{
 "metadata": {
  "name": "",
  "signature": "sha256:54df308b4da764e99ea8984362d3de255b222380ac6a8d954de97c5a8e3a4173"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Introduction"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "We now have defined all of the necessary components to derive the equations of motion of the system using Kane's Method:\n",
      "\n",
      "- Linear velocity of each mass center.\n",
      "- Angular velocity of each rigid body.\n",
      "- All contributing (external) forces.\n",
      "\n",
      "We will use the `KanesMethod` class which provides an automated computation of the first order ordinary differential equations given the above quantities. (Any method can be used, such as Newton-Euler or Hamilton's method, but there are only automated methods for Kane's equations and Lagrangian dynamics at the moment)."
     ]
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Setup"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Import the solutions from the previous notebooks:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from solution.kinetics import *"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "We will need the `KanesMethod` class and `trigsimp` to give a reasonably compact result."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from sympy import trigsimp\n",
      "from sympy.physics.mechanics import KanesMethod"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Enable nice math printing:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from sympy.physics.vector import init_vprinting\n",
      "init_vprinting()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "KanesMethod?"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Equations of Motion"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "At the bare minimum for unconstrained systems, the `KanesMethod` class needs to know the generalized coordinates, the generalized speeds, the kinematical differential equations, the loads, the bodies, and a Newtonian reference frame. First, make a list of the generalized coordinates, i.e. the three joint angles:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "coordinates = [theta1, theta2, theta3]\n",
      "coordinates"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Now list the generalized speeds, i.e. the joint rates:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "speeds = [omega1, omega2, omega3]\n",
      "speeds"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "The `KanesMethod` object can now be created with the inertial reference frame, coordinates, speeds, and kinematical differential equations:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "kinematical_differential_equations"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "kane = KanesMethod(inertial_frame, coordinates, speeds, kinematical_differential_equations)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Now list the six loads we defined and the three bodies:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "loads = [lower_leg_grav_force,\n",
      "         upper_leg_grav_force,\n",
      "         torso_grav_force, \n",
      "         lower_leg_torque,\n",
      "         upper_leg_torque,\n",
      "         torso_torque]\n",
      "loads"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "bodies = [lower_leg, upper_leg, torso]\n",
      "bodies"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "The equations of motion can now be computed using the `kanes_equations` method, which takes the list of loads and bodies. It returns the equations of motion (i.e. first order ordinary differential equations) in Kane's form:\n",
      "\n",
      "$$ F_r + F_r^* = 0$$\n",
      "\n",
      "which is essentially equivalent to the classic Newton_Euler form:\n",
      "\n",
      "$$ \\mathbf{F} = \\mathbf{m}\\mathbf{a} $$\n",
      "\n",
      "$$ \\mathbf{T} = \\mathbf{I} \\mathbf{\\alpha} $$"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "fr, frstar = kane.kanes_equations(loads, bodies)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "trigsimp(fr + frstar)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Keep in mind that out utlimate goal is to have the equations of motion in first order form:\n",
      "\n",
      "$$ \\dot{\\mathbf{x}} = \\mathbf{g}(\\mathbf{x}, t) $$\n",
      "\n",
      "The equations of motion are linear in terms of the derivatives of the generalized speeds and the `KanesMethod` class automatically puts the equations in a more useful form for the next step of numerical simulation:\n",
      "\n",
      "$$ \\mathbf{M}(\\mathbf{x}, t)\\dot{\\mathbf{x}} = \\mathbf{f}(\\mathbf{x}, t) $$\n",
      "\n",
      "Note that\n",
      "\n",
      "$$ \\mathbf{g} = \\mathbf{M}^{-1}(\\mathbf{x}, t) \\mathbf{f}(\\mathbf{x}, t) $$\n",
      "\n",
      "and that $\\mathbf{g}$ can be computed analytically but for non-toy problems, it is best to do this numerically. So we will simply generate the $\\mathbf{M}$ and $\\mathbf{f}$ matrices for later use.\n",
      "\n",
      "The mass matrix, $\\mathbf{M}$, can be accessed with the `mass_matrix` method (use `mass_matrix_full` to include the kinematical differential equations too. We can use `trigsimp` again to make this relatively compact: "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "mass_matrix = trigsimp(kane.mass_matrix_full)\n",
      "mass_matrix"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "The right hand side, $\\mathbf{f}$, is a vector function of all the non-inertial forces (gyroscopic, external, coriolis, etc):"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "forcing_vector = trigsimp(kane.forcing_full)\n",
      "forcing_vector"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}