r0KD169MDZ2ZnOnTtz6NAhfv75Z6Kiovjll1/w8fEpN/YtW7bQqVMnXF1d6dOnDydPngTg8uXLuLm5sWTJEnx8fPD29mbatGnltpGUlES3bt2YMWMG7u7utG/fnoSEBKKjo3Fzc8Pf358jR46o2y9fvpyAgADc3d0ZMmQIf/zxh7pu8+bNBAQE4OLiwsyZM7X2k5uby4QJE/D29sbf358lS5aUe2HF+50+fZr+/fvj6upKUFCQVm+Jv78/+/btU+9Pnz6dSZMmlXvs/P39WbhwIX5+fri6uhIZGan2wtzfY3Rvj2WPHj0AaNeuHWfOnMHKyooOHTqwYsWKR8YuREWksBGiCurXr4+HhweDBw9m/vz5JCYmcvv2bXr16kWXLl3U7X799Vfc3Ny0bmPHjtVqq6ioiE2bNtGjRw8CAwNJT08nJSWlwn2XlJRw/PhxkpKS8PT01FpXp04dAgIC1OvmQNkbYlhYGLdv3+btt98mIiKCxMREtm3bxunTp9myZUulct++fTtLliwhJiaGAwcO0LRp0wqHJfbs2cPzzz9PgwYNyl0fHx9PREQER48e5R//+AeDBg1ixIgRHDlyhBo1ami9wW3cuJGJEyeSmJiIg4ODus/4+Hh27drFypUrOX78OOPGjWPatGnk5+eTlZXFsGHD6NevH8nJyYwbN45Ro0bh6OjI5MmTeeGFFzh8+PADcR08eJCPP/6YyZMnk5SURM+ePXnjjTfUAu7WrVtcvnyZffv2ERsby6pVqzhx4kS5OZ45c4b69eurRc7bb79N48aNOXLkCJ07d1avDr169WqWLl1KTEwMhw8fxsXFhYiICO7cucOvv/7KRx99xLRp00hMTMTExITc3Fx1H++99x4mJibs3buXFStWEB8f/8ghnezsbMLDwwkMDCQxMZHp06czffp0Dhw48NDHOTk5lXvstm7dSlxcHDt37uTMmTMsWLDgoe1AWdENcOjQIVq1agVAYGAg69ate+RjhaiIFDZCVNFXX31F//79SUpK4s0338TDw4OxY8eSk5OjbtOyZUuSk5O1brNnz9ZqZ+fOnTRr1oyWLVtiaWlZbq9NQkKCWhh5eHgQGRnJW2+9pV6M715hYWFs374dgOvXr3P8+HGCg4OxsrJiw4YNBAQEcOvWLTIzM7G2tubatWuVynvdunWEh4fz73//GysrK8aOHcvJkyc5f/78A9smJyfj5ORUYVvOzs64ublhYWGBq6srbdq0wcXFhRo1auDm5sbVq1fVbUNCQvD09MTKyorx48dz8uRJLl26RMeOHVm+fDk2NjZcu3YNKysrCgsLuXnzJvv378fBwYEePXpgZmaGv78/y5cvf+S1qeLj4+nWrRvu7u6Ym5vTs2dPmjdvzp49e9RtIiIisLS0pE2bNjz//PNcuHCh3LYsLCwYNGgQpqameHl5YWpqysCBA7GwsKBt27Zqjps2bSI8PFx9HowYMYKioiKOHj3Kzp07efnll/H09MTS0pLRo0dTq1YtoOwcHzhwgPfff59atWrRpEkT3njjDa35XuXZu3cvdnZ2DBgwAAsLC1566SV69+7Nhg0bHvq4igwfPpzGjRtjY2PD8OHDtYrrymjZsiW5ubn8+eefVXq8EE/+MrRCGCkrKyvCw8MJDw+nsLCQlJQUZs2axQcffEBsbOxjt7NmzRp+//13tVu/qKiIgoICMjMz1Z4Of39/5s+f/1jttWvXjry8PE6fPk1ycjI+Pj7885//BMoKpOXLlwPQokULCgoKHmvI4l7p6enMnTuXhQsXqstMTEy4evUq//rXv7S2zcjIwMvLq8K2rK2t1b/NzMy0LvpnamqqFZuDg4P6d926dalVqxY3btxQL3p45MgR7OzseOGFF4CyIaqsrKwHrtj+sELrruzs7AcuiGpvb09GRoZ6/+4xBTA3N69wzknt2rXVK02bmppSu3ZtTE1N1ft3H5eVlaV14UZTU1Ps7Oy4du0aN27coGHDhuo6S0tLbG1tgbLzoSgKr7zyirq+tLRU69hWlOP9F4q0t7cnOTn5oY+rSLNmzdS/GzZsWOHw5KNYWFhgbW1NRkYGjo6OVWpDPNuksBGiCrZt28bnn3/Onj17MDExwcrKirZt2zJq1CimTJny2O2cP3+e1NRUtmzZon4CBxg1ahSrV69WrxRcGWZmZnTu3JkdO3aQnJxMeHg4AMePHycmJoa1a9eqbxgDBw4stw1TU1OtuUL3DnvY2toyZMgQevbsqS47d+4cTZs2LbedkpKSCmM1MTF57LwyMzPVv3Nycrh9+zaNGjVi9uzZKIrCwYMHsbKy4urVq2qvQ4MGDR7okYqNjSUoKOih+7Kzs1Pn8Nx1+fJlXFxcHjveyrK3t9faZ2lpKVevXqV+/fo0aNCAtLQ0dZ1GoyErKwsoOx/m5ub89NNPak/UzZs3yc/Pf+j+7OzstHrEoCxHGxsb4OHPgfLce36uXr2KnZ1dldqBsuHWu8WfEJUlzxwhqsDb25v8/Hyio6PJyspCURQuXLjAypUr6dChw2O3s2bNGtq1a0ezZs2wtbVVb926dWP16tVVmogMZcNR8fHx/PHHH+pEzby8PExNTalRowYlJSVs3LiR5OTkcn9DxNHRkYMHD1JYWMilS5eIj49X13Xr1o1ly5Zx4cIFSktLWblyJb179y53EnKjRo2q/Mn9fvHx8Zw5c4bCwkJmzJiBp6cndnZ25OXlYWlpiZmZGTk5OepEVY1Gg6+vL1euXGHTpk2UlJSQkJDAsmXLsLa2xtLSkvz8/HJ7rMLCwti4cSPHjh1Do9Gwbt06zp49S8eOHXWSS3nCwsJYvnw5v/32G0VFRSxatAgALy8vOnXqxE8//cS+ffsoLi4mJiaGvLw8oKxAcXV1ZebMmdy5c4fc3FxGjx7NnDlzHro/X19frl+/zsqVKykuLubkyZOsXbuWkJAQoOw5sG/fPkpKSjhz5gwJCQnqY8s7dkuWLCErK4vMzEy++OILQkND1XaSkpK4desWWVlZWhO77xZid3OBsh7LmzdvqoWREJUlhY0QVVCvXj1WrVpFZmYmXbp0oU2bNgwePJgXX3yRSZMmPVYbRUVFbNiwQWuy8V3BwcH89ddfVfrqOECrVq2oW7cugYGB6ptHu3btCAoKIiQkhLZt27J582a6devGuXPnHnj8W2+9hUajoW3btowePZqwsDB1XWhoKL169SIiIgI3Nzc2bdrE4sWLqVu37gPteHt7q98m+rtcXFyIiorC29ubmzdvqnOVRo8ezcWLF3F3dycsLIxmzZrh4ODAuXPnqFevHosXLyYuLg4PDw/mzZtHTEwM9erVw93dHQB3d/cHfjvIzc2NyZMnExUVhbu7O99//z1ffvnlE32zDQ0NZciQIYwcORJPT0+OHj3KsmXLqFWrFs2bN2f27Nl89tlneHh4kJmZqTX0M3v2bLKysvD39ycwMJAGDRoQFRX10P3VrVuXr776iu3bt+Pp6cm4ceMYN24cr776KgDjxo3j7NmzuLu7M23aNK3fZCrv2LVs2ZLXXnuNkJAQvLy8GDZsGAB9+vShadOm+Pv7069fP4KDg9V2bG1t8fX1VScwA5w6dQo7O7tyewCFeBwmSmUH2IUQ4jEVFBQQEBDAhg0btOaIVNakSZOoV68eEydO1GF0Qlf8/f2JjIysVG9lRaZPn06NGjUYM2aMDiITzyLpsRFCPDE1a9YkPDyc7777Tt+hCANQUFDAnj17GDRokL5DEQZMChshxBMVHh5OUlKSzubaCOO1dOlShg4d+shvdAnxMDIUJYQQQgijIT02QgghhDAaUtgIIYQQwmhIYSOEEEIIoyGFjRBCCCGMhhQ2QgghhDAa/wta1TdhlQ0nCQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "interpret_model(tuned_dt)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", "
\n", " Visualization omitted, Javascript library not loaded!
\n", " Have you run `initjs()` in this notebook? If this notebook was from another\n", " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", " this notebook on github the Javascript has been stripped for security. If you are using\n", " JupyterLab this error is because a JupyterLab extension has not yet been written.\n", "
\n", " " ], "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "interpret_model(tuned_dt, plot = 'reason', observation=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model Predictions" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 ModelMAEMSERMSER2RMSLEMAPE
0Gradient Boosting Regressor2386.201817296249.13794158.87590.87890.39850.2922
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# predict on holdout / test set\n", "pred_holdout = predict_model(best);" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agebmisex_femalechildren_0children_1children_2children_3children_4children_5smoker_yesregion_northeastregion_northwestregion_southeastregion_southwestchargesLabel
049.042.6800001.00.00.01.00.00.00.00.00.00.01.00.09800.88867210621.483595
132.037.3349990.00.01.00.00.00.00.00.01.00.00.00.04667.6074227290.151941
227.031.4000001.01.00.00.00.00.00.01.00.00.00.01.034838.87109436012.959871
335.024.1299990.00.01.00.00.00.00.00.00.01.00.00.05125.2158207553.788882
460.025.7400000.01.00.00.00.00.00.00.00.00.01.00.012142.57812514904.032497
\n", "
" ], "text/plain": [ " age bmi sex_female children_0 children_1 children_2 \\\n", "0 49.0 42.680000 1.0 0.0 0.0 1.0 \n", "1 32.0 37.334999 0.0 0.0 1.0 0.0 \n", "2 27.0 31.400000 1.0 1.0 0.0 0.0 \n", "3 35.0 24.129999 0.0 0.0 1.0 0.0 \n", "4 60.0 25.740000 0.0 1.0 0.0 0.0 \n", "\n", " children_3 children_4 children_5 smoker_yes region_northeast \\\n", "0 0.0 0.0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 0.0 1.0 \n", "2 0.0 0.0 0.0 1.0 0.0 \n", "3 0.0 0.0 0.0 0.0 0.0 \n", "4 0.0 0.0 0.0 0.0 0.0 \n", "\n", " region_northwest region_southeast region_southwest charges \\\n", "0 0.0 1.0 0.0 9800.888672 \n", "1 0.0 0.0 0.0 4667.607422 \n", "2 0.0 0.0 1.0 34838.871094 \n", "3 1.0 0.0 0.0 5125.215820 \n", "4 0.0 1.0 0.0 12142.578125 \n", "\n", " Label \n", "0 10621.483595 \n", "1 7290.151941 \n", "2 36012.959871 \n", "3 7553.788882 \n", "4 14904.032497 " ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred_holdout.head()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agesexbmichildrensmokerregion
019female27.9000yessouthwest
118male33.7701nosoutheast
228male33.0003nosoutheast
333male22.7050nonorthwest
432male28.8800nonorthwest
\n", "
" ], "text/plain": [ " age sex bmi children smoker region\n", "0 19 female 27.900 0 yes southwest\n", "1 18 male 33.770 1 no southeast\n", "2 28 male 33.000 3 no southeast\n", "3 33 male 22.705 0 no northwest\n", "4 32 male 28.880 0 no northwest" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# predict on new data\n", "data2 = data.copy()\n", "data2.drop('charges', axis=1, inplace=True)\n", "data2.head()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# finalize model\n", "best_final = finalize_model(best)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agesexbmichildrensmokerregionLabel
019female27.9000yessouthwest18894.260073
118male33.7701nosoutheast3698.287534
228male33.0003nosoutheast6029.271578
333male22.7050nonorthwest8958.189116
432male28.8800nonorthwest3900.039002
\n", "
" ], "text/plain": [ " age sex bmi children smoker region Label\n", "0 19 female 27.900 0 yes southwest 18894.260073\n", "1 18 male 33.770 1 no southeast 3698.287534\n", "2 28 male 33.000 3 no southeast 6029.271578\n", "3 33 male 22.705 0 no northwest 8958.189116\n", "4 32 male 28.880 0 no northwest 3900.039002" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# predict on data2\n", "predictions = predict_model(best_final, data=data2)\n", "predictions.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 👉 Save / Load / Deploy Model" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Transformation Pipeline and Model Successfully Saved\n" ] }, { "data": { "text/plain": [ "(Pipeline(memory=None,\n", " steps=[('dtypes',\n", " DataTypes_Auto_infer(categorical_features=[],\n", " display_types=True, features_todrop=[],\n", " id_columns=[], ml_usecase='regression',\n", " numerical_features=[], target='charges',\n", " time_features=[])),\n", " ('imputer',\n", " Simple_Imputer(categorical_strategy='not_available',\n", " fill_value_categorical=None,\n", " fill_value_numerical=None,\n", " numeric_strategy...\n", " learning_rate=0.1, loss='ls',\n", " max_depth=3, max_features=None,\n", " max_leaf_nodes=None,\n", " min_impurity_decrease=0.0,\n", " min_impurity_split=None,\n", " min_samples_leaf=1,\n", " min_samples_split=2,\n", " min_weight_fraction_leaf=0.0,\n", " n_estimators=100,\n", " n_iter_no_change=None,\n", " presort='deprecated',\n", " random_state=123, subsample=1.0,\n", " tol=0.0001, validation_fraction=0.1,\n", " verbose=0, warm_start=False)]],\n", " verbose=False),\n", " 'insurance-pipeline.pkl')" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "save_model(best_final, 'insurance-pipeline')" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Transformation Pipeline and Model Successfully Loaded\n" ] } ], "source": [ "loaded_pipeline = load_model('insurance-pipeline')" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pipeline(memory=None,\n", " steps=[('dtypes',\n", " DataTypes_Auto_infer(categorical_features=[],\n", " display_types=True, features_todrop=[],\n", " id_columns=[], ml_usecase='regression',\n", " numerical_features=[], target='charges',\n", " time_features=[])),\n", " ('imputer',\n", " Simple_Imputer(categorical_strategy='not_available',\n", " fill_value_categorical=None,\n", " fill_value_numerical=None,\n", " numeric_strategy...\n", " learning_rate=0.1, loss='ls',\n", " max_depth=3, max_features=None,\n", " max_leaf_nodes=None,\n", " min_impurity_decrease=0.0,\n", " min_impurity_split=None,\n", " min_samples_leaf=1,\n", " min_samples_split=2,\n", " min_weight_fraction_leaf=0.0,\n", " n_estimators=100,\n", " n_iter_no_change=None,\n", " presort='deprecated',\n", " random_state=123, subsample=1.0,\n", " tol=0.0001, validation_fraction=0.1,\n", " verbose=0, warm_start=False)]],\n", " verbose=False)\n" ] } ], "source": [ "print(loaded_pipeline)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# visualize pipeline\n", "from sklearn import set_config\n", "set_config(display = 'diagram')" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(memory=None,\n",
       "         steps=[('dtypes',\n",
       "                 DataTypes_Auto_infer(categorical_features=[],\n",
       "                                      display_types=True, features_todrop=[],\n",
       "                                      id_columns=[], ml_usecase='regression',\n",
       "                                      numerical_features=[], target='charges',\n",
       "                                      time_features=[])),\n",
       "                ('imputer',\n",
       "                 Simple_Imputer(categorical_strategy='not_available',\n",
       "                                fill_value_categorical=None,\n",
       "                                fill_value_numerical=None,\n",
       "                                numeric_strategy...\n",
       "                                           learning_rate=0.1, loss='ls',\n",
       "                                           max_depth=3, max_features=None,\n",
       "                                           max_leaf_nodes=None,\n",
       "                                           min_impurity_decrease=0.0,\n",
       "                                           min_impurity_split=None,\n",
       "                                           min_samples_leaf=1,\n",
       "                                           min_samples_split=2,\n",
       "                                           min_weight_fraction_leaf=0.0,\n",
       "                                           n_estimators=100,\n",
       "                                           n_iter_no_change=None,\n",
       "                                           presort='deprecated',\n",
       "                                           random_state=123, subsample=1.0,\n",
       "                                           tol=0.0001, validation_fraction=0.1,\n",
       "                                           verbose=0, warm_start=False)]],\n",
       "         verbose=False)
DataTypes_Auto_infer(ml_usecase='regression', target='charges')
Simple_Imputer(categorical_strategy='not_available',\n",
       "               fill_value_categorical=None, fill_value_numerical=None,\n",
       "               numeric_strategy='mean', target_variable=None)
New_Catagorical_Levels_in_TestData(replacement_strategy='least frequent',\n",
       "                                   target='charges')
passthrough
passthrough
passthrough
passthrough
New_Catagorical_Levels_in_TestData(replacement_strategy='least frequent',\n",
       "                                   target='charges')
Make_Time_Features(list_of_features=None,\n",
       "                   time_feature=Index([], dtype='object'))
passthrough
passthrough
passthrough
passthrough
passthrough
passthrough
passthrough
Dummify(target='charges')
Remove_100(target='charges')
Clean_Colum_Names()
passthrough
passthrough
passthrough
passthrough
GradientBoostingRegressor(random_state=123)
" ], "text/plain": [ "Pipeline(memory=None,\n", " steps=[('dtypes',\n", " DataTypes_Auto_infer(categorical_features=[],\n", " display_types=True, features_todrop=[],\n", " id_columns=[], ml_usecase='regression',\n", " numerical_features=[], target='charges',\n", " time_features=[])),\n", " ('imputer',\n", " Simple_Imputer(categorical_strategy='not_available',\n", " fill_value_categorical=None,\n", " fill_value_numerical=None,\n", " numeric_strategy...\n", " learning_rate=0.1, loss='ls',\n", " max_depth=3, max_features=None,\n", " max_leaf_nodes=None,\n", " min_impurity_decrease=0.0,\n", " min_impurity_split=None,\n", " min_samples_leaf=1,\n", " min_samples_split=2,\n", " min_weight_fraction_leaf=0.0,\n", " n_estimators=100,\n", " n_iter_no_change=None,\n", " presort='deprecated',\n", " random_state=123, subsample=1.0,\n", " tol=0.0001, validation_fraction=0.1,\n", " verbose=0, warm_start=False)]],\n", " verbose=False)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loaded_pipeline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## THE END" ] } ], "metadata": { "kernelspec": { "display_name": "pycaret-new", "language": "python", "name": "pycaret-new" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 2 }