{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Three state Model" ] }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set()\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Master Equation of Three State Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![img](img/three-state.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For equilibrium condition, we get\n", "\n", "$k_{co} c = k_{oc} o => c = \\frac{k_{oc}}{k_{co}}o$\n", "\n", "$k_{oi} o = k_{io} i => i = \\frac{k_{oi}}{k_{io}}o$\n", "\n", "$k_{ic} i = k_{ci} c$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$ o + c + i = 1$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Model Parameter" ] }, { "cell_type": "code", "execution_count": 136, "metadata": {}, "outputs": [], "source": [ "k_oi,k_oc = 0.5,0.9\n", "k_io,k_ic = 0.3,0.72\n", "k_co,k_ci = 0.6,0.8\n", "dt = 0.01" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Monte Carlo Simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$P(O) = [1-(k_oc + k_oi)d\\tau, k_oc d\\tau, k_oi d\\tau]$,\n", "\n", "$P(C) = [k_co d\\tau, 1-(k_co + k_ci) d\\tau, k_ci d\\tau]$,\n", "\n", "$P(I) = [k_io d\\tau, k_ic d\\tau, 1 - (k_io + k_ic) d\\tau]$" ] }, { "cell_type": "code", "execution_count": 137, "metadata": {}, "outputs": [], "source": [ "M = {\"O\": [1-(k_oc + k_oi)*dt, k_oc*dt, k_oi*dt],\n", " \"C\": [k_co*dt, 1-(k_co + k_ci)*dt, k_ci*dt],\n", " \"I\": [k_io*dt, k_ic*dt, 1 - (k_io + k_ic)*dt]}\n", "\n", "states = [\"O\",\"C\",\"I\"]" ] }, { "cell_type": "code", "execution_count": 138, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([0.986, 0.009000000000000001, 0.005],\n", " [0.006, 0.986, 0.008],\n", " [0.003, 0.0072, 0.9898])" ] }, "execution_count": 138, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M[\"O\"],M[\"C\"],M[\"I\"]" ] }, { "cell_type": "code", "execution_count": 139, "metadata": {}, "outputs": [], "source": [ "current_state = \"O\"\n", "T =1000\n", "N =10000\n", "\n", "SS = [[\"O\" for n in range (T)] for t in range(N)]\n", "\n", "for n in range(N):\n", " no,nc,ni =0,0,0\n", " for t in range(T):\n", " new_state = np.random.choice(states, p = M[current_state])\n", " #print(new_state)\n", " SS[n][t] = new_state\n", " current_state = new_state " ] }, { "cell_type": "code", "execution_count": 140, "metadata": {}, "outputs": [], "source": [ "ss = np.array(SS)" ] }, { "cell_type": "code", "execution_count": 141, "metadata": {}, "outputs": [], "source": [ "Data = []\n", "X = []\n", "for t in range(T):\n", " X.append(t)\n", " o = list(ss[:,t]).count(\"O\")/float(N)\n", " c = list(ss[:,t]).count(\"C\")/float(N)\n", " i = list(ss[:,t]).count(\"I\")/float(N)\n", " Data.append({\"O\":o,\"C\":c,\"I\":i})" ] }, { "cell_type": "code", "execution_count": 142, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CIO
00.36400.39670.2393
10.36500.39580.2392
20.36380.39600.2402
30.36350.39620.2403
40.36230.39650.2412
\n", "
" ], "text/plain": [ " C I O\n", "0 0.3640 0.3967 0.2393\n", "1 0.3650 0.3958 0.2392\n", "2 0.3638 0.3960 0.2402\n", "3 0.3635 0.3962 0.2403\n", "4 0.3623 0.3965 0.2412" ] }, "execution_count": 142, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF = pd.DataFrame(Data)\n", "DF.head()" ] }, { "cell_type": "code", "execution_count": 143, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 143, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHaCAYAAADL+GUeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XlgVOW5+PHvWWbLRkLIwr4zgICAiKCiiFtVtNVat1qvttV6b23t3tr21+22t4u9tbd2s6t13+quuIsgO8i+DAESCITsCdlmOdvvjzM5SUgCARKSwPP5h8yZM3PeYZKZ57zneZ9HcRwHIYQQQgghxIlTe3sAQgghhBBCnCokuBZCCCGEEKKbSHAthBBCCCFEN5HgWgghhBBCiG4iwbUQQgghhBDdRIJrIYQQQgghuokE10IIIYQQQnQTCa6FEEIIIYToJhJcCyGEEEII0U0kuBZCCCGEEKKb6L09gGMUAM4GDgJWL49FCCGEEEKcujRgMLAGiHf1Qf0tuD4bWNrbgxBCCCGEEKeNecCHXd25vwXXBwFqahqxbeekHzw7O42qqoaTflxxcsn7fHqQ9/nUJ+/x6UHe59NDb7zPqqqQlZUKyfizq/pbcG0B2LbTK8F187HFqU/e59ODvM+nPnmPTw/yPp8eevF9PqZUZFnQKIQQQgghRDeR4FoIIYQQQohuIsG1EEIIIYQQ3USCayGEEEIIIbqJBNdCCCGEEEJ0EwmuhRBCCCGE6CYSXAshhBBCCNFNJLgWQgghhBCim0hwLYQQQgghRDeR4FoIIYQQQohuIsG1EEIIIYQQ3USCayGEEEIIIbqJBNdCCCGEEEJ0EwmuhRBCCCGE6CYSXAshhBBCCNFNJLgWQgghhBCim0hwLYTolGObJDYuwo7V9/ZQhBBCiH5BgmshRKeMzW8RX/U0iY9e6e2hCCGEEP2CBNdCiE4ZO5cDYB3YBoDjOL05HCGEEKLPk+BaCNEhx4hh1x4AzYdds5/oWw/S9PwPJMAWQgghjkCCayFEh6zKveA4+M64GACzaB12VTFWyXb3/rJdOEasN4cohBBC9DkSXJ/mrMq9GLtWuIGUEElOIoqxfTGg4J+8oM19ZtFH2A3VNL30Uxqf+hZWZRGJLe8Q++DvOLbZK+MVQggh+gq9twcgelf03T/hHCoFIHjZl/CNOquXRyR6m+M4NL36S+zKIpSUTNSMXJT0HJz6ClBUrAPbsHLHuPtG62h6/kfeY31TLkPLHt5LIxdCCCF6n8xcn8assl1eYA1uZQgh7Opi7MoiAPwzFgKQ8vHv4z/rWvyzrsOuLcHYtbLjx9ZXnKxhCiGEEH2SBNenKccyaXrppwD4Z1+Pb/ICrMp9OI7dyyMTvc2uPQhAyvX/jf+MSwBQUwYQOOvj6MOnAmAVb2rzGHXQKACcOgmuhRBCnN4kuD5NGVvf8X7WBg5DHTQSjChm4TpsCZBOa3ZdOQBqem67+9RWKR+Bc24gdPV9qDmjCS64C3wh7PrykzZOIUTfZ0fraHjqW0Tf/wuObfX2cIQ4KSTn+jRkVRQSX/kUSkYuwQvuQBs8EaV6PwCxd/4AQOqtv0VNyezNYYpeYh8qR0nJRPEF2t2nKCqhj32F+Jrn0cecjZqeg37tDwFQM3KxD5Wd7OEKIfowq6wAp64cs66cREYugbM+0dtDEqLHycz1KS6xfTFNr92Pncytdsw4sWWPgj9E6rU/RB8yCUVRUAcOa/M4u7ywN4Yr+gCnrgw1o/2sdTN9xHRSP/kT1PScNtu13NFYZbtxbFtqYQshALAr94KioI+eReKjl+QEvJs4joO5fwtmaUFvD0V0QILrU5jdUEV86cNYB7YSfeO32I01GAUrsMv3EJx3B0og1dtXURSCF92FPmY2AFb1vt4atuhFjm1jVe1rd7LVFdrgMBhRYkv+QcM/7iK28qkeGKEQoj+xSgtQM4cQmHMjOA7m3g29PaReF1v+OMaeNUfdz7EtnFgDTqKJpjcewKoqBsA8sI2Gv95B9PVfE130m54erjgOkhZyCjOLNwMQOP824sufIPbun0D3o2Tkoo85u93+vvHn4ht/Lg1PFbmzDeK0Y9fsByOGljfumB+rDZkEgLnzQwCMTW9gbHoD/+wbCEy/slvHKYTo+8y967FKtuM/+3rU9BzUrCEYO5fim3gBij/U28PrFY6ZwNjyNsaWt7GmXYF/yiWoadlt9zFiRN96EOvA1jbbjdQs1PP/g/jyx1ptjGJH61BDGSdj+KKLZOb6FJDYuKjD2QDrwFaU1IH4Jl2Ef/qVWKUFWAd3oA+fhqIonT6fPnwa5t6Np/TlO6t6P45l9OgxHCOGVXMAq3y3d6LTo8cz497MhrftGJu6WOV7AI4ruFZTMlFzRgOQesv/etsTq5855ucSwrGkIVF/l9j+AUpKJv4zrwAgcPansGtKiL79IPHVzxFb8o9eHuHJ1/p71di0iOhbD7ar0hVf8+82gbWSPggAJ96EU1eOXVNC4NxPE7ri6+5z1hw4CSMXx0Jmrvs5x0wQX/U0AOl3Pdyy3TIwi7fgG3M2iqKgD59G4qOXwTKPesnfP2Mhxo4lxNe+QOjiu3ty+L3CLNlB9NVfoOaNwz/1cpxYfbsuhN0hvvpZjK3verfT7vznEU9qTvh4q57F2PoOgfM+gz5iGo6ZoOnZ7xG6/CvoI6d36Tns6mLwBVEOy6fuqtAVX8NprGk3EyPEsTD3bST6xgP4Z12Lf8qlKP6U3h6SOEaOZWDt34zvjEtQVA0AfdQMAufcQHzlU1gHtgEQmHc7inJ6zPM5lkH0rd95t5XULOzKIqziLegjpgFg7F6FsfUdfJMuIjDnRhRfEIDom/+HXbMfq8pN2dTyxqGkZgFgVxVD8sqh6BtOj9/oU1jzTGMzx7ExCtdi7tsERhR99CwA1JwxkMyxVjMHH/E51ZRMfOF5mHvW4NinXt1rY/ObANhlu4i98wfiHz7SbQvwjD1riL73ZxzbxKooanNfc/3onuDYNkbBcgDiyx6l8envEF/+hHt7w6tdeo7E9sUYW99FzRp63CcBajAdLXsE4AbaLgXHTBzX84nTU2Lbe+6/a18guugB4qufwzFivTyqk8txHOy68n7be8AqLQDbQktezWqmjz+3ze2Gv36W6Nu/p+Hxr3GqM4s3u51uk4IXfg4llIGx4wMAjILlxN79E0pGHoFzbvACa3DLoNq1pe5JiaK4n9OhASipA7FKd5701yKOTILrfs4q2+X97DgOVtluYm//ntjbD4KqoQ2ZCICiquhDJwOgZg056vOqA4eCY+FED/XMwHuRfagUffQs/DOv8bY5jdUn9pxNh4iv+TexpQ9j7lpJYsPrOI01aEMnk3LdjwF67APQsW0Sa56DRBPBBXcTuua7KL6Qd1nRLtuFEVmK3VCNk2jq8DmaXv818aUPNz9ht4xLHz6N4IK7AcerViPE0djROuxWkwZWWQGJDa9iRJb24qhOvviH/6LxqW9hFqzo7aEcMyOylOhrvwJod6VUDWUQOPfTaCPO9LaZhWtxGqtP6VREu7HGm9gJXXYvqTfdjz5sCvroWZhF62h6/dfE3v8L6sBhpH7yJ+1y0vVxc8CxMba/jzogH0X3oygK2tDJmCXbMYs3SR3xPkSC637CsU0cM9FuhtWuLWnZJ3qozVmxEkxH0f3ebf+0K/DPuBo1mH7U4zVf1ncaqk506H2K49jY9RUo6Tn4z7qW4Pw7Abf2d2LrO9iNNUd8vFW5t8M85sSmRSTWvwLxRtScMSTWPo/TWI02dApq9gjwpxx1kajdWEP0/b8e8wydseVtEhtfB0AfNRM9fwJa8kTKN3E+2tAziH3wdxqf+BoNj38dO1rX5vGOY2Pt3+LdDrQ66ThRWu5YAKyDkW57TtF/OUaMxhd/QqJVE6vW7PoKGh/9Mk6s3j1RXPgd7z4jsuS0KfHoOA5m0UeAmyLTnzi2TXz1s95tdUB+u338Uy4leOHn2m2Pr3kOJxHt0fH1Bqt8D43P3IdVupPAuZ9GHzUDNcNNvfMlZ/Ldz2CF0FXfavO93UzLHIKaO8b9eXDY266PnA7xRqKLfoOxfXGPvxbRNRJc9wN2fQUNf/s8Df+4i/hh5c3s2pYZQbumBLu+0rt9+OU4LXcMgbM/2aVjKsng2j7VguumQ27eeUaOm4s+aiYoConVzxFf9hiNz36vwy9wx7GJr32Bpud/SHxl+wV6drIJj2/yAlKu+Bq+iReiTzgf/6QL3dmF7OFY1cXtHtdafMWTmAXLjunL1LFtEpvfACB0xde9D2X/9KvQx59LYO5NBM69peUBRpTEmn97N62qfd6MYODcT5N+18PoI2d0+fhHo2bkoKTnYB3YhmMZGDuW4MQaWo3fwqppOUG0KouIr37OTQM4TQKpU51Vvse7wmYe2Ipdvof4ssfafFa17NtSX18fMQ0tb6x3264qxuxC+bL+zjFiWAd34CRPgq2S7f1icacTbyS29F+Ye1bhROvQx5+Lf+Y1KFrHS7vUUAYp1/6o5QqiHsDcs4aGh/8Ts2T7SRx5z0tsegNF85HyqZ/hn3Jpm/u0vHGk3vxr1KxhBBd84YhVP7Tcccl/W/4u9JEzUTLygP53InYqkwWNfVx8w6tYJTu828bmN/FPvRw0HWPTG9gVe9DHn4e5ZxXm3vVgxlFCGYQu+3KHMwZdpaYNBMBpOLF0ie7gxBqIvvMHghfcccTmJp2xKoqIr36GwHm34jTWAnjPo/hDaHnjW1I2Ek007VwDA1sWh9j1lVgl20l89BIAxta30YZMRBs0EiVlAHbtQayDO/FNXkDw/NsACF5wR5sxqAOHYexchmMmOpyVgJYTGaexFrvpEIov2GGXxDavrWQbTmMNwUu+iD58qrddGzSS0EV3ucfObEkD8k29HGPzW/gmX4Q2aBTR1+7HidUnxzicnqAPmYhZtB5jyzvEVz2Nuu1dUpOpMsbWd4mveALf5IsJzLmR2Ad/dxfn4KYmaYMnoiYX7Yj+x3Ecml78CQCBube0mbE2dq0gMONqwP3dtxuq3AW1QGjht71FjMEFd6ME04m9/xCx9/6MNmjECX229WWObRN94wHvSo//rGtJrHsBs2A5vokX9PLojszY8QHG9vcxtr+PkjqQ4LzbO/2sa6bljELNGgyqjn/a5RgFK4gvfRhz30b0U2SBnuM4WAcjaMOmoGV2nJKppg8i9VM/PepzBWZ9AiWYhj72HG+boqqkXv/fxFc+hRFZimObKKqEdr1N3oE+yCrbRWLzWwTm3kxi9XPe9pRrvkfTyz/D2PYeiY2LwHHzq7S8sZBowtyzBjVzMEpa9nGVUmtN8ae4qQy9mANn15Wj+FMw923EKtlOfOXTBC+9h8SG1zAL1+KffhW+Dup1gzsDGlv6CNiGF6w1Pf9jMOMQSEUbNMrbVx85A6t0J/qoszCL1lH23C9RUjIJLfwWiuqj8alvAm6AHLrym0Rfu59YcsW3f9Z1GDs/RAmkeOWmOqKPnIGx9T0an/0eKVd/p31dUzOBnZzBja98kvjKJ93nP/NK9HFzUXxB7zKi9xjHIbH+VZRAGnqr/MXDKYpC8JIvgqqhDw5jFiwnvuoZ/Gde6QXWcPSFrsdLzRmNE1nqVbWxK/fS9PL/oA7IwzHiABjb3sWJ1WFXFaOPORuroojYew8B7tWAwHmf6dFKK/2VVVWMVb4b/6T5vT2UDlmtZtLiK9wFtvq4uTgNVSTWvYg2aCSgEF3klm7UBodRs4a2Cax84+YAkPKJH9D49HdIbH6b4PmfOXkv4iRKbHytTQqVf8ZCzF0rMHZ+iD7m7D5XGzq2/HG0/An4xpyN1aocXFcC62aKHvBS0fyT5mPuWnFKpZE5dWU40UNtUjmOl+JP6TBtT9H9aPkTMLa9h119IPl3JXqTBNd9UHz1s1gHIyjJ2eNmzTWEE8nqD2rOaPxTLkUfMxs1Jcst2N9Uiz5ubreMQ8sbh1XaOx9yVvkeml78SbJGqtuAxG6qwdj+vrt4D0hsfrPT4Nrcsxa7wl0UpaQOxDfhPBJb3wUUUj72VZRgmrevb8qlaEMnow4cjrlrObHFf8NpqsXY8i5a/nhvP/+0j6GmDCBw3qfdxTqOQ2Lt8wCErvpWu3bgrenDphCYcxPxlU9ile9pF1yb+zaC0T7XMLHxdTefWtNRMwfjO+MS/BMvdP8/akqwDu4gMPfmo36Rtf5/8k27gsTqZ4gmS2EFL7oLVA01ZcARn+N4aTljvJ+D8z9PbPHfsEp3ulcLNB38KSia7l3y940/j8DZ15PY8Bp2fQXGtvfwT7/KS1USLaJv/hanoQp92BlH/P3raY7jkFj3Iqgq+uizUQfkklj7AonNb6MMyMdptaDVP/UyrMq9WKU723WXsw5G8E9f2OEx1PRB6OPmYmx7F/tQKSlXfbNHX1NvMHZ+iDZkElapeyVMUTW0oZMxtr1H0ws/JvXGX3TbsRzHIbHhVRRfCP+US9xtZhw0f5dOZO2mQ14zFGfOjZhF60HzEZh1rVdW7nhog8Mk1r+Ck2jqtATjsYzzSBJb3gZVQ/GHUAcORzuOzrRHYyZPFLTBE7r9uVtrTgO1KgoluO4DJLjui5Lld4xNbi6tlj8BbXAYRdNRB43ErtxL8NIvoY+a4dUH1UaciTIgD+dQmfdBeaL0IROJr9qE3VSLmpLZLc/ZEat8Dzh2m9l2q7IIwA1y96wGcHM1y/egpOfgGz+XxEevYDcd6jAobE6xSL3lf71A1j/1cuym2nYfoIqmex9GvgnnkzV8BAef+SVm8SY3+MM9kdHHujNo+pBJpN3xZ6Kv/y9W6U7U7JFed8Ij0cfPJb7ySZym2jbbHcfB2PwWSupAQhf/J00v/wxwv2S8GRzLxK4qJr7kn/hGnYUSTMMu3+3u1yodpCt8E+dh7l6JNmQS+sjpaIMn9uissJo9HF/4AnyT5ruVahb/reVOy8Q//Wr8Uy7BKFyLXb4bbegkFD1A8MLPYpZsJ1qyHbv2oNTO7kiyxKGxY0mX11N0p+g7f8SJ1aMEUjEL1wJu+bzAnJtIbHgNZUAeKVd/h8S6FzG2LybtP/6AEkh1K0hYJkoog8SGV1pSgTIH459+VafHC0y/EnPnUqwDW7Eba1BTs7AbqrBKdqCPPxdFUdwFu5bppbb1F46ZwDlUjjZ2jtscRHU/2/XRs9wZyUOlOLbl1Yw+Ueae1d76C0X3ow2bQuMTXyMw7/YuXQlp3eQkvvJp0Pykfupnx5W615o2eCJ89DJWaUGHV+QcI0bDP+/GP+u64158bdWUYNceJL788TbbQwu/3e3pKNbBCEowHXVAz1wZbKZk5ILu966Ait4lCxp7SXzdizS9dn+bBYPNC7ic1gt9NJ3Qwu94X5yhS+8h9Yaf4xt9VpvC+4qqknrtj0j5xA/aLHY4Ec0BY+uc757Q9OJPaHrpp8TX/Nurq+19QCgadtkulNSB+GddS+C8z5ByxdfRR50FOG0uO7dmHypzZ6NbBWRKMK1LMxOhEWcQmHkNTn0FxpZ30PInkHrtD9sszFH0ACQv0eqjz+pScKoE00DV2gfX9RVYZQX4p16Glj+e0NX34QvPI3DOjS2PDWWgDhoFmk70fTddwqosAl/omPNP1WA6qZ/8CcG5N6MPmdTj6RaKqhG88LNouWNQfEFSb/lfQlff534ZgNsKOZCKf+KFBC/4rPt/2zzWZI7isX5hOLaFXVfebrvdUNWva27Hlj9BYpNbzsuxbS+tJrH5zTYLRU8Gq3o/5p7VWCXbMQvXuidr488DIL7yKZQBeaTe8HPUlEwC591G2u1/QknW2lc0H/4pl+AbO5vQJV8Ef4jQNd8l5VM/O2Lqg5o52Ctt2fj4VzH3baLxia8TW/xX7Kq92E21ND7xNRqf+Fq/q9HvVn5yUAcOQ9F07/NdHzqZwNybAXA6+J0+Xuauld7PsSX/IPHRi+725EnSEccaq2+7uN6fQuiqb5xwYA3JNEdV6zQ1pLkbYWLDa8f0vI5t0fT6r90T9ld/4ZarPUx82WMdPPLE2OV73IYvPf05qygoqVntvl9E7+jSzHU4HL4F+D7gA34biUT+0Ml+VwG/j0Qio5O3M4HHgTFABXBDJBIpDYfDfuDvwCwgCtwSiUR6NoLrY4yt7+LE6omvfo7Qgi8AEH3l56CobVqZqgMGo6gtQfSRLv0q/hBa7phO7z9WavZI8IWwSnZ4eY/dza5rKR2YWP8KSjAd/9TL3JnKnNFoA4djRJagj5xOYObHvX0dx0FJy8bcu77dQh+3+UIZvlaLPo6V2pzK4FgE5tzU8U7Jk6HmWuJHoygqSmgAdmPbD7/mqglqcvZcHxxGHxx2g0DNR+CcG7wV5olNi4ivfBrzYMRdJJM7pt91N1PTslHTsklZ+G23m+MRFiwqoQwIpB5TcO0YcaJv/AbrYITUW3/rXXVxzASNT7jtgn3hedgf/8/On8NxMLa8hTZ8aqeLkE42J9GEseUtAPzTLsc+dBCsBPrYOZi7V2JVF5+0RWBWdTFNz/0/wE2r8k2cj5qZj6JqRC0Dc89qAjM/7v1uKqrqnYweTh2QT/rtf+rysdXs4W5t4L0biL7RklZiV+4jtvTH3t+ltX8L5J13vC/xpLOr3c99deDQdvdp+W6+rlVzoFvWRpgl2zH3bcI35VICs6+n8en7MHYsAWjTuKQzxua3cKL1pFz3Y/fEvxsXHSt6AC1nDGbJDjpazm0lKzNhxokte5TAubdi1lfjhieds2tLsfZvIXowApbhHisl0wtGtRHTsYo341hmpxVOjoVVWoBVvge7rgx97OwTfr6uUFu9HtG7jvqtHA6HhwI/A84HpgN3hcPhyR3slwf8Gmh9evZTYGkkEpkE/BX4v+T2LwONye1fAR4+gdfQLzhmwsu9cmIN3kIyc/dqnHijW5KsdCfWQfccQx/j/jGqrRbenWyKqqLlj8NKph+cKMeIEV//KnarWtyxZY+02ccoWO6WoirfjZY9nMCcGwku+ELbcnK4Z+n6iDMx967HKFrXplSVXbYL4o1tFi0eK23QiJafOzlhCZ53K/7pC73ySF2hpLb/8HOStbUP/4JSdD/pn/trm9JNvskXo6RkujN1NQfQh0/p8rH7GrULC28VRUEbNOqYfgdjyx71Zr2s4s3edqtVeS8jspSGLZ03JTG2vUd8xZPE3v5jl4/b08xWtcjtplrM3asBBV/yEr7TQWm7ntD40k+9wBogMPtTaAOHeukKwQs/S/CyL3fb2o/DKYpK6NJ7vIo8+qizQNFIbHsXHMdrCW1V7+uR4/cUu+YAqDpqsqxaa2rWYEDxAvATZWz/ACWYSuCsT7gLCs+9BZLvn1Vd7F4JSV4V6Yi5fwva4DDaoJE9Us1HGzIRu7Kow5rXrU+0ja3vEnv/L+z73Z3YjTU4sQbi615qU6LWe1xzKdRkYB2cfyepN/3SS8P0jT4LHOuEG16ZpTvdv5GXf+YuTHcc1Kz2J0w9QUnJxG469Rq/9UddmfK6BHgvEolURyKRRuA54PoO9vsb8OPDtl2FO3MN8CRwRTgc9rXeHolElgA54XB4BKcAx7FpWvQbEpvfarM9tuSfRF/5OVZFkXfm7Z9xNTgW5oFtXodAfdxcQpffS/CCO/CFLyBwzqdO+mtoTR2Qn2zBe+I1h+MrniSx5jmir7uVAexYPVbxZnxTL0cdNBJt+FTsyiISm94AI4ZvwjyUQCq+cXM7LC3UnI8Xe+tBom8/6AXYRsEy8AXblCs6VooeIHjpl0i98Zed7qNm5BKYfX2bKwtH484stG1U09y4RunCl5Si+/FPX+gFUvqI7qtJ3VdpgydgV+/HiTcedV/HcbCKN7lrEFIHkti+GMe2iC7+O9E3HgDdT8rHvw+aD6Oq40DFMRNe2UW7Zj92D5SjTGx+C2P3aswD22h87vvYyRMuu7Gm00ZGrTsUGjuWYBatcwOcvHGA4l0BsSqLMArXdlyv3baxDmtm1FljpI7Y9ZXYZbvQR84gdMXXSPvc39otplV8QXyjZvb4ZXB93BwC599GcP7nUQfkuk2aAqnu36w/5JXd7C+s6v1utacOcqoVPYCSkYtVvpvElndwkgHi8bIPHUTNHuGl6fhGzyLtsw/hmzQf51AZ8RVPEl/3QqePdxqqUAe0PwnoLtrgMDh2mw7E3tir96NmDcM/+wYAzF1uB0urbBeJ7YtJrHuBpkX/i+M4OEac2JJ/YFUfaAmum48xYhqKHiD1kz8hdNm93kRWfNmjXst5xzaP6bvPbjpE9OX/cSd4WlGzun+hZEeU5PeL9AjofV259jEEONjq9kGgzTWOcDj8ZeAjYCVteY+NRCJmOByuA3I6ec5hQJemGrKz046+Uw/JyWnpbti4cw2B/DHoGW5er9lQS/2Gd2go3oRVvIlBk2fSsO1Dss69jqLkB0DTCz/yHp8/7+Ps3/E++sFNpOfl0AjknHM5oVHJBWrX33uyXlanDg0ZQdWWOANTLPS045+hsONR9hYsd38+VEZ2VoBYUQGNwKAzzyV0zV3ESws58PdvkFj3Iv7cUeRNmXHEL2gn6xwqSy8hUVFMfN9GjDfuZ+jt/8OBuhKCQ8aRO2TQcY83JycdcuYf9+M7U5U3lLr9WxiUneJ9iVbaDZjBNHIHd228zryFlOxbQ8q4WWSNH3/0B/RzsTNmUbL2BXx7lpB1wQ1H3DdRdYCGaB1ZU85F8fmpeOn/MBb9EvPAToIjpzDwolsJDh1P8fJ8jOqD5Oe071baVLjRfY4LbqRmydOkRveTOnIYRk0p/uzumYHakyxLFxx5hnvisOpxBl3/TQr/9jmwLUZ/9zms+mpqV75IIG80voGDqS/eQub515OoKKYpWaUma/4tZOVnEc3Ixm8cIicnneLnHsKoPkjWBTeSNc/9/3IcB0VRqH7/MWqXv8Cwu36Lb9BQGrctp/zFBxhwzjVkX/IfRxxzw44V1C51K/XkXXorgbxR3fJ/cULy3FSxQ7OvpHHnagZecBPBwdnEM7LxW24Oek4H73FftO9QCaHhkzodr5U3gqaCNVjFmxiQn0/aJPfKQHTfVqrfeYSBl9xGaMQZRz2O4zg01JWRNvoMBh1keNMZAAAgAElEQVR2rIZJZ1FVvAmroRqrYBmDFn6+3WewbcSpj9aRljeErB76v7UHzKDoDY3AoUIGzjy3zX17D5WQMmY6OZfcQG2KD7O2jPoN7xJoKCZ20O1X4NRXkBEv4dDqVzB2rESp3Y9Z0zIjraZkkDc8me6Vkw5jx+I4DpUzL6P+o7dIrd5ByoRZFN1/K2lnzCNn4X91adxNBTtpBHzZQxhy+y9wjDiN25eTMSF8UkqJ1ubmUb05waAMDTWY2uPH6w395e+5K8G1CrQ+DVIAb6VIOByeAnwSuBg3QOawfQ+/bR/tOY+mqqoB2z75Z2Y5OelUVLjpHI6ZoOFZtyxS6m0PQryJpld+3uaS/4G/fwOAaNwdqz56VstiEVWnJqajjZpFw47lGOnul3adnUpDRUvt4d5mqm4ljorCQvT8ruehmfu3YO7bhH/KJagZuRi7V+NYBr6JF2Ls+ICKwiKM3dsAhXo9l4aKehy1ZfGhOuliKiu7sEBr9q34bAvj5f8hXrKT8oOVxCuK8Y2b671Xx6r1+9zdjFAejpmgbPcu1AGDSWx8HWPHKpSUzGM6pv/K+zChx8bZlzj+Iejj5lKz9GkaYyb+6QtRFAXHNkmsfRHf5Iu8hauJ7W7L6GjaSNTMfPRxc4gnF27pl36FelWnvqIeJzWXRMU+Sla9l1yQ2nL1IVFY4P47fA5oL1BTsJmqlW79YX38eQTPu/WE6g23TmGK7XUrLjQVrKFkyStgu7XrS9cvx9j2vtsYqpXEoMmo4y+B3RvcnNP0ke7vQMpAGjYvJlpRglXtzlvULH2GqC8bY8cH2JV7Sb3plzRucvNqK3duhcJdxN7+PQB1mxZjn3ndEcfd8NpDOLF61MwhHCILpS/97o2ah2/UPOqB+op6bH860Rp3Jr+v/Y2Y+zZi7FhC8NIver93Vs0BzLpKjPRhnY7XCLV8PtYWRogOmoLdVEt00V+xq4opffmPpN7wc0g0YddXoA4c0eFVNbuxBicRI+7Pbn+sQVNJueU3JLYvJr70Ycp372q3YNqudX+/omo6Zg/+36o5o6mLrMOa0lIRxIk1YDXUYIRy3e+HCW7KXKB8L/W7t2BXFuGbfDHG7pWUPPI973GJ0j1tnltJz+vw/9mZeSNKZA1l//6Vt61+47twjltX3a6vdBvcjJrZYTpMPPmdFrjmB1TX24APRl/Yte+ybmDgTjyWF56a5fh68ru5M6qqHNeEbleuZ+8HWq+gyAdary76VPL+tcDrwJBwONx8/fJAcn/C4bAOpANVXXjOPq/1QrzGp75F4/M/xDET+GdeQ+oNP0ef0LKQJvHRSygZuQQv+SKpN/4SfeQMghffDYBv4nywEu7Ka38IJbVvlY9qvvRnbHuvy48xizcTff3XGFveIv7RKziWgVm0Dvwh9PHuLIRdV4FdcwAlfZAXqCiKQmDOjfjC89r8/x2NomoEpi8Ex6HhH1+ARLTHGqKcqOYuiE3PfBdz54ckVj/rLurroe6IpwJFUQhe+Fn0MWeTWPNvzMK1OIkoVmkBiQ2v0vjE191yjiTLXoUyUJK/t81VdvTx57VJLVKzhmDWlhF75w+YheuAZHe89x7C2Pa+WzorNQtt8ASMLW97OdxmwTIaHv2SVyryeHg59llD8E29nNTP/A4CqV6THXBL3JnNXUOb+UOog0a5FVeu/2/8Z17p5aw312Nv7jSa8vHvo6QNIvbuH7EObMWJN2Ad3ImTzMe0KvZgJWf5UHWcaF27dBTHiGMma6E7joNjxtFHziDluh8dUypUb1BSMrHLdmHWVR19525kJ1uWt9veVItVvgcn3kj0jQcwi9Zh17hBqlVVTNOz3wNFQx/feZ66/8wrCV76JdTMISTWv4KxcxmNj30Fu6oYLW88zqFSoq/9iuhbD9L0/I8wC5a1ebzj2EQX/9VLWTxSHnDz75VVWnDYczg0vfFbgB6vO+8bMxu7aq+3VgnwGtUcvugzMHS829fAsdGGhAkmF6ErGbkorYoABM79tPvcU9u2IG+mqBpa3mFXA1udSMdXPUN82aM0vfTTDvPBrYoid2FvFxaF9gQt282utQ5sk9SQXtaVT8h3gIvD4XBOOBxOwZ2lfqP5zkgk8sNIJDIhEolMB64ESiKRyLzk3a8DtyV/vhF3caPRens4HD4fiEUikX61+qS5JFJg3u1oeePRskeQcs19BGZdh5o5mND8O90Z7SR9xHQURUEdkEfo8nvxjZ4FuO1ffVMvd59r1nXdVsO0uygZuehjZmPuWoHdVNtm1q0z5oGtoOro4+Zg7llN9O3fY+5ehZo52AvWrcpC7Lqydnl7/mlXELzwc8dcAUPNHd3mdneVI+xuatYQb+FQ7IO/e9t9ycYwomOK5iO44AuoWcOIvfMHGp/7fpsv/qbX7ie+7iXM3avQWpUXVNNzSL3hFwTntU158J1xCVqyDnJzLrNdWeT+nh8q9QKPwKzrQPOhhAaQevP9qLljwTKJr3DLkJlF67EqCrv8Ohzb9hZMBeZ+muDcm1FDGW6VDzMBviChK78BRgwOyzHXh0z2glo1I5fAOTd4nxfasJZa5/qY2Wh540j5xP9r83ijYBkkc6utgzuxK4tQc8eScvV33G1lu7y/b8dxiC3+K9HXfoVVW+JekTMTaMOndrnzXm9qDm4qFz100o5pFm+m8dEvYxSta7PdjtbR+NhX3JKjyRr2ANHX76fxpZ8SS5bWDC74Amooo9PnV0MZ+EafhTbUrScQS9aL14ZNIXjpPW75upLt3qJ4M1mH2qooIrb0X9gVhZg7l2FsWgSKinbYZ2abY2UNQUnNwihcS3z9q0TfdGsR2DUHcOrcrr1ads9OCOjj5qCEMoi+9TsvkG2upHV4DnNwSEuDFm3gCHzheYQuv5eUK7/hduUFQgu/g3/KpaTd+U98Yzqv3tGch+5JRN0iBI7tLor2p+A0VHn9F1qzK4t6twjBALcUYnzV01h7N/TaOEQX0kIikciBcDj8PeB9wA/8LRKJrA6Hw68DP4hEIkcqivn/gIfD4fBWoBb4dHL7g8BDye1xoN/1srWTHzC+0bM6LbivBltyg/TRZ3X6XMG5N7urtvtYa1twZw19ky/C3LOaxse+Cv4Q6bcfuYKCVbYLNWcU/jMuwdy10qtF7Rs3FyU0wJ15+ehlsC18Z1zcLeNUUzJJ+cQPvKBI8XVUxKn3KZqPtDseIrH5DZy6SvyzPoFTX3nC7epPB4qqE/rYvTQ++U33y23L227XykkXEV/xBIl1L6DmjG5XOlHNbF8HXE0ZwIgv/pEDbz1OYsOr2A3V3iwt4M0garljSLv1t6CoKP4QKVd9i6ZXfo5V6c6oRd9yg47WJf+OJL78Me8qUOsa7L6JF2IWrkXNyEEb0lKMKXDeZ8BMYFXt7bwkJO6iz8B5t6KPnImSHEfrQE3NHumlpHnpaaqGb9JFqNkjQNGIvfMHlNQs0j79AEZkibe/tX+be1IIHVay6It8E87D2P4+Zl0lGu5JjVmwDH3sOT12cpBY/wrgzm7qQyZ53QVb1422a0rwn3mluyixqdZLIwxe+Dl8XSzXFph7C3blXqyyAnyTLvJOHNM++xBN//4Rdu0B1Myh3pWJppd/BpaBk2jynkPNHt6mnvzhFEVFHzsHY9Mi7/Pbjta5VyBRSL31gU67J3YXNZRB6HL3pCS+9nkw45glO5JXeNumZARHtVRNaq6fr490F3truWMx9673TgaOlvvsO+NijJ1L3UZEOWOwK/bQ8Mg9Lcea/3liyx8nvuSf7olx8jh28v3Uckad8Gs/XoqiouWNxyorwCzZhj6q/y54dxJR4qufxT/z4z3WPbgndSmJNhKJPAE8cdi2KzvYrwgY1ep2NdCuhVIkEokBR14904c5juNeJg6ktmmj3ZHgZV8CFPTB4SPu1xcD62bNl5rAgUQTTqyh09ftOA52VTG+8DzU3LGoeeOwK/cRuvLraHnjURSF0Me+SuNTbuviY22AcsRxdmON756kaLqbxtKsB7tfnmrU9BzSbvs9DY/cgxOrRx9zNr4zFqCkZ4Ntow+b0uW/JUX34QvPI7H+FRKb38QsWI4STMc37Qp8E+a17NdqJkvxBfBPvYzY+38hvrzlI9GIfEhghvueNi8e7Ehz2oaaNcwdc5I+fCqB829Dyx+PoqqkfOL/Ef/oZXzj5rSfSevotSgq/jPad2YNLvgCdk0JjpnArnKrhPinX+UGfLaFljMaRfe7nV8r9uA01rgpKXtWo+WNd9MZSrZjFCwHzY/aw7OV3UXLG4c+/lzsMvf/29q3kdgHf8dXVUzwsLKe3cGO1WOVFqDmjsWuKCS+9kUCc28i9vbvMfeuRxmQT2DGQuLrXnI7lQ4a5c5Y2xa+yQvwhecd/SBJiqqiDZ/qBtetavwrqk7K9T/BiTVgFqwgvvJJt+xpsrKIuXuVm+40aOQRu2A285+xwJ3lTrIORrDKdqNmDe3Rjr2tabljUPPGYWx5u2WjL9ju70tPyyL1lt/gxBvapSwFL7oLu7akS39HANrAYaR/7m/ubLWZoPGJr7U91qiZhAKpRN/8P4zdq73g2ipzy4V6PRJ6Seiqb9D43A+wD5X16jhOlBFZirHtPbTcsajHkCbaV0j78y4y9qwhlhiGo+eRWPs85t71+GcdeQEQgG9U5zPW/YUSSEUJZeAk8wnN0kinr8uJ1YMZR83IRVEUUq75HuC0SfNQM3Lwn3klZvFm7xKnEF2lBNNQBw7Drt6PPnwqiqof99+ZmpGLkpaNsdntehi8+L+OOoPYfNnXrtqLPvYcnIZqzILl6KNnklj9HHZDNSmf+L6X423u34JjxNFHzcCuK8c35bIOAzz/5AXez1ruWFI+9tXjek2t+ZK1po3Cte5r1HS0nNGomYOxaw96J6S+SRcSr3Dz1s3k5W7/7Osxtr7r3Q4kU1j6CzUtm8SuardbZ4O7uNHcsxpn7s0Qb8Q+VOpdMXL7DBSgDT6+qg7Wvk2AQ/C8W0lsehNj51K0wRMwiz5yU33mfx4tbxy+Cee7Y8vIxTd2NnZDFUrKsVdh8k+5FG3QSLSctqkdbqOqDO9KQ+zDR9vcH/rYV7s8CaGm5xCcfyfofmIf/MPNE6/cizbs5NbWD8y6jth7fyZ44WeJffDPdk3DvPGmDYQOWt67zdWOPU1QCaa1qcigj5uDlj0CxZ+CPnIG+ri5WPu3eCfTVvFG8IWOmG5zMih6AC1vLGbhWuyGqjZXyPoLx7FJJK/w2U0dlybt6yS47iJj6ztUbk5gp+Zg7lmNL3wB/hkLj/7AU4RvymUk1rhluMyi9Z0H183dBpOLSNwvqvZfVoFzbiBwzpHLqgnRmdBl95LY/Ga3fNErATeH0j/rWvQxZx91f3VALqg62Cb6iDNxjDjxD/9F0zPf9fYxdi5D0f3EVz+H0+Auqku96X4wEx2mqfQ0ffhUfNOuwJ/M7dfHzcXY8YG38NMXvgBt0CiaXvsVxBtJvelXqBm5bl57MrjWhvavhkVKWjY4NtFFv/FqpDtNtZiFazEiS7GKNxE45wZ8064gvvo5jE2LCM7/vBcAt2ZVFCXTh9xgRR831z2x0/04jkNi85soA/JRB43EN+E8zN0riX3wd5SUTFJv/nWnHf+ON/BR/CGvzn+Hz5sMrt2a79Mh3oiSln3MV/d8yRlD62AEY+s7ACe9CoU+dDKpt/4WRVHddJST3JFWH3M2ZvEWQgvubrNdyxuLuWuFm9oTGoC5dyP6sDM67Mlwsvkmzcfcs5b4sscIXd77JX2PhbFnDYmNi3CSa1Ocxhoc28aILMFKm9+7gzsGvf9b0E9ow6eSWP0cUIh/9g34z7zipNSt7Cv8069CHzqZxLb3MQvX4Jz7aRR/yO2IteoZ/LOuRU3N8maIlPTjrzEtxNGoGTkEz7u1W54rOO8OjIJl+Kdf3aW/aUXV3Znf6v1ow6agqJpb6cM2CV35TWKL/0p8yT/bPS6xyV0H3huVbBQ9QHDOjd5t/4yF+Kdf2dKeXFHQBo0k7eZfuwFkMm9Vy25ZOOZ2Cew/mk/wreTCPjV3DE5jjbuQ2IgBbn60Y1teHnxi89vtgms7WtemP4FdUejlUQcv+S/UzKHYVfsInH+bm/M6OAy6HxJRghf/V7e00j5WratOhS6+GzQfHU1ydJV/xtUo/hB2XfkR1w/1lJbf05NfpSZ48X9CB5U3mhdV2tX7QTmAEz10Qo3LupOePwH/1MtIbHAXowYv/s9eWYjs2OYxn2wk1r+CXbUPfdRZWNXFOI21WMWbiC99mMTIMZDSP/oNSnDdRb4J5+Or24899gL00zCVQVEUtNwx+BUFc+dSEtveIzD9KmIrnsQsWIaaNxb/xAux65pnriW4Fv2DljvmmGf09JHTsTPzvTSJ1Jt+5V6SD6a5M771leALEbzgDrfjW7wBY9u7yeP1fiUbRVGhg0BF8YfQBrYE1Fp+GH3UTPzTr+qVwOZEaEMmkjblAhq2uLW9tdyx2HXlWPs2ooQGkHLNfcRWPEVizb/d+4dPwyrehN1Q7aYYJJm7V3k/qzlj8E+9lMRHL2PXHsTYuQx9qNu4pXkmWdH9+Gdcg6Lp6MNbqricTIqiEFxwt5v21A1l4dSUAV5Zy9ON+7fSfntzOUBz/xas/ZtRQhlHvJpwsvmnfQy7qcatEBNZir+bigdAsjRnvAFMo83fSpt9zDiNT3wD38QLCczuqKl3e3ZDFXbVPvxnX09gxkKaXrsfu6kGY9cKlGA6wWFhGqrbl0DsiyS47iI1JZOcT36zzzUkONm0nNFo+RMwd61E8Ye8WqpOXYXburl8N0padp9eoCnEiTo80Gidi+yf9jGiJdtJ/dRPUdOy8Y2djVW+h6YXf4I+bm6/KGXXTPGHCF325d4exnFRVI2cj99LtLoCq2Q7+qizwIwRPRgh5Zr7UAfkE7rsSyQ2vu5W8Zh+JU3Fm0hsfpPg3Juxa0sxCpZh7tuImjWU0JXf8BqH+MbNJbb0YYxdK1FUHSU9p02KR6APpAz6xs3p7SGc0tRgOkpGrruWQfcTuuzePvW3rQTTCM2/k4YD29z0ruMMru3GGu/33nEcdwF4skOsEkwn9TO/6/CKn1VagBOrJ7HhVbQhE9G7kMIXX/EkaLq37kVJzcTefwCrvtItA9oLV4GOV/8Zqegz9JHT3WL6Hz6CNjiMXVdBYsOrJDa8Crj5XkKcrvTh00i/s21aiJY7xv0S6qMlIk9lwfP/A2Pnh2j5E1BUlbTb/+QFA4qqEZhxtbevL3wBxuY38Y2dTWzx37Fr3d5mvskXt+vIpw4cDsZizJLtR60GJU5Nofl3El/1DIHzbu2zHRG1vHGYhWuJLfkH9qEyQgu/3eWrUGbJDqKv/oLggrvRx84mtvhvmAXLvfudWD1OXTmOoroN4RTFrUnuC2Lu3wKqhpI6kMT6V1ECaagZOZ1WbXEcB3P/VnwTzm9JSxs0CnPnMu919Cf96zqf6BP0VosZg/M/j3JYDcq+dGlMiL5CDWUcsbaw6BlqZj6B2dd7JdqOlFcfmHsz+FNoevG/sWtL0JPNRvQxs9o/b/NMdaKpz3aEFT1Lyx9Pyse/12cDawDf+HPBNjF2LME6GMHcs6bLj7XK3fKC8XUvYBVvwSxYjn/mNaTd+Q9CV30LgManv03jU9/ELFxLYtt7NDz8n5i7Vri1xQeH0UeciXVwB00v/Ijoe503dXKih8CItukc2jrW0PL71wmsBNfimKkD8gjOvxP/9IWo6Tmoh7Vsb90EQwgh+gvFHyJ00V3ujFt6DsEFXyDt9j+5HTQP37dVGogE16Kv0kfOQB8107ttle/p8mPtGvfKjXOojNjSf4Iv5C5uVdR2PSqs/VuIr3wagMSmRTiHytBHz2oz42y1amXf7li1bnWQ1n9LatpAgvM/T/CyL6Md1vK+r5O0EHFcfK2KugfO/wz+M68gsfktHDMul76FEP2WPnI6abf9HhzbbS/fyfqR1gu5mkvfCdEX6WNmuzXXAbu5xJ1j4zQdapfu1MxxHOyKQtSBw7FrS3Aaa/BNuRRF8wF4XTK1/AnYjTUYOz6AZNBtVxWDqqOPnuVW0Mmf4DbQskwcM9EuN90xE0Tf+A3QvrFcR6Ux+wMJrsUJU1MyISWTUD/LiRJCiI50aUF2q/bfak7vNg4R4kh84+ag5Y4lvvIprJr9mAe2uQ2iij4iePHd+JIlBK2KQqyKQvyTF2DuXoldW0Jg3u3oQybimAZqq0pCiqK49ccDqTS98nOc+gp8E85DGZBPYvWz+CZe4C30Trnmu5hF64m+9X80PP5VUhZ+2+v8bDdU0fjE1wG3+6XSD5vedESCayGEEOIYKYpCYM7NqFmD+12ZQnH6UTNyUDPzMYvWEX3tV9722Lt/crt6pmTS9MKPAbdxTuzDR1Bzx+ALX9Cupbz3nCmZADjxJgB8Ey9EzR6BPmyKu+C39b55yRKk8Uair91P2m0PYuxaSey9P3v7BC+555TpHyLBtRBCCHEc/NMu7+0hCNFl+pizSWx9D4wo/ulX4Zt6OY2Pfpn48idwko2VAMydyyERJTD7U50G1q0FL/wc5p7VqLljvYZUh2tdrtSJ1WNH60hsfhNwmx6lXHNfl47VX0hwLYQQQghxitMGjSLt1gfcBbvJ3Gl0P3Z1sXv/kElYJduJr3wSNH+Xy9/p+ePR88cfdb/QFV/DOriTxIZXsSv2YNeVo2aPIPSxr3aa+91fnTqnCUIIIYQQolOKL9gSWLtbvJ/8M6/xfvZNvuiw/U6cPnwa/ulXAQqJbYsh3oh/6uWnXGANMnMthBBCCHFaCl35dazSXfjPvAIcy9semHNTjxxP8YfQRpyJtW8DANrgCT1ynN4mwbUQQgghxGlIz5+Anp8McBUdfeQMt5tpDy4sDJ7/GRqf3YHiT0FJG9Rjx+lNElwLIYQQQghCl9/b48dQ07IJXXoP2NYpUx3kcBJcCyGEEEKIk0YfNqW3h9CjZEGjEEIIIYQQ3USCayGEEEIIIbqJBNdCCCGEEEJ0EwmuhRBCCCGE6CYSXAshhBBCCNFNJLgWQgghhBCim0hwLYQQQgghRDeR4FoIIYQQQohuIsG1EEIIIYQQ3USCayGEEEIIIbqJBNdCCCGEEEJ0EwmuhRBCCCGE6CYSXAshhBBCCNFNJLgWQgghhBCim0hwLYQQQgghRDeR4FoIIYQQQohuIsG1EEIIIYQQ3USCayGEEEIIIbqJBNdCCCGEEEJ0EwmuhRBCCCGE6CYSXAshhBBCCNFNJLgWQgghhBCim0hwLYQQQgghRDeR4FoIIYQQQohuIsG1EEIIIYQQ3UTvyk7hcPgW4PuAD/htJBL5w2H3Xwv8GNCANcBdQCbwVqvdBgA5kUgkLRwOXwg8DxQn71sfiUTuOJEXIoQQQgghRG87anAdDoeHAj8DzgLiwPJwOPx+JBLZlrw/Ffg9MDMSiZSFw+GngNsjkchfgOnJfVTgXeB7yaedBfw6Eon8vLtfkBBCCCGEEL2lK2khlwDvRSKR6kgk0gg8B1zffGdy26hkYJ0C5AI1hz3HHUBTJBJ5Inn7bOCycDi8KRwOvxwOh4ef8CsRQgghhBCil3UluB4CHGx1+yAwrPUOkUjECIfDV+CmeQyiVTpIOBzWcGesv9PqIbXAg5FIZBrwOvDUcY1eCCGEEEKIPqQrOdcq4LS6rQD24TtFIpFFQHY4HP4f4E/ALcm7PgYURCKRza32vbvVz38Oh8O/CIfDAyKRyKGuDDo7O60ru/WInJz0Xju2OHnkfT49yPt86pP3+PQg7/Ppob+8z10JrvcD81rdzgdKmm+Ew+GBwKxIJNI8W/048HSr/T9Bq5npZP71fcAvIpGI1Wo/s6uDrqpqwLado+/YzXJy0qmoqD/pxxUnl7zPpwd5n0998h6fHuR9Pj30xvusqspxTeh2JS3kHeDicDick8yp/iTwRqv7FeCxcDg8Inn7U8CHre6fCyxtvhGJRGzg2uTzEA6HbwNWJXO3hRBCCCGE6LeOGlxHIpEDuDnT7wMbgCcikcjqcDj8ejgcnhWJRKpwS++9Gg6HNwJh4NutnmIM7ux3a/8BfCUcDm/FXez4+RN/KUIIIYQQQvQuxXFOfnrFCRgFFEpaiOhJ8j6fHuR9PvXJe9z/Haxq5OFFO/jitVPJSPV3uI+8z6eHXk4LGQ0UdflxPTUgIYQQQogTsWl3FQX7D7F6e1lvD6Xf2F/ewOINB3p7GKc1Ca6FEEII0ScVlzcA8NHOil4eSf/xs0fX8cgbERKGdfSdRY+Q4FocF8OUP1ohhDgdmVa7arw9Zn8yuI4U11LXlDjmx1fXxfhw00H2lNTRz9Jgj1s8GVSX1USP+bGl1U00xbpcvE10oiul+IRoo/BgHT/911qunz8Ww7LZW1qP48A9101FVZXeHp4QQohutqekDr+uUlLVyJ9f2sov755LTmaox463v7yBf725g33lDUwZPZAthdU8/PoOvvTJqSjK0b9nXltRxJghA1i6sYSV29yUkm/ePINJI7OwbeeU/K6qrI3y3Ae7vdu7Sw6RkepnQCe56h357l9Wkhby8bt75x19Z9EpCa7FMVu6sQQHeHbx7jbbV2wt5bypg3tnUEIIIXrEwapGfvrIWgDGDskAYPeBQz0aXD/08lYOVLoVeudOyWdkfjqvrdhLZF8tE0dmHfGxWwqr+PcHexiQ6mdYbkuN4r2l9UT21bBo1T6umjOSa84f3eXxrNxaSkrQx7Sx2cf3gk6CzYXVrN5e7t1+5I0IT71TwA0LxjFjfA5Z6QHue2gFo4dkcNfVZ7R7fEPU8P6N7KshPOLI/8+ic5IWIo5JY8xg5bYyZoVzuO/WmcyZnOfd9/CiHbyxat9JvWQohBCiZy3bXOr9vLukDoD9FW7g2xQzuOeBJayLdF9O9MGqRi+wBhiem8bV544iJUif2fgAACAASURBVKCzfEvpER7pWrLxIACHGhNsLazmnMl5pKf4eOb9Xby8rAjDtHlleVGX0hsN0+ZgVSN/eWUbv312I+CmTpTVNB3nq+s5DR2kzWiaymNv7eTrf1jGtqJqymqirNxaRjTekvphWjbbi6opb5VGcvjkmTg2ElyLLlm5tZSXPyzk3XX7iSUsFp47ivHDMpk3zZ2pnjkhh7SQ++G1aNW+Xh6tEEKI7hBPWGwprGLCsAFttq/dUc4vHv+IB/+9maa4ybOLd3XbMVdtK0MBBg0IApA/MAW/T2Ps0AEUltYd8bGmZbO1sLrNttzMEEMHpQKQlR7gnuumYtkORaXty7pV1kb5y8tbvbzjP7+0he/9dZV3/+sr9/Ldv6zkR/9ccyIvsUfUJ2eeR+Slef93t1wynotnDgPgxQ8LvX3veWAJdjIH/fG3d3L/UxtYX+CeIJ0xKov9FQ3e/eLYSVqIOKolG0t4eNEO7/a4oQMYkZcOwKRRA/nebWcxenAGqqJw/5PrWbLhAAvnjuxSXpwQQoi+ae2Ocv744hYArrtgDLMm5rJyWxnTxmbz4tJCymtbZjpNy8ZxHO9zf2tRNfvK6rninJHHdEzHcVi1rYyJI7O457qpVNfF0DV3HnBkfhpbC6tJGBb+/8/efYe3VV8NHP9eSbZleVveK3ac5Dpx4uxFEjYByt6rFAqUUgqUtrR0vh20tKWFUtoCLy0vo1BW2CPskL2Xk9i5ThzvPeQ9Nd4/NCLHTmzH8sz5PE+eJ5aurq59beno3PM7x0/f5+NLqlto77Ry+0XT6eiy0dFlZdmseHQ6hYPFDYQE+pGe6PygkF/WxNSkcM9j2zut/Ob57bR2WFk4PYaIkAB2H6ol3mwiMzWSz3eWssqV0e3ssvHptmIq6tu48dyp+Bn6Pp6R1NLeTXS4kV9/cxG1je28te4I86ZFs2xWPEcqmjhc2ujZ1gEUlDdRUt3C2j3lAHy129m+b9ZkMwcKLTQ0dxIZahyNb2Xck+BanFBnt4031hwmOSbY0xJpsVcpCEB6wtGMxnw1mpc+zcMif5RCCDGurfIqDZg5OZLUuFDOXZCM1WbHoNdRXNXMttxqDHod9U2dfLC5iEtOSwXg0Vf3AHD23CQC/AceeBZVNVNlaefCJZMIDDCQGH20ZnpSbAh2h4OS6hZPgOyts9vmOeapyeHEeNWEnz47gXc3FJA1JYqwIH+iwowcLmvs8fg31+bT6spY1zR00NDcCcAPrp1DWLA/dU0d1DZ2sDAjhrfWHeHVL53Z+qWZcUxLDme0tbR1ExzoXLwYFRbYo6763AVJ/Ov9HGanm4k3B/HxtmLe2VDQI8vf2mFlRVY8ya7kWUV9m7yPnyQJrsUJVda10dph5ZYLUj0ZjBMtJkmJcf5RFle3yB+lEEKMU1abnbqmDs/X7quVAAa9jq8tmURLezfmUCMXn5bK/32Yy0dbioiNCORdr/KD3YdrWDIjbkDP+d6GAlZvLUavU5ivRve63x1Q7ztSR7fV3uu9aPWWInKLLABEh/V8/4kICeDR7y4jxOQHwJSkMHILLTgcDg4U1vPYa8566qWZcew9XEuVpQ2H3YEpwEBkaACKonDvVVmAs+b6rXVHmJYURl5pIw0tnQP6/oZbc1s3YcF9dwZZmhlHiMmP9IQwAgMM7DpU4wmsf3DdbM/3f9WZ6birQQ4U1JOZGjkixz7RSM21OKHaRudlP+9V4Qlm03G3T4wOQgEOlTTw2fYSmk/Ql/RwaWOvMfZvrs3nn2/tG9pBCzEG7dSqKeynXlSIsaKmoR2b3cFN503jL3efhq6PMr/gQD+uOWsKgQEGLj99Mp1dNp5+9wAVdW34+znDi2fey2F3Xk2/PabbO628s6GAzm4bU5PCCDL69domPDiA2IhA3ttYyCOv7O6Ref58RwnvbSwEICvd3GdZYkRIgKfEZGpiGI2tXRwua+TtdUc/DCzJjCU2MpCq+jZKqltIignuta+4SBO/u2Mx97iCbXeGe7S1tHcREtj75+Y2M81MYIAzpxruas930dJJzEwzMzUpjNhIE6EmZ+u+JZmxfL6jlM6uvhd97s6r4UdPbuSz7SW0d1oprpLx894kuB4ih8NBcVUzNvvE7JBR0+DMXESFG/n1Nxfyw+vnnLCWOjDAQExEIKu3FvPKF4dYt7e8z+0OlTbw8Es7+XBLkec2h8PBhuwKdubVkF/e2OfjhBjLHA4Hj766m8+2l/CzZ7ZwxNVZwWqz88+39/Pb53ecMoMsxPh0oKCe8tpWz+9uanzIgK5CJkYFceclM5iaFMaZcxP5x/2nc8sFKgB/f2ufp9f08bgX0wEnbPHnXX6xas1h7HYHdruDDzc730tuuUDlPlfQeyLz1RgA/vDSLgoqjn7oTU8IJTU+lJxCC/nlTcct90iICiLIaMDPoMMyBjLXDoeD5rZugk4QXHvrtDpjFnfN+YM3zeN3dyzy3L8wIwarzU5RH0FzR5eV5z8+SF1TJx9sLuSJVdn8+rntnuE1/R3nm2vzySms73fb8UyC6yH6Ymcpv35uO9sPVve/8ThU29hOYICBIKMfKbEhA7pElOzVV7Sqvu8JUcVVzvrtt9cd8WTHS2taaWx1Zro/3VYy1EMXYkQ4HA7e3VDAexsL+Mdb+zhQaOGVLw5RWd/Gqq8O89mOEp55P8ezvft3fzD7r6hrlaBc9MvucFBV72wRpxVbeiw4HAiHw8Gjr+3hF//eykuf5aFTFOIjgwb8+CWZcfz06/P5xvkqBr2OM+Yk8shdSwkO9OODTYUnfN6Pt5YQFuTP/GnRXLIs9bjbege7eaWN5BZZOFzaQGNrF3dcPJ0z5iQOaEBMaJA/1541hSlJYcyfdrQExWT0Y+XCZM/XSzNj+3o4AIqiEB7sz5e7yvjr63tHtbtGXWMHXVY7cZHHv7Ls7bLlafj76UhPdPYt1ykKet3RkDAt3nn7kfIm3lqXT1nN0detQ6WNNLd1c+HiFJrbutFKGgD6zV4XVTbz8md5fLi5iGc/zJ3Qr2lScz0EnV023lx3BHDWJve5TbeNnMJ6ZqdHjcuJULWNHb1q1/pj9D/6a1VR39rnNt6Xx//3vQP8/OYFvPblIYz+euZOjWZLTiWW5k4iQgJO7sCFGCFNrV09aky9HSxu4GBxQ4/b8koamBQX0uf2fTlQUM9jr+/lqjMmc9HS1KEcqpjgdhys5ul3D3DrhRk8v/og5tAA/nz3sgE/vqHlaBlfZ5eNWy/MwGQcWpgQFR7IJctSeeXzQ9Q3dfSZBW9s7aK0poXrz57CykUpJ9yfO7ieFBtCUVUzNQ3t1LuSMoOtD75gcQoXLHY+X2V9GzZXmWJshLPso765g3jziT9cRAQHUNPQwb4jddRY2okdYHDrS4+9vsdTP+1dG38ic6ZE8fQPzzzu/eHBAUSEBPDh5kJaO6xoxQ389OvzAeeUZgW4aGkq2fl1np7kBRXNPbqvHOvR1/Z4BtVYmju5/U9r+MG1s5k5eewO5jlZkrkeBPcvhdvW3CpPPVJtY0dfD+Hx1/fy9zf3sWFfRZ/3V1va+Nsbe3lzbT71TX3vYzTVNLQTNcgpXO5uItOSwqisa8PhcJBf3khHl3MVdn55I1tzjmb688uaqGvsILfQwnkLkrn4tEk4HM5ep0IAnp6zew/XohVbWL+3nPLavj+4jbQq1+CF401uS4sP4faLpnP35TOJDA3o1aGgP7sP1QLw6Xa5miNOrMjVt9ndOrWuqXe5woebC49brldW2/OqyuLpx8/aDsYU10LEvNKGPu93J6cSovvPkkeHB3Lf1Vl8/7rZ6BSFuqYO9h+pIzbSRFjwySdj4iJNnl7Y4Cz7mJnWf9B39vwk3Gmzvkoohltnl439R+o9ixCTBvAzHKi0+FBP95SGlk5qG9pp6+jmcGkjcWYTJqOBcxckebb3Lq85VlV9Gy3t3aTFh/KN81XP7btcr28TjWSuB+hAQT2PvraHB2+cS0Sokcde20O1pZ2wYH/iIkx9Xn6z2e2e2uF1e8s5fXZCr20+2lLE3vw69ubXsedQLb+9fdGY6Q/tcDiobewY9LjXzLRI/v3gWWzLqeKZ93N45YtDfL6jlBVZ8Xzza9N56dM8Qkx+/Oa2RVTVt/H7/+zkR09tApyrwePNQcSbTWjFFk9WQZy6cgvr+curezhjTgJf7TkaFOh1Cv/68VmjckxvrztCfVMHQYF+nqD3xnOnkpVuJrfQQmiQPyU1LcRFmrhwcYon+7Uzr4atOVVUPbeN+6+ZTWeXzZPpamnvZntuFWfMTeRIWRPPrc7lh9fNYc9h55tPc1s37Z1WAgMMdFvtlNa0eC7dilOb3eFg7e4yz1CUeLPJs6jQu/e0pbmTN9c6r7b29X7kbrcKEBtpGlQLvRNJjgnG6K/n/z7MpavbzvbcKs6cm8R8NZqW9m4eeWU3wIBLGuZMiQKcCxQPFNRTUd/G4ukxPjnWwVo0PZZ506L5zqNrKahoYpGPPpAMlPf6pEuXpR63//fJSIgKYleesxa+pqGDHz+92XOfu+Xi0sw4iqtaOFTayNacKpZmxpKVHtVjPw6Hw5MkuOuyTMyhRlo7unlz7REGckF/7Z4yiqpauPuaOb75xkaABNcDtDXXmUXdd6SebqvdMyY0wRxEVJiR9dkV5Jc39uj5XNvQgdXmIDjQj+Iq57Qj7xXXDoeDvfl1gHPVdVlt65jqD93Y2kW31U5U2OAy1+Cs31o8I5ZNByr5fEcpAOW1rbR3WimqbOaqMyYTHOiH6ZjgIC3eeUkr3hxERd3oZiZrGtoJDvTzrK6eaOoaOwgM0GPqY1X+WNHY2sVLn+XhgB6BNYDN7qC1o7vPrgLDyWpzjk4+ljnMyNnzkjh7XlLvB7nMmRLF1pwqiqta+ME/NgLwfz85G4A/v7KbkuoWaps6WL3FOeX0tS8PY2nuZHlWPBuyK6ioayM1LoTfPL+d8tpW/nTX0hMu/hITU1V9G1/tKWNpZhwt7d10ddv5z6d5ACxQo7n7ill8uau0x8wBh8PhCZTAuSjNu4Rvx8Fq3liTT3CgHxmTIrj2rHSfHa9Br+P7187m0Vf3eLLqpbWt5BbV97iqO9j3Pqvd7vlAMZp9pg16HTPTIlm3t4KLlqYSPMBFhSejtrG9x3vy1pwq/A06/nrvcp+/V2WkhPPBJrj3ylnUNnZQXN3Mxn3O8fMXn+YcDuTvp+fm81XeXneE0poWHn8jm/uvyeoRYK/6Kp/VW4sJDvTzvF5dtDSVzQeqaGw5fkcxcH5wfH1NPu2dVi4/cwqhAaM/rGcgJmbUMAzcl60OlzViae5gzpQo1JRwZqZF0m2zsz67gs+2l5B+mTO47rbaPCNTZ08xs3FfpWfaUUNLJ8GBfjS1dtHY0sVN500jOSaYP768i9KasdMfutbVKSQ6/OSOR1EUvr5S5fmPcjlY3EBrhxWLq2WR2VXHrdMpXH/2FA6XNzE1KYwQk7M9UEx4INn5db0+kIyU0uoWHnpxB8GBfvz29kUjHsCdSFuHlW6r7aQugbp7ur7+ZT6lNS0Y9DpiIwK5+sx0Zk+J6n8HI2zt7jIq6tq458pZvLHmsKcEw62ito0pSb2HSQyn/GPKOlZkxVNtae+xGOh4+roK1NzWhZ9B58kart5SjEGvw2qzs/1gNdHhRi5cnOIKrls5VNrgKYkpqmyW4PoU9Pb6I2zLreYT18Lvs+Ymeu5z17y6Zw7klTTw4eYi4s2mHh+kiyqbUVOO9ol+bnUu4MxoX32m7wJr7+O67aLpvPxZHpmpkWzJqeLLXWWe+89flDzo1/qQQD9PcJaRcvz5CyNh5aIU9ubvprCiadhqiD/ZVsxrXx7m3qtmMXdqNI2tXWw+UMmKrIRhSQLNSI3k8fuWE+p6X3Y4HExOCGNacniviZTzpkWzemsxVpudL3aWeYLr9k4rq7c6kwWnzezZ7zw82L/fHuGFFc20d1q585IZpCeFU1MzPlr+SXA9QDecO5UdebWs3lwIOC+FnO+18GLetGiKvLoAZOfXe1YOz06PYuO+Sqot7YQG+fODf2wkNiKQM+Y4XxAnxYaQ4Kr1Kqlu6XVJZbSUuurvYiNOfoFGTHggP75xHu+sP8L7mwo9Gf8Ir8Bw5aIUVh7zuOiIQKw2+6iNX313QwHdVjuW5k72H6nvNZVyJDkcDg4WWZicGIaluZOfPbOFEJMfj92zbEABHTgX1irA9oPVPPthrud2o7+estpW/v7mPm67KIPTZsYP03dxcqosbUSGBjBvWjRZ6WaaWrvYlVdDeV0bX+0uo7axfcSD63Kvxcs3r5zGWSfIVB8rMMDAMz86kzv//NXR/dW29ur3/qtvLuQvr+ymsbWLc+cnExMRiNFfz5HyJg6VOhdEFlc1U1rTwoKM0bkcLkbH+uxytuX27E61ZvfRIPW0Wc4AZnJiKObQAF5fc5iGli7KaltJjA4iKTqY8tpWDhTW9wiu9TodoUH6E3bqGKpF02NZND0Wh8NBxqQIOjqtvPrlYRQFrjt76qD3d+9VWdQ3dTA1LQqdrf82cMPJvfDfMkw9r7utNt539fF+e10BmamRvPblIWw2B+d5dTfxNXdgDc6EmfcHOW+T4kJ45kdnsuqrfD7eWuy5qpjtujp/12WZzJ3aM7YJCwpgc2EljS2dx00W5bk6kcwYZ8NsJLgeoLT4UBbOSvAE18fWhk2KDWZXXo2nJnJbbhWBAXp+etN8T93aZztKKHeVOlRZ2nl9jXN0anJMMAH+eqLDjRwpb2Ld3nJmTTbz+c4SqurbuefKWX0ek9VmR1HoEWD1ddvJyi20EB7sT0zE0DNjSdHBOBzwxJvZAET0EzC7n7PK0j7swXW31UZ5bRuT4kLottr4ckcxew7Xcs78JDbtrySncHSD67ySBv7sGiXs1tzWTWFFc58jgPvys2e24HA4iAgJwBRg4KE7FhMW5I+iQH1TJ797cQefbCsZM8F1Z7eNtXvKKatp9YwwNuh1RIYaOXdBMp1dNldwPfKLgKstbfgZdDz1gzNOqgOQQa/DHGpEp3PWMRZXt9BxzKCGeLOJeLOJzm4by7Pi0et0qMnhrNtbjs3u4Pqzp9DVbetRIytODbvznLWrt1yg8sLHmuf2712d5eq97MxO6xSF686e6pmsC1BW08qZcxIwBejJzq8jIjgAq83B8qx4Wtq7ufrMdAJ8WLN7PIqieGq+k2NDCDWd3JXB6PBA579I06hnNMNdna2GK7jecbCGtk4r585P4vOdpTz2+l7ySho4b0HygGvVR0JWupmPthTx/OqDTIoNoaKuleBAPxaoMb1eL8Ncg2y+/4+NLJoew12Xzey1v4KKJsyhRkKD+p48OVZJcD0IiqLg76ejq9veq92Oe2HRR1uKiAozsje/lmWz4kmKCcZmt2P017P7UK2nqD/IaMDucC4KcAffGSkRrM+uYPehWjJSwj0tvBwOB9WWdtZnV9DVbeP02QkkRgfx7w9yyCm08JOb5hEa5E9hZRNPrNrHtOQwHrh+7pC/37ySBmakRvhkgWXiMSuYI44zotXNHVDVNLQz/QTj1n3hP5/ksWFfBX+9Zxlf7Crjg02FhAX7c+6CJKot7Z4V+D59zk81duXVsCIrgStPn9znNnaHgzfWHPa8mbpduiyV9zcW8uQ7+7l0WSpnzEmkoKKJzi5bn6PpHQ6H5wW/oaWLK0+f3KPFoTnMyFlzE3l3Q8Go1DD3ZWtOFa9+cQiA02f3DvgD/PWEmvxGKbhuJzo8cEitNf/w7SUoCvzPs9tYv7eCyNAA4s0mMiZF0NVlQ6coXHVmOu0dVs/l3sy0SM8ajTlTo8grbRz1dQmnOnef3pFchN7Y2snMyZGcMSeRxOhgqi1tBBn9+izr8r6qMWuymaBAAytmJ5BTWM+ba4946rSDXcFtzCiUGA336/tIMeh1hAb5U+vjrl/VljZCTP7sK6gjLMifG86dSvaROvJKGogICeC6s6f49PmGanJCKAH+enZqNezUnDX+SzNj+3y9PHdBEh9vc5aMbMut5usru3vVqxdUNJGWMP4WbktwPUi3XpDBCx9rJBzT+9Jd5+aeEgVH2xjpdTruv2Y2f3x5l+e+v923otcvW2ZaJOuznYs73E3ZwRkQPf7GXk+96ec7S3s87vMdJewvqPcEGjmFliF9j+DMgDe2dg2pJMTbsfs5tl7rWJGhAeh1Cqu3FOHvp2PJjLgTbj8U2UecAcvhska+2FlC5mQz91wxkwA/PVHhRo74eFqkw+Fgy4Eq2jutfLCpkIyUcDImRfSqN6xv7PDUVHq7fMVkQkz+vPxZHu9tLGT2lCgeemEHcHRxnLeGYxaMTO2jjGJacjgOYMuBKs6Yk+AZETxavNvsHe930BwWSM0gh2T4QnVD+5CDEPfPd+XCZF74WKO0poXlWfHcvPJoiyrvxdHgbHH538+dHzhiIkzERASSnV+L3e5Ap1OobXRe5RmNNQrjRXunlQMF9cxXo30SEH/viQ1kpkXy7UszfXB0A9PY2uUpI5ySGOZpc3c80ydFkFtk4faLp3su8Rv0Ok/XEIDnPnKWisWZx04GdDyy251ThqdPimBp5tDfsyzNnfzPs9tITwwjt8jC/GnO39vkmGCqLe2cPW9gA3NGkkGv446LplNtaeeNr/IBmHWcjmORoUYuX57GO645AblFFhZ6fSBsauuitrGDs+b1XYoylkmf60FakhnHUz88o1eLogB/PfGuF6a5U6O45sz0HquXpyWH89QPz+CCRSn8+Ia5ff5BLFBjuPYs56dQ78FFj/x3F1WW9j5bJ/kbdHy1p7xXBq/bOrRx7E2upvyh/WSYB0qnU0iLDyE1LoSf3zy/3+31Oh02u4MqSzvPvJdDac3xL3+v31vO4dKTD4Dd9a7/+TSP9k4b37pspufSaFSokdYOK+2d1l6Pq2vs4MPNhb3qZftT09hBe6fV84Lxl1f38JxXHbTNbqe6ob3Xhyhv58xP4oZzp2Jp7mStVxeNY3ulOxwO/vDSzh63pcb1zgJMdmUGXv4sjxdcq/mHy+GyRv7+ZjZdfYzKdTgc5BZZPINW7rs667gvrAlm04hnbju7bVTWtfW6EnOyvPvo9hckhZj8uePi6Xz/2tmAs3TKanNelahpaOfHT232TMFrae/mvY0FnnrFgWrt6B707/N4sS23iu/+dR1PvrOf3KKhJyDsdgct7d0j2o/f4XDQ2NJFWNDAFzN/94pZ/PD6OT1qZ5Oigzw9nVNigrHaHD1uEycnwM8ZUm3aX3nS+7A7HPz7gxw+2VbM+xsL6LLaPb+v7jLAK0+fzGXL07hw8aShH/QwmK/GcMHiFJbNiiMs2P+E/cLPXZDMBYtT0OsU9rsSXW6FFc6rxml9vGeNdZK59qGf3DQPh4Pj1gYF+Om59gSXcHQ6hQsWp1Ba09Ljj7PK0s5pM+O49cIMrjxjMg3NndQ2djB3ahQvfqKxdk85igL3XzObv76+F3AOCrh8Rd/lBgPhHkMe5sM6p1/esvCkH7svv46k6OAet73x1WF2HqyhuqH9pHsed1vtngElTa1dTJ8U0WNFsrurSV1TR6/nf/XLQ+zUaggO9PMsTu2P3e7gJ65eoctnxdPU2sVOrYaN+yuZnBjGWXMT+WJHKa9+edjzmLsuyyTI6Mejr/Wsu3YHY5+4LqsB7DtS1+NYGlq6PB+8fnv7ImobO/rsXevdG3Xj/kpuOHfqsLXoe/bDXKrq29iWW83yLOfP4KXP8kgwm3jPtWAHnN0D5pygg0lidDAb91fS0t77UuJwOVLWiM3u8FnbL7PX9NP5avQJtnTyrol3Z/SrLG1Ybc6AeMuBKi45LZWnXAFkXGQV91w5y5PpdLPbHXRb7Z7fha5uG11WOz9+ahMJUUHceWnmqJQIDKe31x3N1D797gHuuHjGoHv4e3O/RgLkFNaPyIKr1g4rNrtjUK/LJqOh1+RCRVH41TcXUt/UgUGv48MtRSyY5pts/qns+9fO4Vf/t422DufAuXV7y8lICSdmEFeA88sa+wzO0+JDPIsJ481BXLY8zTcHPUwUReH2i2b06LPeF5PRwLVnTaGmoZ39BfU4HM7sf0iQP0WVzSgwqIm2Y4Vkrn0oxOTvk6J7d2st77pYd0eEUJM/KbEhzHO9EM5Mc75oOhzOmrq/3H0aep3CexsLTzgtqT/uN47wIUy8Gqr7rsri6jPTmRQbwqYDziDK/T05HA5Wbyn2DO+x2R2eF7TBKK1x9h8Pco34PbZVkHsxpffCsW6rjS93lXpaFb7wsebJGPbHXfus1zkv7X33ilnce5Vzwep/PtFoae8m75gs/MKMGKanRpAYHcQdF0/33D4pNoTkmGA6umxEhAQwKTaE/35+iNzCes827uN+8Ma5JEUHnzBYvfeqWZ5gY39B/XG3G4qubhu1rnO2ab+zBOrfH+Sw42B1j8B6RVZ8vx8O3dnjd9cXYLPbRyTjmlNkQVH6zzIPxo9umMtPvz5v0LXusa5Fv9WWdqrqnR1MKuvbuP1Pa8gtsqBTFCrr2/jFv7f2euzraw7zncfW0m11Xj34/X928sh/d9PRZeNIeROvuerdJxL3h8XbL5pOUKAf/3x7n+eD9WDs1GooqGiizusq0YteCwuHU53rg3KYD64oGvQ6YiJMRIYauXmlyvRx1o1hLEqICuKc+UkUVjTz2fYSnl99kL+tyj7hY8prW/nls1upaWjnsx0l/OOtfT3uf/DGuSyfFc+Pbpjrs6E+I2mgH9hmTIrA0txJaU0rz60+yBOrsnl3QwHpiWHjctaEBNdj0LKZcSyaHtNjoVvyMVlTN/ciFnfQFBlq5InvrcCg17Et9+QvVzYNQ+Z6sOZMjeJrSyaxcmEyZTWt3Pe39Tz0wg625FR6apGvOmMyP7jOeZn8nsfX9wgs+1NY2eSpVf7J1+fz06/P6xVcJ5iDCDIaP3S+6wAAIABJREFUeO2LQ1htzlKb9dkVvPRpHkVVzWSkhDMjNYJ3NxTQ0t5/cF/b6Aws779mtqfudsakSM/P+VBJA0WVzSyaHsM585KYMyUKRVHQKQoP3b64R+ZSp1O47WvOYHu+Gs0PrptNTHggf351D//73gGqG9o95TRJMX3//nibOzWa+67KIshoYN8xl+d8pcrSjs3uIDrcyMHiBnYcrO4RyH/jfJVH7lrKN782vd+uBamubMYXu0r51iNf9crs9+edtYfRii2uoVBt/W5vd9XKZ6ZG+vTFfvqkCM+ajcEIDwnAoNdRbWmnsr738d9w7tHWZscGke6pknsO12G1Oac9un9XMlLCyS9v8izWmygaWjpZNiuOZbPi+dbFM+i22vnpM5s9C2f7Ut/Uwe9f3EFZbSuV9W28uTaff769j4de2OHJLi7Piqe6oZ0vTlDG5Qsbsiv4zfPbgaG1RxXDa74ajU6n8Irr96qiro3NB5y/K0WVzWzLraLK6/Xm1S8PUVbTyqb9lbzy+SGa27qZnW4mLNifyNAA1JQIbrtoeo+BPxPRJFfpx06tZ5vJc+YPvNXpWDKxz9Y4FRUe6GlJExzox5rdZaTE9h0cGfQ6/n7/Cvy8FqAFBhgwhxk9WY6T0ehq7B5iGv32N4szY6mob6WkqoXDZY08814O4Mz+LpkRhznMyNVnprPqq3w2H6gacAZm35GjQV18pKnPOniT0cBNK6fxzHs5HClvYlpyuKfHbHS4ka+vVLHa7Pz6ue1sP1h93B6gbjWubHeU12CeAH89j3znNO55fB3vbyqkrqmDs+clcuGS/uvpJsWF8Lf7lmP0N+Bn0PHADXN5/I29bM2p8tSCRoUZB5wV1ekU0hPDKK4anhZv7iDwwiWTePFjjSff2U9kaABWq52mtm4Wz4gdcOAaYvLnf25dwG+fd35Ayi2yUN/U0at14/sbC2jtsHL+ohTP1aDaxnaefe8AOkXhitPTeHPtEb57xUzmq8fvGf3FjlLqmjpOWNo1knSKQkxEIFWWNlrau0mNC+H+a2bT0WWly2onOiyQtXvKKa1poaK+1bNA0u5weLoe7TtSx6S4EM8ajwB/PfPVGA5+ljempsUOlc1up7Gly3P+0+JDWJgRw/aD1Xy6vYTFM2JJiw+lua2LT7eXkJ4QxpypUazeUkx+eRO/PCb7H2Q08JWrt/SijBg2ZFfw8md5zEiN8Iy69zX3wurvXD5zXF4mP1VMTQrnJzfNY93ecirq28gva+TFjzVe/jSPNtfaHaO/nr/fvwJFUSgod16Nfde1qA+ci5fvvDSTU6lKJyk6CJ2isMX1vnXhkhQSzEEsGqWx9kMlwfUYN3tKVL+T8/oKnKJCA3pcthysyvo2woL98TOM/sUNnaJw5enOiWFf7Czl5c/yCDIaePS7yzy1wl9bMon8ska25FTR2tHN11eqPcpq+uKeunnO/KQTrrieNdmMAny5q5R4s4lDpQ1cuiyVy5aneS55hQX5c6S8sd/guraxHQUwHxO0+BmcfYz3F9QTEx7I8qyB95v2/gAUFuTPA9fP4efPbKGpzZlJH+yQlXiziZxCi6cLhS/sOVRLZX2bZxHj0sw44iJMFFU1szAjBkVRqKhrHXRGOMXVIzcxOpjcIgv/ej+Ha8+e4mmNWVXfxtvrnW9aX+ws5e7LZzJ3WjTbDzo/INldA3oAXvxEY/qkSEzGnsfQ0t5NZX0b23KrSIsPZcEAaqNHSmxEICXVLViaO1m5MJnQoJ6laXdfMZOfPbOF37+4Ez+Djh/fOBc/vTOwBqioa6XOVaYzO91MdESgp+Rlb35dv7/P40VTazd2h4OIEOffnaIofOfymdzaaeXBpzfz5tp8fnjdHP759n7PItCk6CBKa3ovmP3Dt5eAA555P4cpiWFkTIogLtJEZX0bO7QaLjlteILrKks7kxNCe3RTEGNTemKYZ/FhcVUzv35uu+c+BejoslHb2IHN5qC1w4opwEBbp5XgQD++f+1sUuNCTrn6d38/PVMSQz1lkRcsShkTyb2TNfqRkxgWQ81cF1Q0j8kVugunx5AcE8x9V2f1WIQHMDMtEqvNzu5DtZ7LcN7Kals9UzMBiqubyUo3c9N50074nEFGP86al8i23GqeeT8HhwOy0qN6vPglRAVRUdd/aUFNQzsRoQF9trpzf4i6/PS0Ib2oBBn9eOye5Z6ygMFm0uLNQVhtdk8Jy1CV1rTwxJvZvL7mMO9sKMAcaiTAT0/GpAjOX5RCZKiRiJCAk1oQplMUHrtnOQ9cPwejvx6tpKFHdxR3X+gfXjeHeHMQL3yiYXc4evQuP1BoISIkgOa2bnbmVfPM+wd4Z71z8VttYzsPvbCdh/+zk/zyJhKjg8bUm15yTLDzTdruYHpq737B0V5XSLqtdjbtr2RXXg0KzqmyFbVt1LheJ248bxo3njuNlNhgUmKCWbunrNf+xqvtuUev4ngLDDBw0dJJ5BRa2LS/krySBi4+LRXAE1gv8RogddvXphMbYSI20sQvb1nADedOxaDX8fCdS0iOCSavpIH9BXX8/F9bPH8/9U0dvbr49MVddnY8NT5oASlGXkpsiGcoWmykiXtca2w27askv8wZSP705vk8++BZPH7fctLiQ8fUa8xIuttrYN5ILVIfLpK5nqDMoUaa2rrp6rb1CkL709rhzNQtzRy9qYTHE2ry5ze3LerzvjPmJFLb2MHqrcXklTTwNa+yij2Ha3liVTYzJ0dy16WZGP0NVNW3MWvywLoF3HjeNPLLmjhQUE9woB+p8T0vy8abTWzYV8HGfRXMV6OPWx9X09hBVFjfb5BnzU0kOSa4zz7Ug6XTOcfUOuyOAXcycXN3liiraR3UKvfj2by/Ep2iEBkaQG1jB5lpvh0a4c6ux4QHUlzd4umcAbAvv5Z4s4nMtEjOX5TMsx/mcu/j6zH660mND6Wto5tqSzsrsuJ5b2Mhz310tA3hxael8qeXd/e4AhQ1xsokLl2WRnpiGGU1rcyY1PvDiV6n85Q/xEWa2J1XQ3hwAOlJYWSkhLMrr4ZXvzhEgL/ec6VHURQWz4jlja/yaWzpJDTIn3fWFxDgr+eCxSnjro92YWUTr6/JZ86UKGb08QHkzLmJfLCpkFdcPcRnp5sprGjyrAW4bEUaKxclExMeeMIOOonRQew9XMvzq1upb+rk9TX5fOeyTB54chMAzz54Vp9BU21jO0+9cwCbzc6vvrmwz22sNjt1TR291oSI8eEX31hAQ3MnSTHBnrU5728qJN5s8rTxVRSF8fWX5XuhJn/uuiyTirq2cf8BQzLXE5Q7KDo2m1pZ38bm/ZUnzJJ8vNXZ2i0r/cTlKGONTqdwzVlTuHBxCtn5dezOc06H2p1XwxOuFdv7j9Tzi39vpcQVhA10tLtOUbjqDOcC06x0c68AIzEqiK5uO89+mOsZBNSX2oZ2osP6DtB0OoVpyeE+e1Ex6HWsXJQy6BXmyTHB6HUKR4bQbQacl0M/3lrMrrwaZqRGcNdlMwkO9OOc+clD2u/x3HX5TE+2Y39BHR1dVrSSBk8HFHf7vPZOK5bmTuZMi+aP317KD6+fwwWLU5g7tefv+4bsCuqaOlieFU+ya0Go+TjnbrTodAqzJpudQe9xSnhuu2g6D1w/h5ULk2lo6aKwshk1OZysdDNBRgMO4DuXZfa4muLOgj++Kps/vLyL9zcVsuqr/AFdnRlrdufV4sDBHRdPR6/r/ZYX4Kdn+qQITz1svDmIe6+axWP3LONHN8wlNsJEalxov60p481BtHfaqG9yrlc5Ut7Yo8uQ+yqKN5vdzp9e3k1BRRPF1S1UWdrZqdX0mFPQ3NbF31Zl43AM/iqUGBuCA/08i8q9M7IVdW0kRgWNuw+sw2nR9Ngx32ZwICS4nqDcQ0HyvaYLbt5fyc+e2cK/PsjhxU+O3zpqe241Wenmcbto5orTJxMW5M/2g9V0ddt4b1MhOkXh5zfP5+srp9HQ0sX6bOfglcFcZs1Mi+SeK2dxo1cXBrfFM+JIcb14trT13TWk22qjoaWLqDF+aTfAT09SdDAfbi6irHZwQ1pqGtpZvbXIU2f4+prDVFnamT0liskJoTzxvRWeQNXX4iJN3HJBBgCPvbaXDzYVYbU5PAMMosKMLJoe46mZnuyqicxMjcTob+Bbl8zg7stn4u8aBPHV7jIUxdnBJNQ1Hno8toQK8NMzIzWyR2/u9MQwYiJM/OHbS/nTt5f2+iCdEhNCemIoRZXNPQY0NbkWOo8nVZY2osKMJwyO3T+bAD89JqMBP4Oe8OCAQY3m9r6qceGSFOqbOj21/Qa9jidWZXuy427Zh+uoa+rg8hXOYOK1Lw7xz7f39Wjt+dqXhzngyqKnxY/P12TR01/vWcaZc5xD4WRwz8QkwfUEFRVmJCzInw83F7HBlUnddagGc2gAc6dGsXl/JW0d3RwubfS03HI4HJ4Wbr4oTRgtBr2OKYlhbMmp4g8v7aKosplbLlBJTwxjRVY8OkVhp+bMag80cw3Oy+XzpkX3+SZtMhr41TcXEhES0Gtappv7du862LHKPa72s+3Fve7be7i2zx7qFXWt/OTpzbyxJp+/vNqzLd7xxt/62pypZr6+0llD/9GWIgDP4kZFUbjrspncfcUsHrpjMacfUy5j9DewICOGJ+5bgV6nUFzdgjnUiEGv45qzppAUHYSa4pvhMaMh3mwiIyWcxKggprla/wUH+vXZm1+nU/j5zQs4a24i58xP8kyFbGzr6rXtWNXZbeOtNYcprGjut3XdwowYFmbEcM1Z6Sf9fHOmRnHW3EQev285M13rBzbtryTE5Mfj9y5n2cw4PttRQrnXB9YdWg1BRmfdd1ykyZPddme8u612sr0y3tFj/IO5GJiw4ADOdrWYS4mVD0wTkQTXE5SiKFyyLBVLcyf/91EuzW1dFFc1k5YQxteWTMJmd/CPt/bx8Es72eUqnyioaPa0b3MHJOPVVFcmqqiqmVmTzaxwjY73M+hJiDLR2NpFbKSJyBDfBbqKohAdHkjdcRYCuj/kjIcX08tXpDElMYyS6p6Z665uG39blc1DL+ygpqEdm93Our3ldHXb0IobcODs0+7d8zvebBqxhVh6nY6z5yUx2xXMx5tNvbp/gDNbpO9jUSk4V627W1/GRTqDspTYEH57++JBD3oZSxRF4cc3zuOhOxb3+TPpy83nq9x03jTP60Fz6+AHNY2WvYdree4DZ7Kgv6A0LDiA71w+k7PnnXxP3cAAAzefrxJq8ic1PhRFcQ6NSowKwmQ0cP6iFMC5kPpAQT2lNS3sL6hjVroZvU7HUq966sLKJqw2Ozvzqmlp7+a0mXHccM7UcV+HKo5Kig7mV7cu5PTZA+8MJcaP8XeNUwzY2fOSSI0L5Xcv7mBDdgU1DR2cPjuBtIRQwoP9OVjsbDnlzqh+6spSzkiN8LQRGq/OmptIc1sXH24uYunMngszz1uQTFFVM1ecPtlnrebcosKMbNpfyafbSzh3QZKnli47v5bVW4tZPiu+1xj1sUinKKTFh7J2Txlf7SljQ3YFi6fHEht5NEg5UFBPWJA/z68+yA6tGlOAgRCTH7dd5BxsY3eApbljxLLW3mZONrM3v25AI8X7MmuymYKKZkJM4zeY9iWT0YBOUWhq62LfkTriIk1jOotqtdnZc6gWgFCTHzMnj+z0wcAAAxEhAdQ3dXr+3mMjTSgKlNe28cGmHM+201OcpScrFyQTFWakpb2bVz4/xJc7SymvayPIaOC2i6ZLXe4ENF5LL0X/JLie4FLjQ4gJD+SNr/IBUFMi0CkK86fF8MUu50SxusYOjpQ3sS23msuXp3HpBFhM4GfQcdUZ6Zw1N7FXv+sVsxNYMUzPO29aNAeLLbz6xSHW7C7jJzfNIyzIny0Hqgg1+XHz+eowPbPvJccE02W18+LHGkFGA698cYjI0AAC/PXoFMgva/R0FtnvGsjjnih5+8UzRvPQOXNuArPTzSe9APGSZanodQpzpo6dntajSacohAT58fmOUj7cXOS5PTjQj8fuWdZna8nRtHprsWcYxeP3Dddf+4mdOz+ZL3aWsnKhcwGvn0GHKcDQo54ajgZYAf56lmbG4XA42Hekjnc3FhAZapQFb0KMQ2PrFVH4nE5RePCmeZ6v3QsdL1mWyjcvzCA63EilpY39BXUo4KkDmygiQ40jeil13rRoHvnOacRFmqiqb2Pd3nIcDgc5RRZmpEaOiaE8A+W98PDOSzMBqG/qZNnMODJSIsgrbaCkpuckx8EOrBkuep2OqPDAkz73ep2OS5alDdviy/EoJNCfTtcQILeW9u4eHTFGW3FVM01tXZ6pd5edfvI11EN1/qJkHvnO0h4LmPu6kpJwzII2RVG4aMkk2jttlNW0Ei8L3oQYdyRzfQqICAngJzfNc07ccwUboUH+rJidQE6Rhe251ew/Uk9KbPC4b9w+FugUhQdvnMsDT26ipKqZ+qZOmlq7xt0i0YSoo4vAvDtNnL/I1erwUC01DR3MmRJFY2sXBRVNpMllzglrZlokluYOAvz1nnZzAEfKm8bEGo3Wjm5+/dx2woL9iQ5zTpq8/dJMamtHJ/jv64PdNy7IoKKujUOljZy3IJnWju4+s/7eP09pvyfE+CPB9SnCOzjyds2Z6ZhDjZTWtPQYuiKGJizY2ZVlh1ZDtWu8tHtx3HjhZzjaHzvAT8+DN86lrdNKdHggWelmXv7Med9FSydhDDDw4eZCpiSN324a4sSuPXsK1549hde+PMQn20q46bxpfLC5kCPljZwzBq54bdrvnMra2NJFY0sXK7Lix9wCQJ2i8P1rZ1NR13bCDyT+fnqCjAZaO6ye1pFCiPFDgutTXGSokavPHL1LpxNZZlokO7QaiqucmbPYcRZcA9x/TZbn/2rK0Z6/0eGB/PD6OUSGBHgya3dekjnixydG3iWnpWH0N3DGnARyCus5Uj60YUO+kn24FoNe8UzoHEybzZFk9DcMKNP/s5vnY7M5iBxjU0GFEP0bPwWgQowzp89O4N6rZnm+Dj9mYeV4kJUeddxJnZmpkXLJ+hRkMhq4bHkaBr2OyQmhVFnaqbKM7uTGbquNQ6WNnDH7aO/y1LjRL1UZinhzkGeqnxBifJHgWohhoigKc6dGMyUxjBCTn6z4FxPOzDQzOkXhjy/t8vQ277baPIOpRsoXO8vostqZ51VCcbxSOCGEGG5SFiLEMHvwprmMcKwhxIiYFBfCD6+bzV9e28On24sJMfnzyueHOHNOAleekT7sC6QPFlk4WGxhfXYFM1IjmD4pgjsunk5LW/e46swjhJhYJLgWYpjpdfImLyau6amRpMaF8sGmo/2vv9pTTmlNKz+7ef6wPvcz7x+gocU5kv26s6cAcNpMmXgnhBhdAwquVVW9EfgF4Ac8rmnaP4+5/wrgN4Ae2A7cqWlal6qqtwB/BKpcm36oadrPVVVNAV4CYgANuEnTtLHTLFUIIcSAzUiNoKCi58LGw2WNdHRZMfoPTw7HbnfQ1mkFYHlWPHNl4I8QYozo91VPVdVE4PfAfKAT2KSq6hpN03Jc9wcB/wDmaZpWparqq8CtwDPAAuAHmqa9csxunwSe1DTtVVVVfwn8EnjQR9+TEEKIEXTegmSM/npmpplJiQ0mp9DCo6/t4Y01+Vx5xmTaOqwcLmtkaWacT57PZrezcV8lXd12vnXJDJ/tVwghfGEgKYVzgS81TasHUFV1FXA18FsATdNaVVVN1TStW1VVE85stMX12IXAVFVVfwbsBe4FWoDTgctd2zwPrEWCayGEGJdCg/y5aGmq52s1JZxJsSGs2V2GTlHIPuIcODRrstknddj//fwQa3aVATBrsnnI+xNCCF8aSHCdAFR4fV0BLPLewBVYX4iz1KMM+NRr278Am4CHcWa4HwCaNE2zem0zqAkEZvPotSeKjpYJdKcCOc+nBjnPw+eh75zGN379CUXVzdQ0dABgabeSlhI5pP12W+2s3+t8S8qYFNHv/uQcnxrkPJ8axst5HkhwrQO8ex0ogP3YjTRNWw2YVVV9GHgKuFHTtCvc96uq+giQD/z4mP3R1/5OpK6uBbt95NsvREeHUFPTPOLPK0aWnOdTg5zn4XfhkhQ+3lrs+XpPbiXJkUMb7lJc1YzVZucb56ssnhF7wnMo5/jUIOf51DAa51mnU04qoTuQNgalgPfy6zig3P2FqqqRqqqu9Lr/ZSBLVdUwVVW/73W7AliBaiBMVVX3bOV47/0JIYSYGKYmhfdoQ3mwuGHI+yyqdL65ZkyKIDBAGl4JIcaegQTXnwPnqKoa7aqpvgr42Ot+BXjJ1QEE4BpgA87a6h+rqrrYdfs9wNuapnUD64HrXLd/A1g9tG9DCCHEWJPlVQ993oJk8koaaO+0nuARJ7b5QCXPrT6Iv59uzI43F0KIfoNrTdPKgJ8Da4A9wH81TdumqupHqqou0DStDrgT+EBV1b2ACjyoaZoNuBZ4SlXVXJzdRn7s2u3dwJ2qquYAK3C2+RNCCDGB6HQKf7prKX/49hIWTo/BZnewaX9ln9tqxRYeemE7eSV9Z7e/2FnKv97PITkmmFsvzJCJp0KIMUsZ6TG1Q5QKFEjNtRhOcp5PDXKeR5bD4eDhl3bS2WXjt7cv7nXfL/69lYq6NlLjQvifWxf2uL++qYMHntwEwB/uXEJspGlAzynn+NQg5/nUMMo112lA4YAfN1wHJIQQQrgpikJGSgTltW10W+1YbXZPiUhLezcVdW0oCpTWtGC12dGKLWTn1wFQXO2cMfati2cMOLAWQojRIsG1EEKIEZEUHYzd4aCirpX/ffcA3/3rOux2B1WWdgAWz4jFanNQXtvKn/67m8ff2Muew7VszXEO+Z0zNWo0D18IIQZElloLIYQYEUnRQYAzO70zrwaAz3eUeLp+LJkRx5YDVZ6MNcATq7IBiAozSncQIcS4IK9UQgghRkRspAm9TuFQaaPntle/PAyAosCM1AhmTo7krXVHej12ckLoiB2nEEIMhZSFCCGEGBEGvY54cxAb9zknLN5/TRY3n69i0CsszIjBoNdx9ry+B/bGRkittRBifJDMtRBCiBGTFBNEaY1zgeLkhDCy0v04fXY8ep0z1zMzLZLocCPBgX6oyRF8taeMji6b1FsLIcYNCa6FEEKMmNS4ULYccC5QDA70A/AE1uDMbv/+W0vQ6xQUReHas6dgtdkx6OVCqxBifJBXKyGEECNmRVY8APOmRR93G4Neh+I1JEYCayHEeCKZayGEECMmMMDAE99bgZ9BAmYhxMQkwbUQQogR5S4HEUKIiUhSB0IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIBNdCCCGEEEL4iATXQgghhBBC+IgE10IIIYQQQviIYbQPQAghhBBCjG8Oh4OWlkba21uw220+3391tQ673e7z/QLodHoCA4MJDg5DUZQh70+CayGEEEIIMSQWSw2KohAZGYteb/BJkOrNYNBhtfo+uHY4HNhsVpqbG7BYaoiMjBnyPqUsRAghhBBCDElXVwfh4WYMBj+fB9bDSVEUDAY/wsPNdHV1+GSfElwLIYQQQoghcqAo4zesdB67wyf7Gr8/BSGEEEIIIcYYqbkWQgghhBATTmtrC08//U/27NmJXm8gJCSEe+75PqqaMazPK8G1EEIIIYSYUOx2Ow888D3mzVvAc8/9F4PBwK5dO3jggft46aXXCQsLH7bnluBaCCGEEEJMKLt27aCqqpLbb/82Op2zCnrevAX87Gf/M2wt/dwGFFyrqnoj8AvAD3hc07R/HnP/FcBvAD2wHbhT07QuVVWXAX8F/IE64DZN04pUVT0DeAsoce1it6Zp3/TFNySEEEIIIUbXxn0VbMiu8Nn+FAUcrvWGy7PiWTYr/oTb5+VpTJ06zRNYuy1dutxnx3Q8/S5oVFU1Efg9sByYA9ypquoMr/uDgH8A52malgkYgVtdd78M3KFp2hzX/59w3b4A+IumaXNc/ySwFkIIIYQQPqHTKfj7B4zKcw8kc30u8KWmafUAqqquAq4GfgugaVqrqqqpmqZ1q6pqAmIAi6qqAcAvNE3Ldu0nG7jX9f+FQKyqqjcAhcB3NU0rQQghhBBCjHvLZvWfXR6MwQ6RyciYwdtvr8LhcPTou/2///tPFi5czLx5C3x2bMcaSHCdAHjn9SuARd4buALrC4GXgDLgU03TOl1fo6qqDvg18I7rIQ3A65qmvaWq6l3Aq8CygR602Rw80E19Ljo6ZNSeW4wcOc+nBjnPE5+c41ODnOfRV12tw2AY3g7Pg9n//PnziYyM5Pnn/8Vtt30LvV7Pli2b+Oij97n++hv73JdOp/PJ79JAgutju2orQK+PDpqmrQbMqqo+DDwF3Aigqqo/8ILruR52bXuX1+OeVlX1j6qqhmma1jiQg66ra8Fu902j78GIjg6hpqZ5xJ9XjCw5z6cGOc8Tn5zjU4Oc57HBbrcPy3hyt5MZf/6HPzzG3//+KDfeeA0Gg4GwsHD+/OfHCQuL6HNfdru9x++STqecVEJ3IMF1KbDC6+s4oNz9haqqkcACTdM+dd30MvCa675g4D2cixkvc2W4dcBPgT9qmmbz2q910EcvhBBCCCFEH8LDw/nlLx8a8ecdSH79c+AcVVWjXTXVVwEfe92vAC+pqpri+voaYIPr/y83xsRKAAAgAElEQVQBh4HrXGUiaJpmB65w7QdVVb8BbNU0rXWo34wQQgghhBCjqd/gWtO0MuDnwBpgD/BfTdO2qar6kaqqCzRNqwPuBD5QVXUvoAIPqqo6F7gMZy31LlVV96iq+pFrt7cA96uqegD4JnCHz78zIYQQQgghRtiA+lxrmvZf4L/H3PY1r/+/w9HFim67cWa1+9rfAeC0QR2pEEIIIYQQY9zwLusUQgghhBDiFCLBtRBCCCGEED4iwbUQQgghhBA+IsG1EEIIIYQQPiLBtRBCCCGEmHCWLx++EecnIsG1EEIIIYQQPjKgVnxCCCGEEEIMVHfeRrq1dT7bn6IoOBwOAPzU0/Gbtsxn+/Y1yVwLIYQQQgjhI5K5FkIIIYQQPuU3bZlPs8sGgw6r1e6z/Q0nyVwLIYQQQgjhIxJcCyGEEEII4SMSXAshhBBCCOEjElwLIYQQQogJZ8OGHaPyvBJcCyGEEEII4SMSXAshhBBCCOEjElwLIYQQQgjhIxJcCyGEEEII4SMSXAshhBBCCOEjElwLIYQQQgjhIzL+XAghhBBCTDhtbW089dTf2bZtM0ZjIEFBQdx2250sWLBoWJ9XgmshhBBCCDGhOBwOHnzw+0ydOo2XXnoDPz8/8vIO8qMf3c+vfvU75s1bMGzPLWUhQgghhBBiQtm9eyeVlZXce+8P8PPzA2DatAxuueV2Xnjh2WF9bslcCyGEEEIIn9pasZPNFdt9tj9FAYfD+f+l8QtZHD//hNsfPJhDRsZ0FEXpcfucOXN5+ul/+Oy4+iKZayGEEEIIMcEo2Gy2Xrd2d1s5Jt72OclcCyGEEEIIn1ocP7/f7PJgGAw6rFb7gLfPzJzJqlWvYrVaMRiOhrv792eTkTHDZ8fVF8lcCyGEEEKICWX27LmkpaXzt789itVqBeDgwVxefPFZbrnl9mF9bslcCyGEEEKICefhhx/hmWee5Oabr0Wv1xMSEsovf/nQsHYKAQmuhRBCCCHEBBQQYOTee3/Avff+YESfV8pChBBCCCGE8BEJroUQQgghhPARCa6FEEIIIYTwEQmuhRBCCCHEECk4HANvlTfWOI/dNw2wJbgWQgghhBBD4u9vpKGhFqu1G4d7lOI44HA4sFq7aWioxd/f6JN9SrcQIYQQQggxJBER0bS0NFJfX4Xd3nsy4lDpdDrs9uHJjOt0egIDgwkODvPJ/iS4FkIIIYQQQ6IoCiEh4YSEhA/L/qOjQ6ipaR6WffualIUIIYQQQgjhIxJcCyGEEEII4SMSXAshhBBCCOEjElwLIYQQQgjhIxJcCyGEEEII4SMSXAshhBBCCOEjElwLIYQQQgjhIxJcCyGEEEII4SMSXAshhBBCCOEjA5rQqKrqjcAvAD/gcU3T/nnM/VcAvwH0wHbgTk3TulRVTQFeAmIADbhJ07QWVVXDgZeByUANcK2maZU++p6EEEIIIYQYFf1mrlVVTQR+DywH5gB3qqo6w+v+IOAfwHmapmUCRuBW191PAk9qmpYB7AB+6br9d8B6TdOmA/8C/uaT70YIIYQQQohRNJCykHOBLzVNq9c0rRVYBVztvtN1W6qmaVWqqppwZqktqqr6Aae7tgd4HrjG9f+LcGauAV4BLnRtL4QQQgghxLg1kLKQBKDC6+sKYJH3BpqmdauqeiHOEpAy4FMgCmjSNM3q9bikY/epaZpVVdUmIBooH8hBm83BA9lsWERHh4zac4uRI+f51CDneeKTc3xqkPN8ahgv53kgwbUOcHh9rQD2YzfSNG01YFZV9WHgKeBHxzwOr8cpx9ze5z6Pp66uBbv92F0Pv+joEGpqmkf8ecXIkvN8apDzPPHJOT41yHk+NYzGedbplJNK6A6kLKQUiPf6Og6vDLOqqpGqqq70uv9lIAuo/n/27js6jvJq/Ph3d9V7712WRu625F6wDcY00w2EHggk1Lwk4ReSQEgnkJeEJNQk5A0JLRRTbTC4915lWxr13lddWmlXu/v7Y1djyZJtyV5LNr6fc3zOTtnZmR159s4z97kPEKgoisE5P7rP+yqd20FRFDfAHzAOe++FEEIIIYQ4hwwluF4DXKIoSrgzp/pGYFWf5TrgLWdlEHDkVW9RVdUCbAZucc6/C/jS+foL5zTO5Zud6wshhBBCCHHeOmVwrapqJfAksB44ALyjquouRVG+UBRlmqqqRuC7wApFUQ4CCvCE8+0P4aguchSYj6OcHziqhsxSFOWIc52HXXlQQgghhBBCjAad3T7yuctnIAkolpxrcTbJeb4wyHn+5pNzfGGQ83xhGOWc62SgZMjvO1s7JIQQQgghxIVGgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVzEbSgrKYpyG/AU4A78WVXVl49bfi3wK0AHFAP3ONf9us9qgUC4qqp+iqIsAD4Cyp3L9quqes+ZHIgQQgghhBCj7ZTBtaIoscDvgCygG9imKMp6VVWPOpcHAK8C01VVrVQU5dfAL1VV/R9ginMdPbAWeNK52WnA86qq/t7VBySEEEIIIcRoGUpayGJgnaqqjaqqdgAfAsv6LHcHHlZVtdI5fQhIOG4b9wCdqqq+45yeDixRFOWQoiifKYoSf/qHIIQQQgghxLlhKGkhMUB1n+lqYEbvhKqqRuBjAEVRvIGfAC/2LlcUxYCjxfraPttoBt5XVfUjRVEeAP4LzB3qToeG+g11VZcLD/cftc8WI0fO84VBzvM3n5zjC4Oc5wvD+XKehxJc6wF7n2kdYDt+JUVRAnEE2QdVVf13n0WXA/mqqmb3zlBV9YE+r19TFOVZRVECVVVtGcpOG43t2Gz2U6/oYuHh/tTXt43454qRJef5wiDn+ZtPzvGFQc7zhWE0zrNerzutBt2hpIVUANF9pqOAqr4rKIoSDWzGkRJy33Hvvw5Hy3TvunpFUZ50tmj31TPUnRZCCCGEEOJcNJTgeg1wiaIo4Yqi+AA3Aqt6FzqD5M9xpHk8pqrq8U3Ks3EE3gCoqmoDrnduB0VR7gJ2OvO5hRBCCCGEOG+dMi3EWQHkSWA94AG8rqrqLkVRvgCeBuKBTMBNUZTejo57VFXtbcFOwdH63dfdwD8URfkFUAfcdeaHIoQQQgghxOgaUp1rZ5WPd46bd6Xz5R5O0gKuqqrPIPOOAHOGvptCCCGEEEKc+2SERiGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEEEIIIVxEgmshhBBCCCFcRIJrIYQQQgghXESCayGEECOqsr2apq5mAOx2O7mN+djstlHeKyGEcA0JroUQQowYu93OM7te4KltzwCQ3XCUFw/8g40V20Z5z4QQwjUkuBZCCDFijF1N2uvqjlpKW8sBqOmoHa1dEkIIl3Ib7R0QQghx4ShuKdVe/9/ht6nqqAGgwdQ4WrskhBAuNaTgWlGU24CnAHfgz6qqvnzc8muBXwE6oBi4R1XVJkVR7gaeBXqbJFaqqvqkoigJwFtABKACt6uq2u6KAxJCCHHuqmyvxqAzYLVbqeqoId4vhlZzG6VtFdjsNvQ6eaAqhDi/nfIqpihKLPA7YB4wBfiuoijj+iwPAF4FrlJVdTJwCPilc/E04Ieqqk5x/nvSOf8V4BVVVTOAPcDPXXQ8QgghzmG1nfVE+IRp0w9Mvocb067B1GOipLUMm92GxWoZxT0UQogzM5SW68XAOlVVGwEURfkQWAb82rncHXhYVdVK5/Qh4Hbn6+lAmqIoPwMOAo8C7cBFwHXOdd4ANgJPnNGRCCGEOOfVdtYR7RvJ1SmXU9tRR5BnIGND0tHr9ByoO0xeUyGfF33FQ5O/Q3pQCjWd9YCdeP/Y0d51IYQYkqEE1zFAdZ/pamBG74SqqkbgYwBFUbyBnwAv9ln3eWAb8AzwEvA40Kqqak+fdeJO/xCEEEKcD6w2K/UmI5PDJzA5fDyEjwfAx92bSWHj2FGzB3e9OwDryzdzxJjLxoqtANw34U6mRkwctX0XQoihGkpwrQfsfaZ1wICCpIqiBOIIsg+qqvpvAFVVr++z/A9AIfDj47bHYNs7mdBQv+Gs7lLh4f6j9tli5Mh5vjDIeR45VpuVl3f9B5vdxpR4ZcB3f9PkK3lyzR+06ZzGPHIa87TpdZUbmZKYzt/3vMPlaQuYFjt5SJ8r5/jCIOf5wnC+nOehBNcVwPw+01FAVd8VFEWJBr4C1gE/cM4LBO5VVfUF52o6oAeoAwIVRTGoqmoFoo/f3qkYje3YbMfH52dfeLg/9fVtI/65YmTJeb4wyHkeWfvrstlSugsvgydxbokDvvsgwnhs6gPsqTtAon88b+d+AMDDk79DbWc9H+Z/xiMrHd1zDtXmsDR5CVG+kUwJn4BOpxv0M+UcXxjkPF8YRuM86/W602rQHUq37DXAJYqihCuK4gPcCKzqXagoigH4HHhfVdXHVFXtjXrbgR8rijLTOf0I8LGqqhZgM3CLc/5dwJfD3nMhhBDnPKvNCkBFm6NbzhPTv49Bbxh03bTgFG5VbmBa5LFW6ZTARKZFTsHbzYsInzBuz7gJd70bK4q/5vXDb6I2FZz9gxBCiGE4Zcu1qqqViqI8CawHPIDXVVXdpSjKF8DTQDyQCbgpirLM+bY9qqrepyjKzcCrzlzsPByBNMBDwL8VRXkKKANudelRCSGEGHU5jXm8dOB1Aj0CMNssxPhGEeETfsr3eRg8CPcOpdNiwsvNCy/gmblP4a53R6fTUdhczI6aPQCUtJahBI/Bjn1AGb8V6hpyqou4a9wtwyrxd8SYS4OpkQVxc4Z1vH01mIzUdTYwLlQ57W0IIc5POrt95NMrzkASUCxpIeJskvN8YZDzfHY0dTWzpWonY0PSeWHfq/2WTY+cyrfHD60txWw1Y7Pb8XLzHHRZYUsJ7+YuJykgATt2mrtb+WHmg1qKSJu5nZ9scRS1ujHtai6Onz9gOyfy8LofA/DXhb8/YSv7qfxg41OYrWb+eNGv8XLzOq1tiKGR/8sXhlFOC0kGSob8vrO1Q0IIIS4MXT1d5DbmA/BxwUpWlazVAuto30huTLuaAA9/liQuGvI2PQwegwbWvcvGhqQT7RvF3rqD7Ks7RFFLCUcbVW2dA/XZAPh7+LG6dIOWnnIiDaZGqtprqOmo0+a9mfM+Nvuw+tsDjsDebDUDDJq2UtVew483/ZLl+Z8Pe9tCiHOfDH8uhBBiUM3dLbyw91XGhSrcolx/wvU+K1rFxoptLIqbx966gwC4690ZH6qwMG4eacEpLIyb6/LRFyeHT+CwMUebLmguZnxoBmarmY0V24j0DeOqpCX835F3qGivIjEgftDt2O12frH9WQCyIo7le++u3c9FcbNJCUwa1n71rXKS11TI5PAJAGyv2k1VRw11nQ109HSyrnwz82NnDSlVRghx/pCWayGEEIM63JBDQ1cjmyq302npZGvVTkw9Xf3Wsdqs7K9ztBKvr9gCQIxvFA9Ouof7J95FWnAKwFkZ1nxOzHSemfsUt2fcRKxfNOVtlXRYOnkndznVHbVcOma+FhgXtZQOug273a61ugPsrTvI4oQFTIucAsDO6r0n/Hy73U5F28BiV2pjAb7uPiQGxFPZXq2t+1buB6wr39zvhmCf87sT4kJ2uCGHP+x5kTZz+2jviktIy7UQQohB5fZJaXh+7yvUdtZR01FHcmAiU8Mn0tzdwq92/AGLrYe7x32Lxq4mIn0iyAhJw3uE8owDPQOYEzOdwpZiDjfk8LdD/6awpZhxoQrXZCyhvr6NIM9ASlrLBn3/uvLNfFSwAje9G8kBCTR2NbEkcRG+7j54GTzZUrUTT4Mn14+5ql/Jv5buVl4//BZFLSU8nvUwyYGJ2rKC5iLSglLwc/dlb90h7HY7VR01AIR4BRPqFcxFcXP4tOALKtqHVYlWiG+Ulu5WNlVu54gxl/K2Sv66/+88MuU+Aj0DRnvXzogE10IIIQZV0lJGhE8YdZ0N1HY6cpHXlW+G8s3cP/EuTBYTFlsPGcFpTI+cesJ60yMh3j+WHdV7aG8pBmBp8hJtWYxvFLV9cql72ew21pZtBOBW5QZmRU/rt/zm9OsAWFu+iVi/aGZGZ2nLVhZ/TVFLCQDlbVVacN1u6aChq5F5sbPwdAbnxq4mdlbvRa/T83jWIwR6OgbC2FOzn6r2aoS40BxuyKHF3Mrass3atSXYM4h6k5F3cpfz4OR7RnkPz4ykhQghBI60gZXFq3kz5/1Tdn47H+2vy+bD/M8YaoWolu5WmrqbyQyfpM0bE5Ssva7vbKCqowZ3vRsPT/nOqAbWAPF+sdrrH2Q+2C+/OtwnjDpTw4Bjz23Mp8Xcxr3jbx8QWAMY9AZuUa4nJTCR9/M+YXfNfux2O/lNRWyt2sWksPF4GTwpbS3Hbrezu2Y/T2z+FQCJAXFaSkx2w1G2V+9mcth4LbAGiPWLpq6zAVOPyaXfhRCj6bVDb/B50VcnXN7V08Wrh/7FO7nLtcAa4HuT7mZOzAzUpoIhX6fOVdJyLYS4YHVbzbx84J9MCR/PmrKNtJgdZZ4Wxs0l3j/2FO8+f1isFl4//CYAk8LGkx6cetL1Oyyd/GzrbwFICUpicucEshuOsih+PgXNjpbhTwq/wMfNmyifiLOSTz1csX7R2uuUPikaABHeYXRbzbSa27Xgts3czmeFX+Lr7sOk8PEn3K5ep+e2jGX83+G3eePou+Q1FbK//hAAC+LmUNtZx46aPVhsFq0zZ4R3GAn+8XgaPAjxCubD/M8AuOi4utnjwzL4omQNe2oPMj921pl/CUKMsubuFrIbjpLdcJSrki8d9NpwuOFYn4MI7zB+NO1hzFYzIV7BFLaUYLFZaDW3U9NRS15zIVenXDaSh+ASElwLIb4RytuqOFifzVXJS9DpdGyp3EGgZwATw8ad8D35TYUUthRT6Ewl6FXdUUucX4zWGmuxWjjYcISsiMmj3kJ7OnoDYoAd1XtOGlzb7DY+yPtUm473j+X+CXditlkG/FB29pjIDJh0/CZGhZebJ4sTFpASmDhgP8N9wgCoNzUQ6OmP3W7n1YP/oqaznjvH3oy7/uQ/hdG+kfx0xmO8nfsh26p3AfDUzB8R7RvJlUmL+dfRd7XA+kdZD/WrLnKbciNfl20g2DOQtKCUfttN9I8nxjeK7VW7mRcz87z82xKir6PGY5VyilpK+z3t6lXp7H8A4KZ3w8/dF9x9AQjzCgHA2NXIf3Leo7m7hYzgNO0p0PlCgmshxDfCn/e9Rpe1C4POjQVxc3hX/QiAly/+wwnf01uDOMY3Cl93H/KbiwD499H/8p76Cbdm3MD2qt1Y7Vbym4vwd/dDCRlz9g/GxYpaStChY0JYBgfrj/Cnva+wLO0aPAzu9NisxPnH0G7uwM/DF7WxgN21+5kUNp5vKdcT4OFo6fU0eABwR8ZNhPuEodfpyTGqXJxw0WgeWj/Xj7lq0PmRzuC6tLWcrVU7OVCXjdlmYVnaNWT1GWr9ZPQ6PVenXMaO6j0EeQYS7RsJwLSoqZS1V7K2bBOJ/vEDyvaNDU1nbGj6oNvU6XTMjpnO8vzPeWT9E9ySfj0Xxc0e4tEKce6pdgbOOnRsqdyJ2pjPFcmL+93wVvcJrv09/Pq9P8w7FIC8pgJ0OG42d9ful+BaiNFis9vYWrWTAA9/ra6suDB0WDrpsjpKxK0o/oqazlptWWNXEyFewQPe02Ozsrf2IONDM3hw0j1YbBZ+sPEpbXmXtYv/HH0Pq/1Y/nVzd8tZPIqzw2a3kdOYR4xfFHNjZnK4IZeytgreUZdT3lYJwLWpV/Bp4ZdcHD+fJucx3jn2JnzcfQZsb3bMdO318ekX56pgzyAMOgMfFaxAhw47jnzO8cMcmjzIM5BHptxHhHf/utSXJ14CgBKcNux9mxU1jbVlm2jubmFN2UYJrsV5q9PSSYOpkWjfSDwMHuyu3QfAFyVreDzrEZIDEwDHIEpTwycS4RPOvNiZ/bYR6hWMm96tX852WWv5yB2Ei0hwLb4xNlZs03IbH578HcYN84dTnJ8q26tZX+6or+zr7kOHpZM9tQe05btr9nNZ0sX93mO329lVcYAWcyu3xt6ATqfDw+DBS4ueo7m7hVWl66hur6GwpQRvN2+tw1ldZ/3IHZiLrC/fQnFrGbekX8fEsHH8ZeEzbK3ayXt5n2jrfFr4JeCsBOI0WGB9vjLoDdpIi1clX4qfhy/ZDTmEe4cNe1tjQwa2Qvu4e3PDmKWntW8+7t48NfOHvKd+yp7a/XRaTPi4e5/WtoQYLfvrsrV+HRPDxjIjKov/O/y2diO7ougrvN286LaZMXY1sSh+Povi5w3YjrvBnR9Pe5TPi1aR7czNruyowWK1jNzBuMDo90IRwkX21B4g0iecAA9/1pZtOu97G4tTs9h6+NPeV9hevRuAZ+c9reXsLU5YgBI8hnXlm6nvNGrvMVst/GX/3/jz9tcBGBdy7CZMp9MR7BXErcoNZDpH6rt3/G0kBzhaaGvPs+C6qauZ1aUbyAhO0zrTGfQG5sTMIC0ohXnHdaLr/e5CB2npP9/1/sjPjM5ifuxsHpp87zmT4+zt5s3MqEzs2KlorzytIdeFOFtyGvN4cuvvWFWy7oTrbKzYqr0O8wolM2ISf1rwG349+6fMi5lJblM+++uzOWpUAZhykqfLsX7RXJqwCIDpkZnY7DZqzrNrr7RcD1ODycjOmn1cmbT4nLkwC0fP/5LWMq5OuQw3vRsfF6xkT+0B9Do9k8LHn7LD0tlU21lPV0+XVhrMbrfL346LFDQV0WXtZkr4RGZGZaLX6bky+VLym4u4LHERreZ2/nfPi3xZsoY7x97M0UaVfbWHtNzqGVGZGPSGQbc9J2YGUb6OAVHGhSr868g7HG7IpamrmWCvoJE8zCHr+7dlt9v515F3sNh6uCGtf6uqm96NxzIfABz1oP+y/29MDhvP1amXU9lejZdhZAaAGUnfmXAHxS2lg6YInQti/R3VTsrbqng7dzlRPhHcMfamATmpQoy0vbUHae5uYVPFVi5LXDTg98toaqLQWfMdINLXkTblYfAg1NuDZenX0m01E+MbxcbKbcyKyjrlNTQ1KInn5v2Cxq4mdtfuo7Gr0eXHdTZJcD1Mf973N5q6m5keOZUIn+E/UhRnR+/QxmOCUkgJTGRH9R7eOPouALekXzegBNbZZjQ1YrFZeDPnA21kuHj/WOo7G4jxi+axqd87YVAnhm5HzR7c9e7cPe4WPJwd7mZGZ2mDffi4+5AZMZldNXtp7m7ROjCOC1F4bN49dLT0nHDbHgZ3MkKO5dBembSYg/WHeWHfq/xy9hPnRPm5Xv85+h4t3a109phIDUpiWdo1FDQXU9hSwq3KDf3K1B3P38OPp2b+SJs+2brns8yISWRGnBuVTQYT4OFPoIc/B+qzaTAZaTAZeWHfa/xsxmPUdTbwaeEXzIudddLqN0IMVUt3K7tq9pEenEpFexXdVjN2u51LnB2U7XY7f97/Gm3mDq0WdYu5jUfWP8G3lOuZHztbW6+3L8OjU+6n29rNhNCx/T7LXe/Gt8ffCsCSpEVD3kc/D1+cfRoxdjWd6SGPKAmuh6GosZSm7mbAETxJcH3uKG4pRa/Tk+Afh16n55KEBbyV8z7gyAWbFztrxIIhu93O/+55iTZLe7/5vZ3HilpKeOngP3l48r24jWKL+vkux5jHntoDXJ54sRZYD2ZR/Dz21R1EbSrg4vj5ZEZMJsE/liDvQCztbUP+vEjfCG4Ys5T38j6hpqOOGL8oVxzGGbPZbeys2atNl7VVMCV8IsWtjhvOKRETR2vXxDDF+sdoj80vS7yYr0rXsblyBxsqttJgMnLEqHJ7xrJ+nUqFOB0f5H3K/vrsAfMvjp+PTqcjtzG/XwnPG8cs5avS9bRbOvik4AvmxcxCp9NR2FLCgfpsrkm5vF9jhKv4uvngafCg0STB9TfWG/s/0F7Xm4yMPcm6YuQ0d7ewuXIH6UGpeBjcAXhUQ+gAACAASURBVJgVlUVmxCTeUz9mZ81evipZzxXJl4zI/uQ25muBdaRPODOiMqnpqGdOzDTqOhsoaS1ne/Vu8puK0Ol0rCxezX0T7uw3cps4tc+LvyLCJ4zLkk5+XmP8onhi+vex2HrOuFU2PdhRhq+0tRydTkeEd9ioP4Go7jhWGWV65FQOG3PZULEVu91OmFeIo4asOC/E+TmCax06rkq+lKPGXK2T9n0T7mRd+SY+LljJ1IhJeLl5nnJ7K4tXk99USGJAPEeMudw34Q6inCUEhev19vPpTZuo7zSyvmILN45ZOurXieN1WDoHnd/Y1YxBr+fv2f/Gy+DFj7IeottqJikgnhnRWawp3cjqsg18XLCSq1Mv58viNXi7eQ/aOdEVdDodoV4hNHQZT73yOUSC6yFaX76F3IZCLk+6hLVlm6g3NYz2LgkcgfURYy5d1q5+NW51Oh2eBg+uG3Mlu2r2oTblE+MXyc7qvXx7/K0nbek8E1ablY8KVhDqFczPZz6OuzPY75UePIYZUZnsqd3PRwUrqHLW+1xbtnFAXqw4MYvVQkVbFZckXKTdUJ1MhE/4KdcZigifMLwMXryV67jRdkXKUXlbFTa7td9w3cOxs2YvOnTcOfZmpkZMYlXJWr4qdXQ8mhGVeUb7JkZWb+3sUO8QDHoD16ZeyZs575EZOZmpERPxdffmL/v/jtpUwOSTjCoJjpuuL4pXA2h9DNaWbeL2sTed3YO4wJh6THT1dBPsFcSrh/7FEWMuET5hxPpGU9RSSou5lRlRU0kKSBjtXcVqs9JibiXYMwijM4c50ieCSWHjWF22AYCPC1fi4+aN2Wbhh5n393tC5+fuy7WpV1DSWsbBhiPsr8+msauJ61KvPGu/qQBJAfHsqTtIp8V01j7D1SS4HiKjqREPgzuZEZM4VH+kX2tRr9WlG2i3dHBd6pW0mtsI9AwYsE5Ld+ug88XwNXU189S2ZwDHABeDPaYP8PBnfuwsNlVu135gnt39F36Q+eBZ6Si0o2YPVR013D/hzgGBdS8PgwcXx1+kBUC+7j4cMeZ+o4PrwcqLWawWzDYLvqdR8q28vQqr3UrSaQakp0uv05MWnKyViCptq2BXzT4q2qu0UmwFzcW8dugNbk6/Vgtu280dVLZXDzoAzb+Pvkt1Ry1XJC1macqSYe2P2WphS+UOsiIna3nmSxIXUtFehdVm5brUwQdVEeem3hEcl6VdDTgGoHlm3s+15Qn+8ejQUdVefcrguneI6QVxc7Db7RysP8y+umyWpV+rDQgkztxbOR9yoD6bK5MWc8SYC0BdZwN1ncca4Go76s+J4PrTwi9ZW75Jm74p7VoWxs8FHLXuf7H9WfbXHQIcf4upQUkDtqHT6VCC01hR7KhDPTYkXcvTPlvmx85me/UeihpLidTHntXPchUJrodoWfo1PDDnNhoa2kkPTmVr1U7MVrN2t2a2mvmyZA3dVjOV7dXkNObxw8yH+v1xVrZX88yuF7gq+VKuTL50RPe/02Jia9VOZkRljXj6QW9gZbZaMOj0Z/R4zG63U9xaSlJAAoV98sG6reYT5lRPDp/Apsrtjtdh4znYcIQtlTu4Innxae/HYBpMRrZV7SbEK/iUg9hck3o5WZGTae5upbilhFUl6zBbLUNqhT3f1HbW8+sd/0tqYDIXJ8xnUtg49Do9b+a8z966g/xpwW+H/WPf20l0NH6wJoaN04Lrus56dlTvAeDKpEvxcvMkv6kQU4+Jfx/9L4fqjxDrF8268s109pj43dwnCfIM1LZlsfVQ21mPt5sXX5asYXb0dEK9h17N4rAxh26rmVlR07R5Xm5ePDT5XhcdrRhJwV5BvLTouRNWE/Jy8yTMO4RsYw7e7t5cFDv7hNe9vOZConwiuDn9OgCyIqfwwr5X2Vd7UHK2XaiivQpwDJTS123KjbyjLgcYtDFuNOxzBs7gaNSZEzNDm9bpdHxnwh2sLduEt5sXV53kRj+2T0PW4oQFZ70/U0JAHL+e8xPSI+JpaGg/9RvOARJcD0PvBW9C2Fg2VGxlbdlmLY/3iFGl22omxCuYnMY8APbXHeoXXPe2JKwsXs3ihIUjGki9fvhN1KYCiltK+e6ku0fsc/fVHeKfh9/isakP8H7eJ8T7x3Jbxo3D6sinNhbQam7D1NNFeVsl26p3MTMqS+vElRGcxoSwE2fAZ4Sk8eKiZ7Hb7Rj0Bl468DqbK3ewOGHBCVuX+7Lb7XxZsgYvgyfbq/cwOXzCgBZGu93OL7Y/BzgK6A+l1F6sXzSxftGYrWbs2KnuqCG74SjN3a3c8Q15dNvV08VbOY4UisKWYgqzi7lz7M1Mj5zK3rqDAOyo3sNFsbOx2W2nvPGy2W1srtzBlsodBHsGjcpToDnRM4jzi2Fb9W729hms5s2c95keOYUVxV9r8/bXZ/frNLSlcidHjDlcmriIzIhJrCz6GpvdxuKEhXxetIq9dQdYkrgIo6kRH3cfPPTuJ/xO2sztvJu7nAAPf9KDU8/eAYsRdaprR7x/LPvqDlHaWs4HeZ9yacJC5sXOxNfdl7rOeuL9Y7Hb7RQ1lzC9T1pQamASkT4RbK3aJcG1i9jtdtrMAztF+7n7MjtmOtUdtayv2KI1Boy23lrvAL+f+/MB15bEgHjunXD7KbeTFHisUSPKN8J1O3gSIV7B51UJWwmuT4MSPIaJYWP5umw9lyUtQq/Tk99ciIfBg8ezHmFF0Vdsq97FvrpDXD/mKvQ6PSuKv2ZVyVptGwfrDzM9auqAbVd31NLV0w2cONVhuEpby1GbCtDr9BxsOEJXT/eQOsMMV7ulA+zO8jlOnxSsBOClg6/TY+uhqqOGI8ZcfjztUTzdPE/Z2cpi6+GvB/4+YH5vYD09MpNvj//WKfdNr9NrJX0uip3N37L/zWMbn+QvC585ZaB/xJjLSmfuIkBVRw3jQxWMpkY2Vm7j/ol3YTQdq8Hp6za8DmRxfjEAFLeW8aXzb+TShAVEnuSi9dqhN0gNTOLSxIXD+qyRtqVqJ0UtJdyYdjVRPhG8k7ucNWUb+1XaKW4pxWhqZG35Jl5c9OxJW0Hym4p43zmyoBI8MMViJOh0OhID4qlsr2ZL5Q5t/oH6bA4c1/s+xCuYRmcJqVCvEL50tm798/BbpMx9UstznBg2ll01e9lYsY3kgET+vP81AGJ8o1iasmTQJyEFzcV09ph4aPK951xnKXH2XJd6FTp01HbWU9FexeqyDeyrO8j40Aw2VW7nutQrSQ9OpcvaTVpQsvY+nU7HnJjpfFywkpqO2n4dG6X2/ukx9Zjotpq5KHY2sX7RJAcm8syuFwjxCkKv07Ms/Rr8PHz5vOirAd/5SDOammjubiEtKIVrU684o2tGgIc/6UGp5DUXEughaa6DOXcKtZ5H9Do9E0PHYbaaaexq5mD9ETZWbCMlIJFAT39uH7uM7028mxZzK+/lfYLaVKAF1neNvYVgzyDeUZfTbu7ot90GUyO/3flHnt/7Es/vfYnf7foTDSbjgPWGwm63szz/c74uXc+68s14GTy5VbkRgDrT2Rnp6Jfb/8ATW36lTRtNjVptyh7bsXrC7ZYOnt7+LC8f+Ocpt5ndcFR7HeQZyJVJi7k9w9GqqwSPGVJgfbwJYWO14K5vXtyJbHc+9h8bks5jU7+HDh3P732Zfx19l6KWUj7M+6zfyFXJgcNLVQjzDsHbzZsP8j7V5vUN5o/X0t1GdsNRPin8goq2qmF91kiy2qxsr95Don88F8fPZ1yowtUpl1HdUctXJesBR/BY1VGj5QGe7HjqOhv455G3AMe5WJI49HqpZ8PUPjWTfzztUZalXTNgnVucj+QBfjrjf/otezvnQwBSApOI9o0kzi+G5u4WLbAGx43c37P/Q4elE7vdTkv3sVay0tZyDDqDVsFEXBhCvYO5d8Lt/HTGY4wPzQAcNYB7U99yG/PJayoEYExQ/yca0yMdLdm/2flHNldup6W7DYuth9/u+hMvHXi933VanFpTdwsAacGpzIudRYxvFDeOWcp9E+7U1pkbMxMPgwefFa4ard2kwdTI09t/D8BtGTeSHJh4xtt8ZMp9PDf/F3JTdgLScn2aop0tytUdNexzPt6e0+dR24SwsUwJn8DWqp1srdoJwHcn3sXk8An4uHvz2qE3qGivIiMkjQ/zP6OyvYZE/7gBn/PL7X/Ajp2nZz5+0pZMcFTO2F+XzcK4uRw25rCufDPguBmYHztb6/xV11FPwiCfVdJaRm1HvdYxajh6bD2Yehw9eY2mRkK9Q1CdF/gfZD7IV6XriPOL4evS9fh7+NFmbqesrQKb3XbClkqjqYnP+1yQlOAxWh5YiFeQ1rN+uPQ6PfeMv43ndv+Vms6T1yvusfWQ25jHnOgZ3D52GQBXJS/ROnMAWnrDtSlXkBk5edhDR+t0OqaGT2Rb9S7AMdjF3rqDuB11o6mrmYec9bDfVZczPXIqZptFe+/BhiPE+ccM6/NcpbS1nA0VW7kj4yatFWR16Qb21R0i0ieC3bX7AMfIeL2mRU7hs6JVHDbm4O3mzdjQdNaWHetg83HhFzwy+TsDWlVsdht/2POi9jf2yJT7zvbhnZK3mxePZz2Ct5sXUb4RJAbEMzViIh/kfcbMqEwmOTucPTnjh/TYevB28+aBSd+mubuVVSVrOdroqGd834Q70ev0+PTp2Bno4c/3p36X3+z8IwA1HXXsrTvAxoptADww6dvkNOYR6xc9qqOPitH1nQl30G5u5x+H36S8rRK9Tk9lezUGvYFIn4gB/WsCPf1ZEDeHjRXb+K/6MduqdjMvdiY1HbXUdNRS3FJGWnDKKB3N+UdtzAccv0fguJZffFznPn8PPxbEzmF12QYO1B/Whv222W1sKN9CZuTkfv0wzobNzhuvBP9Yl1VOMugN+OmlzOeJyFX5NPUGdqWt5RhNTaQHpZIVOUVbrtfpuX/iXaiNBVpaQ+/IWvH+jt6unxd9xYqir7XBHvKco8cBGHQGrHarliO1uWoHy9Ku4aOCFbSZ27l73MAW278deoOytkrGh2ZoHa7A8Z94XEg64d6h2uPE0tZytlXv5pb069Dr9LR0t/HqwX/R1dPFtMgp9NitJ+1k1m7uoLOnkwifcNrM7bxy8P+0Ze/kLueRKfdR01mLm96N1MAkHp78HcARXMX4RrG9ejdv535IXWf9CR+VfVb0JXWmBi5PuoRVJWv7ja52psXqI30cNyq1HY6Rp6w2K8CAoK6opYQuazcTwjK0eVckX8KSxIXUmxrQoeMv+/+GXmdgQfzc0+6Ff2Pa1SxOXEC4dyjlbZXsqzukpb6sK9/MtMipbK3axfbqPVyZ5OgMG+UbyRfFq8kxqjw69bv9PttitVDSWkZyYOJZG6jm9cNv0djVxCXxFxHnH8O6sk18UvgF4BjIBOD6MVf1O28GvYHFCQv4MP8zQryCSAlIZG2fbeY1FZBtzNF+gI7NL9QC63NphLrjn1IEeQZy/8Q7+83re/PWu+8ZwWn8cocjR783AFqSuBA7dq5OuQxPvQfuBncemPRtXjv0Bh8VrOiXt/naoTcABr0OiAuHp8EDT+8QHs96mIr2KgqbS/ioYAVHjLnMi5016HtuTr+OstYKilvLKGur4OtSE246Az12q5bCdL6oaq/B2NXIxeEzR/yzbXYbK4tXkxaUMmhjVV9jQ9JZXbaBf2T/hx9Pe5QAD3+e2/NX2sztFLWUck3q5bx++C0uTVg4aLromWg1t7Gjeg8Tw8by3Ykj19/qQifB9WnydvNiXIjCportmG0WpvcJrPtSQsbw42mP0m7p1FpoAz0C8DR49PuxvDRhIavLNuBl8OIHmQ8Q6h3M45t+AThyNXsrY/S28tnsNm5Kv7ZfznKZcwTA2s468psKGROUrI2wlBKYhLvBnQifcIpby1hfsQVTTxczo7LYV3eQzRXb6bE7AsxfbH+Opu5mvjfxbq317Xh/3PsydaYG/rzwGZbnr6CsrYJQrxBmRmfxRfFqntv9F4K8ggjyDOz32Kh3EI+UwCQAchrzTxhc13U2kBGcxtUpl3FZ4iKX1tH0NHgQ5hVCubOn94sH/kGgZwD3jL9NW8dmt3G4IReDzoAS3D+YN+gN2n7/Zs7PsNqtZ7R/Xm6eeLk5WhR6b77AEUB/VrRKy+W12W2sKllDckAi94y/ja9K17K1ahcbyrdwWdLF2vs+L/6KtWWbSA9K5dGp97u8N3ebuV37Ia5oryLaN5JPCr/Ulod7h/LE9O/j7eY94L0L4+YS4OFHmHcoiQHxXD/mKj4uWMmytGv4sngN++sO4an3INwnjDDvEAC2Ve3C282L38z5KR7687+MWLhPKM/Oe5oOy7GUrxCvYG5Vbui3Xu9j/95rxbPznsZqt/JJwReMCUqWOtYCADe9G0kBCXi7efNRwQrAURnpRB6YfA/7ag/xXt7HNJiMLE2+jBXFX2m1j8HRSf+rknU8OvX+c/bpyJ/2vYKpp4upSRlsq9pLVuRkl5QZtNltfFL4BXOiZ5yww16DyUiXtZuZUVmnvL72vQnPbcxHh442s6PqRYu5jY8LvqCyvZp3cj9kcvgElxY72Fi+lc4eE9ekXDFioxQLCa7PyNWpl/Hc7r8CjqL/J3L84BA6nY4o30gaTEYWxy+gs8fEVSlLiPaNJMInXHvMf+/42yhpLcdqt7GjerfWugqwp/YAHZZOHp78HXQ6Xb/cYbWxgDpTA/NiZ3HDmKWUtVVoNYbHhaazvnyLtu5rh/6ljdS0JHERX5eu14Z431Wzr19w3dXTTVVHNe3mDuqcg+hsrNjKoYbDzI2ZwW0Zy7DarKwr20R5exXl7VWM6dOhpq/ex+hbqnaecGQno6mRhEhHq+fZKFA/JjiFA3WHqWyv1m5CFsTNITRsPDa7jae3PUtTdzNjQ9JP2gHUoDdgwHUdyvQ6PU/O+CE+7t4YTU38ad8r2o0TQI/dylXJlxLqHcxtGcsobCmlpLVcW97V08VmZ0e7vOZCvipZ59Kyg7UddTy/92VtOrvhKIGeAVjtVr478S7Sg1Px0HucsMOMTqfr95TnkviLiPWLJi0ohQaTkQ0VW9lTe4CUwCS+Pe5WLDYz++oOsThhwaDB+vnK38PvlLXW9To9lyRcRGlrOfNjZ2vrf3v8rSOxi+I8E+kTzoOT7qHbamZcqHLC9fzcfZkeNZX38j4GIDNiIpsrt7O1aheV7dXcolzPKwcdfWLK2yq0xpBzjamnC4CHVjyJ1WalwWTkmtTLz3i79Z0NrC3bxIG6bH4956eDrlPRXg0wpFFfHcUOHuYf2W9ytFHFXe8Inv3cfSlvq8CO46lXc3cLJa1lLqn+027uYG35JopbSon2jXRJcQQxdBJcn4EE/zimR2ayu3YfMb7D+8O9PWMZdru9X77s8bnOWZFTyIqcwsaKbXRbzZS2OQKo25Qb6bZ2s7xgBe/kLufGtKtZV75Ze7S3sdKRl5kenEq8f2y/4D4zYjIbyrcS6RuBp8GD0tZyUgOTuHvcrQR6+vN16XqSAxKI849le9UuqtpriPGLosPSyfN7X9KCeC+DFzodfOysBpIV4QiWDHoDv5/3c3606WlsdttJc8mmhE3g06Ivaelu5V31I65IukTbV1OPiY6eTsK8TnzTcqYygtPYUb2HZ3a9oM37495XYK+j5bX3JmNezMg/cuy9EAZ5BvKT6Y/x/N6XiPQJx8/dl7vG3dLvew33DqHBdGxo2C3OGuyPTf0eGyq2sbpsA0sSF7mkokS7pYO3cz/E1NPFrKhpNHY1caD+MAfqD6PX6VGCx+Dl5jWsbep0OsaGpANwRfJiKturyW8uoqS1jF9sfxY7dtz1blycMP+M9/981Ds4jRBDcbKypH159/l/GuETTqh3MEUtpRyob+FA/WFtWVFL6TkbXAd7BtHU3cyc+Cyya1Q2V25nacqSM26h7W08Mp4kTaawuRi9Tj/kvj/JgYnMjZ2pjZo5P3Y2U8In8OKBfwBwZfJi3sldzl/2/41fz/7psOrdD+bLkjVsqNgKwKzoaadYW7iaBNdn6O5xt3B50sVEDrOTwFDudnv1brs3JSTcJ5TUwGS2VO1iW/UuOno6OWrMZUZUJt1WM3vrDuKudxv0M1ICE/njgt/grnejzdzB6tL1LE5coAVrv5z1BEGeATR0NbK5cju/2/UnnpzxQ3bX7qe+08hdY28hwMOfOP8YbHY7P9v6G4B+nWA8DB5E+URQ1VFz0jrEvR00P8j7lOyGo6hNBTw372nMNos2StTJngicqSkRE7nR3MZy52PUjOA0cpscHVTqncHqjWOWnjA1ZqTE+8fwwoLfnvAHI8wrFLWpELvdzs6avXxcsJIAD39Sg5Jp7m7lQH02H+Z/xrK0a7DYek6rDGN+UyFv5XyAqaeLjp5Orh9zFYsTFmC321lZvJovS9ag1+mHHVgfz8/dl8cyH2B79R7eynlfm58ZMZkAj5Ed/EiIb7pvj3M8AdHpdCQFJFDUUqotezzrEd448g5HjSoGnYFxoQpt5nZSAhPPifSC3hrTlyYs5P5Zt/DpwXW8nfsB9Z0Np+z8fyq1nccqam0o30pHTydX9Rn4rc3czpbKHUyLnDKksRJ6zYzKYl3ZZqZFTua61CvxNHg4tqF3Z1bUNLZU7qTMOepr7xgap6u3VR84ZU64cD0Jrs+QI8Xj7BZRTwpIINQrhAP1h/F19yHOLwaD3sD3p97Pm0ff56CzleGShAWYekzsrTvI9WOWnvAC2JuTFujpz7L0/uXDwn1CAUeHzWVp1/Bh/mccrD/C1qqdTA6fMKB1fVnaNXi5eQ34rOlRU/m08MuTtlz3fm+9g2yYrWZ+sPEpbXmYd+hZHRzD0Rp6EWnBY9hcuZ1b0q+jprOONZXr6e62MCVi4jmT03qyH7NQ7xDMVjM/3/Z7mrqbifWL5p7xt6HX6UlxllzaVLmdTZXb8Xf344dZD/KP7Ddx0xu4LeMmon0jqDcZqe2o44hR5erUywjw8KfBZORfR94lPTiVI8ZcGroaHZVWxt3KNGenG51Ox2VJF5PTmMeiuLkuO95pkVOw2ax8VrSKdksHCQHy4yCEq/XtPDctcopWYQocecLToqayqmQtalMBXkWedFm7WZp82RkHfq7Qbumgx27VGnASndeI0raKMw+uO44F1x/kO0qkXhI/n3qTkTi/GIpaSuixW7kodvawthvmHcJz85/u18m8bz+fx7Me5vm9L3PEmHPG33HfVNHpka7tJClOTYLr84CXmyePT3uY3MZ80oNTtZJdQZ6B3DfxDn6z43mSAxO1YPV0hpMezKL4eeyu2c+Gii10WDoHfdx4onzpSxMWkhSQMCDfvK++KR+PTLmPlw68DjhqsU6NmMjYkPQRGcUy3j+G2zIcNcBj/aJ5fN73qK8fOOrWuar3CUVvGsuytGu0R5UhXsHMip6mDdHdZmnnVzv+V3vvs7v/jJfBiy7rsVYON70btyjXsapkHSWtZVS1V2O2Wbgy+VIujp83IO/ZXe/G/5v2iEuPyV3vxtzYmXxe5Ch52DvQjhDi7EgMiOcHmQ/ywr5XcdM5UsgWxM2hpqOWBP847f/izpo9oxZcb67cgYfenZnRWdr1rrcBJ9o3Ene9O+VtlWfUKGK328lpzCMtKIX85iJt/ju5y9lbd5DbM5ZRbzKi1+lP67p0supNBr3jCcHXpevp6uk67SeBdrtjxN8JoRncMGap1udKjBwJrs8TAR7+g14wvN28+dmMH/YLQl0RWPe6IW2pFvSmBQ29/qlOpztlq7NBb+CxqQ8Q4RNGoGcA82JmkhKYdFp1ti9kaUEp3Dn2Zmo76/HQe/Q7TzqdjjvH3swNY5bS3N3CPw+/TW1nHd8edys5jXnsrNnbL7D2dvNGbSpAbSxgV42jTnVvXe3UwKQR71A4NWISmyq3DbtPgxBi+MYEJWul4sDxu3P/xLsACPcJY1vVLnIa82jubjnrtZmP120181/1IwD8PPxocQ7g0tuQoNfpifQJp6azbljbLW+rorS1TCtdWNxaRlN3M1enXIYOHXqdntrOem08g/112bSa24j1jRpWSshQjQlKZlXJWn6y5TeMC1W4f8Kdwx6opd3SQZe1m4yQ9DNuxRenR4Lrb4C+w4272pigZB6Zch9FzSXDHhxlKPrmat/qbD0Ww6PT6U7ZYcXX3Qdfdx9+Mv1/aDAZifGLYnrUVAw6gzZ4DThqLX9a+CX/yXmPYM9AFsTPZXn+5wCjMljNsrSrWZywQFpehBghJ3ramBkxiRCvIHIa8yhqKe1Xv/5s2Va1iy1VO3k862GtHC3A6tL1hHqF4Ovmo422C47+SXvrDnLEqDL+JNVS+np2958BmBY5lR3VeyhuLcVN78ak8PFag1a3tZsjxly2VO7UBn+6Z9zZqdiTHOBI5bPYLBysP+y4oWnK5zblRnzcvem2mk/agGa1WXnXeRMS7h16VvZRnNro90oQ57wxQcksSVokw5x+A3gY3PuVZLo14wb+uvD32vTCuLmkBaXQ3N3CnJgZJPof+6HtW1N9pBj0hjPuNS+EcI14v1jc9e79At0z1dTVTKezHOzxDjUcpbS1nOKWMlaXbcTT4MGNaVeT31zEjpo9pAT171zZm3/9ysF/YrZasFgtg253MG/mvMcH+Z+yp/YA40Mz8HbzQqfTodPp8HLzIityCvdMuA0/d1/mRE/X+p24mpebJ3eNvUVLOXlHXc7+ukOsLdvIRwUr+H+bfkGuc2TIwWyr3q31wwqT4HrUSMu1EBcwvU4POkellBi/KDwMHjww6R62V+9mdvQ09DoDWRGT+w1QI4S4MBn0BpIC4ilqKXHJ9vbXZfP64TcBxwBJx9d9L3fW9/8g7xPK26u4Jf16Loqbja+bD9kNR7luzJX91k8KODZYy7+OvMOhhiN8S7mexq5mrkm5nNrOOrZW7eKaexUGKwAADKJJREFUlMuxY9dK1QH9yg8uTV4y6P4GePjzmzk/1epUny0zo7OYGZ3Fa4feILvhKACrStdpyz8rWjXoKMV2u13rXwNnt9qWODkJroUQPDr1fu21l5tnv46q9064fTR2SQhxDkoNSj7jDncADaZGLbAGx8Bofa87zd0tNDvzqsvbq/Bz92V2zHTgWPB5vMyISaQFp/DPw29xqOEIAP9VHQPl5DcVUdzqKDXornfHXe/OiuKv+r1/afISFsTNPWka2tkY0OxELk+6mIq2KsaFpnPEqDI/dhYWWw+rStbyft4nLE1egrebNx2WTjZUbGFN2UYsth6U4DFMjZh0zo6seSGQb14IIYQQQ5IelMqqkrXkNhUwJXwCnZZOrYLVUBW1lDgG7Ooju+GoFlxXtFXxl/1/Q6/TMzMqi+3Vu1kUP++UwaJOpyPAw5+7xn6L9/M+RqfTUdxSRrulQwusAfKaCvA0OOr9f2fCHSzP/5zm7hYSAuLPqf4dSQEJ/HbuzwBHq7ROp0NtLGAVa9lYsQ1TTxcBHv6sKdvY732zoqedM2VkL1QSXAshhBBiSMYEJePr5sNnhasw9XTxVs77/CjrIVICk9hfl01tZz2XnyKN7MO8z7XXyQEJJAcmsqFiK50WEz7u3nxdup7OHhN3jL2ZzIhJJAcmMCtq6KMMhnoH8+Dke7Xp3+78I9Udtdp0TWc9PTYLi+LmkRkxiQT/OFaXrh9WRayR1tvnKTkwkaSABKraqzlQl61VcwKI8AmjrrNBBo05B0hwLYQQQoghMegNXJ16Gf9VP9ZGUd1Vsx+z1aKlecyKzhq0VJ/NbmNd+WZK28oBmBGVyd3jvkVRSynryjdzqOEIDSYj++oOcXH8fGY7qyDNjZl5Rvv842mP0mXtpqW7leyGo6x0DkHeO0ZAmHfIeVOtysPgzv+b9gibK3dopQmXJC4iNTCJsSHplLVVnvWB7cSpSXAthBBCiCGbHzubBlOjlo6wuXI7myu3a8tfPPA6P5n+PwPSOHbV7OPjgpUA/Hzmj4hy1qhOCogn2jeSN53BekZwGlenXOay/fUweOBh8CDAw5+mrmZtfqRvuMs+Y6RNDBvLfx1VAVmavASD3jHwT3JgwkneJUaKlOITQgghxLAowWMGnR/sGURNRy0VbVUDlm2p3AnADWOWaoE1OKoW3TH2Jm36ocn3nrWOgwkBx1ImInzO3+A6yDOQX81+giemfV8LrMW5Q1quhRBCCDEsfYPUlMBELk9aTKu5jfSgFJ7e/iylreX9WlFtdhsV7VUsipvHJQkXDdheUkAC82JmEuQZeFaDxSDPQPzd/WiztI9K7X5XCvMOhXOn/6XoQ4JrIYQQQgyLn7svY4KSmRI+sV8JPbvdToCHP4cajjA/dpYWKNd21mOxWYj3jz3hNkcq7/npWY/TbukYkc8SFyZJCxFCCCHEsP0g88F+gTU4qlosSVyE2lTAiwf+QY+tB4ADdY5BWhIDRr+ShY+7z3mdEiLOfRJcCyGEEMJlFsXP4/aMZeQ3F7GhYis2u4215ZuYGDauX661EN9UQ0oLURTlNuApwB34s6qqLx+3/FrgV4AOKAbuUVW1SVGUucALgAdgBO5VVbVUUZQFwEdAuXMT+1VVvccVBySEEEKI0TUnZgbbqnbzccFKEvzjMPWYmBCaMdq7JcSIOGXLtaIoscDvgHnAFOC7iqKM67M8AHgVuEpV1cnAIeCXzsVvA/epqjrF+fqvzvnTgOdVVZ3i/CeBtRBCCPENkhkxEYC/7P8bANG+UaO5O0KMmKGkhSwG1qmq2qiqagfwIbCsz3J34GFVVSud04eABEVRPIGnVFU91He+8/V0YImiKIcURflMUZT4Mz4SIYQQQpwzLoqbQ6TPsQFNoiUlRFwghpIWEgNU95n+/+3df6iddR3A8fe5d6vmrq5yN7blNhDz0w+xZTgpXQmbmpItWTaaNa1mjAr6ZaFMHQTJiLBIXEYiLcYysZRlabYppURbK2aw5YeikqaLjUWlldvcvf3xPLdO617uOddn57nn3PcLBvf7Pee5z2d8+Jz7Od/zfZ6zH1g8MsjMQ8B9ABExA7geuC0zDwOby/k+itXs+8vD/grck5nfi4i1wN3A+a0GfeqpA60+tXKDgyfXdm51jnmeGsxz7zPH9Vpx1jvYuPNb9Df6WDjvxH1zoHmeGrolz600133AcNO4AQwd/6SImEXRZD+RmZua5l8CbCrPdQtAZq4deTwz74iIDRExKzP/1krQhw49x9DQ8PhPrNjg4MkcPPhsx8+rzjLPU4N57n3muH6vYDYAFy248ITlwjxPDXXkua+vMaEF3Vaa633AkqbxHOB/vnopIuYCPwIeAT7VND8AbKW4mHF5Zh4tV7FvADZk5rGmX/NC29FLkqRJa97AHNYt/rRbQjSltLLnehuwNCIGI+IkYAXw0MiDEdEPfJ9im8cnM7N5SXkz8DtgZblNhMwcAq4ofw8RsRrYUe7nliRJPWTewBwajUbdYUgdM+7KdWY+HRHrgEcpbql3Z2bujIgfAjcD84FzgGkRMXKh4y7gdmA5sBf4VUQAPJOZlwFXA9+IiPXAAWB1tf8tSZIkqfNaus91Zm4Bthw3d1n54y7GXgEf9a1qZu4B3tpijJIkSVJX8BsaJUmSpIrYXEuSJEkVsbmWJEmSKmJzLUmSJFXE5lqSJEmqiM21JEmSVBGba0mSJKkiNteSJElSRWyuJUmSpIrYXEuSJEkVsbmWJEmSKmJzLUmSJFXE5lqSJEmqiM21JEmSVJFpdQfQpn6Avr5GbQHUeW51jnmeGsxz7zPHU4N5nho6neem8/W3c1xjeHi4+mhOnAuAx+oOQpIkSVPGEuDxVp/cbc31S4Fzgf3AsZpjkSRJUu/qB+YCvwAOt3pQtzXXkiRJ0qTlBY2SJElSRWyuJUmSpIrYXEuSJEkVsbmWJEmSKmJzLUmSJFXE5lqSJEmqiM21JEmSVBGba0mSJKki0+oOoBtExCrgRmA68JXMvL3mkPQiRMR64L3l8AeZ+bmIWAbcCswAvpOZN5bPXQTcCZwC/BRYm5kv1BC2JigivgTMzsxrxspnRCwANgOvAhK4KjOfqy1otSwiLgfWAzOBhzPzE9Zz74mI9wM3lMMHM/M667k3RMQpwM+Ad2bmH9ut38mYb1euxxERrwa+AFwALAI+EhGvrzcqTVRZtBcDb6LI55sj4n3AXcBy4HXAuRFxaXnIZuDjmXkm0ACu7XzUmqiIWApc3TQ1Vj43Ahsz87XALuCmjgaqCYmI04E7gHcDZwPnlLVrPfeQiDgJ+CrwduCNwJLytdx67nIRcR7wOHBmOZ5B+/U76fJtcz2+ZcAjmfmXzPwHcC/wnppj0sTtBz6TmUcy8yjwG4qi/m1m/qFcxdoMXBkRC4EZmfnz8thvAlfWEbTaFxGvpHhjfEs5HjWfETEdeBtFbf9nvqPBaqKuoFjZ2lfW80rgn1jPvaafol+ZSfEJ8nTgKNZzL7gW+BjwTDleTBv1O1nz7baQ8c2jaMhG7KdIvrpQZu4Z+TkiXkOxPeQ2/j/HpzF67k/rQJiqxteBdcD8cjxWPmcDf2/aHmCeu8cZwJGI2AosAB4A9mA995TMfDYibgKepHjz9BPgCNZz18vMNQARMTI1Vp121eu3K9fj6wOGm8YNYKimWFSRiHgD8GPgs8DvGT3H5r5LRcQa4E+Zub1peqx8Hj8P5rlbTKP4dPHDwFuA84DTsZ57SkScDXwIWEjRZB2j2N5nPfeeVl+nJ3W+ba7Htw+Y2zSew38/vlAXiojzge3A9Zm5ibFzbO6710rg4ojYDXweeBewhtHzeQCYFRH95fxczHO3+DOwLTMPZua/gPsomm3rubdcAmzPzAOZeZjio/8LsZ57Ubt/jydlvm2ux7cNWBoRg+VFFSuAh2qOSRMUEfOB+4FVmXl3Ob2jeCjOKAt0FcXV6E8Bz5fNOMAHgAc7HrTalpkXZeZZmbkIuBnYmpkfZJR8lnt1H6NoyAFWY567xQPAJRHx8rJ2L6XYe2k995YngGURMTMiGsDlFFtDrOfe09bf48mab5vrcWTm0xT7Nh8FdgNbMnNnvVHpRbgOeBlwa0TsLlc2ryn/fRfYS7Gvb+TiiKuAL0fEk8AAxRXr6l5j5fOjFHcC2gssobj1pia5zNwBfJHibgN7gaeAr2E995TMfBj4NvBL4NcUFzRuwHruOZn5PO3X76TLd2N4+PitKpIkSZImwpVrSZIkqSI215IkSVJFbK4lSZKkithcS5IkSRWxuZYkSZIqYnMtSZIkVcTmWpIkSarIvwFLUXNhGE3idgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "DF.plot(figsize = [12,8]) " ] }, { "cell_type": "code", "execution_count": 144, "metadata": {}, "outputs": [], "source": [ "I = 0.4\n", "C =0.36\n", "O = 0.24" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Analytical Solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$\\large{O = \\frac{1}{1 + \\frac{k_{oc}}{k_{co}} + \\frac{k_{oi}}{k_{io}}}}$" ] }, { "cell_type": "code", "execution_count": 146, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.24" ] }, "execution_count": 146, "metadata": {}, "output_type": "execute_result" } ], "source": [ " 1/(1+(k_oc/k_co)+(k_oi/k_io))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "-------" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$\\large{C = \\frac{\\frac{k_{oc}}{k_{co}}}{1 + \\frac{k_{oc}}{k_{co}} + \\frac{k_{oi}}{k_{io}}}}$" ] }, { "cell_type": "code", "execution_count": 147, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.36" ] }, "execution_count": 147, "metadata": {}, "output_type": "execute_result" } ], "source": [ " (k_oc/k_co)/(1+(k_oc/k_co)+(k_oi/k_io))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "--------" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$\\large{I = \\frac{\\frac{k_{oi}}{k_{io}}}{1 + \\frac{k_{oc}}{k_{co}} + \\frac{k_{oi}}{k_{io}}}}$" ] }, { "cell_type": "code", "execution_count": 148, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.39999999999999997" ] }, "execution_count": 148, "metadata": {}, "output_type": "execute_result" } ], "source": [ " (k_oi/k_io)/(1+(k_oc/k_co)+(k_oi/k_io))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Linear Algebra Approach" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Probabilities of Open, Closed and Inactivated states are governed by following system of ordinary differential equations:\n", "\n", "\n", "$ o^{'} = k_{io}i + k_{co}c - (k_{oi} + k_{oc})o$\n", "\n", "$ c^{'} = k_{oc}o + k_{ic}i - (k_{co} + k_{ci})c$\n", "\n", "$ i^{'} = k_{oi}o + k_{ci}c - (k_{io} + k_{ic})i$\n", "\n" ] }, { "cell_type": "code", "execution_count": 169, "metadata": {}, "outputs": [], "source": [ "B = np.array([[(k_oi + k_oc + k_io), (k_io - k_co)],\n", " [ (k_ic - k_oc), (k_co + k_ci + k_ic)]])\n", "\n", "b = np.array([k_io,k_ic])" ] }, { "cell_type": "code", "execution_count": 170, "metadata": {}, "outputs": [], "source": [ "Binv = np.linalg.inv(B)" ] }, { "cell_type": "code", "execution_count": 172, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([0.24, 0.36]), 0.4)" ] }, "execution_count": 172, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.dot(Binv,b), 1-0.24-0.36" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }