{ "cells": [ { "cell_type": "markdown", "id": "4ed711c8", "metadata": {}, "source": [ "# The P-Dispersion (max-min-min) Problem\n", "\n", "*Authors:* [Erin Olson](https://github.com/erinrolson), [James Gaboardi](https://github.com/jGaboardi), [Levi J. Wolf](https://github.com/ljwolf), [Qunshan Zhao](https://github.com/qszhao)\n", "\n", "\n", "When locating some types of facilites a primary objective may be to limit the potential for cascading adverse effects damage should one facility be damaged. Therefore, maximally dispersed arrangement would be the most beneficial. For example, power plants are generally not near other power plants as a precaution against localized damage or disablement during a natural disaster. To address this kind of scenarios with a mixed-integer program, Kuby (1987) described the following problem: _Locate $p$ facilities so that the minimum distance between any pair of facilities is maximized._\n", "\n", "**P-Dispersion can be written as:**\n", "\n", "\\begin{equation*}\n", "\\textbf{Maximize } D \n", "\\end{equation*}\n", "\n", "___Subject to:___\n", "\\begin{equation*}\n", "\\sum_{i \\in I} Y_i = p \n", "\\end{equation*}\n", "\n", "\\begin{equation*}\n", "D \\leq d_{ij} + M (2 - Y_{i} - Y_{j}), \\quad \\forall i \\in I \\quad \\forall j > i \n", "\\end{equation*}\n", "\n", "\\begin{equation*}\n", "Y_i = \\{0,1\\}, \\quad \\forall i \\in I\n", "\\end{equation*}\n", "\n", "___Where:___\n", "\n", "\\begin{array}{lll}\n", "i,j & \\small = & \\textrm{index of potential facility sites} \\\\\n", "n & \\small = & \\textrm{number of potential facility sites} \\\\\n", "d_{ij} & \\small = & \\textrm{shortest path distance between sites } i \\textrm{ and } j \\\\\n", "M & \\small = & \\textrm{some large number; such that } M \\geq \\max_{ij}\\{d_{ij}\\} \\\\\n", "p & \\small = & \\textrm{number of facilities to be located} \\\\\n", "Y_i & \\small = & \\begin{cases} \n", " 1 \\quad \\text{if facility is located at node } i\\\\\n", " 0 \\quad \\text{if otherwise} \\\\\n", " \\end{cases} \\end{array}\n", "\n", "_The above fomulation was adapted from Maliszewski et al (2012), the original formulation is from Kuby (1987)._ \n", "\n", "This tutorial generates synthetic facility sites near a 10x10 lattice representing a gridded urban core. Three $p$-Dispersion instances are solved while varying parameters:\n", "\n", "* `PDispersion.from_cost_matrix()` with network distance as the metric\n", "* `PDispersion.from_geodataframe()` with euclidean distance as the metric\n", "* `PDispersion.from_geodataframe()` with predefined facility locations and euclidean distance as the metric\n", "\n", "Unlike other facility location models available in `spopt.locate`, the $p$-Dispersion problem does not take demand/client locations into consideration." ] }, { "cell_type": "code", "execution_count": 1, "id": "67638055", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:30.469050Z", "start_time": "2023-01-10T18:23:30.433456Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:14.371179Z", "iopub.status.busy": "2025-04-07T19:07:14.370210Z", "iopub.status.idle": "2025-04-07T19:07:14.399630Z", "shell.execute_reply": "2025-04-07T19:07:14.399181Z", "shell.execute_reply.started": "2025-04-07T19:07:14.371158Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last updated: 2025-04-07T15:07:14.389023-04:00\n", "\n", "Python implementation: CPython\n", "Python version : 3.12.9\n", "IPython version : 9.0.2\n", "\n", "Compiler : Clang 18.1.8 \n", "OS : Darwin\n", "Release : 24.4.0\n", "Machine : arm64\n", "Processor : arm\n", "CPU cores : 8\n", "Architecture: 64bit\n", "\n" ] } ], "source": [ "%config InlineBackend.figure_format = \"retina\"\n", "%load_ext watermark\n", "%watermark" ] }, { "cell_type": "code", "execution_count": 2, "id": "dfd6bccc", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.017045Z", "start_time": "2023-01-10T18:23:30.472931Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:14.400601Z", "iopub.status.busy": "2025-04-07T19:07:14.400377Z", "iopub.status.idle": "2025-04-07T19:07:15.572882Z", "shell.execute_reply": "2025-04-07T19:07:15.572613Z", "shell.execute_reply.started": "2025-04-07T19:07:14.400583Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Watermark: 2.5.0\n", "\n", "pulp : 2.8.0\n", "spaghetti : 1.7.6\n", "shapely : 2.1.0\n", "spopt : 0.6.2.dev3+g13ca45e\n", "matplotlib: 3.10.1\n", "numpy : 2.2.4\n", "geopandas : 1.0.1\n", "\n" ] } ], "source": [ "import warnings\n", "\n", "import geopandas\n", "import matplotlib.lines as mlines\n", "import matplotlib.pyplot as plt\n", "import numpy\n", "import pulp\n", "import shapely\n", "from matplotlib.patches import Patch\n", "\n", "import spopt\n", "from spopt.locate import PDispersion, simulated_geo_points\n", "\n", "with warnings.catch_warnings():\n", " warnings.simplefilter(\"ignore\")\n", " # ignore deprecation warning - GH pysal/spaghetti#649\n", " import spaghetti\n", "\n", "%watermark -w\n", "%watermark -iv" ] }, { "cell_type": "markdown", "id": "e952f337", "metadata": {}, "source": [ "Since the model needs a cost matrix (distance, time, etc.) we should define some variables. First we will assign some the number of facility locations followed by the random seed in order to reproduce the results. Finally, the solver, assigned below as `pulp.COIN_CMD`, is an interface to optimization solver developed by [COIN-OR](https://github.com/coin-or/Cbc). If you want to use another optimization interface, such as Gurobi or CPLEX, see this [guide](https://coin-" ] }, { "cell_type": "code", "execution_count": 3, "id": "6725bc44", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.028779Z", "start_time": "2023-01-10T18:23:33.022873Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.574034Z", "iopub.status.busy": "2025-04-07T19:07:15.573882Z", "iopub.status.idle": "2025-04-07T19:07:15.575882Z", "shell.execute_reply": "2025-04-07T19:07:15.575620Z", "shell.execute_reply.started": "2025-04-07T19:07:15.574027Z" } }, "outputs": [], "source": [ "# quantity supply points\n", "FACILITY_COUNT = 16\n", "\n", "# number of candidate facilities in optimal solution\n", "P_FACILITIES = 3\n", "\n", "# random seeds for reproducibility\n", "FACILITY_SEED = 6\n", "\n", "# set the solver\n", "solver = pulp.COIN_CMD(msg=False, warmStart=True)" ] }, { "cell_type": "markdown", "id": "4e579217", "metadata": {}, "source": [ "## Lattice 10x10\n", "\n", "Create a 10x10 lattice with 9 interior lines, both vertical and horizontal." ] }, { "cell_type": "code", "execution_count": 4, "id": "4371f5e5", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.082856Z", "start_time": "2023-01-10T18:23:33.034844Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.576243Z", "iopub.status.busy": "2025-04-07T19:07:15.576164Z", "iopub.status.idle": "2025-04-07T19:07:15.587967Z", "shell.execute_reply": "2025-04-07T19:07:15.587732Z", "shell.execute_reply.started": "2025-04-07T19:07:15.576237Z" } }, "outputs": [], "source": [ "with warnings.catch_warnings():\n", " warnings.simplefilter(\"ignore\")\n", " # ignore deprecation warning - GH pysal/libpysal#468\n", " lattice = spaghetti.regular_lattice((0, 0, 10, 10), 9, exterior=True)\n", "ntw = spaghetti.Network(in_data=lattice)" ] }, { "cell_type": "markdown", "id": "cf6e7748", "metadata": {}, "source": [ "Transform the `spaghetti` instance into a geodataframe." ] }, { "cell_type": "code", "execution_count": 5, "id": "d767d1ad", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.225733Z", "start_time": "2023-01-10T18:23:33.086985Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.588367Z", "iopub.status.busy": "2025-04-07T19:07:15.588298Z", "iopub.status.idle": "2025-04-07T19:07:15.627701Z", "shell.execute_reply": "2025-04-07T19:07:15.627487Z", "shell.execute_reply.started": "2025-04-07T19:07:15.588360Z" } }, "outputs": [], "source": [ "streets = spaghetti.element_as_gdf(ntw, arcs=True)" ] }, { "cell_type": "code", "execution_count": 6, "id": "1f639684", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.263515Z", "start_time": "2023-01-10T18:23:33.228853Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.628099Z", "iopub.status.busy": "2025-04-07T19:07:15.628031Z", "iopub.status.idle": "2025-04-07T19:07:15.638682Z", "shell.execute_reply": "2025-04-07T19:07:15.638428Z", "shell.execute_reply.started": "2025-04-07T19:07:15.628090Z" } }, "outputs": [], "source": [ "streets_buffered = geopandas.GeoDataFrame(\n", " geopandas.GeoSeries(streets[\"geometry\"].buffer(0.5).union_all()),\n", " crs=streets.crs,\n", " columns=[\"geometry\"],\n", ")" ] }, { "cell_type": "markdown", "id": "7ff2e134", "metadata": {}, "source": [ "Plotting the network created by `spaghetti` we can verify that it mimics a district with quarters and streets." ] }, { "cell_type": "code", "execution_count": 7, "id": "d4b67cb3", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.471286Z", "start_time": "2023-01-10T18:23:33.266165Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.639115Z", "iopub.status.busy": "2025-04-07T19:07:15.639028Z", "iopub.status.idle": "2025-04-07T19:07:15.700010Z", "shell.execute_reply": "2025-04-07T19:07:15.699789Z", "shell.execute_reply.started": "2025-04-07T19:07:15.639106Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAM6CAYAAABHGEjbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgAAOwNJREFUeJzt3X+Y3fOd9/HXxJggKRIJFTPWr0aybu26Einrtw27Gj829mbXvdvGj62u3XWRlqiu+rFF/SjR2+7dXm4pa6/Fai/LjXJrShOUWygtrbSEXjJEiU6t/Bwj5/4jV86ZWSMSkjnnzOfxuK5c18nMN3Pe592pnGfO93ynpVKpVAIAAFCIIfUeAAAAYCCJIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAitJa7wGawYoVK/LMM88kSUaPHp3WVmsDAICB0NPTkzfeeCNJsueee2azzTb7yF/Ts/l18Mwzz2TSpEn1HgMAAIr2+OOPZ++99/7IX8fpcAAAQFG8ErQORo8eXb39+OOPZ/vtt6/jNAAAUI5FixZVz8rq/bz8oxBB66D3e4C23377tLe313EaAAAo04Z6b77T4QAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoGzWCXn/99dx99905//zzc8QRR2TUqFFpaWlJS0tLTjzxxPX+evfdd1+OPfbYtLe3Z+jQoWlvb8+xxx6b++67b8MPDwAADEqtG/OLb7fddhvk61QqlfzN3/xNrrvuuj4ff+WVV/If//Ef+Y//+I+ceuqp+fa3v52WlpYNcp8AAMDgNGCnw3V0dOTwww//UH/2vPPOqwbQXnvtlVtuuSWPP/54brnlluy1115Jkuuuuy5f/epXN9i8AADA4LRRXwk6//zzs/fee2fvvffOdtttl1//+tfZeeed1+trvPDCC7niiiuSJBMnTszcuXOz+eabJ0n23nvvHH300TnooIPyxBNP5PLLL89JJ52UXXfddYM/FgAAYHDYqK8EXXTRRTnyyCM/0mlxM2fOTE9PT5Lk2muvrQbQGltssUWuvfbaJElPT0+uueaaD31fAADA4NfQV4erVCq58847kyTjxo3LPvvs0+9x++yzT3bfffckyR133JFKpTJgMwIAAM1lo54O91G99NJLeeWVV5IkBx100FqPPeigg/LLX/4ynZ2dH+q0u2bx5pKV9R4BAICCbDN8aL1H2OAaOoKee+656u1x48at9djen3/uuefWK4I6OzvX+vlFixat89fa2CZcPLveIwAAUJBfXzal3iNscA0dQQsXLqzebm9vX+uxHR0d/f65ddH7zwIAAINbQ0fQ22+/Xb09fPjwtR47bNiw6u0lS5ZstJnq4c0lK70CBABAXez05XuSJE+eN3nQnBrX0BG0YsWK6u22tra1Hjt0aO1/kOXLl6/X/XzQK0eLFi3KpEmT1utrAgAAjamhI2izzTar3u7u7l7rsStX1i4Y8F8vo/1BPuhUu0Y0e/qBGTFs7WE4GHUt7c7kmXP7fKzUXST20Ztd1NhFjV3U2EVf9lFjFzV2UdPfLgaTho6gj33sY9XbH3SK29KlS6u3P+jUucFgxLC2QfNy5EdlF33ZR41d1NhFjV3U2EVf9lFjFzV2MTg19M8J6v0KzQddwa33KW0udAAAALyfho6g3//936/enj9//lqP7f358ePHb7SZAACA5tbQEbTzzjtnzJgxSZI5c+as9di5c1efs7jDDjtkp5122tijAQAATaqhI6ilpSXHHHNMktWv9Dz22GP9HvfYY49VXwk65phj0tLSMmAzAgAAzaWhIyhJzjzzzLS2rr5+w+mnn/6ey18vX748p59+epKktbU1Z5555kCPCAAANJGNenW4hx9+OC+88EL194sXL67efuGFF3LjjTf2Of7EE098z9cYO3ZszjrrrFx22WV54oknst9+++Wcc87JrrvumgULFuTyyy/PU089lSQ5++yz84lPfGKjPBYAAGBw2KgRdP311+df/uVf+v3cI488kkceeaTPx/qLoCS55JJL8vrrr+c73/lOnnrqqfzFX/zFe4455ZRTcvHFF3/kmQEAgMGt4U+HS5IhQ4Zk1qxZueeee3LMMcdkzJgxaWtry5gxY3LMMcfk+9//fq6//voMGdIUDwcAAKijjfpK0I033vieU94+is985jP5zGc+s8G+HgAAUB4vnQAAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUJTWeg/Ah9O1tLveI9RFf4+71F0k9tGbXdTYRY1d1NhFX/ZRYxc1dlEz2B93S6VSqdR7iEbX2dmZjo6OJMnChQvT3t4+oPf/5pKVmXDx7AG9TwAA6O3J8yZnm+FDB/x+N8ZzcafDAQAARRFBAABAUUQQAABQFBdGaFKzpx+YEcPa6j3GgOta2p3JM+f2+Vipu0jsoze7qLGLGruosYu+7KPGLmrsoqa/XQwmIqhJjRjWVpc3pjUiu+jLPmrsosYuauyixi76so8au6ixi8HJ6XAAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUJSmiqDu7u7MmjUrf/Inf5Ltt98+Q4cOzfDhw7P77rvn5JNPzmOPPVbvEQEAgAbXWu8B1tXChQszZcqUPPPMM30+3t3dnV/96lf51a9+lRtuuCHTp0/PVVddlZaWljpNCgAANLKmeCWop6enTwB98pOfzI033phHH300999/f84///wMGzYsSTJz5sx84xvfqOe4AABAA2uKV4LuvPPOagDtu+++eeihh7LJJptUP3/YYYfl6KOPzr777pt33nknX//61zN9+vS0tjbFwwMAAAZQU7wS9Mgjj1Rvn3vuuX0CaI0JEybkyCOPTJJ0dXVl/vz5AzYfAADQPJoigrq7u6u3d9lll/c9btddd63eXrly5UadCQAAaE5Ncb7Y2LFjq7dffPHF7LHHHv0et2DBgiRJS0tLPvGJTwzIbPXStbT7gw8ahPp73KXuIrGP3uyixi5q7KLGLvqyjxq7qLGLmsH+uFsqlUql3kN8kDfeeCO77bZb/vM//zP77bdf5syZ855T4p566qnss88+6e7uzgknnJCbb755nb9+Z2fnWj+/aNGiTJo0Kcnqq9S1t7ev/4P4CN5csjITLp49oPcJAAC9PXne5GwzfOiA329nZ2c6OjqSbLjn4k3xStDo0aNz44035i//8i/zyCOPZO+9986ZZ56ZsWPHZsmSJXnkkUdy1VVXpbu7O3/wB3+Qq6++er2+/pqlAgAAg19TRFCSTJ06NU888USuvvrqfOc738m0adP6fH677bbLRRddlFNPPbV6uWwAAID/qmki6J133snNN9+cu+66K/2dwfeb3/wmt9xyS8aOHZspU6as19deuHDhWj/f+3Q4AACguTVFBC1dujSf+cxnMnfu3GyyySaZMWNGTjrppOyyyy5ZsWJF/t//+3/5x3/8xzz88MM56qijMnPmzJxxxhnr/PUH+j0+G8Ls6QdmxLC2eo8x4LqWdmfyzLl9PlbqLhL76M0uauyixi5q7KIv+6ixixq7qOlvF4NJU0TQBRdckLlzV/+PMGvWrD6nwrW1teWwww7LIYccksMPPzwPPvhgvvjFL+aQQw7JJz/5yXqNvNGNGNZWlzemNSK76Ms+auyixi5q7KLGLvqyjxq7qLGLwanhf05QpVLJDTfckGT1pbL/63uB1mhtbc3Xvva1JMmqVauqfwYAAKC3ho+g3/zmN/ntb3+bJNlrr73WeuyECROqt+fPn79R5wIAAJpTw0dQa2vtjL2enp61HvvOO+/0++cAAADWaPgIGjlyZLbccsskyaOPPrrWEJozZ0719s4777zRZwMAAJpPw0fQkCFDqpe8fvXVV3PJJZf0e1xXV1fOOeec6u+PPPLIAZkPAABoLk1xztj555+fO++8M8uWLcuFF16YJ598MtOmTateIvuxxx7LNddck5dffjlJ8kd/9Ec5/PDD6zw1AADQiJoigsaNG5c777wzJ5xwQhYvXpy77rord911V7/HHnroofnud787wBMCAADNoikiKEkmT56c+fPnZ9asWbn33nvz85//PL/73e/S2tqaj3/849l7773zP/7H/8jRRx+dlpaWeo8LAAA0qKaJoCTZZpttMmPGjMyYMaPeowAAAE2q4S+MAAAAsCGJIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAitJa7wH4cLqWdtd7hLro73GXuovEPnqzixq7qLGLGrvoyz5q7KLGLmoG++NuqVQqlXoP0eg6OzvT0dGRJFm4cGHa29sH9P7fXLIyEy6ePaD3CQAAvT153uRsM3zogN/vxngu7nQ4AACgKCIIAAAoiggCAACK4sIITWr29AMzYlhbvccYcF1LuzN55tw+Hyt1F4l99GYXNXZRYxc1dtGXfdTYRY1d1PS3i8FEBDWpEcPa6vLGtEZkF33ZR41d1NhFjV3U2EVf9lFjFzV2MTg5HQ4AACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKErTRdDixYtzxRVXZL/99svHP/7xDB06NGPGjMmnP/3pnH322Xn00UfrPSIAANDAWus9wPr47ne/m9NOOy1vvvlmn48vWrQoixYtyuOPP57nn38+d9xxR30GBAAAGl7TRNBNN92Uk046KatWrcq2226b0047Lfvvv39GjhyZ1157LQsWLMhdd92VTTfdtN6jAgAADawpIui5557LqaeemlWrVuWAAw7IXXfdla222uo9x51++unp7u6uw4QAAECzaIr3BJ1++ulZuXJlRo0aldtvv73fAFqjra1tACcDAACaTcNH0Pz58/PDH/4wSfL3f//3GTVqVJ0nAgAAmlnDR9B3v/vd6u3jjjuuerurqyvPP//8ey6SAAAAsDYN/56gxx57LEmy1VZbZfz48fm3f/u3XHHFFfnZz35WPWbnnXfOtGnT8qUvfSnDhw+v16gDqmtpme996u9xl7qLxD56s4sau6ixixq76Ms+auyixi5qBvvjbqlUKpV6D7E2O++8c37961/nU5/6VPbff//88z//8/se+9/+23/L//2//zdjxoxZr/vo7Oxc6+cXLVqUSZMmJUkWLlyY9vb29fr6H9WbS1ZmwsWzB/Q+AQCgtyfPm5xthg8d8Pvt7OxMR0dHkg33XLzhXwn67W9/m2T1e4N++tOfZuutt85ll12WY489NltuuWWeeeaZnH/++bn33nvz7LPP5rjjjstDDz2UIUPW/Uy/NUsFAAAGv4Z/T9DSpUuTJCtXrswmm2ySe++9N1/4whcyevToDB06NBMnTszdd9+dI444Ikny4x//OLfffns9RwYAABpYw78StNlmm1VD6Ljjjss+++zznmOGDBmSK6+8Mvfee2+S5JZbbsl//+//fZ3vY+HChWv9fO/T4QAAgObW8BH0sY99rBpBa17t6c8ee+yRHXbYIa+88krmzZu3Xvcx0O/x2RBmTz8wI4aV9zORupZ2Z/LMuX0+VuouEvvozS5q7KLGLmrsoi/7qLGLGruo6W8Xg0nDR1BHR0dee+21JB8cKx0dHXnllVfy+uuvD8RodTViWFtd3pjWiOyiL/uosYsau6ixixq76Ms+auyixi4Gp4Z/T9Aee+xRvf3uu++u9dg1n29tbfi2AwAA6qThI+jAAw+s3l6wYMFaj33xxReTJDvssMNGnQkAAGheDR9BRx99dDbddNMkWetV3+bMmZM333wzSXLAAQcMyGwAAEDzafgI2mabbfLXf/3XSZIf/OAHufXWW99zzNtvv50zzzyz+vsvfOELAzUeAADQZBo+gpLkoosuyo477pgk+exnP5vTTz89Dz74YJ588snceOONmTRpUp5++ukkyWmnnZa99967jtMCAACNrCmuIDB69Ojcd999Ofroo/PCCy/kn/7pn/JP//RP7znu5JNPzje/+c06TAgAADSLpnglKEnGjx+fp59+OldeeWU+/elPZ+TIkWlra0t7e3v+/M//PA888EBmzZpVff8QAABAf5rilaA1hg0blrPOOitnnXVWvUcBAACaVNO8EgQAALAhiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIrSWu8B+HC6lnbXe4S66O9xl7qLxD56s4sau6ixixq76Ms+auyixi5qBvvjbqlUKpV6D9HoOjs709HRkSRZuHBh2tvbB/T+31yyMhMunj2g9wkAAL09ed7kbDN86IDf78Z4Lu50OAAAoCgiCAAAKIoIAgAAiuLCCE1q9vQDM2JYW73HGHBdS7szeebcPh8rdReJffRmFzV2UWMXNXbRl33U2EWNXdT0t4vBRAQ1qRHD2uryxrRGZBd92UeNXdTYRY1d1NhFX/ZRYxc1djE4OR0OAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIrS1BE0Y8aMtLS0VH/96Ec/qvdIAABAg2vaCPrpT3+amTNn1nsMAACgyTRlBK1atSqf//zn09PTk2233bbe4wAAAE2kKSPof/7P/5l58+Zl3LhxOeWUU+o9DgAA0ESaLoIWLlyYr371q0mSb33rW2lra6vzRAAAQDNpugj627/92yxZsiTTpk3LwQcfXO9xAACAJtNa7wHWx2233Za77747I0eOzJVXXlnvceqqa2l3vUeoi/4ed6m7SOyjN7uosYsau6ixi77so8YuauyiZrA/7qaJoN/97nc544wzkiSXX355Ro8evcG+dmdn51o/v2jRog12XxvK5Jlz6z1Cw7CLvuyjxi5q7KLGLmrsoi/7qLGLGrsYnJomgmbMmJHXXnstf/iHf7jBL4bQ0dGxQb8eAADQuJriPUEPP/xwrr/++rS2tubb3/52Wlpa6j0SAADQpBr+laDu7u6ceuqpqVQqmT59evbcc88Nfh8LFy5c6+cXLVqUSZMmbfD7BQAABl7DR9Cll16a5557LjvuuGMuuOCCjXIf7e3tG+Xrbkyzpx+YEcPKuzx419Lu95ybW+ouEvvozS5q7KLGLmrsoi/7qLGLGruo6W8Xg0lDR9D8+fPz9a9/PUly7bXXZtiwYXWeqHGMGNaWbYYPrfcYDcEu+rKPGruosYsau6ixi77so8YuauxicGroCJo5c2a6u7uzyy67ZNmyZbn11lvfc8yzzz5bvf3AAw/ktddeS5IcddRRogkAAHiPho6glStXJklefPHFnHDCCR94/Ne+9rXq7ZdeekkEAQAA79EUV4cDAADYUBo6gm688cZUKpW1/up9sYQHH3yw+vGddtqpfoMDAAANq6EjCAAAYEMTQQAAQFFEEAAAUBQRBAAAFKXpI+jCCy+sXgzh4IMPrvc4AABAg2v6CAIAAFgfIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIrSWu8B+HC6lnbXe4S66O9xl7qLxD56s4sau6ixixq76Ms+auyixi5qBvvjbqlUKpV6D9HoOjs709HRkSRZuHBh2tvbB/T+31yyMhMunj2g9wkAAL09ed7kbDN86IDf78Z4Lu50OAAAoCgiCAAAKIoIAgAAiuLCCE1q9vQDM2JYW73HGHBdS7szeebcPh8rdReJffRmFzV2UWMXNXbRl33U2EWNXdT0t4vBRAQ1qRHD2uryxrRGZBd92UeNXdTYRY1d1NhFX/ZRYxc1djE4OR0OAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIrSFBH0k5/8JJdeemmOOOKIdHR0ZOjQoRk+fHjGjh2bE088MQ899FC9RwQAAJpEa70H+CAHHXRQ5s6d+56Pd3d35/nnn8/zzz+ff/mXf8lnP/vZXH/99Wlra6vDlAAAQLNo+Ah65ZVXkiRjxozJcccdlwMOOCA77rhj3n333Tz66KO56qqr8sorr+Rf//Vf09PTk5tvvrnOEwMAAI2s4SNo3LhxufTSS/Nnf/Zn2WSTTfp8bp999slnP/vZ7LfffvnVr36VW265JaeddloOOOCAOk0LAAA0uoZ/T9Ddd9+d448//j0BtMaoUaNy1VVXVX//ve99b6BGAwAAmlDDR9C6OPjgg6u3FyxYUL9BAACAhjcoIqi7u7t6e8iQQfGQAACAjaTh3xO0LubMmVO9PW7cuDpOMnC6lnZ/8EGDUH+Pu9RdJPbRm13U2EWNXdTYRV/2UWMXNXZRM9gfd0ulUqnUe4iPYtWqVdl3333z+OOPJ0nmzZuXiRMnrtfX6OzsXOvnFy1alEmTJiVJFi5cmPb29g837If05pKVmXDx7AG9TwAA6O3J8yZnm+FDB/x+Ozs709HRkWTDPRdv+leCZs6cWQ2gqVOnrncAJakuFQAAGPya+g00c+bMyZe//OUkybbbbptvfetbdZ4IAABodE37StDPf/7zTJ06NT09PRk6dGhuu+22bLfddh/qay1cuHCtn+99OhwAANDcmjKCXnrppRx++OHp6urKJptskltuuSUHHXTQh/56A/0enw1h9vQDM2JYW73HGHBdS7szeebcPh8rdReJffRmFzV2UWMXNXbRl33U2EWNXdT0t4vBpOki6NVXX83kyZPz6quvpqWlJd/5zncyderUeo814EYMa6vLG9MakV30ZR81dlFjFzV2UWMXfdlHjV3U2MXg1FTvCVq8eHEOO+ywvPjii0mSa6+9Np/73OfqPBUAANBMmiaC3nrrrfzxH/9xfvGLXyRJLrvssvzd3/1dnacCAACaTVNE0LJlyzJlypT85Cc/SZL8wz/8Q84555w6TwUAADSjho+g7u7uTJ06NY888kiS5IwzzsjFF19c56kAAIBm1fAXRjjhhBNy//33J0kOPfTQnHLKKXn22Wff9/i2traMHTt2oMYDAACaTMNH0O233169/cADD+STn/zkWo//vd/7vfz617/eyFMBAADNquFPhwMAANiQGv6VoEqlUu8RAACAQcQrQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARWmt9wB8OF1Lu+s9Ql3097hL3UViH73ZRY1d1NhFjV30ZR81dlFjFzWD/XG3VCqVSr2HaHSdnZ3p6OhIkixcuDDt7e0Dev9vLlmZCRfPHtD7BACA3p48b3K2GT50wO93YzwXdzocAABQFBEEAAAURQQBAABFcWGEJjV7+oEZMayt3mMMuK6l3Zk8c26fj5W6i8Q+erOLGruosYsau+jLPmrsosYuavrbxWAigprUiGFtdXljWiOyi77so8Yuauyixi5q7KIv+6ixixq7GJycDgcAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARWm6CHr55Zdz1llnZfz48Rk2bFhGjhyZSZMm5Rvf+EaWLVtW7/EAAIAG11rvAdbHPffck7/8y7/MW2+9Vf3YsmXLMm/evMybNy/XX399vv/972eXXXap45QAAEAja5pXgn7605/m+OOPz1tvvZXhw4fnkksuyY9//OP88Ic/zOc///kkyS9/+ctMmTIlS5YsqfO0AABAo2qaV4LOPPPMLFu2LK2trbn//vuz7777Vj936KGH5hOf+ERmzJiR+fPn5+qrr875559fx2kBAIBG1RSvBM2bNy8/+tGPkiSnnHJKnwBa40tf+lLGjx+fJLnmmmvyzjvvDOSIAABAk2iKCLrjjjuqt0866aR+jxkyZEg+97nPJUm6urqq0QQAANBbU5wO99BDDyVJhg0blgkTJrzvcQcddFD19sMPP5zDDjtso89WL11Lu+s9Ql3097hL3UViH73ZRY1d1NhFjV30ZR81dlFjFzWD/XG3VCqVSr2H+CCjR4/O4sWL86lPfSpPP/30+x7X1dWVkSNHJkmOO+643Hbbbev09Ts7O9f6+UWLFmXSpElJkoULF6a9vX3dBt9A3lyyMhMunj2g9wkAAL09ed7kbDN86IDfb2dnZzo6OpJsuOfiDf9K0IoVK7J48eIk+cAHPGLEiAwbNixLly7NwoUL1/k+1iwVAAAY/Bo+gt5+++3q7eHDh3/g8WsiaDBdJnub4UPz68umJEl2+vI9dZ4GAICSrHkeOpg0fAStWLGierutre0Djx86dPVLdMuXL1/n+/igV416nw4HAAA0t4aPoM0226x6u7v7g9+gtXLlyiTJ5ptvvs73MdDv8fkonjxvcr1HAACAptbwEfSxj32sentdTnFbunRpknU7da4Z1ePNaAAAMJg0/M8J2myzzTJq1KgkH3wVt66urmoEudgBAADQn4aPoCQZP358kuSFF15IT0/P+x43f/789/wZAACA3poigvbff/8kq091e/LJJ9/3uDlz5lRv77fffht9LgAAoPk0RQT96Z/+afX2DTfc0O8xq1atyk033ZQk2XrrrXPIIYcMxGgAAECTaYoImjRpUg444IAkyaxZs/Loo4++55irrroqzz33XJLkjDPOyKabbjqgMwIAAM2h4a8Ot8Y3v/nN7Lffflm+fHkOP/zwfOUrX8khhxyS5cuX59Zbb811112XJBk7dmy+9KUv1XlaAACgUTVNBO21117593//9/zVX/1V/vM//zNf+cpX3nPM2LFjc8899/S5rDYAAEBvTXE63BpHHXVUfvazn2X69OkZO3Zstthii2y99daZOHFiLr/88jz11FPZbbfd6j0mAADQwFoqlUql3kM0us7OzurPHVq4cGHa29vrPBEAAJRhYzwXb6pXggAAAD4qEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARWmt9wDNoKenp3p70aJFdZwEAADK0vv5d+/n5R+FCFoHb7zxRvX2pEmT6jgJAACU64033shOO+30kb+O0+EAAICitFQqlUq9h2h0K1asyDPPPJMkGT16dFpbB/4FtEWLFlVfhXr88cez/fbbD/gMNCbfG/TH9wX98X3B+/G9QX8a5fuip6enembWnnvumc022+wjf02nw62DzTbbLHvvvXe9x6jafvvt097eXu8xaEC+N+iP7wv64/uC9+N7g/7U+/tiQ5wC15vT4QAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoih+WCgAAFMUrQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEdQEXn755Zx11lkZP358hg0blpEjR2bSpEn5xje+kWXLltV7PAbYT37yk1x66aU54ogj0tHRkaFDh2b48OEZO3ZsTjzxxDz00EP1HpEGM2PGjLS0tFR//ehHP6r3SNTJ4sWLc8UVV2S//fbLxz/+8QwdOjRjxozJpz/96Zx99tl59NFH6z0iA6y7uzuzZs3Kn/zJn2T77bev/p2y++675+STT85jjz1W7xHZgF5//fXcfffdOf/883PEEUdk1KhR1b8bTjzxxPX+evfdd1+OPfbYtLe3Z+jQoWlvb8+xxx6b++67b8MPv6FVaGh33313Zauttqok6ffX7rvvXlmwYEG9x2SAHHjgge/7vdD712c/+9nKypUr6z0uDeDpp5+utLa29vn+ePDBB+s9FnVw2223VbbZZpu1/rfjmGOOqfeYDKCXX365sueee37g3ynTp0+vrFq1qt7jsgGs7X/nadOmrfPXWbVqVeXUU09d69c79dRTG/r7pnUjdBUbyE9/+tMcf/zxWbZsWYYPH55zzz03hxxySJYvX55bb701//t//+/88pe/zJQpUzJv3rwMHz683iOzkb3yyitJkjFjxuS4447LAQcckB133DHvvvtuHn300Vx11VV55ZVX8q//+q/p6enJzTffXOeJqadVq1bl85//fHp6erLtttvm9ddfr/dI1MlNN92Uk046KatWrcq2226b0047Lfvvv39GjhyZ1157LQsWLMhdd92VTTfdtN6jMkB6enoyZcqUPPPMM0mST37yk/niF7+Y3XffPW+//XYefvjhXHXVVVm6dGlmzpyZ7bffPmeffXadp2ZD6ujoyPjx43P//fev958977zzct111yVJ9tprr8yYMSO77rprFixYkCuuuCJPPfVUrrvuuowePToXX3zxhh59w6h3hfH+Dj744EqSSmtra+XHP/7xez5/xRVXVGv7oosuqsOEDLQpU6ZU/v3f/73S09PT7+ffeOONytixY6vfF3Pnzh3gCWkkM2fOrCSpjBs3rnLuued6JahQv/jFLypDhw6tJKkccMABld/97nfve6xXkMvxve99r/rfhH333bffv1eeeOKJyqabblpJUhkxYkTlnXfeqcOkbEjnn39+5a677qq89tprlUqlUnnppZfW+5Wg559/vnqGwcSJEyvLli3r8/mlS5dWJk6cWH0O+8ILL2zoh7FBeE9Qg5o3b171vP1TTjkl++6773uO+dKXvpTx48cnSa655pq88847AzkidXD33Xfn+OOPzyabbNLv50eNGpWrrrqq+vvvfe97AzUaDWbhwoX56le/miT51re+lba2tjpPRL2cfvrpWblyZUaNGpXbb789W2211fse6/ukHI888kj19rnnntvv3ysTJkzIkUcemSTp6urK/PnzB2w+No6LLrooRx55ZLbbbrsP/TVmzpyZnp6eJMm1116bzTffvM/nt9hii1x77bVJVr/ieM0113zo+9qYRFCDuuOOO6q3TzrppH6PGTJkSD73uc8lWf0fJ292JkkOPvjg6u0FCxbUbxDq6m//9m+zZMmSTJs2rc/3BGWZP39+fvjDHyZJ/v7v/z6jRo2q80Q0iu7u7urtXXbZ5X2P23XXXau3V65cuVFnovFVKpXceeedSZJx48Zln3326fe4ffbZJ7vvvnuS1c9pK5XKgM24rkRQg1pzha9hw4ZlwoQJ73vcQQcdVL398MMPb/S5aHy9/2IbMsT/xUt022235e67787IkSNz5ZVX1nsc6ui73/1u9fZxxx1Xvd3V1ZXnn38+b775Zj3GogGMHTu2evvFF1983+PW/GNaS0tLPvGJT2z0uWhsL730UvX9yb2fg/Znzec7Ozvz61//emOPtt48Q2pQzz33XJJkt912S2vr+1+/Yty4ce/5M5Rtzpw51du9vz8ow+9+97ucccYZSZLLL788o0ePrvNE1NOayxtvtdVWGT9+fP7t3/4tn/rUpzJy5MiMHTs2o0aNyi677JKLLrooS5YsqfO0DKQTTjghW265ZZLV/614991333PMU089lXvuuSdJ8hd/8RfV4ylX7+eaH/Qco9Gfo4qgBrRixYosXrw4SdLe3r7WY0eMGJFhw4YlWf0eAMq2atWqXHbZZdXfH3/88XWchnqYMWNGXnvttfzhH/5hTjnllHqPQ5394he/SJLstNNOOf300/NXf/VX+dnPftbnmJdeeikXXnhh9t1337z66qv1GJM6GD16dG688cZsvvnmeeSRR7L33nvnpptuymOPPZbZs2fnoosuykEHHZTu7u78wR/8Qa6++up6j0wD6P1c84Oeo3Z0dPT75xqFCGpAb7/9dvX2ulz2ek0E+Vc8Zs6cmccffzxJMnXq1EycOLHOEzGQHn744Vx//fVpbW3Nt7/97bS0tNR7JOrst7/9bZLV7w3653/+52y99db59re/nddffz0rVqzIvHnzcsQRRyRJnn322Rx33HFZtWpVPUdmAE2dOjVPPPFETjnllDz99NOZNm1a9t133xx22GG58MILs8UWW+Tqq6/Oww8/nI9//OP1HpcGsD7PUdc8P00a8zmqCGpAK1asqN5elyv1DB06NEmyfPnyjTYTjW/OnDn58pe/nCTZdttt861vfavOEzGQuru7c+qpp6ZSqWT69OnZc8896z0SDWDp0qVJVr+hfZNNNsm9996bL3zhCxk9enSGDh2aiRMn5u67766G0I9//OPcfvvt9RyZAfTOO+/k5ptvzl133dXvG9d/85vf5JZbbnHhJarW5znqmuenSWM+RxVBDWizzTar3u79Jvf3s+ZqLf/1EoWU4+c//3mmTp2anp6eDB06NLfddttHuvwlzefSSy/Nc889lx133DEXXHBBvcehQfT+++S4447r90pOQ4YM6XMBjVtuuWVAZqO+li5dmsmTJ+eSSy7Jm2++mRkzZuS5557LypUr89Zbb+X+++/P/vvvn3nz5uWoo47KN7/5zXqPTANYn+eova8m2IjPUUVQA/rYxz5Wvb0uLx+u+Ze+dTl1jsHnpZdeyuGHH56urq5ssskmueWWWz7wii0MLvPnz8/Xv/71JKt/ZkPvUxAoW++/T9a82tOfPfbYIzvssEOS1T+njsHvggsuyNy5c5Mks2bNyuWXX55x48alra0tW265ZQ477LA8+OCDOeSQQ1KpVPLFL37xPe8nozzr8xx1zfPTpDGfo77/Zceom8022yyjRo3K4sWL09nZudZju7q6qt9kvd+ARhleffXVTJ48Oa+++mpaWlryne98J1OnTq33WAywmTNnpru7O7vsskuWLVuWW2+99T3HPPvss9XbDzzwQF577bUkyVFHHSWaBrGOjo7q/9br8ibmV155Ja+//vpAjEYdVSqV3HDDDUlWXyp72rRp/R7X2tqar33ta9l///2zatWq3HDDDZk5c+ZAjkqD6f3fkQ96jtr7YgiN+BxVBDWo8ePH56GHHsoLL7yQnp6e971Mdu+f3jx+/PiBGo8GsHjx4hx22GHVn+9w7bXXVn94LmVZc8rBiy++mBNOOOEDj//a175Wvf3SSy+JoEFsjz32qL6y098lkHtb8/m1/VgGBoff/OY31Ytm7LXXXms9tvfPKuz9nIMy/f7v/3719gd9PzT6c1SnwzWo/fffP8nqlxKffPLJ9z2u98+E2W+//Tb6XDSGt956K3/8x39cvfztZZddlr/7u7+r81RAoznwwAOrt9f80Mv3s+YfVNacFsfg1Tt0e3p61nrsO++80++fo0w777xzxowZk6Tvc9D+rDndcocddshOO+20sUdbbyKoQf3pn/5p9faal6z/q1WrVuWmm25Kkmy99dY55JBDBmI06mzZsmWZMmVKfvKTnyRJ/uEf/iHnnHNOnaeinm688cZUKpW1/up9sYQHH3yw+vFG/IuJDefoo4/OpptumiRrverbnDlz8uabbyZJDjjggAGZjfoZOXJk9QefPvroo2sNod5PdHfeeeeNPhuNraWlJcccc0yS1a/0rPmBzP/VY489Vn0l6JhjjmnIH9kgghrUpEmTqn8RzZo1K48++uh7jrnqqquqP4H3jDPOqP5Fx+DV3d2dqVOn5pFHHkmy+n/3iy++uM5TAY1qm222yV//9V8nSX7wgx/0+36xt99+O2eeeWb191/4whcGajzqZMiQIZkyZUqS1e8tveSSS/o9rqurq88/sh155JEDMh+N7cwzz6y+Knj66ae/5/LXy5cvz+mnn55k9auHvf/70khaKv1dGJ6G8NRTT2W//fbL8uXLM3z48HzlK1/JIYcckuXLl+fWW2/Nddddl2T1mxqfeOKJPlfsYHD6sz/7s+q/5h566KG55ppr1vqvK21tbRk7duxAjUcDu/DCC3PRRRclWf1K0MEHH1zfgRgwb7zxRiZOnJiXX345ra2t+Zu/+Zsce+yx2XLLLfPMM8/k8ssvr/6L7WmnnZb/9b/+V50nZiDMnz8/EyZMyLJly5KsvkjKtGnTsssuu2TFihV57LHHcs011+Tll19OkvzRH/1RZs+eXc+R2QAefvjhvPDCC9XfL168OGeffXaS1W+rWPOPJmuceOKJ/X6dc889N5dddlmS1e8rO+ecc7LrrrtmwYIFufzyy/PUU09Vj7v00ks3wiPZACo0tP/zf/5PZcstt6wk6ffX2LFjK88//3y9x2SAvN/3wfv9+r3f+716j0yDuOCCC6rfFw8++GC9x2GA/eIXv6jstttua/3vxcknn1zp7u6u96gMoB/84AeVUaNGfeDfJYceemjlt7/9bb3HZQOYNm3aej2PeD/vvvtu5eSTT17rnz3llFMq77777gA+uvXjdLgGd9RRR+VnP/tZpk+fnrFjx2aLLbbI1ltvnYkTJ1ZLe7fddqv3mAA0sPHjx+fpp5/OlVdemU9/+tMZOXJk2tra0t7enj//8z/PAw88kFmzZjmtujCTJ0/O/Pnzc/nll+fggw/O6NGjs+mmm2bzzTfPzjvvnOOPPz533HFHZs+enREjRtR7XBrIkCFDMmvWrNxzzz055phjMmbMmLS1tWXMmDE55phj8v3vfz/XX399hgxp3NRwOhwAAFCUxs0zAACAjUAEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUJT/D1UAAsA+dOH7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 413, "width": 416 } }, "output_type": "display_data" } ], "source": [ "streets.plot();" ] }, { "cell_type": "markdown", "id": "8fcf8cfe", "metadata": {}, "source": [ "## Simulate points in a network\n", "\n", "The `simulated_geo_points` function simulates points near a network. In this case, it uses the 10x10 lattice network created using the `spaghetti` package. Below we use the function defined above and simulate the points near the lattice edges." ] }, { "cell_type": "code", "execution_count": 8, "id": "d5aad045", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.482666Z", "start_time": "2023-01-10T18:23:33.473980Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.700459Z", "iopub.status.busy": "2025-04-07T19:07:15.700386Z", "iopub.status.idle": "2025-04-07T19:07:15.703948Z", "shell.execute_reply": "2025-04-07T19:07:15.703732Z", "shell.execute_reply.started": "2025-04-07T19:07:15.700452Z" } }, "outputs": [], "source": [ "facility_points = simulated_geo_points(\n", " streets_buffered, needed=FACILITY_COUNT, seed=FACILITY_SEED\n", ")" ] }, { "cell_type": "markdown", "id": "bfb6aa6b", "metadata": {}, "source": [ "Plotting the facility points we can see that the function generates dummy points to an area of 10x10, which is the area created by our lattice created on previous cells." ] }, { "cell_type": "code", "execution_count": 9, "id": "91d8cddf", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.960755Z", "start_time": "2023-01-10T18:23:33.485494Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.704412Z", "iopub.status.busy": "2025-04-07T19:07:15.704294Z", "iopub.status.idle": "2025-04-07T19:07:15.829423Z", "shell.execute_reply": "2025-04-07T19:07:15.829190Z", "shell.execute_reply.started": "2025-04-07T19:07:15.704404Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABhEAAAPzCAYAAAC5vC2tAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgAAjzlJREFUeJzs3XuclnWdP/7XMAOCA6OL4AkosdU0wG/igVpTySK/pmm4sGkaZJam32zt1+Zu7Va6bgdzt7NmB0PNtFJBw9SiRDCzNFnjoGaeGUQUTwMDchjm98cd04xewAz3PcyB5/Px4MHNfV3X535f7xlvZ+7XdX0+Vc3Nzc0BAAAAAAB4lT5dXQAAAAAAANA9CREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAArVdHUBPcErr7ySBQsWJEmGDh2amhptAwAA6M7Wr1+f5557LkkyZsyY9O/fv4srAgDomXwa3g4LFizIoYce2tVlAAAAsBXuueeeHHLIIV1dBgBAj2Q6IwAAAAAAoJA7Edph6NChLY/vueee7LHHHl1YDQAAAFuydOnSljvKW/9OBwBAxwgR2qH1Ggh77LFHhg8f3oXVAAAA0BHWtQMA2HqmMwIAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAK1XR1AQAAAEBlvPLKK3nppZeyatWqNDU1dXU5AMA2UF1dnX79+qWuri4DBw5Mnz6VvXdAiAAAAAA9XHNzc5YuXZqXX365q0sBALax9evXZ82aNVmxYkWqqqoybNiwDBo0qGLjCxEAAACgh3v++edfEyDU1PiVHwC2B01NTWlubk5SurBgyZIlFQ0S/EQBAAAAPdjatWvz3HPPtfx71113zc4775zq6uourAoA2Faam5uzatWqvPDCC1m5cmVLkLDvvvtWZGojCysDAABAD7Zy5cqWx7vsskt22WUXAQIAbEeqqqpSW1ub4cOHZ+DAgUlKwULrnxHKIUQAAACAHqyxsbHlcV1dXRdWAgB0paqqqgwePLjl3w0NDRUZV4gAAAAAPdjatWuTlD442GGHHbq4GgCgK+24446pqqpK8refEcolRAAAAIAebMOGDUmS6urqlg8NAIDtU1VVVcu0hk1NTRUZU4gAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAEAn22uvvVJVVZUPfvCDXV1Kp+jt5wewPRMiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAA0AFPP/10/u3f/i1jx47NTjvtlH79+mX33XfPmDFjcvLJJ+eKK65IQ0NDkmT8+PGpqqrKk08+mSS58sorU1VV1ebP+PHjW8Z+4oknWp6/4oorkiTTp0/Pu9/97uy5556pqalps/9G9fX1+fSnP52xY8fm7/7u79K/f/+87nWvy/ve977Mnj27Xef14osv5r/+67/y1re+NUOGDMkOO+yQPffcMyeccEKmT59eeExHzy9JmpqacsUVV+Too4/O7rvvnn79+mXnnXfOPvvsk3e84x354he/mAceeKBdNQPQ+Wq6ugAAANjmGhqS+vpk5cpk4MBk+PCkrq6rqwKgB7jzzjtz3HHHtYQEGy1btizLli3LwoUL85Of/CRDhgzJcccdV9ZrNTc3Z8qUKfnRj3602f0uv/zynHPOOVm9enWb5xcvXpzFixfnZz/7WU4//fRcdtllqakp/ijolltuySmnnJKXXnqpzfNLly7Nz3/+8/z85z/Psccem5/85CcZOHDgVp/TypUr8+53vzt33nlnm+dffvnlvPzyy3nkkUdy++23Z968ebn++uu3+nUAqBwhAgAA24fm5uSOO5JLLkluvDFpavrbturqZOLE5Oyzk/Hjk6qqLioSgO5szZo1Oemkk9LQ0JBBgwblrLPOytvf/vbsuuuuWbduXZ588sncfffdueGGG1qOmTZtWhobG3P00Ufn6aefzgknnJD/+q//ajNubW1t4et9/etfz/z583P44YfnrLPOyr777puXXnopTzzxRMs+P/zhD/PhD384STJ69OiceeaZOfDAA7Pjjjvm8ccfz+WXX55bbrkll19+eXbaaaf8z//8z2teZ9asWTn++OPT1NSUvfbaK2eddVbGjRuXurq6LFmyJD/96U9z9dVX5xe/+EWmTp1a1vmdf/75LQHCcccdl1NOOSWve93r0r9//zz33HP505/+lJtvvjlV/l8M0G1UNTc3N3d1Ed1dfX19RowYkaSU4g8fPryLKwIAoEPmzUumTEkWLdryvqNGJVddlYwd2/l1AZ1me/o97i9/+UvWr1+fmpqa7LPPPlvc/+VV67ZBVV1jpx37dur4t99+e97xjnckSWbOnLnJOw3Wr1+fVatWpa7VXW577bVXnnzyyUydOrVlmqIiTzzxREaOHNny7ylTpuSKK64o/FB98eLF2W+//bJq1apMnTo1P/jBDwrvNPj3f//3fPGLX0yfPn3y4IMPZt99923Z1tjYmDe84Q1ZtmxZ3vWud2XGjBnZcccdXzPG97///ZxxxhlJkl//+tctfejo+b3uda/L4sWLM2nSpFx33XWb3O+FF17I4MGDN7kdgE3r6M8GW+JOBACA7dX2MqXPrFmluwwaG9u3/6JFyRFHJDNmJBMmdG5tAF3g1Mv/0NUldJqZ57ytU8d/5plnWh4fccQRm9yvpqamTYCwtXbeeed8+9vf3uRV+d/4xjeyatWq7LnnnpudquiCCy7IlVdemSVLluSqq65qc6fAtGnTsmzZsvTv3z8/+tGPCgOEJPnIRz6SH/zgB7nnnnsybdq014QI7bWxh4cffvhm9xMgAHQfFlYGANieNDcns2cnkyYlgweXrrofN6709+DByeTJpe295WbVefM6FiBs1NhYOm7evM6pC4AeaY899mh5PG3atE5/vfe85z0ZNGjQJrffdNNNLfv1799/k/vV1NTkrW99a5Lk7rvvLhzjyCOPzK677rrZejYGJ68eoyM29vCnP/1pVq1atdXjALDtCBEAALYX8+YlY8YkRx2V3HBD2zUBktK/r7++tH3MmJ7/AXpzc2kKo44GCBs1NiZTp/aeQAWAsr3tbW/L3nvvnSQ599xzc+ihh+ZLX/pSfve732Xt2rUVf70DDjhgk9s2LkKcJN/97ndTVVW12T8bFylufTdFkvzxj39Mkvzyl7/c4hj//d//XThGR0ydOjVJ8rvf/S4jR47Mxz72scyYMSPPPffcVo8JQOcSIgAAbA9mzSpN0dOeNQGSv03pM2tW59bVme64o/3nuykLFyZz5lSkHAB6vr59+2bmzJnZf//9kyT33ntvPvOZz+Swww7LzjvvnGOOOSbXXHNNml4d1G+lv/u7v9vktmeffXarxmx99f+6devy0ksvlTVGR332s5/Nhz70oVRVVeXZZ5/NJZdckhNPPDG77bZbxowZk89//vNZtmzZVo8PQOVZEwEAoLcrd0qfuXN75iLDl15auXHGj6/MWADdwNWnj+vqEnq0N73pTVmwYEFmzpyZmTNnZs6cOXn00UezevXq3Hbbbbntttvy1a9+NbfccssWpwfakurq6k1uax1UnHvuuTn99NPbNWa/fv0Kx/inf/qnfPazn92KKjumb9++ufzyy/PJT34y1157bW6//fb88Y9/zNq1a7Nw4cIsXLgwX/3qV3P11VfnhBNO6PR6ANgyIQIAQG9WqSl95s9PNrGoY7fU0FBaGLkSpk8vjdcbF50Gtks77di3q0vo8aqrq/Pe9743733ve5MkS5cuza233ppLL7009913X+67776ceeaZmVGp/xcV2GWXXVoer1q1KqNHj+7wGP3798+OO+6YVatW5aWXXtqqMbbWm970plx44YW58MILs3r16tx111255pprctVVV2XlypU5+eST8+ijj7ZZhwKArmE6IwCA3mx7ndKnvv61az5sraamZMmSyowFQK+0xx575EMf+lDuvvvujP3r3Xs333xzVq9e3bJPVYXD+KFDh2bYsGFJkl//+tdp3so1fA488MAkyV133VXWNEXlnN+AAQPyzne+Mz/84Q9z8cUXJ0lWr16dm2++eavHBKByhAgAAL1ZJaf06UlWrqzseCtWVHY8AHqlvn375sgjj0ySrF+/vs16A/3790+SrFmzpmKvd/zxxydJHnvssZaFk7d2jMbGxlxyySVbXUulzu8d73hHy+Ply5eXNRYAlSFEAADorTpjSp+eYuDAyo43aFBlxwOgR7rzzjvzyCOPbHL72rVrM+evd+8NHDgwQ4cObdm2cVqeRx99tGL1fOpTn8oOO+yQJPnoRz+aP/7xj5vd/5Zbbsn8+fPbPPfRj340Q4YMSVJa9PjWW2/d7Bh33XVX5s6d+5rn23N+L7zwQn7+859v9q6JX/3qVy2PR44cudlaANg2rIkAANBbdcaUPj1lXYDhw5Pq6sqcf01N8tfpIgDYvv3mN7/JhRdemMMPPzzHHntsDjjggAwdOjSrV6/Oww8/nMsuuyzz5s1Lknz4wx9OTc3fPnb5h3/4h8yePTv33ntvvvzlL+eYY45JbW1tktJ0PsO24v81I0eOzGWXXZbTTjstL7zwQg477LB84AMfyHHHHZfXve51Wb9+ferr63PPPffk+uuvz6OPPpqZM2fmgAMOaBmjrq4u1157bY455pisWbMmxx13XP7xH/8x//iP/5g3vOENSUprPtx3332ZMWNG5s+fn29961s54ogj2tTSnvNraGjICSeckL322isnnnhixo0bl9e//vWpqanJ0qVLM3PmzPzgBz9IkgwfPjzvec97OtwTACqvqnlrJ83bjtTX12fEiBFJksWLF2f48OFdXBEAQDvcc08yblzlxvvDH5JDD63ceJ1t8uRkK6d2eM04P/tZ+eMA29T29HvcX/7yl6xfvz41NTXZZ599urqcXu3888/PBRdcsMX9TjzxxPz4xz9umeInSZYsWZIDDjggL7zwwmv2P/LII3PHHXckSZ544omWK/CnTZuWD37wg1t8vZ/+9Kc544wz0rCFuwb79OmTX//613n729/+mm233357TjnllDzzzDNbfL0rr7wyU6ZMafNce86v9bltzrBhwzJz5syW9RoA6JhK/2zgTgQAgN5qe5/S5+yzKxMinH12+WMA0Cucd955GTduXGbNmpW77747Tz/9dJ599tkkye67755x48ZlypQpefe73/2aY4cNG5Z77rknX/rSlzJnzpzU19fnlVdeqUhd73vf+/Kud70r3/ve93LbbbflgQceyIsvvpi+fftm9913z6hRo/L2t789kyZNagnXXu2oo47Ko48+mmnTpuXmm2/On/70pzz//PPp06dPhg4dmv333z9HHnlk/vEf/zFvfOMbt+r8Xv/61+f+++/PrFmzcvvtt+exxx7LsmXLsnLlyuy8884ZNWpU3vOe9+SMM87IoJ72cwdAL+ZOhHbYnq5gAQB6kYaGZPDgyk3p8/zzPWc6oyRpbk7GjEkWLdr6MUaPTubPT6qqKlcXsE1sT7/HuRMBAGit0j8bWFgZAKC3qqtLJk6szFgTJ/asACEpffB/1VXJX+dj7rDa2uTKKwUIAADAdk2IAADQm1VqKp6eOqXP2LHJjBkdDxJqa0vHjR3bOXUBAAD0EEIEAIDebPz4ZNSo8sYYPTo58siKlNMlJkxI5s5tfx9Gjy7tP2FC59YFAADQAwgRAAB6M1P6lIwdmyxYkMyenUyalFRXt91eU5NMnlzaPn++OxAAAAD+qqarCwAAoJNtnNJn4sSksbH9x/W2KX2qqkp3ZowfX1p0esmSZMWKZNCgZNiwnrfmAwAAwDYgRAAA2B5snNJnypRk0aIt7z96dOkOhN4SILxaXZ3QAAAAoB1MZwQAsL0wpQ8AAAAd5E4EAIDtiSl9AAAA6AAhAgDA9sqUPgAAAGyB6YwAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKFTT1QVAp2loSOrrk5Urk4EDk+HDk7q6rq4KAAAAAKDHcCcCvUtzczJ7djJpUjJ4cDJqVDJuXOnvwYOTyZNL25ubu7pSAAAAAIBuT4hA7zFvXjJmTHLUUckNNyRNTW23NzUl119f2j5mTGl/AAAAAAA2qVNDhGeffTY333xzPve5z+WYY47JkCFDUlVVlaqqqnzwgx/s8Hi33XZbTjzxxAwfPjw77LBDhg8fnhNPPDG33XZb5YunZ5k1KzniiGTRovbtv2hRaf9Zszq3LgAAAACAHqxT10TYbbfdKjJOc3NzPvrRj+Z73/tem+eXLFmSGTNmZMaMGTnjjDNy2WWXpaqqqiKvSQ8yb14ycWLS2Nix4xobS8fNnZuMHds5tQEAAAAA9GDbbDqjESNG5F3vetdWHfsf//EfLQHCgQcemGuvvTb33HNPrr322hx44IFJku9973v57Gc/W7F66SGam5MpUzoeIGzU2JhMnWqNBAAAADrkqaeeyplnnpk3vOEN6d+/f8vMCzfeeGNXl5YkueKKK1pqeuKJJ9q9rT3b6VrlfG0r8Rq81vbar3Xr1uWNb3xjqqqq8tOf/rSry+nxzj777FRVVWXq1KldXcprdGqI8LnPfS4zZ87MM888k6eeeirf/e53OzzGI488kq985StJkoMPPjh33XVXTjrppBxyyCE56aST8tvf/jYHH3xwkuSiiy7Ko48+WtFzoJu74472T2G0KQsXJnPmVKQcAAAAer+nnnoqBx10UL73ve/lsccey5o1a7q6JIBt7lvf+lYefvjh7L///pk8eXJXl7PVKj0l//Lly/OVr3wlhx12WHbffffssMMO2XPPPTNu3Lh86lOfyt1331143Kc//en069cvP/rRj3LvvfeWeVaV1akhwgUXXJDjjjuurGmNvva1r2X9+vVJSt+YAwYMaLN9xx13zLe+9a0kyfr16/P1r399q1+LHujSS7vXOAAAAPR6//Vf/5Xly5enpqYmF110Ue6+++4sWLAgCxYsyDve8Y6uLq/Tba9XXVNZ29P3UW8815UrV+ZLX/pSktKF5H36bLMJbyput912y3ve855ceOGFue222/L8889v9VjXXXdd9ttvv/zrv/5rfve732XZsmVZu3Ztli5dmnvuuSf//d//nYsuuqjw2BEjRmTq1Klpbm7Of/zHf2x1DZ2hW391m5ubc9NNNyVJ9ttvv7zlLW8p3O8tb3lL3vjGNyZJbrzxxjSbmmb70NCQzJhRmbGmTy+NBwAAAFvw61//Okny3ve+N+edd17e8pa3ZPTo0Rk9enQGDRrUxdWVfPCDH0xzc3Oam5uz1157bbNj6Vq+dl1je+z7d77znSxfvjwjRozIP/3TP3V1ORVTzpT8V111VU466aQ8//zz2XXXXfP5z38+s2bNyn333Zdf/OIX+eY3v5kJEyakb9++mxzjk5/8ZJLkV7/6Vbe6G6FTF1Yu1+OPP54lS5YkSY488sjN7nvkkUfmz3/+c+rr6/PEE09k5MiR26JEulJ9fdLUVJmxmpqSJUuSurrKjAcAALA9a2go/c62cmUycGAyfHiv+n1r42cV++67bxdXArDtNTU15dvf/naS5OSTT+7RdyEkpTspDjnkkBxyyCHZbbfdtuqz5QcffDBnnHFGNmzYkMMPPzwzZ87MTjvt9Jr9zjnnnKxdu3aT47zxjW/M2LFjM2/evHzjG9/I1Vdf3eHz6QzdOkR48MEHWx7vt99+m9239fYHH3xwuwwRXl61rqtL2Kaql7+UgRUcb+VzL6bp9dtXDwEAoBw77bjpK+nYDjU3l9atu+SS5MYb2170VV2dTJyYnH12Mn58UlXVRUVWxsYPgDZ3NSlAbzVr1qw89dRTSZJTTz21i6sp3wUXXFD2GOecc07WrFmTIUOGZPr06YUBwkb9+vXb7FinnHJK5s2blxtuuCGXXHLJZsfaVrp1iLB48eKWx8OHD9/sviNGjCg8rj3q6+s3u33p0qUdGq+rnHr5H7q6hG1qxNLHU8mVDD71y8dS/6cNFRwRAAB6t5nnvK2rS6C7mDcvmTIlWbSoeHtTU3L99aU/o0YlV12VjB27bWss0xVXXJHTTjutzXMXXHBBmw+fpk6dmiuuuCJJsnDhwtx444258847s2jRojz33HPp27dv9thjj/zDP/xDzjrrrE1O2/xqd911V6ZNm5Y777wzS5cuzYYNGzJ8+PDst99+OfHEE/Pe9743da+606N1vY8//niHpljZ1LF33HFH3v72t7fZt+giztmzZ+ewww7LiBEjsmzZsvzf//t/c+utt272NRcuXJgxY8YkSb7whS/kM5/5TLvrbW1relXu1+r8889v+T5obm7OK6+8km9961u59tpr85e//CVJsv/++2fKlCn56Ec/mpqazX8c9+KLL+aiiy7KjTfemCeffDKDBg3KAQcckDPPPHOLi9e29+tezmtstLV968j30fjx41/z/D333JPvf//7mTNnTp5++uk0NzdnxIgRecc73pFzzz03++yzT7vq35Snn3463/zmN/OrX/0qjz76aFavXp3Bgwdn6NChGT16dI4++uiceOKJbb6PKvHfTKXPdWvOo71+9rOfJUn22Weflv9uN6X1f9vXXXddJk2alFmzZuXyyy9vWTNgyJAhOfbYY/OFL3whQ4cO7XA9Xe2hhx7Kb37zmyTJxz72sQwZMqSs8f7xH/8xn/zkJ/PKK6/kpptuypQpUypRZlm6dYiwYsWKlscDB27+mvPa2tqWxytXruzQ67QOIOg5lu+8a5r6VKd6Q/lTGq3vU53nd+p5b1IAAABdbtas0l0GjY3t23/RouSII0pr3E2Y0Lm1dZGiDw6T0h0MjzzySB555JFcddVV+bd/+7eWhUmLrF69Oqeffnquvfba12z785//nD//+c+56aab8vnPfz7nn39+JU+hbH379s2UKVNy8cUX51e/+lWWLFmSYcOGbXL/H/7wh0mS6urqTJ06tcOvt7W9qtTXaqNly5bl6KOPzp/+9Kc2z9977725995786tf/So33njjJqd/eeCBB/LOd76zzQWtr7zySn7zm9/kN7/5TT70oQ/l8MMP32Idm1OJ16h039pj/fr1+fjHP57vfOc7r9m28Wv8/e9/P5dcckk+8pGPbNVr3HnnnTnuuOPS8Kp1M5ctW5Zly5Zl4cKF+clPfpIhQ4bkuOOO26rXaI9yz7Wzz2P27NlJ0q4gtPV/CyNHjsykSZNyww03tNnn6aefzve///3MnTs39913X5vPeXuC6667ruVx6xDuxRdfzPLlyzN48ODssssu7R7v9a9/ffbYY48sXbo0d9xxhxBhS1555ZWWx1u6zWOHHXZoebx69epOq6m7eXnVupY7EB55thSejBxSm+o+PfvW0PZYPaA2dx9weN52/x1ljzXrjf+QBSuakxUrt5v+VULThuY8vrztLwr61376Vx79K58elkf/yqN/5dG/8uhfeVr37z3f+m2S5OrTx5naaHs1b17HAoSNGhtLx82d22PuSHjve9+bgw8+OElarqo966yzcvbZZ7fs83d/93dJSh8A1tbW5thjj81RRx2V/fbbL3V1dXn22WezaNGifPOb38yTTz6ZL3/5y9l3331fc4dDkmzYsCEnnHBCZs2alaR0xe/ZZ5+dgw8+ODvuuGOWLl2a3/3udy1XBG8LhxxySBYsWJCbbrop//Ef/5Ek+eUvf5k999yzzX4br7T+8Ic/nIsvvjgbNmzIVVddlU9/+tOF465bt65l3u93vetdmw0bipTTq0p8rVo78cQT8+CDD+bjH/943vOe92Tw4MH585//nAsvvDAPPvhgZs6cme9///s588wzX3Psyy+/nKOPPrrlw/33ve99mTp1anbdddc8/PDD+epXv5of/vCHWbBgQYf60xmvUU7fOvp9tNHpp5+eq666KklyzDHH5JRTTsm+++6bqqqq3H///fn617+eRYsW5Ywzzsjuu++e97znPR3qzZo1a3LSSSeloaEhgwYNyllnnZW3v/3t2XXXXbNu3bo8+eSTufvuu1/zAfjmdMW5dsZ5tLZxPdqN57clG0OE6urqfPzjH8+9996bj3zkI3nve9+b3XbbLX/5y19y4YUX5oEHHsif//zn/PCHP8w555yzVbV1ld///vdJkp122in7779/fvzjH+crX/lK5s+f37LPyJEjM3Xq1Hzyk5/c4sXySam3P//5z3PnnXd2Wt0d0a1DhP79+7c83tyCE0npP5CNBgwY0KHX2dL0R0uXLs2hhx7aoTHZNm5528SKhAjXHtR56TEAAECv1NxcmsKoowHCRo2NydSpyfz5PWKNhJ133jk777xzm+d23XXXjB49+jX7vvnNb059ff1r9k+So48+Oh/72Mdy3HHHZdasWbngggsyZcqUVFdXt9nvW9/6VsuH4hMnTsy1117b5gLKJDn22GNz4YUX5plnninv5NqptrY2o0ePzh//+MeW5/bdd99NTpmz77775ogjjsjcuXMzbdq0TYYIN998c5577rkkpQ9PO6qcXlXia9XaxrsNWk9NM3bs2Bx99NF505velGXLluXSSy8tDBH+8z//s2XK7S9+8Ytt+nXQQQdl0qRJOe644/KrX/1qiz3ZlEq9Rjl96+j3UZLccMMNLR+qf//738+HP/zhNtsPPvjgnHrqqTn22GNz++235+Mf/3iOOeaYLU4d1dpdd92Vp59+OklyzTXXvOYK/XHjxuWf/umfcvHFF2fVqlXtGrMrzrUzzqO13/3udy2PDzzwwC3uvzFEaGpqysKFC3PnnXdm3LhxLdsPOuigHH744XnDG96QNWvW5He/+11hiFBVgf9PTJs2LR/84AfLHufVHnjggSTJXnvtlXPOOSeXXHLJa/Z5/PHHc/755+f6668vDJJe7aCDDsrPf/7zPPLII3n22Wez6667VrzujujWIcKgQYNaHm9piqLGVj+0tCfNaW1L6y30FCOHlG71+e6pB6VuwHZyFVDzoWn6zXdT/eADWz3EE3uMzPKD3pKRf30z2q76V6aG1ety5tX3tXlO/9pP/8qjf+XTw/LoX3n0rzz6Vx79K09R/9hO3XHHptdAaK+FC5M5c0qLLfciW5oPu1+/frn44ovz5je/OU8++WTuv//+HHTQQS3bN2zYkIsvvjhJMmzYsFx11VWv+VB8oz59+mzxw6iu9OEPfzhz587NX/7yl9x111057LDDXrPPtGnTkpT61tGrx8vtVblfq1c755xzCue2Hzx4cE477bR8+ctfzvz58/Pyyy+3WSx1zZo1LX044IAD8q//+q+vGaNv3765/PLLs/fee2fdunWbrbtIJV+j0n3bko1TIk2cOPE1H6pv1L9//3z729/Om970pjzxxBO544478s53vrPdr9E6YDriiCM2uV9NTc1WrSPQXuWea2efR+u1ZdvzwXbr6Yy+973vtQkQNho2bFj22WefLFy4sMPT1HcHL7zwQpLS2gh/+tOfsvPOO+fLX/5yy5oTCxYsyOc+97nceuutWbhwYSZPnpw777xzk9OaJW17u2TJEiHC5rT+cH9Lix+3vptge13jYOPt13UD+m5ftxJf/aPSfJpbcfVLc21tvn7qv6e6+m//0W53/SvTq2/717+O0b/y6F/59LA8+lce/SuP/pVH/8pj6ieSJJdeWrlxelmI8Gpr1qzJsmXLsnLlymzYsCFJaQHejf70pz+1+YD1/vvvz5IlS5IkH/nIRzp8sWR3MmnSpHz84x/PSy+9lGnTpr0mRFi2bFnLosunnnrqFqezfrVK96qjX6tXO+WUUza5rfVxjz/+eN785je3/Pu+++7Liy++mKS0QPemPlwcPnx43vWud+UXv/hFu86ntc58jXL7tjlLlizJffeVwut/+qd/2uy++++/f4YMGZLly5fn7rvv7lCIsMcee7Q8njZtWv75n/95q+otRyXOtbPPY+NdQ8nfpnDblGeffTbLli1Lkhx11FF53/vet8l9N05Pv6m1A8qZxmujzrqQfOPF7WvWrEl1dXVuvfXWNutFHHzwwbn55ptz3HHH5dZbb83vfve7TJ8+PZMmTdrkmIMHD2553LrnXaVbhwhvetObWh4/9NBDm9239fb999+/02qiGxo7trQgV0fn4aytzaprr8ujTwza8r4AAAD8TUND6fewSpg+vTReJ17Z2xUaGxvzzW9+Mz/5yU+yaNGiNDU1bXLf5cuXt/n3//7v/7Y83tyVxD3BgAED8v73vz+XXnppfvazn+Ub3/hGm0VTf/SjH2X9+vVJkg996EMdHr8SvSrna/Vq++233ya3tf5QcMWKFW22tf6AdEvzzB966KFbFSJU+jUq2bfNaT0V0Mknn5yTTz65Xcd1dJqvt73tbdl7773z2GOP5dxzz82Pf/zjTJw4MUceeWQOPvjgDgdcW6MS59rZ57HxqvtkyyHC/fff3/J4c6HImjVrWtZZeOMb31i4T9HUcd1F//79W4KEyZMnFy443adPn1x88cUtoem111672RChdW+ff/75ClfccZu+Z6IbGDlyZMttZnPmzNnsvnPnzk1Suv1lc/OK0UtNmFBakGvUqPbtP3p0Mndu1r+j/Yk0AAAAf1Vfn2zmA8MOaWpK/noleW/xxBNPZMyYMfnMZz6T+fPnb/bD1eRvV+Bu1PoD19ZXFfdUH/nIR5KUPjh/9WKuG6fXOeSQQ1oWrO6IcntV7tfq1XbcccdNbmt95f+rX2fjHQLJlqeI2W233Ta7fVMq+RqV7tvmPPvss1t1XEfn++/bt29mzpzZcnHyvffem8985jM57LDDsvPOO+eYY47JNddcs8VzLUclzrWzz6P1GrZb+rq2nsro1WsztLZw4cKWeg444ICtqqsrtZ6S/5hjjtnkfqNGjWpZOP7ee+/d7Jite9vR9X87Q7e+E6GqqionnHBCvvOd7+Shhx7K73//+8Ik5/e//33LnQgnnHBCRRbaoAcaOzZZsKA0n+Yll5Suimn9hlhTU7pb4eyzkyOPLC3ctarjcwgCAABs9yo9Z/Wrrsru6T7wgQ/k8ccfT1VVVU477bScdNJJ2X///TN06NCW+fo3bNjQstBs62lfXq03fMbx5je/OQcddFDuu+++TJs2LVOmTEmS/OEPf2hZkHRr7kJ4ta3pVSW/VuVoPe6WzmNra6jka2zLvrX+sPvHP/5xuz9k3tJV8kXe9KY3ZcGCBZk5c2ZmzpyZOXPm5NFHH83q1atz22235bbbbstXv/rV3HLLLZ0yR32lzrUzz2Po0KEtj1944YU2H6C/2sYQYbfddmv58LxI6zsWWk/z1drChQs7VGeR4cOHFy4GXq4RI0a03A2ypSmTRowYkSVLlmwxMGp9x0frnneVbh0iJMm5556b73//+1m/fn3OOeeczJ07t036snr16pYVu2tqanLuued2UaV0C1VVpbk0x48v3Q67ZEnph9FBg5Jhw3rd7bEAAABdotJz9G/mQ6ie5qGHHspvf/vbJMmnP/3pfOELXyjcr/VV4a/WetHap59+epPTe/QkH/7wh3Pfffdlzpw5eeyxx7L33nu33IUwYMCAdk/b8mrl9KoSX6tKaT3V0bJly7Lvvvtuct+tvVq9Uq+xrfvWeo78qqqqTp/Wprq6Ou9973vz3ve+N0mydOnS3Hrrrbn00ktz33335b777suZZ56ZGZWa0q2VSp5rZ51H6w+0X3zxxbz+9a/f5L4bQ4QDDzxws2NunJZsyJAhmwwbtuZOpVebNm1aPvjBD5Y9zquNGjWq5c6CLd3hsXF7Tc3mP5Zv/d9PdwgROnU6o9/+9re54oorWv5cf/31LdseeeSRNtuuuOKKwjH23Xff/Mu//EuS0rxghx12WH7605/mj3/8Y37605/msMMOa5kv7FOf+lT22WefzjwlepK6umT//ZNDDy39LUAAAACojOHDk79eYVy2mprSRV+9xKJFi1oen3TSSZvcr/Xc5682duzYlscbp2/uTrbmiv/3v//92XHHHdPc3Jwrr7wyq1evzk9+8pMkyYknnpiddtppq2opp1eV+FpVSusPSLc0zcmWtnf2a1Sqb+39Pmr9AfSvfvWrdh1TSXvssUc+9KEP5e677275frv55ps7NEVTdzjXSpxH0vb76OGHH97kfmvXrm2ZOaa9IcKm7kLo7lqvx/Loo49udt/HHnssSTZ7Z0byt97W1tZm7733LrPC8nVqiPCDH/wgp512WsufT33qUy3b7rrrrjbbTjvttE2O84UvfKHltrb//d//zUknnZRDDjkkJ510Uss32emnn57/+q//6szTAQAAAJLSRVoTJ1ZmrIkTe9VFXxsXCU42Pyf7ZZddtslt/+f//J+MGDEiSemzlZWVnj6qTK3nRF+zZk27jqmrq2tZWPXKK6/M9ddfn5dffjlJ6TOdrVVOryrxtaqUgw46qGVKmh/96EebnP5nyZIlW/3hcqVeo1J9a+/30d///d/nTW96U5LkJz/5SZ566qnNjttZ+vbtmyOPPDJJqQcvvfRSu4/tTudaznkkycEHH9wyS8yWwqaN3yutw75Xa25uzvz585NsPkRobm4u+09n3IWQJMcff3z69u2bJJk+ffom95szZ07LIsmHH374Zsfc2Nu3vOUtW7xrYVvo1gsrb9SnT59cfvnl+cUvfpETTjghe+65Z/r165c999wzJ5xwQm655Zb84Ac/aLNADQAAANCJzj67e43TTbSeIeHKK68s3Oc73/lObrzxxk2O0adPn5YLMevr6zNlypSsXbu2cN8NGzbk6aef3vqCt0LrBYy3dNVtax/+8IeTJE8++WTOO++8JMnIkSMzfvz4ra6lnF5V4mtVKTvssEPLBbb3339/Lr744tfss379+nzkIx/Z5Pltq9eoVN868n30H//xH0mSV155JSeeeGKee+65Te67Zs2aXHrppXnllVc2O+ar3XnnnXnkkUc2uX3t2rWZM2dOkmTgwIEdmmJmW55rZ55HkvTr1y+HHnpokuSee+7Z5H6tF1Xe3J0If/nLX1rCv556J8Iuu+zS8v42a9aslrusWluxYkWbafjPPPPMTY63Zs2almBlS2HDttKpMcbmpinaGu9+97vz7ne/u2LjAQAAAFtp/Phk1Kik1dQmHTZ6dPLXK2J7iwMPPDCjR4/OwoUL853vfCcvvfRSTjnllOyxxx5ZvHhxrr766lx//fU57LDDctddd21ynP/3//5fZs6cmVmzZmXGjBkZM2ZMzj777Bx88MHZcccd88wzz+T3v/99rr322rz//e/P+eefv03PsX///nnllVfy2c9+NjU1Ndlrr71aLu4cNmxYm/UsNzrssMOy//7758EHH2xZhPS0004re/Hore1Vpb5WlfK5z30uP/vZz1JfX59//dd/zf33358pU6Zk1113zcMPP5yvfvWruffee3PIIYds9ZRGlXiNSvWtI99HJ598cn75y1/myiuvzH333Zc3velNOfPMM3PkkUdm6NChaWxszKOPPpo777wz06dPzwsvvNCygHd7/eY3v8mFF16Yww8/PMcee2wOOOCADB06NKtXr87DDz+cyy67LPPmzUtSCsQ6cnX4tjzXzjyPjY499tjMmTMn99xzT1asWFG4uPLGEKGurm6z0/FsnGUm6boQ4be//W2b4GX58uUtjzdOyd9a0R0NF1xwQX7xi1/kqaeeygc+8IHcddddOfHEE1NXV5cFCxbkoosuapne6ayzzsohhxyyyXrmzp2bdevWJSn1ujvo+nshAAAAgJ6nqiq56qrkiCOSxsaOH19bm1x5ZWmcXqSqqio/+tGPctRRR+XFF1/Mtddem2uvvbbNPmPGjMl1112XPffcc5Pj9OnTJzfeeGOmTp2a66+/Pg8//HCbq1i70qBBg/Lxj388X/nKVzJv3rwcffTRbbbPnj17k3cXnH766S1rX/bp06ci04tsba8q9bWqlJ122im33XZb3vnOd+aZZ54prOe0007LEUccsdlpwTv7NSrVt45+H11++eXZbbfd8j//8z9Zvnx5vvCFL2xyUefa2tpUb8W6LRs2bMicOXNartQvcuKJJ+ZLX/pSh8bd1ufaWeex0fvf//58+tOfziuvvJIZM2YUBjYbQ4Q3v/nNmw0K77///iSlKZ/222+/raqnXD/4wQ82eVfNXXfd9ZowrOh9a+jQobntttty/PHH55FHHsm3v/3tfPvb337Nfh/60IfyjW98Y7P1XHPNNUmSN77xjTn44IPbeRady/w/AAAAwNYZOzaZMaMUCHREbW3puM3Mk92TvfnNb87999+fj370o3n961+fvn37ZvDgwTn00EPz3//937nnnnvaTG+yKTvuuGOuu+663H777fnABz6QkSNHZsCAARk0aFD222+/nHjiibnmmmvarEG5rXz5y1/O97///Rx++OEZPHhwuz+w/cAHPtDyeMKECS3rGZRra3tVqa9VpYwaNSqLFi3Keeedl3322Sc77LBDhgwZkre//e255ppr8sMf/rBbvEal+taR76Pq6upcdNFFeeCBB/LJT34yBx54YP7u7/4u1dXVGTRoUEaNGpVTTjklV155ZZYuXVp4N8zmnHfeebnlllvyiU98Im95y1vyute9Lv3790///v2z11575X3ve19+8Ytf5IYbbmizxkF7batz7ezzSEp3TpxwwglJkh//+MeF+2ycjqe9iyqPHj16q4Kf7mT//fdvmSps3LhxGTx4cPr165fhw4fnfe97X26//fZcfvnlLesnFNkYzCTJ2d1our+q5k2tokKL+vr6lv+pLV68OMOHD+/iiv7m5VXrcurlf2jz3NWnj8tOO276m5G/0b/y6F959K88+lc+PSyP/pVH/8qjf+XRv/L0lP5159/jKu0vf/lL1q9fn5qamjZzlW9T8+YlU6a0b2qj0aNLdyD00gCBzfvNb36Td77znUmSn/70py2LLQM9y+9///u89a1vTXV1dR555JHstddeXV1Sr3D11VfnAx/4QAYPHpwnnniicKqo9qj0zwbuRAAAAADKM3ZssmBBMnt2MmlS8uqrSWtqksmTS9vnzxcgbMc2XuW+yy67tFzJDPQ8b3nLW3LMMcekqalpq6dFoq0NGzbki1/8YpLkX/7lX7Y6QOgMQgQAAACgfFVVpcWWr7sueeGF5IEHkj/8ofT3888nP/tZaXsvWwOB9nviiSdy3XXXJSnNu7/DDjt0cUVAOS666KJUV1dn2rRpeeqpp7q6nB7vuuuuy4MPPpgRI0Z0mzVwNrKwMgAAAFBZdXWlP2z3lixZklWrVuXxxx/Pv/3bv2XdunXp379/t/uADOi4MWPG5IorrsgjjzySp556Kq973eu6uqQerampKZ///Odz1FFHdXhNj84mRAAAAACgU5xyyimZM2dOm+f+8z//M8OGDeuiioBKOvXUU7u6hF7j/e9/f1eXsElCBAAAAAA61Y477ph999035557bqZOndrV5QDQAUIEAAAAADrFHXfc0dUlAFAmCysDAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAD1Ynz6lX+2bmprS3NzcxdUAAF2pubk5TU1NSZLq6uqKjClEAAAAgB6sX79+SUofGqxZs6aLqwEAutKqVataLirY+DNCuYQIAAAA0IPV1ta2PG5oaOjCSgCArtTc3JwXXnih5d91dXUVGVeIAAAAAD3YwIEDWx4///zzef7551umMQAAer/m5uY0Njamvr4+K1euTJJUVVW1+RmhHDUVGQUAAADoEv369cvQoUPz3HPPJUmeffbZPPvss6murk5VVVUXVwcAdLZXr4tUVVWVYcOGtaybVC4hAgAAAPRwu+yyS9auXZuXX3655Tl3IwDA9mdjgDBo0KCKjSlEAAAAgB6uqqoqe+65ZwYPHpyXXnopq1atEiIAwHaiuro6/fr1S11dXQYOHFixOxA2EiIAAABAL9G/f//svvvuXV0GANCLWFgZAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAAChU09UFUDlNG5qTJA2r13VxJT1Hw+p1LX1r/Rzto3/l0b/y6F/59LA8+lce/SuP/pVH/8rTun/Vfaq6uBoAADpbVXNzc/OWd9u+1dfXZ8SIEUmSxYsXZ/jw4V1c0d+8vGpdTr38D0mSR55dmSQZOaTWD/Pt1LShOY8vb2zznP61n/6VR//Ko3/l08Py6F959K88+lce/StP6/79/a4DkyRXnz4uO+3YtyvLeo3u/HscAEBPYjojAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKWVi5Fxk5pDZJ8t1TD0rdgO41H2l31bB6Xc68+r42z+lf++lfefSvPPpXPj0sj/6VR//Ko3/l0b/yFPUPAIDeS4jQi2xcCK5uQN9ut6hZd/bqBfT0r2P0rzz6Vx79K58elkf/yqN/5dG/8uhfeSxCDQCw/TCdEQAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFCopqsLAAAA6NYaGpL6+mTlymTgwGT48KSurqurAgCAbcKdCAAAAK/W3JzMnp1MmpQMHpyMGpWMG1f6e/DgZPLk0vbm5q6uFAAAOpUQAQAAoLV585IxY5KjjkpuuCFpamq7vakpuf760vYxY0r7AwBALyVEAAAA2GjWrOSII5JFi9q3/6JFpf1nzercugAAoIsIEQAAAJLSHQUTJyaNjR07rrGxdJw7EgAA6IWECAAAAM3NyZQpHQ8QNmpsTKZOtUYCAAC9jhABAADY7lXPndP+KYw2ZeHCZM6cyhQEAADdhBABAADY7u3w/csqM9Cll1ZmHAAA6CaECAAAwHZtwOrG1Pz8psoMNn160tBQmbEAAKAbECIAAADbtSEvPZuqpqbKDNbUlCxZUpmxAACgGxAiAAAA27X+a1dXdsAVKyo7HgAAdCEhAgAAsF17pd+Ayg44aFBlxwMAgC4kRAAAALZry3feNc3V1ZUZrKYmGTasMmMBAEA3IEQAAAC2a6sH1Gb98SdUZrCJE5O6usqMBQAA3YAQAQAA2O6t+chHKzPQ2WdXZhwAAOgmhAgAAMB2r+mII5NRo8obZPTo5MgjK1MQAAB0E0IEAACAqqrkqquS2tqtO762NrnyytI4AADQiwgRAAAAkmTs2GTGjI4HCbW1pePGju2cugAAoAsJEQAAADaaMCGZO7f9UxuNHl3af8KEzq0LAAC6iBABAACgtbFjkwULktmzk0mTkurqtttrapLJk0vb5893BwIAAL1aTVcXAAAA0O1UVSXjx5f+NDQkS5YkK1YkgwYlw4YldXVdXSEAAGwTQgQAAIDNqasTGgAAsN0ynREAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFelSIsHbt2lx++eX5v//3/2aPPfbIDjvskIEDB+aNb3xjPvShD+X3v/99V5cIAAAAAAC9Rk1XF9BeixcvzrHHHpsFCxa0eX7t2rV5+OGH8/DDD2fatGn5xCc+kf/5n/9JVVVVF1UKAAAAAAC9Q4+4E2H9+vVtAoQDDjggV1xxRe6+++786le/yuc+97nU1tYmSb72ta/lv//7v7uyXAAAAAAA6BV6xJ0IN910U0uA8Na3vjV33nlnqqurW7ZPmDAhxx9/fN761rdm3bp1+dKXvpRPfOITqanpEacHAAAAAADdUo+4E+Guu+5qefzpT3+6TYCw0UEHHZTjjjsuSfLiiy/moYce2mb1AQAAAABAb9QjQoS1a9e2PN577703ud8b3vCGlsdr1qzp1JoAAAAAAKC36xEhwr777tvy+LHHHtvkfo8++miSpKqqKvvss0+n1wUAAAAAAL1Zj1g04OSTT85nP/vZNDQ05KKLLsq73/3u10xp9L//+7/5xS9+kSQ56aSTUldX1xWldqmmDc1JkobV67q4kp6jYfW6lr61fo720b/y6F959K98elge/SuP/pVH/8qjf+Vp3b/qPlVdXA0AAJ2tqrm5uXnLu3W9GTNm5JRTTsnq1atz4IEH5txzz82+++6blStX5q677sr//M//ZMWKFXnzm9+cW2+9Nbvvvnu7x66vr9/s9qVLl+bQQw9NkixevDjDhw8v61wq6eVV63Lq5X9Ikjzy7MokycghtX6Yb6emDc15fHljm+f0r/30rzz6Vx79K58elkf/yqN/5dG/8uhfeVr37+93HZgkufr0cdlpx75dWdZr1NfXZ8SIEUm63+9xAAA9SY+4EyFJJk6cmD/+8Y/56le/mh/+8IeZOnVqm+277bZbLrjggpxxxhmpra3t0Ngbf7AEAAAAAAD+pkesiZAk69atyzXXXJOZM2em6OaJZcuW5dprr80dd9yx7YsDAAAAAIBeqEfcidDY2Jh3v/vdmTt3bqqrq3PeeefltNNOy957751XXnklf/jDH/Kf//mf+e1vf5v3vOc9+drXvpZ//ud/bvf4ixcv3uz21tMZAQAAAADA9qJHhAif//znM3fu3CTJ5Zdf3mYqo379+mXChAl5+9vfnne9612ZPXt2/r//7//L29/+9hxwwAHtGr+3zI05ckhpGqfvnnpQ6gZ0r/lIu6uG1ety5tX3tXlO/9pP/8qjf+XRv/LpYXn0rzz6Vx79K4/+laeofwAA9F7dPkRobm7OtGnTkiT77rvva9ZC2KimpiYXXnhh3va2t2XDhg2ZNm1avva1r23LUrvcxoXg6gb07XaLmnVnr15AT/86Rv/Ko3/l0b/y6WF59K88+lce/SuP/pXHItQAANuPbr8mwrJly/LCCy8kSQ488MDN7nvQQQe1PH7ooYc6tS4AAAAAAOjtun2IUFPzt5sl1q9fv9l9161bV3gcAAAAAADQcd0+RBg8eHDq6uqSJHffffdmg4Q5c+a0PB45cmSn1wYAAAAAAL1Ztw8R+vTpk2OPPTZJ8vTTT+cLX/hC4X4vvvhi/vVf/7Xl38cdd9w2qQ8AAAAAAHqrHjHnz+c+97ncdNNNWbVqVc4///zcd999mTp1avbee++88sor+f3vf5+vf/3reeqpp5Ik73jHO/Kud72ri6sGAAAAAICerUeECPvtt19uuummnHzyyVm+fHlmzpyZmTNnFu571FFH5brrrtvGFQIAAAAAQO/TI0KEJHnnO9+Zhx56KJdffnluvfXWLFq0KC+99FJqamqy++6755BDDsn73//+HH/88amqqurqcgEAAAAAoMfrMSFCkuyyyy4577zzct5553V1KQAAAAAA0Ot1+4WVAQAAAACAriFEAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAArVdHUBANDtNTQk9fXJypXJwIHJ8OFJXV1XVwWwbXgPBACA7Zo7EQCgSHNzMnt2MmlSMnhwMmpUMm5c6e/Bg5PJk0vbm5u7ulKAyvMeCAAA/JUQAQBebd68ZMyY5KijkhtuSJqa2m5vakquv760fcyY0v4AvYX3QAAAoBUhAgC0NmtWcsQRyaJF7dt/0aLS/rNmdW5dANuC90AAAOBVhAgAsNG8ecnEiUljY8eOa2wsHedqXKAn8x4IAAAUECIAQFKa13vKlI5/eLZRY2Mydar5wYGeyXsgAACwCUIEAEiSO+5o//Qdm7JwYTJnTkXKAdimvAcCAACbIEQAgCS59NLuNQ7AtuQ9EAAA2AQhAgA0NCQzZlRmrOnTS+MB9BTeAwEAgM0QIgBAfX3S1FSZsZqakiVLKjMWwLbgPRAAANgMIQIArFxZ2fFWrKjseACdyXsgAACwGUIEABg4sLLjDRpU2fEAOpP3QAAAYDOECAAwfHhSXV2ZsWpqkmHDKjMWwLbgPRAAANgMIQIA1NUlEydWZqyJE0vjAfQU3gMBAIDNECIAQJKcfXb3GgdgW/IeCAAAbIIQAQCSZPz4ZNSo8sYYPTo58siKlAOwTXkPBAAANkGIsD1oaEgeeCC5557S3w0NXV0RQPdTVZVcdVVSW7t1x9fWJldeWRoHoKfxHggAAGyCEKG3am5OZs9OJk1KBg8uXVk2blzp78GDk8mTS9ubm7u6UoDuY+zYZMaMjn+IVltbOm7s2M6pC2Bb8B4IAAAUECL0Qn3+93+TMWOSo45KbrghaWpqu0NTU3L99aXtY8Yk8+Z1TaEA3dGECcncue2f1mP06NL+EyZ0bl0A24L3QAAA4FWECL3Mmx+6NwOPPipZtKh9ByxalBxxRDJrVucWBtCTjB2bLFjwtzu6qqvbbq+p+dsdXfPnu/oW6F28BwIAAK3UdHUBVM4bFv85n/nBv6dq7eqOHdjYmEycWLqKzC+BACVVVaWFRsePL60ls2RJsmJFMmhQMmxYUlfX1RUCdB7vgQAAwF8JEXqL5uZ84uovZEBHA4SNGhuTqVNLV5NZEA+grbo6H5gB2y/vgQAAsF0znVEvMeYv/5vXL328vEEWLkzmzKlMQQAAAAAA9HhChF7i3b+dUZmBLr20MuMAAAAAANDjCRF6gQGrG/PW+XdWZrDp00vz3gIAAAAAsN0TIvQCQ156NtUbmiozWFNTaeE8AAAAAAC2e0KEXqD/1i6mvCkrVlR2PAAAAAAAeiQhQi/wSr8BlR1w0KDKjgcAAAAAQI8kROgFlu+8a5r6VFdmsJqaZNiwyowFAAAAAECPJkToBVYPqM3dBxxemcEmTkzq6iozFgAAAAAAPZoQoZe45W0TKzPQ2WdXZhwAAAAAAHo8IUIvsWCfA/PkHiPLG2T06OTIIytTEAAAAAAAPZ4QobeoqsrXTv33rN7aRZZra5Mrr0yqqipbFwAAAAAAPZYQoRd5dMQb88UPfyHNtbUdO7C2NpkxIxk7tnMKAwAAAACgRxIi9DL373dIVv7y9mTUqPYdMHp0MnduMmFC5xYGAAAAAECPI0TohTYceGCyYEEye3YyaVJSXd12h5qaZPLk0vb5892BAAAAAABAoZquLoBOUlWVjB9f+tPQkCxZkqxYkQwalAwbltTVdXWFAAAAAAB0c0KE7UFdndAAAAAAAIAOM50RAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFCopqsLoHKaNjQnSRpWr+viSnqOhtXrWvrW+jnaR//Ko3/l0b/y6WF59K88+lce/SuP/pWndf+q+1R1cTUAAHS2qubm5uYt77Z9q6+vz4gRI5IkixcvzvDhw7u4or95edW6nHr5H5Ikjzy7MkkyckitH+bbqWlDcx5f3tjmOf1rP/0rj/6VR//Kp4fl0b/y6F959K88+lee1v37+10HJkmuPn1cdtqxb1eW9Rrd+fc4AICexHRGAAAAAABAISECAAAAAABQSIgAAAAAAAAUsrByLzJySG2S5LunHpS6Ad1rPtLuqmH1upx59X1tntO/9tO/8uhfefSvfHpYHv0rj/6VR//Ko3/lKeofAAC9lxChF9m4EFzdgL7dblGz7uzVC+jpX8foX3n0rzz6Vz49LI/+lUf/yqN/5dG/8liEGgBg+2E6IwAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKFTT1QUAsJUaGpL6+mTlymTgwGT48KSurqurAgAAAKAXcScCQE/S3JzMnp1MmpQMHpyMGpWMG1f6e/DgZPLk0vbm5q6uFAAAAIBeQIgA0FPMm5eMGZMcdVRyww1JU1Pb7U1NyfXXl7aPGVPaHwAAAADKIEQA6AlmzUqOOCJZtKh9+y9aVNp/1qzOrQsAAACAXk2IANDdzZuXTJyYNDZ27LjGxtJx7kgAAAAAYCsJEQC6s+bmZMqUjgcIGzU2JlOnWiMBAAAAgK0iRADozu64o/1TGG3KwoXJnDkVKQcAAACA7YsQAaA7u/TS7jUOAAAAANsVIQJAd9XQkMyYUZmxpk8vjQcAAAAAHSBEAOiu6uuTpqbKjNXUlCxZUpmxAAAAANhuCBEAuquVKys73ooVlR0PAAAAgF5PiADQXQ0cWNnxBg2q7HgAAAAA9HpCBIDuavjwpLq6MmPV1CTDhlVmLAAAAAC2G0IEgO6qri6ZOLEyY02cWBoPAAAAADpAiADQnZ19dvcaBwAAAIDtihABoDsbPz4ZNaq8MUaPTo48siLlAAAAALB9ESIAdGdVVclVVyW1tVt3fG1tcuWVpXEAAAAAoIOECADd3dixyYwZHQ8SamtLx40d2zl1AQAAANDrCREAeoIJE5K5c9s/tdHo0aX9J0zo3LoAAAAA6NWECAA9xdixyYIFyezZyaRJSXV12+01NcnkyaXt8+e7AwEAAACAstV0dQEAdEBVVWmx5fHjk4aGZMmSZMWKZNCgZNiwpK6uqysEAAAAoBcRIgD0VHV1QgMAAAAAOpXpjAAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKGRNBLq3hoakvj5ZuTIZODAZPtwc8AAAAAAA24g7Eeh+mpuT2bOTSZOSwYOTUaOSceNKfw8enEyeXNre3NzVlQIAAAAA9GpCBLqXefOSMWOSo45KbrghaWpqu72pKbn++tL2MWNK+wMAAAAA0CmECHQfs2YlRxyRLFrUvv0XLSrtP2tW59YFAAAAALCd6nEhwvLly/OVr3wlhx12WHbffffssMMO2XPPPTNu3Lh86lOfyt13393VJbI15s1LJk5MGhs7dlxjY+k4dyQAAAAAAFRcj1pY+brrrstZZ52V559/vs3zS5cuzdKlS3PPPffkL3/5S2688cauKZCt09ycTJnS8QBho8bGZOrUZP78pKqqsrUBAAAAAGzHekyIcNVVV+W0007Lhg0bsuuuu+ass87K2972tgwePDjPPPNMHn300cycOTN9+/bt6lLpqDvuaP8URpuycGEyZ04yfnwlKgIAAAAAID0kRHjwwQdzxhlnZMOGDTn88MMzc+bM7LTTTq/Z75xzzsnatWu7oELKcumllRtHiAAAAAAAUDE9Yk2Ec845J2vWrMmQIUMyffr0wgBho379+m3DyihbQ0MyY0Zlxpo+vTQeAAAAAAAV0e1DhIceeii/+c1vkiQf+9jHMmTIkC6uiIqqr0+amiozVlNTsmRJZcYCAAAAAKD7T2d03XXXtTyePHlyy+MXX3wxy5cvz+DBg7PLLrt0RWndTtOG5iRJw+p1XVxJ+1UvfykDKzjeyudeTNPr23/+DavXtfSt9XO0j/6VR//Ko3/l08Py6F959K88+lce/StP6/5V96nq4moAAOhsVc3Nzc1b3q3rHHvssbnllluy00475cUXX8w111yTr3zlK5k/f37LPiNHjszUqVPzyU9+MgMHdvwj6fr6+s1uX7p0aQ499NAkyeLFizN8+PAOv0ZneXnVupx6+R+SJI88uzJJMnJIbY/5YX7E0sdz6ZemVGy8sz7zo9Tvvle792/a0JzHlze2ea4n9a+r6V959K88+lc+PSyP/pVH/8qjf+XRv/K07t/f71r6/evq08dlpx37dmVZr1FfX58RI0Yk6X6/xwEA9CTd/k6EBx54IEmy11575Zxzzskll1zymn0ef/zxnH/++bn++uvzy1/+MnvuuWeHXmPjD5Zse8t33jVNfapTvaH8KY3W96nO8zsNrUBVAAAAAAAkPWBNhBdeeCFJaW2ESy65JDvvvHMuu+yyPPvss3nllVdy77335phjjkmSLFy4MJMnT86GDRu6smQ6YPWA2tx9wOEVGev3BxyR1QNqKzIWAAAAAAA94E6ExsbSbbJr1qxJdXV1br311rzlLW9p2X7wwQfn5ptvznHHHZdbb701v/vd7zJ9+vRMmjSp3a+xePHizW5vPZ0RlXfL2ybmbfffUfY4vzh8YvnFANAhA1Y3ZshLz6b/2tV5pd+ALN95V4EuAAAA9CLdPkTo379/S5AwefLkNgHCRn369MnFF1+cW2+9NUly7bXXdihE6C1zY44cUvrQ5runHpS6Ad1rPtLNaj40Tb/5bqoffGCrh2h606j825fOTKo6No9tw+p1OfPq+9o81+P614X0rzz6Vx79K99W97C5OdVz52SH730nNTN/nqqmv01J11xdnfXHn5A1H/lomo44ssPvyz2J78Hy6F959K88+leeov4BANB7dfsQYdCgQS0hwsZpi4qMGjUqw4YNy5IlS3Lvvfduq/K6lY0LwdUN6NvtFjXboqt/lBxxRNLYuOV9X622NtU/uio71fbbqpd+9QJ6PbJ/XUj/yqN/5dG/8nW4h/PmJVOmJIsWFW6uampK3xnT03fG9GTUqOSqq5KxYytZcrfie7A8+lce/SuP/pXHItQAANuPbr8mQutFj7d0x8DGfZ999tlOrYlOMHZsMmNGUtvBKTBqa0vH9eIPqAC6jVmzSoHvJgKE11i0qLT/rFmdWxcAAADQabp9iDBq1KiWx02tpksosnF7TU23v8GCIhMmJHPnlq5cbY/Ro0v7T5jQuXUBULoDYeLEjt8x1thYOm7evM6pCwAAAOhU3T5EOOKII1oeP/roo5vd97HHHkuSDBs2rFNrohONHZssWJDMnp1MmpRUV7fdXlOTTJ5c2j5/vjsQALaF5ubSFEZbM+VcUjpu6tTSOAAAAECP0u0v2T/++OPTt2/frFu3LtOnT89HP/rRwv3mzJmT559/Pkly+OGHb8sSqbSqqmT8+NKfhoZkyZJkxYpk0KBk2LCkrq6rKwTYvtxxR/unMNqUhQuTOXNK7+0AAABAj9Ht70TYZZdd8uEPfzhJMmvWrPzkJz95zT4rVqzIueee2/LvM888c1uVR2erq0v23z859NDS3wIEgG3v0ku71zgAAADANtPtQ4QkueCCC/K6170uSfKBD3wg55xzTmbPnp377rsvV1xxRQ499NDcf//9SZKzzjorhxxySBdWCwC9SENDaQH7Spg+vTQeAAAA0GN0++mMkmTo0KG57bbbcvzxx+eRRx7Jt7/97Xz7299+zX4f+tCH8o1vfKMLKgSAXqq+PmlqqsxYTU2lKercVQYAAAA9Ro+4EyFJ9t9//9x///25+OKLM27cuAwePDj9+vXL8OHD8773vS+33357Lr/88vTt27erSwWA3mPlysqOt2JFZccDAAAAOlWPuBNho9ra2vzLv/xL/uVf/qWrSwGA7cPAgZUdb9Cgyo4HAAAAdKoecycCANAFhg9PqqsrM1ZNTTJsWGXGAgAAALYJIQIAsGl1dcnEiZUZa+JE6yEAAABADyNEAAA27+yzu9c4AAAAwDYjRAAANm/8+GTUqPLGGD06OfLIipQDAAAAbDtCBABg86qqkquuSmprt+742trkyitL4wAAAAA9ihABANiysWOTGTM6HiTU1paOGzu2c+oCAAAAOpUQAQBonwkTkrlz2z+10ejRpf0nTOjcugAAAIBOI0QAANpv7NhkwYJk9uxk0qSkurrt9pqaZPLk0vb5892BAAAAAD1cTVcXAAD0MFVVpcWWx49PGhqSJUuSFSuSQYOSYcOSurqurhAAAACoECECALD16uqEBgAAANCLmc4IAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQjVdXQAAAHSKhoakvj5ZuTIZODAZPjypq+vqqgAAAHoUdyIAANB7NDcns2cnkyYlgwcno0Yl48aV/h48OJk8ubS9ubmrKwUAAOgRhAgAAPQO8+YlY8YkRx2V3HBD0tTUdntTU3L99aXtY8aU9gcAAGCzhAgAAPR8s2YlRxyRLFrUvv0XLSrtP2tW59YFAADQwwkRAADo2ebNSyZOTBobO3ZcY2PpOHckAAAAbJIQAQCAnqu5OZkypeMBwkaNjcnUqdZIAAAA2AQhAgAAPdcdd7R/CqNNWbgwmTOnIuUAAAD0NkIEAAB6rksv7V7jAAAA9DJCBAAAeqaGhmTGjMqMNX16aTwAAADaECIAANAz1dcnTU2VGaupKVmypDJjAQAA9CJCBAAAeqaVKys73ooVlR0PAACgFxAiAADQMw0cWNnxBg2q7HgAAAC9gBABAICeafjwpLq6MmPV1CTDhlVmLAAAgF5EiAAAQM9UV5dMnFiZsSZOLI0HAABAG0IEAAB6rrPP7l7jAAAA9DJCBAAAeq7x45NRo8obY/To5MgjK1IOAABAbyNEAACg56qqSq66Kqmt3brja2uTK68sjQMAAMBrCBEAAOjZxo5NZszoeJBQW1s6buzYzqkLAACgFxAiAADQ802YkMyd2/6pjUaPLu0/YULn1gUAANDDCREAAOgdxo5NFixIZs9OJk1Kqqvbbq+pSSZPLm2fP98dCAAAAO1Q09UFAABAxVRVlRZbHj8+aWhIlixJVqxIBg1Khg1L6uq6ukIAAIAeRYgAAEDvVFcnNAAAACiT6YwAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQjVdXQCV07ShOUnSsHpdF1fSczSsXtfSt9bP0T76Vx79K4/+lU8Py6N/5dG/8uhfefSvPK37V92nqourAQCgs1U1Nzc3b3m37Vt9fX1GjBiRJFm8eHGGDx/exRX9zcur1uXUy/+QJHnk2ZVJkpFDav0w305NG5rz+PLGNs/pX/vpX3n0rzz6Vz49LI/+lUf/yqN/5dG/8rTu39/vOjBJcvXp47LTjn27sqzX6M6/xwEA9CSmMwIAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJCFlXuRkUNqkyTfPfWg1A3oXvORdlcNq9flzKvva/Oc/rWf/pVH/8qjf+XTw/LoX3n0rzz6Vx79K09R/wAA6L2ECL3IxoXg6gb07XaLmnVnr15AT/86Rv/Ko3/l0b/y6WF59K88+lce/SuP/pXHItQAANsP0xkBAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAoZquLgAA2A40NCT19cnKlcnAgcnw4UldXVdXBQAAAGyBOxEAgM7R3JzMnp1MmpQMHpyMGpWMG1f6e/DgZPLk0vbm5q6uFAAAANgEIQIAUHnz5iVjxiRHHZXccEPS1NR2e1NTcv31pe1jxpT2BwAAALodIQIAUFmzZiVHHJEsWtS+/RctKu0/a1bn1gUAAAB0mBABAKicefOSiROTxsaOHdfYWDrOHQkAAADQrVhYGQCojObmZMqUjgcIGzU2JlOnJvPnJ1VVla0N6DoWVgcAgB7NnQgAQGXccUf7pzDalIULkzlzKlIO0IUsrA4AAL2GEAEAqIxLL+1e4wBdw8LqAADQqwgRAIDyNTQkM2ZUZqzp00vjAT2PhdUBAKDX6dEhwnnnnZeqqqqWP3fccUdXlwQA26f6+tdebby1mpqSJUsqMxaw7VhYHQAAeqUeGyL86U9/yte+9rWuLgMASEoLplbSihWVHQ/oXJVaWN0aCQAA0O30yBBhw4YN+chHPpL169dn11137epyAICBAys73qBBlR0P6FwWVgcAgF6rR4YI3/zmN3Pvvfdmv/32y+mnn97V5QAAw4cn1dWVGaumJhk2rDJjAduGhdUBAKDX6nEhwuLFi/PZz342SfKd73wn/fr16+KKAIDU1ZXmNK+EiRNL4wE9g4XVAQCgV+txIcLZZ5+dlStXZurUqRk/fnxXlwMAbHT22d1rHGDbsLA6AAD0aj0qRPjZz36Wm2++OYMHD87FF1/c1eUAAK2NH5+MGlXeGKNHJ0ceWZFygG3EwuoAANCr1XR1Ae310ksv5Z//+Z+TJBdddFGGDh3axRV1P00bmpMkDavXdXElPUfD6nUtfWv9HO2jf+XRv/LoX/k6o4d9vvvDDDz6qFQ1Nnb42Oba2qy87PJsWL2+rBq2Fd+D5dG/8nSn/vWp3iGVXAp9RU3/bFjVuefSnfrXE7XuX3Wfqi6uBgCAztZjQoTzzjsvzzzzTP7hH/6h4osp19fXb3b70qVLK/p6neXx5aUPbM68+j4/zLdT04bmlr5tpH/tp3/l0b/y6F/5OquHb556YT7zg3/PgLWr233M6n4D8sWpF+b+eWuTeX8o6/W3Fd+D5dG/8nSn/g1Y3Zhr+1SnekP5Uxqt71Od03+9NKvv6tx1EbpT/3qi1v37+10HdnE1AAB0th4RIvz2t7/ND37wg9TU1OSyyy5LVVVlf7gfMWJERccDgO3Z/fsdkk//87fyiau/kNcvfXyL+z+xx975+qmfyaMj3rgNqgMqbfWA2tx9wOF52/13lD3W7w84IqsH1JZfFAAAUDHdPkRYu3ZtzjjjjDQ3N+cTn/hExowZ09UlAQBb8OiIN+Zj/3ZlRj9yf469c3reOv/ONlcpr+9Tnd8fcER+cfjELPz7NycVvkAA2LZuedvEioQIvzh8YvnFAAAAFdXtQ4QvfvGLefDBB/O6170un//85zvlNRYvXrzZ7UuXLs2hhx7aKa8NAL1WVVUW7nNgFu5zYAasbswuLz+XAWtWZfUOO+b5nYa62hh6kQX7HJgn9xjZrruPNuWJPfYuhYoAAEC30q1DhIceeihf+tKXkiTf+ta3UlvbOR82DB8+vFPG3dZGDin157unHpS6AX27uJqeoWH1upx59X1tntO/9tO/8uhfefSvfHpYHv0rj/6Vpzv2r89BP0lzGQur73Ldtbn6wAM7obLX6o7960mK+gcAQO/VrUOEr33ta1m7dm323nvvrFq1Kj/5yU9es8/ChQtbHt9+++155plnkiTvec97Oi106K42LgRXN6BvdtrRL0Dt9eoF9PSvY/SvPPpXHv0rnx6WR//Ko3/l6Xb9O+zQZMaMZOLEpCNBQm1tqmbMyKDDtu2dv92ufz2MRagBALYf3TpEWLNmTZLksccey8knn7zF/S+88MKWx48//vh2FyIAAECXmjAhmTs3mTIlWbRoy/uPHp1ceWUydmzn1wYAAGyVPl1dAAAA0IuMHZssWJDMnp1MmpRUV7fdXlOTTJ5c2j5/vgABAAC6uW4dIlxxxRVpbm7e7J/Wiy3Pnj275fm99tqr6woHAIDtWVVVMn58ct11yQsvJA88kPzhD6W/n38++dnPSturTIkDAADdXbeezggAAOjh6upKfwAAgB6pW9+JAAAAAAAAdB0hAgAAAAAAUEiIAAAAAAAAFOrxIcL555/fspjy+PHju7ocAAAAAADoNXp8iAAAAAAAAHQOIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQqKarCwAAAOi1GhqS+vpk5cpk4MBk+PCkrq6rqwIAgHZzJwIAAEAlNTcns2cnkyYlgwcno0Yl48aV/h48OJk8ubS9ubmrKwUAgC0SIgAAAFTKvHnJmDHJUUclN9yQNDW13d7UlFx/fWn7mDGl/QEAoBsTIgAAAFTCrFnJEUckixa1b/9Fi0r7z5rVuXUBAEAZhAgAAADlmjcvmTgxaWzs2HGNjaXj3JEAAEA3JUQAAAAoR3NzMmVKxwOEjRobk6lTrZEAAEC3JEQAAAAoxx13tH8Ko01ZuDCZM6ci5QAAQCUJEQAAAMpx6aXdaxwAAKggIQIAAMDWamhIZsyozFjTp5fGAwCAbkSIAAAAsLXq65OmpsqM1dSULFlSmbEAAKBChAgAAABba+XKyo63YkVlxwMAgDIJEQAAALbWwIGVHW/QoMqOBwAAZRIiAAAAbK3hw5Pq6sqMVVOTDBtWmbEAAKBChAgAAABbq64umTixMmNNnFgaDwAAuhEhAgAAQDnOPrt7jQMAABUkRAAAACjH+PHJqFHljTF6dHLkkRUpBwAAKkmIAAAAUI6qquSqq5La2q07vrY2ufLK0jgAANDNCBEAAADKNXZsMmNGx4OE2trScWPHdk5dAABQJiECAABAJUyYkMyd2/6pjUaPLu0/YULn1gUAAGWo6eoCqJymDc1JkobV67q4kp6jYfW6lr61fo720b/y6F959K98elge/SuP/pVH/8rTqf3bb0zyh3mpvnNudvjed1Lz85tS1dTUsrm5pibrjj8haz/y0TQdfkRpCqNVPetr17p/1X1MwQQA0NtVNTc3N295t+1bfX19RowYkSRZvHhxhg8f3sUV/c3Lq9bl1Mv/kCR55NmVSZKRQ2r9MN9OTRua8/jyxjbP6V/76V959K88+lc+PSyP/pVH/8qjf+XZlv0bsLoxu7z8XAasWZXVO+yY53camtUDtnLthG6idf/+fteBSZKrTx+XnXbs25VlvUZ3/j0OAKAncScCAABAJ1k9oDb1PTw0AABg+2ZNBAAAAAAAoJAQAQAAAAAAKGQ6o15k5JDSbdLfPfWg1A3oXvORdlcNq9flzKvva/Oc/rWf/pVH/8qjf+XTw/LoX3n0rzz6Vx79K09R/wAA6L2ECL3IxoXg6gb07XaLmnVnr15AT/86Rv/Ko3/l0b/y6WF59K88+lce/SuP/pXHIt4AANsP0xkBAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAA8P+3d+9BVpVn3rB/DS0HQVQGNCp4DsIYk1ERZZAARk180ZjWwIwVRQ1jjMlYaowYkxmNFU/EoKasRF9HPMURR41xSnFSjlE5GBnxfIJEET8BNYjDAHKwaejvj/7YHwxLaNzdvftwXVWUi72e/XBzu4vea//2sx4KCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKtYkQ4YUXXshVV12V4447Lv3790/Xrl3Ts2fPDBgwIGeccUZmzJhR6RIBAAAAAKDdqa50AVszYsSITJ8+fbPHa2tr8+abb+bNN9/MnXfemdNOOy233nprunTpUoEqAQAAAACg/Wn1IcKiRYuSJLvvvnvGjBmT4cOHZ88998y6devyzDPPZNKkSVm0aFF+85vfpK6uLvfcc0+FKwYAAAAAgPah1YcIAwcOzFVXXZWTTz45nTt33uTcEUcckdNOOy3Dhg3Ln//850yZMiXnnHNOhg8fXqFqAQAAAACg/Wj1eyI88sgjGTt27GYBwgZ9+vTJpEmTSr9/4IEHWqo0AAAAAABo11p9iNAYI0eOLB3PmzevcoUAAAAAAEA70i5ChNra2tJxp07t4q8EAAAAAAAV1+r3RGiMadOmlY4HDhxYwUoqa936+iTJ8tVrK1xJ27F89dpS3zZ+jMbRv/LoX3n0r3x6WB79K4/+lUf/yqN/5dm4f507VVW4GgAAmltVfX19/daHtV7r16/P0KFD8+yzzyZJZs+encGDB2/THAsXLtzi+ffffz9DhgxJkixYsCD9+vX7bMU2g2Wr1ubUyf+VJHlr8cdJkn369PBmvpHWra/P/CUrN3lM/xpP/8qjf+XRv/LpYXn0rzz6Vx79K4/+lWfj/u2/S88kyd3jD8+O229XybI2s3DhwvTv3z9J67uOAwBoS9r8SoTrr7++FCDU1NRsc4CQpPTGEoDWq/vqlenzP4vTrXZ11nTpnr/s2LfSJQEAAAC0e206RJg2bVp+9KMfJUl22WWX3HTTTRWuCIAmVV+fg958MaNnPJgjXp2ZzuvXlU6t69Q5/3nA0Ew59Pg8u9cXkyrfHgUAAABoam02RHj99ddTU1OTurq6dO3aNffdd1923XXXzzTXggULtnh+49sZAdAy9lvwp1xw95XZ6/35hec7r1+Xr82Zma/NmZk3++6VH339h1nd50stXCUAAABA+9YmQ4T58+fn2GOPzdKlS9O5c+dMmTIlI0aM+MzztZd7Y+7Tp0eS5P+eemh6dW9d9yNtrZavXpuz735+k8f0r/H0rzz69+mq//B4tr/kvFStXLn1wUk+/+H/k7t/MyEr7vm3dD3ua81cXfvhNVge/SuP/pVH/8qjf+Up6h8AAO1XmwsR3nvvvRx99NF57733UlVVldtuuy01NTWVLqtV2LARXK/u27W6Tc1as/+9gZ7+bRv9K4/+FXjhheSUMUkjA4QNuteuTrfTT0nV9OnJIYc0U3Htj9dgefSvPPpXHv0rj/6VxybUAAAdR6dKF7AtlixZkmOOOSZvv/12kuTGG2/MuHHjKlwVAE2mvj4ZN26bA4QNqlauTE4/vWEeAAAAAMrWZkKEZcuW5atf/WreeOONJMk111yT73//+xWuCoAm9dRTyeuvlzfHa68l06Y1STkAAAAAHV2bCBFWrVqV0aNH54UXXkiS/OQnP8nFF19c4aoAaHK//nXrmgcAAACgg2v1IUJtbW1qamry9NNPJ0nOO++8XHHFFRWuCoAmt3x58rvfNc1cDz7YMB8AAAAAZWn1Gyufcsopeeyxx5IkRx11VMaPH5/XXnvtU8d36dIlAwYMaKnyAGgqCxcm69Y1zVzr1iWLFiW9ejXNfAAAAAAdVKsPER588MHS8RNPPJEvfvGLWxy/11575Z133mnmqgBoch9/3LTzrVjRtPMBAAAAdECt/nZGAHQQPXs27Xw77NC08wEAAAB0QK1+JUJ9fX2lSwCgJfTrl3Tu3DS3NKquTvbYo/x5AAAAADo4KxEAaB169Upqappmrpoa+yEAAAAANAEhAgCtx/e+17rmAQAAAOjghAgAtB4jRyYHHljeHF/4QjJiRJOUAwAAANDRCREAaD2qqpK77kp69PhMT6/v0SO5886GeQAAAAAomxABgNblkEOS3/1um4OE1V26Z9WU+xueDwAAAECTECIA0Pocc0wyfXqjb230zm775pLzbkzdV45u5sIAAAAAOpbqShcAAIUOOSR59dVk2rTkV79qWJ2wbl3pdH11dZ7+wvBMHV6T1/b/G7cwAgAAAGgGQgQAWq+qqobNlkeOTJYvTxYtSlasSHbYIct33iUT759T6QoBAAAA2jUhAgBtQ69eDb82WLW2crUAAAAAdBD2RAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoVF3pAmg669bXJ0mWr15b4UrajuWr15b6tvFjNI7+lUf/yqN/5dPD8uhfefSvPPpXHv0rz8b969ypqsLVAADQ3Krq6+vrtz6sY1u4cGH69++fJFmwYEH69etX4Yr+f8tWrc2pk/8rSfLW4o+TJPv06eHNfCOtW1+f+UtWbvKY/jWe/pVH/8qjf+XTw/LoX3n0rzz6Vx79K8/G/dt/l55JkrvHH54dt9+ukmVtpjVfxwEAtCVuZwQAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEbK7cj+/TpkST5v6ceml7dW9f9SFur5avX5uy7n9/kMf1rPP0rj/6VR//Kp4fl0b/y6F959K88+leeov4BANB+CRHakQ0bwfXqvl2r29SsNfvfG+jp37bRv/LoX3n0r3x6WB79K4/+lUf/yqN/5bEJNQBAx+F2RgAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUanMhwrvvvpsf/vCHGTRoUHr06JHevXtnyJAh+cUvfpFVq1ZVujwAAAAAAGg3qitdwLaYOnVqvvWtb2XZsmWlx1atWpXZs2dn9uzZufXWW/Poo49m3333rWCVAAAAAADQPrSZlQgvv/xyxo4dm2XLlqVnz5658sor88c//jF/+MMfctZZZyVJ/vSnP2X06NH5+OOPK1wtAAAAAAC0fW1mJcL555+fVatWpbq6Oo899liGDh1aOnfUUUfl85//fCZMmJC5c+fmuuuuy6WXXlrBagEAgJLly5OFC5OPP0569kz69Ut69ap0VQAAQCO0iZUIs2fPzlNPPZUkGT9+/CYBwgYXXnhhBg0alCS54YYbsnbt2pYsEQAA2Fh9ffLkk8k3v5n07p0ceGBy+OEN/+3dOxkzpuF8fX2lKwUAALagTYQIDz30UOn4zDPPLBzTqVOnjBs3LkmydOnSUugAAAC0sBdeSA46KDnqqOS3v03Wrdv0/Lp1yQMPNJw/6KCG8QAAQKvUJm5nNGPGjCRJjx49cuihh37quBEjRpSOZ86cmWOOOabZa2tN1q1v+BbX8tVWYTTW8tVrS33b+DEaR//Ko3/l0b/y6WF59K88+lee1ty/6j88nu1PGZOqlSsb94TXX0/9l7+cVVPuT91Xjm7e4v4/rbl/bcHG/evcqarC1QAA0Nyq6utb//rhvn37ZsmSJfnSl76Ul1566VPHLV26NL17906SjBkzJvfdd1+j5l+4cOEWz7///vsZMmRIkmTBggXp169f4wpvActWrc2pk/8rSfLW4oYNpffp08Ob+UZat74+85dseoGrf42nf+XRv/LoX/n0sDz6Vx79K09r7d9+C/6Uq395brrXrt7m567u0j2XnHdj5vU/oBkq21Rr7V9bsXH/9t+lZ5Lk7vGHZ8ftt6tkWZtZuHBh+vfvn6T1XccBALQlrX4lwpo1a7JkyZIk2eqbvp133jk9evTIypUrs2DBgkb/GRveWAIAAJ9RfX0uuPvKzxQgJEn32tU5/+6rcu6P7kiqfJgPAACtRasPEVasWFE67tmz51bHbwgRPv744+Ysq9XYcfvt8vC5RyZJTrhxZoWraXs6d6oqfXuKbad/5dG/8uhf+fSwPPpXHv0rT2vs30Fvvpi93p9f1hx7v/92vvDWS3nt8wc3UVXFWmP/2pKN+7fhWgQAgPar1YcIa9asKR136dJlq+O7du2aJFm9uvHfgNraqoWNb2cEAABs7v/M/F2TzDN6xu+aPUQAAAAar9WHCN26dSsd19bWbnX8J598kiTp3r17o/+M9nJvzLvHH17pEgAA6IiWL0+vC2Y0yVTDXp2eu8cMSnr1apL5AACA8rT6EGGHHXYoHTfmFkUrVzZs8NWYWx+1N61tIzMAADqId/6SrFvXJFNVrVuXHZcuTj73V00yHwAAUJ5OlS5ga7p165Y+ffokSRYuXLjFsUuXLi2FCDZLBgCAFtLU+5FttC8aAABQWa0+REiSQYMGJUneeuut1NXVfeq4uXPnbvYcAACgmTX1KuCNViMDAACV1SZChCOPPDJJw62Knn/++U8dN23atNLxsGHDmr0uAAAgSb9+SefOTTNXdXWyxx5NMxcAAFC2NhEifOMb3ygd33777YVj1q9fn7vuuitJstNOO2XUqFEtURoAANCrV1JT0zRz1dTYVBkAAFqRNhEiDBkyJMOHD0+STJ48Oc8888xmYyZNmpQ5c+YkSc4777xst51NhgEAoMV873utax4AAKBJtIkQIUl++ctfpnv37qmrq8uxxx6bq6++OrNmzcqTTz6Zs88+OxMmTEiSDBgwIBdeeGGFqwUAgA5m5MjkwAPLm+MLX0hGjGiScgAAgKZRXekCGuvggw/Ov/3bv+XUU0/N8uXL8+Mf/3izMQMGDMjUqVOzg43YAACgZVVVJXfdlXz5y8nKldv+/B49kjvvbJgHAABoNdrMSoQkOeGEE/LKK6/kggsuyIABA7L99ttnp512yuDBgzNx4sS8+OKL2X///StdJgAAdEyHHJL87ncNgcC26NGj4XmHHNI8dQEAAJ9ZVX19fX2li2jtFi5cmP79+ydJFixYkH79+lW4IgAAaMVeeCEZNy55/fWtj/3CFxpWIAgQaGKu4wAAmkabWokAAAC0AYcckrz6avLkk8k3v5l07rzp+erqZMyYhvOvvCJAAACAVqzN7IkAAAC0IVVVDZstjxyZLF+eLFqUrFiR7LBDssceSa9ela4QAABoBCECAADQvHr1EhoAAEAb5XZGAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFqitdQFtQV1dXOn7//fcrWAkAAACNsfG128bXdAAAbBshQiN8+OGHpeMhQ4ZUsBIAAAC21Ycffpi999670mUAALRJbmcEAAAAAAAUqqqvr6+vdBGt3Zo1a/Lqq68mSfr27Zvq6ta1gOP9998vrZB49tlns9tuu1W4IjoSrz8qyeuPSvMapJK8/qiktvD6q6urK60qP+igg9KtW7cKVwQA0Da1rk/DW6lu3brlsMMOq3QZjbLbbrulX79+lS6DDsrrj0ry+qPSvAapJK8/Kqk1v/7cwggAoHxuZwQAAAAAABQSIgAAAAAAAIWECAAAAAAAQCEhAgAAAAAAUEiIAAAAAAAAFBIiAAAAAAAAhYQIAAAAAABAoar6+vr6ShcBAAAAAAC0PlYiAAAAAAAAhYQIAAAAAABAISECAAAAAABQSIgAAAAAAAAUEiIAAAAAAACFhAgAAAAAAEAhIQIAAAAAAFBIiAAAAAAAABQSIgAAAAAAAIWECG3cu+++mx/+8IcZNGhQevTokd69e2fIkCH5xS9+kVWrVlW6PNqhF154IVdddVWOO+649O/fP127dk3Pnj0zYMCAnHHGGZkxY0alS6SDmjBhQqqqqkq/nnrqqUqXRDu3ZMmS/PznP8+wYcPyuc99Ll27ds3uu++eww8/PBdddFGeeeaZSpdIO1VbW5vJkyfna1/7WnbbbbfSz+IDDjgg3/72tzNr1qxKl0gbtHjx4jzyyCO59NJLc9xxx6VPnz6ln6lnnHHGNs/3+9//PieddFL69euXrl27pl+/fjnppJPy+9//vumLBwCgWVXV19fXV7oIPpupU6fmW9/6VpYtW1Z4/oADDsijjz6afffdt4Uro70aMWJEpk+fvtVxp512Wm699dZ06dKlBaqC5OWXX87gwYNTV1dXeuzJJ5/MyJEjK1cU7dr999+fc845Jx999NGnjjnxxBPz0EMPtVxRdAgLFizI6NGj8+qrr25x3AUXXJBJkyalqqqqhSqjrdvSa+X000/PHXfc0ah56uvr893vfje33HLLp475zne+k5tvvtnrEwCgjaiudAF8Ni+//HLGjh2bVatWpWfPnrnkkksyatSorF69Ovfee2/+5V/+JX/6058yevTozJ49Oz179qx0ybQDixYtSpLsvvvuGTNmTIYPH54999wz69atyzPPPJNJkyZl0aJF+c1vfpO6urrcc889Fa6YjmD9+vU566yzUldXl1122SWLFy+udEm0c3fddVfOPPPMrF+/PrvsskvOOeecHHnkkendu3c++OCDzJs3Lw8//HC22267SpdKO1NXV7dJgPDFL34xP/jBD3LAAQdkxYoVmTlzZiZNmpSVK1fm+uuvz2677ZaLLrqowlXTFvXv3z+DBg3KY489ts3P/ad/+qdSgHDwwQdnwoQJ2W+//TJv3rz8/Oc/z4svvphbbrklffv2zRVXXNHUpQMA0AysRGijRo0alaeeeirV1dWZPn16hg4dusn5a6+9NhMmTEiSXH755bn00ksrUSbtzPHHH59x48bl5JNPTufOnTc7v2TJkgwbNix//vOfkyTTp0/P8OHDW7pMOpgbbrghF1xwQQYOHJiamppcffXVSaxEoHnMmTMnBx98cD755JMMHz48Dz/8cHbcccfCsbW1tVZk0aR++9vf5pvf/GaSZOjQoZkxY8ZmP4+ff/75DB06NGvXrs3OO++cxYsXp7ra94bYussuuyyHHXZYDjvssOy666555513ss8++yRp/EqEt956K4MGDUpdXV0GDx6c6dOnp3v37qXzq1atyogRI/Lcc8+luro6c+fOzX777ddcfyUAAJqIPRHaoNmzZ5fu9T1+/PjNAoQkufDCCzNo0KAkDR+wrV27tiVLpJ165JFHMnbs2MIAIUn69OmTSZMmlX7/wAMPtFRpdFALFizIP//zPydJbrrpJh/Y0uzOPffcfPLJJ+nTp08efPDBTw0Qkng90uSefvrp0vEll1xS+PP40EMPzfHHH58kWbp0aebOndti9dG2XX755Tn++OOz6667fuY5rr/++tKtBW+88cZNAoQk2X777XPjjTcmaVhZc8MNN3zmPwsAgJYjRGiDNr6/8plnnlk4plOnThk3blyShgtIG4zSUjb+5ve8efMqVwgdwve+9718/PHHOf300606oNnNnTs3f/jDH5Ik//iP/5g+ffpUuCI6mtra2tLxlva82vib3Z988kmz1gQb1NfX59///d+TJAMHDswRRxxROO6II47IAQcckKThusbCeACA1k+I0AbNmDEjSdKjR48ceuihnzpuxIgRpeOZM2c2e12QbPoBR6dO/omh+dx333155JFH0rt371x77bWVLocO4P777y8djxkzpnS8dOnSvPnmm1vcZBmawoABA0rHb7/99qeO2xDiV1VV5fOf/3yz1wVJMn/+/NL+WRtfhxTZcH7hwoV55513mrs0AADK5BO+NmjOnDlJkv3333+L97gdOHDgZs+B5jZt2rTS8cavQWhK//M//5PzzjsvSTJx4sT07du3whXREcyaNStJsuOOO2bQoEH513/913zpS19K7969M2DAgPTp0yf77rtvLr/88nz88ccVrpb26JRTTkmvXr2SNPzbt27dus3GvPjii5k6dWqS5O///u9L46G5bXy9sbX3gK5TAADaFiFCG7NmzZosWbIkSdKvX78tjt15553To0ePJA33DYfmtn79+lxzzTWl348dO7aC1dCeTZgwIR988EH+9m//NuPHj690OXQQb7zxRpJk7733zrnnnptTTz01r7zyyiZj5s+fn5/+9KcZOnRo3nvvvUqUSTvWt2/f3HHHHenevXuefvrpHHbYYbnrrrsya9asPP7447n88sszYsSI1NbW5m/+5m9y3XXXVbpkOpCNrze2dp3Sv3//wucBANA6CRHamBUrVpSOe/bsudXxG0IE34ikJVx//fV59tlnkyQ1NTUZPHhwhSuiPZo5c2ZuvfXWVFdX5+abb05VVVWlS6KD+O///u8kDXsj/OpXv8pOO+2Um2++OYsXL86aNWsye/bsHHfccUmS1157LWPGjMn69esrWTLtUE1NTZ577rmMHz8+L730Uk4//fQMHTo0xxxzTH76059m++23z3XXXZeZM2fmc5/7XKXLpQPZluuUDdcoiesUAIC2QIjQxqxZs6Z03KVLl62O79q1a5Jk9erVzVYTJA23MfrRj36UJNlll11y0003Vbgi2qPa2tp85zvfSX19fS644IIcdNBBlS6JDmTlypVJGjaq7dy5c/7jP/4jZ599dvr27ZuuXbtm8ODBeeSRR0pBwh//+Mc8+OCDlSyZdmjt2rW555578vDDDxduSPuXv/wlU6ZMyVNPPdXyxdGhbct1yoZrlMR1CgBAWyBEaGO6detWOt54A9tP88knnyRJunfv3mw1weuvv56amprU1dWla9euue+++7LrrrtWuizaoauuuipz5szJnnvumcsuu6zS5dDBbPwzeMyYMTniiCM2G9OpU6dNNvqeMmVKi9RGx7By5cocffTRufLKK/PRRx9lwoQJmTNnTj755JMsW7Ysjz32WI488sjMnj07J5xwQn75y19WumQ6kG25TtlwjZK4TgEAaAuECG3MDjvsUDpuzNLfDd+abMytj+CzmD9/fo499tgsXbo0nTt3zpQpUzJixIhKl0U7NHfu3Fx99dVJkhtvvHGTWyFAS9j4Z/CG1QZFDjzwwOyxxx5JktmzZzd7XXQcl112WaZPn54kmTx5ciZOnJiBAwemS5cu6dWrV4455pg8+eSTGTVqVOrr6/ODH/xgs307oLlsy3XKhmuUxHUKAEBbUF3pAtg23bp1S58+fbJkyZIsXLhwi2OXLl1aeoO+8eZl0FTee++9HH300XnvvfdSVVWV2267LTU1NZUui3bq+uuvT21tbfbdd9+sWrUq995772ZjXnvttdLxE088kQ8++CBJcsIJJwgdKFv//v1Lr6nGbBq6aNGiLF68uCVKowOor6/P7bffniQZMGBATj/99MJx1dXV+dnPfpYjjzwy69evz+23357rr7++JUulg9r438WtXadsvJmy6xQAgNZPiNAGDRo0KDNmzMhbb72Vurq6VFcX/2+cO3fuJs+BprRkyZIcc8wxefvtt5M0fDN83LhxFa6K9mzDrQ/efvvtnHLKKVsd/7Of/ax0PH/+fCECZTvwwANLKwvWrVu3xbEbzn/az2jYVn/5y19Km3sffPDBWxx76KGHlo43fj8Izemv//qvS8dbe925TgEAaFvczqgNOvLII5M0LAN+/vnnP3XctGnTSsfDhg1r9rroOJYtW5avfvWreeONN5Ik11xzTb7//e9XuCqA5vXlL3+5dDxv3rwtjt0QsG64rRGUa+NAqq6ubotj165dW/g8aE777LNPdt999ySbXocU2XBbrj322CN77713c5cGAECZhAht0De+8Y3S8YZl7f/b+vXrc9dddyVJdtppp4waNaolSqMDWLVqVUaPHp0XXnghSfKTn/wkF198cYWroiO44447Ul9fv8VfG2+2/OSTT5Ye9wEFTeHrX/96tttuuyTJgw8++Knjpk2blo8++ihJMnz48Bapjfavd+/e6dWrV5LkmWee2WKQsPEHuPvss0+z1wZJUlVVlRNPPDFJw0qDWbNmFY6bNWtWaSXCiSeemKqqqharEQCAz0aI0AYNGTKk9KHE5MmT88wzz2w2ZtKkSZkzZ06S5Lzzzit96AHlqK2tTU1NTZ5++ukkDa+tK664osJVAbSMv/qrv8o//MM/JEn+8z//s3BfjhUrVuT8888v/f7ss89uqfJo5zp16pTRo0cnadiT6Morrywct3Tp0k3C/eOPP75F6oMkOf/880urX84999ysXr16k/OrV6/Oueeem6RhlczG/14CANB6VdXX19dXugi23Ysvvphhw4Zl9erV6dmzZ3784x9n1KhRWb16de69997ccsstSRo23nvuueeyww47VLhi2oOTTz659O3bo446KjfccMMWvz3WpUuXDBgwoKXKg/z0pz/N5ZdfnqRhJcLIkSMrWxDtzocffpjBgwfn3XffTXV1db773e/mpJNOSq9evfLqq69m4sSJpW/YnnPOOfn1r39d4YppT+bOnZtDDz00q1atStKwafzpp5+efffdN2vWrMmsWbNyww035N13302SfOUrX8njjz9eyZJpQ2bOnJm33nqr9PslS5bkoosuStJwa9QNIeoGZ5xxRuE8l1xySa655pokDft3XHzxxdlvv/0yb968TJw4MS+++GJp3FVXXdUMfxMAAJqaEKENe/jhh3Pqqadm+fLlhecHDBiQqVOnZv/992/hymivtnW5+V577ZV33nmneYqBAkIEWsKcOXPy9a9/fZMP2/63b3/727n55putBKTJPf744znllFOyZMmSLY476qij8sADD2TnnXduocpo684444zceeedjR7/aZeR69evz1lnnZXbbrvtU587fvz43HLLLenUycJ4AIC2wLu2NuyEE07IK6+8kgsuuCADBgzI9ttvn5122imDBw8ufctHgAAATWvQoEF56aWXcu211+bwww9P796906VLl/Tr1y9/93d/lyeeeCKTJ08WINAsjj766MydOzcTJ07MyJEj07dv32y33Xbp3r179tlnn4wdOzYPPfRQHn/8cQECFdGpU6dMnjw5U6dOzYknnpjdd989Xbp0ye67754TTzwxjz76aG699VYBAgBAG2IlAgAAAAAAUMjXPwAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEJCBAAAAAAAoJAQAQAAAAAAKCREAAAAAAAACgkRAAAAAACAQkIEAAAAAACgkBABAAAAAAAoJEQAAAAAAAAKCREAAAAAAIBCQgQAAAAAAKCQEAEAAAAAACgkRAAAAAAAAAoJEQAAAAAAgEL/Lz7KMv2Tc0KEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 505, "width": 776 } }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(6, 6))\n", "streets.plot(ax=ax, alpha=0.8, zorder=1, label=\"streets\")\n", "facility_points.plot(\n", " ax=ax,\n", " color=\"red\",\n", " zorder=2,\n", " label=f\"facility candidate sites ($n$={FACILITY_COUNT})\",\n", ")\n", "plt.legend(loc=\"upper left\", bbox_to_anchor=(1.05, 1));" ] }, { "cell_type": "markdown", "id": "7bb0cc9b", "metadata": {}, "source": [ "## Assign simulated points network locations\n", "\n", "The facility points do not adhere to network space. Calculating distances between them without restricting movement to the network results in a euclidean distances,'as the crow flies.' While this is acceptable for some applications, for others it is more realistic to consider network traversal (e.g. Does a mail carrier follow roads to deliver letters or fly from mailbox to mailbox?).\n", "\n", "In our first example we will consider distance along the 10x10 lattice network created above. Therefore, we must first snap the observation points to the network prior to calculating a cost matrix." ] }, { "cell_type": "code", "execution_count": 10, "id": "1d447220", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:33.997317Z", "start_time": "2023-01-10T18:23:33.967233Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.829807Z", "iopub.status.busy": "2025-04-07T19:07:15.829734Z", "iopub.status.idle": "2025-04-07T19:07:15.838617Z", "shell.execute_reply": "2025-04-07T19:07:15.838414Z", "shell.execute_reply.started": "2025-04-07T19:07:15.829799Z" } }, "outputs": [], "source": [ "with warnings.catch_warnings():\n", " warnings.simplefilter(\"ignore\")\n", " # ignore deprecation warning - GH pysal/libpysal#468\n", " ntw.snapobservations(facility_points, \"facilities\", attribute=True)\n", "facilities_snapped = spaghetti.element_as_gdf(ntw, pp_name=\"facilities\", snapped=True)\n", "facilities_snapped.drop(columns=[\"id\", \"comp_label\"], inplace=True)" ] }, { "cell_type": "markdown", "id": "af1768f2", "metadata": {}, "source": [ "Now the plot seems more organized as the points occupy network space. The network is plotted below with the network locations of the facility points." ] }, { "cell_type": "code", "execution_count": 11, "id": "81fe5065", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.310140Z", "start_time": "2023-01-10T18:23:34.000540Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.839027Z", "iopub.status.busy": "2025-04-07T19:07:15.838950Z", "iopub.status.idle": "2025-04-07T19:07:15.928245Z", "shell.execute_reply": "2025-04-07T19:07:15.928042Z", "shell.execute_reply.started": "2025-04-07T19:07:15.839019Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAPzCAYAAADs3c7zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgAAjX1JREFUeJzs3XuclnWdP/7XMAMCA6MB4gEw0TQNcBOPfU0hilrTDphumQaZqSu7tvatLL+/7bR2MN3tpFlbeSLLNklULCs2Ac00DTKFdD2kBYjiGRlGwGF+f8wyDcphDtfMPXPN8/l48PDmvq77c7+v99ze93C97uvzqWpqamoKAAAAAABAL9ev0gUAAAAAAAAUQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEqhptIF9AYvvvhi7r333iTJzjvvnJoabQMAAKDzXnrppTz55JNJkgkTJmTgwIEVrggAoHdz9r4N7r333hx66KGVLgMAAIASu/POO3PIIYdUugwAgF7N9FYAAAAAAEApuNKjDXbeeeeW23feeWd22223ClYDAABAWaxcubJlZoHW//YEAKBjhB5t0HoNj9122y2jR4+uYDUAAACUkfUjAQA6z/RWAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCnUVLoAAAAAoG968cUX89xzz2Xt2rVpbGysdDkAQDeorq7OgAEDUldXlyFDhqRfv2KvzRB6AAAAAN2qqakpK1euzPPPP1/pUgCAbvbSSy9l3bp1eeGFF1JVVZVRo0Zl6NChhY0v9AAAAAC61dNPP/2KwKOmxikKAOgLGhsb09TUlKT5ixArVqwoNPjwGwUAAADQbdavX58nn3yy5e8jR47MTjvtlOrq6gpWBQB0l6ampqxduzbPPPNM1qxZ0xJ87LvvvoVMdWUhcwAAAKDbrFmzpuX28OHDM3z4cIEHAPQhVVVVqa2tzejRozNkyJAkzUFI698ROkPoAQAAAHSb+vr6ltt1dXUVrAQAqKSqqqoMGzas5e+rV68uZFyhBwAAANBt1q9fn6T5RMcOO+xQ4WoAgEoaPHhwqqqqkvztd4TOEnoAAAAA3Wbjxo1Jkurq6paTHABA31RVVdUyzWVjY2MhYwo9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAABsZs8990xVVVU++MEPVrqULlH24wPoy4QeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAACixxx57LJ/61KcyceLE7LjjjhkwYEB23XXXTJgwISeeeGKuuOKKrF69OkkyefLkVFVV5S9/+UuS5Morr0xVVdVmfyZPntwy9qOPPtpy/xVXXJEkufbaa/P2t789u+++e2pqajbbf5Ply5fn3HPPzcSJE/OqV70qAwcOzB577JH3vve9mT9/fpuO69lnn80XvvCFvOENb8iIESOyww47ZPfdd8+73vWuXHvttVt8THuPL0kaGxtzxRVX5G1ve1t23XXXDBgwIDvttFP22WefvPnNb86XvvSl/OlPf2pTzQB0vZquHHzVqlW58847c+edd+auu+7KXXfdlaeffjpJMmPGjJYPw7b6xS9+ke9+97u588478+STT2bnnXfOoYcemtNPPz1///d/3wVHQOmsXp0sX56sWZMMGZKMHp3U1VW6KgAoP5/BzfQBgG5266235thjj20JNTZ54okn8sQTT2TJkiX58Y9/nBEjRuTYY4/t1HM1NTVl+vTp+cEPfrDN/S699NKcddZZaWho2Oz+ZcuWZdmyZfnJT36SU089Nd/5zndSU7PlU1c///nPc9JJJ+W5557b7P6VK1fmhhtuyA033JBjjjkmP/7xjzNkyJAOH9OaNWvy9re/Pbfeeutm9z///PN5/vnn89BDD+Xmm2/O4sWLM3v27A4/DwDF6dLQY5dddilknKampvzjP/5jvvvd7252/4oVKzJnzpzMmTMnp59+er7zne+kqqqqkOekRJqakgULkm99K7nuuqSx8W/bqquTadOSmTOTyZMTrx8AKI7P4Gb6AECFrFu3Lu973/uyevXqDB06NGeeeWbe9KY3ZeTIkdmwYUP+8pe/5Pbbb89Pf/rTlsdcfvnlqa+vz9ve9rY89thjede73pUvfOELm41bW1u7xef7+te/nnvuuSdHHnlkzjzzzOy777557rnn8uijj7bsc9lll+XDH/5wkmT8+PE544wzcuCBB2bw4MF55JFHcumll+bnP/95Lr300uy44475j//4j1c8z7x58/LOd74zjY2N2XPPPXPmmWfmsMMOS11dXVasWJH/+q//ylVXXZWf/exnmTFjRqeO73Of+1xL4HHsscfmpJNOyh577JGBAwfmySefzB//+MfceOONzkcB9CBVTU1NTV02eKs3/DFjxmT//ffPr371qyTtu9Lj//v//r986UtfSpIceOCBOeecc7L33nvn4YcfzgUXXJA//OEPLfu9/IOqCMuXL8+YMWOSNH/rYPTo0YU/B11k8eJk+vRk6dLt7ztuXDJrVjJxYtfXBQBl5zO4mT4A29EX/7354IMP5qWXXkpNTU322Wef7e7//NoN3VBVZew4uH+Xjn/zzTfnzW9+c5Jk7ty5W72S46WXXsratWtT1+rqwz333DN/+ctftnv+5tFHH83YsWNb/j59+vRcccUVWwwBli1blv322y9r167NjBkz8v3vf3+LV3JsOg/Ur1+/3Hfffdl3331bttXX12fvvffOE088kbe+9a2ZM2dOBg8e/Ioxvve97+X0009Pkvz3f/93Sx/ae3x77LFHli1bluOPPz7XXHPNVvd75plnMmzYsK1uB2Dr2vu7wfZ06ZUen/nMZ3LIIYfkkEMOyS677PKKD8K2eOihh3LBBRckSQ4++ODccsstGTRoUJLkkEMOyTvf+c5MmjQpv//97/OVr3wlp5xySvbee+/Cj4VeaN685m9O1te3bf+lS5OjjkrmzEmmTu3a2gCgzHwGN9MHgEKcfOnvKl1Cl5l71hu7dPzHH3+85fZRRx211f1qamo2Czw6aqeddsrFF1+81asevvGNb2Tt2rXZfffdtzl11ec///lceeWVWbFiRWbNmrXZF1wvv/zyPPHEExk4cGB+8IMfbDHwSJLTTjst3//+93PnnXfm8ssvf0Xo0VabenjkkUducz+BB0DP0aULmX/+85/Pscce26lprr72ta/lpZdeSpJcdNFFLYHHJoMHD85FF12UpPmbCV//+tc7/FyUyOLF7TvJsEl9ffPjFi/umroAoOx8BjfTBwB6gN12263l9uWXX97lz/eOd7wjQ4cO3er266+/vmW/gQMHbnW/mpqavOENb0iS3H777VscY9KkSRk5cuQ269kU9Lx8jPbY1MP/+q//ytq1azs8DgDdp0tDj85qampq+TDbb7/9cvjhh29xv8MPPzyvfe1rkyTXXXddunDGLnqDpqbmaSTae5Jhk/r6ZMaM5nEAgLbzGdxMHwDoId74xjdmr732SpKcffbZOfTQQ/PlL385v/3tb7N+/frCn++AAw7Y6rZNi34nyX/+53+mqqpqm382LQre+mqVJPn973+fJPnlL3+53TH+/d//fYtjtMeMGTOSJL/97W8zduzY/PM//3PmzJmTJ598ssNjAtC1enTo8cgjj2TFihVJmhP8bdm0ffny5ZstkEUftGBB2+bN3pYlS5KFCwspBwD6DJ/BzfQBgB6if//+mTt3bvbff/8kyV133ZX/9//+X4444ojstNNOOfroo/OjH/0ojY2NhTzfq171qq1uW7VqVYfGbH11xYYNG/Lcc891aoz2+vSnP50PfehDqaqqyqpVq/Ktb30rxx13XHbZZZdMmDAhn/3sZ/PEE090eHwAitela3p01n333ddye7/99tvmvq2333fffe1eO6RMyrzIW1sMvujiFLEU3PqLLk7DoUcUMBIA9A0+g5vpA/QsXb1QNF3vqlMPq3QJvdrrXve63HvvvZk7d27mzp2bhQsX5uGHH05DQ0N+8Ytf5Be/+EW++tWv5uc///l2p4vanurq6q1uax2snH322Tn11FPbNOaAAQO2OMY//MM/5NOf/nQHqmyf/v3759JLL83HPvaxXH311bn55pvz+9//PuvXr8+SJUuyZMmSfPWrX81VV12Vd73rXV1eDwDb16NDj2XLlrXcHj169Db3HTNmzBYf1xbLly/f5vaVK1e2a7xKK/Mib9szqKE+V//vlGidVX3ddTnt4pvTMKi2kPEAoMx8BjfTB+h5unqhaLqe4Krzqqur8+53vzvvfve7kzSf57jppptyySWXZNGiRVm0aFHOOOOMzJkzp8tqGD58eMvttWvXZvz48e0eY+DAgRk8eHDWrl2b5557rkNjdNTrXve6nHfeeTnvvPPS0NCQ2267LT/60Y8ya9asrFmzJieeeGIefvjhzdZRAaAyevT0Vi+88ELL7SFDhmxz39rav/1jcM2aNe16njFjxmzzz6GHHtq+wqmYEc+tSvXGYi7Lrd7YmOHPm6MTANrCZ3AzfQCgN9htt93yoQ99KLfffnsmTpyYJLnxxhvT0NDQsk9VVVWhz7nzzjtn1KhRSZL//u//7vB6rAceeGCS5LbbbuvUtFWdOb5BgwblLW95Sy677LJceOGFSZKGhobceOONHR4TgOL06Cs9XnzxxZbbrS9n3JIddtih5XbrD+m+4vm1G1qu8HhoVXPoM3ZEbar7FftLSk83cH2xP/unVz6dh/qNSNI3+1mUxo1NeeSpzRdz1c+O089i6Wex9LNYvamfRX8GD1rX8ZMYW9Md/ewNfShKb3p99gb6WazW/XzHRb9J0jxFkisGYHP9+/fPpEmTsnjx4rz00kt57rnnMmjQoCTNV1Ukybp16wp7vne+85359re/nT//+c+ZPXt2TjjhhA6Ncdttt6W+vj7f+ta38olPfKJDtRR1fG9+85tbbj/11FOdGguAYvToKz02fQAlyfr167e5b+sPqU0f0G21bNmybf65884721c4FfPigPb97LenfodixwOAsir6M7hhh8GFjtdd9AGAnuTWW2/NQw89tNXt69evz8KFC5M0z7Cx8847t2zbNE3Tww8/XFg9n/jEJ1q+tPqP//iP+f3vf7/N/X/+85/nnnvu2ey+f/zHf8yIEc1fTvz0pz+dm266aZtj3HbbbbnllltecX9bju+ZZ57JDTfcsM2rUn71q1+13O7L68sC9CQ9+kqPoUOHttze3pRV9fV/+1bU9qbCerntrRfS24wd0TzV13+efFDqBvWxbzKt3j9NF1SnqrHz00q81K86A/fcI2MH9uF+FmR1w4accdWize7Tz47Tz2LpZ7H0s1i9qp8FfgY31dTk/LOOTurqCijsb7qln72gD0XpVa/PXkA/i7WlfkJf9Otf/zrnnXdejjzyyBxzzDE54IADsvPOO6ehoSEPPPBAvvOd72Tx4sVJkg9/+MOpqfnbaaL/83/+T+bPn5+77ror559/fo4++uiWqcUHDRrUMlVVe4wdOzbf+c53csopp+SZZ57JEUcckQ984AM59thjs8cee+Sll17K8uXLc+edd2b27Nl5+OGHM3fu3BxwwAEtY9TV1eXqq6/O0UcfnXXr1uXYY4/Ne97znrznPe/J3nvvnaR5zZJFixZlzpw5ueeee3LRRRflqKOO2qyWthzf6tWr8653vSt77rlnjjvuuBx22GF59atfnZqamqxcuTJz587N97///STN55be8Y53tLsnABSvR4cercOI7S023nrx8taLmvdFmy6BrxvUv+9dvj14eDJtWjJ7dqeHuuOAo7J+8JBU/+/f+2Q/C/TyqRn0s3P0s1j6WSz9LFav6WeBn8FV06Zlx12Hb3/HDujyfvaSPhSl17w+ewn9LJapwaDZxo0bs3DhwpYrOrbkuOOOy5e//OXN7jvzzDPz7W9/O88880zOPffcnHvuuS3bJk2alAULFnSong9+8IMZNGhQTj/99KxevTqXXnppLr300i3u269fv83WcN3kLW95S375y1/mpJNOyuOPP55rrrkm11xzzVafs24LXyBoz/E9+uij+epXv7rV8UeNGpUbbrhhi7UC0P169PRWr3vd61pu33///dvct/X2/fffv8tqoheYObOQYX525LRCxgGAPqOgz+DCxqkUfQCghzjnnHPy85//PB/96Edz+OGHZ4899sjAgQMzcODA7Lnnnnnve9+bn/3sZ/npT3+62RTjSfOJ/DvvvDOnnnpqXvOa17xie2e8973vzaOPPprzzz8/kydPzsiRI9O/f/8MHjw4e+21V97xjnfkq1/9ah599NG86U1v2uIYU6ZMycMPP5yLL744f//3f5/ddtstAwYMyMCBAzNmzJi89a1vzRe/+MXcf//9mT59+ise35bje/WrX5277747F154YY4++ui89rWvzU477ZSampqMGDEikyZNyr//+7/nvvvua1lgHYDK69FXeowdOza77757HnvssW1+IyFJy/yMo0aNyp577tkN1dFjTZ6cjBuXLF3a4SEaXzcuS17z+sJKAoA+oYDP4Iwfn0yaVFhJFaEPAPQQgwcPztFHH52jjz66Q4/fe++9W6Zv2po999xzm2tebM2rXvWqfPKTn8wnP/nJDtWWNB/fP/3TP+Wf/umfOvT47R1fVVVV/u7v/i5/93d/l49//OMdLROAbtajr/SoqqrKu971riTNV3LccccdW9zvjjvuaLnS413veleqqlzG3KdVVSWzZiUdvay0tjZrv3tZ8zgAQNsV8BmcK6/s/Z/B+gAAAFAxPTr0SJKzzz67ZSGts846Kw0NDZttb2hoyFlnnZUkqampydlnn93dJdITTZyYzJnT/pMNtbXJnDnZ6LJUAOiYTn4GZ+LErqmru+kDAABARXTp9Fa/+c1v8tBDD7X8/amnnmq5/dBDD+WKK67YbP8PfvCDrxhj3333zcc//vGcf/75+f3vf58jjjgin/zkJ7P33nvn4Ycfzle+8pX84Q9/SJJ84hOfyD777NMlx0IvNHVqcsstyfTpbZteYvz45m9VTpyYrN3Q9fUBQFl15jO4TPQBAACg23Vp6PH9738/V1555Ra33Xbbbbnttts2u29LoUeSfPGLX8yqVaty2WWX5Q9/+EPe9773vWKfU089NV/4whc6XTMlM3Ficu+9ycKFybe+1fzNycbGv22vqUmmTWteKHTSJNNIAEBRfAY30wcAAIBu1aMXMt+kX79+ufTSS/Oe97wn3/3ud3PXXXflqaeeyogRI3LIIYfkjDPO6PCiXPQBVVXNC4pOnpysXp2sWJG88EIydGgyalRSV1fpCgGgnHwGN9MHAACAbtOloccVV1zxiimsOuPtb3973v72txc2Hn1QXZ0TCwBQCT6Dm+kDAABAl+rxC5kDAAAAAAC0hdADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAADoA/7617/mjDPOyN57752BAwemqqoqVVVVue666ypdWpLkiiuuaKnp0UcfbfO2tmynsjrzsy3iOXilvtqvDRs25LWvfW2qqqryX//1X5Uup9ebOXNmqqqqMmPGjEqXshmhBwAAAEDJ/fWvf81BBx2U7373u/nzn/+cdevWVbokgG530UUX5YEHHsj++++fE044odLldNiqVaty44035jOf+UyOPvrojBgxoiXE+uAHP9ju8Z566qlccMEFOeKII7Lrrrtmhx12yO67757DDjssn/jEJ3L77bdv8XHnnntuBgwYkB/84Ae56667OnlUxampdAEAAAAAdK0vfOELeeqpp1JTU5MvfvGLOeqoozJkyJAkyatf/eoKV9f1rrjiipxyyilJkkceeSR77rlnZQuiV+pLr6MyHuuaNWvy5S9/OUnymc98Jv369d7rAXbZZZfCxrrmmmty5pln5umnn97s/pUrV2blypW588478+CDD27xqsAxY8ZkxowZ+d73vpd//dd/zS9/+cvC6uqM3vuTBQAAAKBN/vu//ztJ8u53vzvnnHNODj/88IwfPz7jx4/P0KFDK1xdsw9+8INpampKU1NTu0+wduaxVJafXWX0xb5/+9vfzlNPPZUxY8bkH/7hHypdTmHGjBmTt771rR167KxZs/K+970vTz/9dEaOHJnPfvazmTdvXhYtWpSf/exn+eY3v5mpU6emf//+Wx3jYx/7WJLkV7/6VY+52sOVHgAAAACrVyfLlydr1iRDhiSjRyd1dZWuqjArVqxIkuy7774VrgSg+zU2Nubiiy9Okpx44om9+iqPpPlKlUMOOSSHHHJIdtlllzz66KMZO3Zsu8a47777cvrpp2fjxo058sgjM3fu3Oy4446v2O+ss87K+vXrtzrOa1/72kycODGLFy/ON77xjVx11VXtPp6i9e6fLgAAAEBHNTUl8+cnxx+fDBuWjBuXHHZY83+HDUtOOKF5e1NTpSvttE0nrLb1bV2Aspo3b17++te/JklOPvnkClfTeZ///Odz7LHHdmqaq7POOivr1q3LiBEjcu21124x8NhkwIAB2xzrpJNOSpL89Kc/zfPPP9/hmooi9AAAAAD6nsWLkwkTkilTkp/+NGls3Hx7Y2Mye3bz9gkTmvfvZa644oqWhW03+fznP99y38sXvF2yZEm+8IUv5G1ve1tGjx6dHXbYIUOGDMk+++yTGTNm5I477mjzc99222358Ic/nNe+9rWpq6vLkCFDst9+++Xd7353Zs2aldWrV2+z3kcffbTDx9r6sQsWLEhVVVXL2gRJMnbs2M16UFVVlQULFmTDhg3ZddddU1VVlaOPPnq7z7lkyZKWx3/pS19qV72tdaRXnf1Zfe5zn9vstfHiiy/mwgsvzMSJEzN06NAMHTo0hx56aC6++OK89NJL2z2GZ599Np/61Key3377ZdCgQRk5cmTe8pa35JprrtnuY9v6c+/Mc2zS0b6153W0JXfeeWdOO+207LvvvhkyZEhqa2uz33775Z/+6Z/y4IMPtrn+rXnsscfyqU99KhMnTsyOO+6YAQMGZNddd82ECRNy4okn5oorrnjF66iI/2eKPtaOHEdb/eQnP0mS7LPPPpkwYcI29239//bs2bOTNIcm73vf+7LHHntkhx12yKhRo3L66afnySef7FA9lXb//ffn17/+dZLkn//5nzNixIhOjfee97wnSfN7yfXXX9/p+jrL9FYAAABA3zJvXjJtWlJf37b9ly5NjjoqmTMnmTq1a2urkAULFuRNb3rTK+5fv359HnrooTz00EOZNWtWPvWpT7UsBLwlDQ0NOfXUU3P11Ve/Ytv//M//5H/+539y/fXX57Of/Ww+97nPFXkInda/f/9Mnz49F154YX71q19lxYoVGTVq1Fb3v+yyy5Ik1dXVmTFjRrufr6O9KupntckTTzyRt73tbfnjH/+42f133XVX7rrrrvzqV7/Kddddt9XpgP70pz/lLW95S1auXNly34svvphf//rX+fWvf50PfehDOfLII7dbx7YU8RxF960tXnrppXzkIx/Jt7/97Vds2/Qz/t73vpdvfetbOe200zr0HLfeemuOPfbYV4QBTzzxRJ544oksWbIkP/7xjzNixIgce+yxHXqOtujssXb1ccyfPz9Jcvjhh29339b/L4wdOzbHH398fvrTn262z2OPPZbvfe97ueWWW7Jo0aLU1ta2u6ZKah0WnnDCCS23n3322Tz11FMZNmxYhg8f3ubxXv3qV2e33XbLypUrs2DBgkyfPr3QettL6AEAAAD0HYsXty/w2KS+vvlxt9ySTJzYNbUV7N3vfncOPvjgJGn5ZvOZZ56ZmTNntuzzqle9KknzCcva2tocc8wxmTJlSvbbb7/U1dVl1apVWbp0ab75zW/mL3/5S84///zsu+++m30LfJONGzfmXe96V+bNm5ek+RvVM2fOzMEHH5zBgwdn5cqV+e1vf9vyjevucMghh+Tee+/N9ddfn3/9139Nkvzyl7/M7rvvvtl+m+bC//CHP5wLL7wwGzduzKxZs3LuueducdwNGza0zFv/1re+dZvhyJZ0pldF/KxaO+6443LfffflIx/5SN7xjndk2LBh+Z//+Z+cd955ue+++zJ37tx873vfyxlnnPGKxz7//PN529ve1hJGvPe9782MGTMycuTIPPDAA/nqV7+ayy67LPfee2+7+tMVz9GZvrX3dbTJqaeemlmzZiVJjj766Jx00knZd999U1VVlbvvvjtf//rXs3Tp0px++unZdddd8453vKNdvVm3bl3e9773ZfXq1Rk6dGjOPPPMvOlNb8rIkSOzYcOG/OUvf8ntt9/+ihP221KJY+2K42ht+fLlLVezHHLIIdvdf1PoUV1dnY985CO56667ctppp+Xd7353dtlllzz44IM577zz8qc//Sn/8z//k8suuyxnnXVWh2qrlE1XNe24447Zf//988Mf/jAXXHBB7rnnnpZ9xo4dmxkzZuRjH/tYhgwZst0xDznkkNxwww259dZbu6zuthJ6AAAAAH1DU1MyfXr7A49N6uuTGTOSe+5JWk0Z1VPttNNO2WmnnTa7b+TIkRk/fvwr9n3961+f5cuXv2L/JHnb296Wf/7nf86xxx6befPm5fOf/3ymT5+e6urqzfa76KKLWk7iT5s2LVdffXV22GGHzfY55phjct555+Xxxx/v3MG1UW1tbcaPH5/f//73Lfftu+++2XPPPbe4/7777pujjjoqt9xySy6//PKthh433nhjy7Q2p556arvr6kyvivhZtbbpao7Jkye33Ddx4sS87W1vy+te97o88cQTueSSS7YYevzbv/1bli9fniT50pe+tFm/DjrooBx//PE59thj86tf/Wq7Pdmaop6jM31r7+soaV7bYFMI8L3vfS8f/vCHN9t+8MEH5+STT84xxxyTm2++OR/5yEdy9NFHp6am7adrb7vttjz22GNJkh/96EevuALisMMOyz/8wz/kwgsvzNq1a9s0ZiWOtSuOo7Xf/va3LbcPPPDA7e6/KfRobGzMkiVLcuutt+awww5r2X7QQQflyCOPzN57751169blt7/97RZDj6oCPicuv/zyzaYhLMqf/vSnJMmee+6Zs846K9/61rdesc8jjzySz33uc5k9e/YWg6+XO+igg3LDDTfkoYceyqpVqzJy5MjC624ra3oAAAAAfcOCBc1TVXXGkiXJwoWFlNOTjBgxYosngzcZMGBALrzwwiTJX/7yl9x9992bbd+4cWPL9lGjRmXWrFmvOIm/Sb9+/bZ78qySNp2wffDBB3PbbbdtcZ/LL788SXPf2vvt/M72qrM/q5c766yzNgs8Nhk2bFjL1Q733HPPKxYnXrduXUsfDjjggHzyk598xRj9+/fPpZdemv79+2+zhq0p8jmK7tv2bJoia9q0aa8IATYZOHBgLr744iTJo48+utV1MramdSB21FFHbXW/mpqa1NXVtWvs9ujssXb1cWwKzZK06UR86+mtvvvd724WeGwyatSo7LPPPkmSNWvWtLumSnvmmWeSNK/t8a1vfSs77bRTvvOd72TVqlV58cUXc9ddd7WsbbRkyZKccMIJ2bhx4zbHbN3bFStWdF3xbeBKDwAAAKBvuOSS4sbZwkniMlm3bl2eeOKJrFmzpuVEV1NTU8v2P/7xjznooINa/n733Xe3nOQ67bTT2jQVSk91/PHH5yMf+Uiee+65XH755TniiCM22/7EE0/kpptuSpKcfPLJGTBgQLvGL7pX7f1ZvdxJJ5201W2tH/fII4/k9a9/fcvfFy1alGeffTZJMmPGjK2u+TF69Oi89a1vzc9+9rM2HU9rXfkcne3btqxYsSKLFi1KkvzDP/zDNvfdf//9M2LEiDz11FO5/fbb85a3vKXNz7Pbbru13L788svzL//yLx2qtzOKONauPo7Wi41vmtJva1atWpUnnngiSTJlypS8973v3eq+DQ0NSbLVtS86M63bJqNHj+70GFtS/79XPK5bty7V1dW56aabNlvv5OCDD86NN96YY489NjfddFN++9vf5tprr83xxx+/1TGHDRvWcrvSC7wLPQAAAIDyW726eSHyIlx7bfN4XfjN6Uqor6/PN7/5zfz4xz/O0qVL09jYuNV9n3rqqc3+/oc//KHl9ra+qd0bDBo0KO9///tzySWX5Cc/+Um+8Y1vbLZI8Q9+8IO89NJLSZIPfehD7R6/iF515mf1cvvtt99Wt7U+ifnCCy9stq31Cd3trZNw6KGHdij0KPo5iuzbtrSeGurEE0/MiSee2KbHtXfatze+8Y3Za6+98uc//zlnn312fvjDH2batGmZNGlSDj744HYHch1RxLF29XFsuqoh2X7o0foKn22FOOvWrWtZJ+S1r33tFvfZ0lSCPcXAgQNbgo8TTjhhiwu89+vXLxdeeGFLyHv11VdvM/Ro3dunn3664IrbR+gBAAAAlN/y5ck2TnC2S2NjsmJFqUKPRx99NFOmTMkjjzzSpv03fcN5k9YniFt/a7u3Ou2003LJJZfkhRdeyE9/+tNMnz69Zdum6ZYOOeSQlgXi26Ozversz+rlBg8evNVtra+seHlAsOkKjGT7Uwbtsssu29y+NUU+R9F925ZVq1Z16HHtXa+if//+mTt3bo4//vjcd999ueuuu3LXXXclaQ7vJk2alA984AN573vfu811XTqjiGPt6uMYOHBgy+2GhoYMHTp0q/u2ntrq5WuLtLZkyZKW/ycOOOCAdtdUaUOHDm0JPTZNY7Ul48aNy6hRo7JixYqWn8nWtP5/ZtCgQcUU2kFCDwAAAKD8ip5z/WXfeu/tPvCBD+SRRx5JVVVVTjnllLzvfe/L/vvvn5133rllvYmNGze2nHBsPQ3QyxWxeG+lvf71r89BBx2URYsW5fLLL28JPX73u9+1LADckas8Xq4jvSryZ9UZrcfd3nF0tIYin6M7+9Y6IPrhD3/Y5pPi27sKYUte97rX5d57783cuXMzd+7cLFy4MA8//HAaGhryi1/8Ir/4xS/y1a9+NT//+c+7ZGHpoo61K49j5513brn9zDPPtCn02GWXXTJq1Kit7tf6ipDW0761tmTJknbVuSWjR4/e5lo0HTVmzJiWq222N4XWmDFjsmLFiu0GXK2vqGnd80oQegAAAADlV/QaE9s4adbb3H///fnNb36TJDn33HPzxS9+cYv7tf7W/cuNGDGi5fZjjz221eleepMPf/jDWbRoURYuXJg///nP2WuvvVqu8hg0aFCbp/F5uc70qoifVVFaT331xBNPZN99993qvh29GqCo5+juvrVe46GqqqrLpzmqrq7Ou9/97rz73e9OkqxcuTI33XRTLrnkkixatCiLFi3KGWeckTlFTfHXSpHH2lXH0foE/LPPPptXv/rVW913U+hx4IEHbnPMTdPUjRgxYqvhSEeuBHu5yy+/PB/84Ac7Pc7LjRs3ruXKjW1N89Z6e03NtqOE1v//VDr02PLqPwAAAABlMnp0UtT0LjU1yTa+AdzbLF26tOX2+973vq3u13ru/pebOHFiy+1bbrmlmMIK1JErKt7//vdn8ODBaWpqypVXXpmGhob8+Mc/TpIcd9xx2XHHHTtUS2d6VcTPqiitT+hub9qb7W3v6ucoqm9tfR21PmH+q1/9qk2PKdJuu+2WD33oQ7n99ttbXm833nhju6bs6gnHWsRxJJu/jh544IGt7rd+/frcf//9SdoeemztKo+ervV6Qg8//PA29/3zn/+cJNu88iX5W29ra2uz1157dbLCzhF6AAAAAOVXV5dMm1bMWNOmlWo9j02LcifbXlPgO9/5zla3/d3f/V3GjBmTJPn+97+fNUVPJ9ZJref0X7duXZseU1dX17KQ8ZVXXpnZs2fn+eefT5KceuqpHa6lM70q4mdVlIMOOqhliqIf/OAHW50OasWKFR0+GV7UcxTVt7a+jl7zmtfkda97XZLkxz/+cf76179uc9yu0r9//0yaNClJcw+ee+65Nj+2Jx1rZ44jSQ4++OCWNSa2F45teq20DidfrqmpKffcc0+SbYceTU1Nnf7TFVd5JMk73/nO9O/fP0ly7bXXbnW/hQsXtixKfuSRR25zzE29Pfzww7d7VUhXE3oAAAAAfcPMmT1rnB5in332abl95ZVXbnGfb3/727nuuuu2Oka/fv3yiU98IkmyfPnyTJ8+PevXr9/ivhs3bsxjjz3W8YI7oPWC4dv7VnNrH/7wh5Mkf/nLX3LOOeckScaOHZvJkyd3uJbO9KqIn1VRdthhh5xyyilJmtc3uPDCC1+xz0svvZTTTjttq8fXXc9RVN/a8zr613/91yTJiy++mOOOOy5PPvnkVvddt25dLrnkkrz44ovbHPPlbr311jz00ENb3b5+/fosXLgwSTJkyJB2TTnUncfalceRJAMGDMihhx6aJLnzzju3ul/rRcy3daXHgw8+2BJW9tYrPYYPH97y/jZv3ryWq9hae+GFF3L22We3/P2MM87Y6njr1q1rCYK2F450B2t6AAAAAH3D5MnJuHFJq6lu2m38+OR/v3FcFgceeGDGjx+fJUuW5Nvf/naee+65nHTSSdltt92ybNmyXHXVVZk9e3aOOOKI3HbbbVsd55/+6Z8yd+7czJs3L3PmzMmECRMyc+bMHHzwwRk8eHAef/zx3HHHHbn66qvz/ve/P5/73Oe69RgHDhyYF198MZ/+9KdTU1OTPffcM/36NX8feNSoUS3fBG/tiCOOyP7775/77ruvZdHfU045pdOLtXe0V0X9rIrymc98Jj/5yU+yfPnyfPKTn8zdd9+d6dOnZ+TIkXnggQfy1a9+NXfddVcOOeSQDk9xVcRzFNW39ryOTjzxxPzyl7/MlVdemUWLFuV1r3tdzjjjjEyaNCk777xz6uvr8/DDD+fWW2/Ntddem2eeeSbTp09vV29+/etf57zzzsuRRx6ZY445JgcccEB23nnnNDQ05IEHHsh3vvOdLF68OElzgNeeb99357F25XFscswxx2ThwoW5884788ILL2xxMfNNoUddXd02p2faNLVVUrnQ4ze/+c1mQdFTTz3Vcvuhhx7KFVdcsdn+W7pi5POf/3x+9rOf5a9//Ws+8IEP5Lbbbstxxx2Xurq63HvvvfnKV77SMt3XmWeemUMOOWSr9dxyyy3ZsGFDkuZeV5rQAwAAAOgbqqqSWbOSo45K6uvb//ja2uTKK5vHKZGqqqr84Ac/yJQpU/Lss8/m6quvztVXX73ZPhMmTMg111yT3Xfffavj9OvXL9ddd11mzJiR2bNn54EHHtjsW8KVNHTo0HzkIx/JBRdckMWLF+dtb3vbZtvnz5+/1as3Tj311Hz84x9P0nyMRUw309FeFfWzKsqOO+6YX/ziF3nLW96Sxx9/fIv1nHLKKTnqqKNartioxHMU1bf2vo4uvfTS7LLLLvmP//iPPPXUU/niF7+41UXUa2trU92BdYc2btyYhQsXtlwJsSXHHXdcvvzlL7dr3O4+1q46jk3e//7359xzz82LL76YOXPmbDFg2hR6vP71r99msHn33XcnaZ4CbL/99utQPZ31/e9/f6tXLd12222vCO+29L6188475xe/+EXe+c535qGHHsrFF1+ciy+++BX7fehDH8o3vvGNbdbzox/9KEny2te+NgcffHAbj6LrmN4KAAAA6DsmTkzmzGkOMNqjtrb5cduY5703e/3rX5+77747//iP/5hXv/rV6d+/f4YNG5ZDDz00//7v/54777xzs+lutmbw4MG55pprcvPNN+cDH/hAxo4dm0GDBmXo0KHZb7/9ctxxx+VHP/pRy/RO3en888/P9773vRx55JEZNmxYm08wf+ADH2i5PXXq1Jb1ODqro70q6mdVlHHjxmXp0qU555xzss8++2SHHXbIiBEj8qY3vSk/+tGPctlll/WI5yiqb+15HVVXV+crX/lK/vSnP+VjH/tYDjzwwLzqVa9KdXV1hg4dmnHjxuWkk07KlVdemZUrV27xaqNtOeecc/Lzn/88H/3oR3P44Ydnjz32yMCBAzNw4MDsueeeee9735uf/exn+elPf7rZGh1t1V3H2tXHkTRfmfKud70rSfLDH/5wi/tsmp6prYuYjx8/vkNBVU+y//77t0wdd9hhh2XYsGEZMGBARo8enfe+9725+eabc+mll7as/7Elm4KkJJnZQ6Z/rGra2gpAtFi+fHnLB9qyZcsyevToClf0Ss+v3ZCTL/3dZvdddeph2XHw1l+QbJ1+Fks/i6WfxdLPYulnsfSzWPpZLP0sln4Wqzf1szf8e7NoDz74YF566aXU1NRsNs9+t1u8OJk+vW1TXY0f33yFR0kDD7bt17/+dd7ylrckSf7rv/6rZXFzoHe544478oY3vCHV1dV56KGHsueee1a6pFK46qqr8oEPfCDDhg3Lo48+usWpw7an6N8NXOkBAAAA9D0TJyb33pvMn58cf3zy8m/r1tQkJ5zQvP2eewQefdimqwiGDx/e8k1xoPc5/PDDc/TRR6exsbHD02SxuY0bN+ZLX/pSkuTjH/94hwKPriD0AAAAAPqmqqrmxc2vuSZ55pnkT39Kfve75v8+/XTyk580by/ZGh603aOPPpprrrkmSfO6ETvssEOFKwI64ytf+Uqqq6tz+eWX569//Wuly+n1rrnmmtx3330ZM2ZMj1nDKbGQOQAAAEBSV9f8hz5vxYoVWbt2bR555JF86lOfyoYNGzJw4MAedUIP6JgJEybkiiuuyEMPPZS//vWv2WOPPSpdUq/W2NiYz372s5kyZUq716TpSkIPAAAAAPhfJ510UhYuXLjZff/2b/+WUaNGVagioEgnn3xypUsojfe///2VLmGLhB4AAAAA8DKDBw/Ovvvum7PPPjszZsyodDkAtJHQAwAAAAD+14IFCypdAgCdYCFzAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAANBt+vVrPhXR2NiYpqamClcDAFRSU1NTGhsbkyTV1dWFjCn0AAAAALrNgAEDkjSf5Fi3bl2FqwEAKmnt2rUtX4LY9DtCZwk9AAAAgG5TW1vbcnv16tUVrAQAqKSmpqY888wzLX+vq6srZFyhBwAAANBthgwZ0nL76aefztNPP90yrQUAUH5NTU2pr6/P8uXLs2bNmiRJVVXVZr8jdEZNIaMAAAAAtMGAAQOy884758knn0ySrFq1KqtWrUp1dXWqqqoqXB0A0NVevq5XVVVVRo0a1bLuV2cJPQAAAIBuNXz48Kxfvz7PP/98y32u9gCAvmdT4DF06NDCxhR6AAAAAN2qqqoqu+++e4YNG5bnnnsua9euFXoAQB9RXV2dAQMGpK6uLkOGDCnsCo9NhB4AAABARQwcODC77rprpcsAAErEQuYAAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUqipdAEUr3FjU5JkdcOGClfSe61u2NDSx9b30TH6WSz9LJZ+Fks/i6WfxdLPYulnsfSzWK37Wd2vqsLVAADQnaqampqatr9b37Z8+fKMGTMmSbJs2bKMHj26whW90vNrN+TkS3+XJHlo1ZokydgRtX7B76DGjU155Kn6ze7Tz47Tz2LpZ7H0s1j6WSz9LJZ+Fks/i6WfxWrdz9eMHJIkuerUw7Lj4P6VLGuLesO/NwEAehPTWwEAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSChcxLaOyI2iTJf558UOoG9bw5a3uD1Q0bcsZViza7Tz87Tj+LpZ/F0s9i6Wex9LNY+lks/SyWfhZrS/0EAKBvEHqU0KbFDusG9e+RC/X1Fi9fNFI/O0c/i6WfxdLPYulnsfSzWPpZLP0sln4WyyLwAAB9k+mtAAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCjWVLgAAAIBkUEN9Rjy3KgPXN+TFAYOS1fsng4dXuiwAAOhVhB4AAACV0tSULFiQwd+8KFffcEOqNzb+bdMF1cm0acnMmcnkyUlVVeXqBACAXsL0VgAAAJWweHEyYUIyZUr6Xzdns8AjSaoaG5PZs5MpU5r3W7y4QoUCAEDvIfQAAADobvPmJUcdlSxd2rb9ly5t3n/evK6tCwAAejmhBwAAQHdavLh52qr6+vY9rr6++XGu+AAAgK0SegAAAHSXpqZk+vT2Bx6b1NcnM2Y0jwMAALyC0AMAAKC7LFjQ9imttmbJkmThwkLKAQCAshF6AAAAdJdLLulZ4wAAQMkIPQAAALrD6tXJnDnFjHXttc3jAQAAmxF6AAAAdIfly5PGxmLGamxMVqwoZiwAACgRoQcAAEB3WLOm2PFeeKHY8QAAoASEHgAAAN1hyJBixxs6tNjxAACgBIQeAAAA3WH06KS6upixamqSUaOKGQsAAEpE6AEAANAd6uqSadOKGWvatObxAACAzQg9AAAAusvMmT1rHAAAKBmhBwAAQHeZPDkZN65zY4wfn0yaVEg5AABQNkIPAACA7lJVlcyaldTWduzxtbXJlVc2jwMAALyC0AMAAKA7TZyYzJnT/uCjtrb5cRMndk1dAABQAkIPAACA7jZ1anLLLW2f6mr8+Ob9p07t2roAAKCXE3oAAABUwsSJyb33JvPnZ8O049LYr3qzzU01NckJJyTz5yf33OMKDwAAaIOaShcAAADQZ1VVJZMnZ+2hR+S0i2/O8OefzKB1a9Oww+Ccf9bR2XHX4ZWuEAAAehWhBwAAQA/QMKg2ywe1Wuejrq5yxQAAQC9leisAAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEAp9KrQY/369bn00kvz93//99ltt92yww47ZMiQIXnta1+bD33oQ7njjjsqXSIAAAAAAFAhNZUuoK2WLVuWY445Jvfee+9m969fvz4PPPBAHnjggVx++eX56Ec/mv/4j/9IVVVVhSoFAAAAAAAqoVdc6fHSSy9tFngccMABueKKK3L77bfnV7/6VT7zmc+ktrY2SfK1r30t//7v/17JcgEAAAAAgAroFVd6XH/99S2Bxxve8Ibceuutqa6ubtk+derUvPOd78wb3vCGbNiwIV/+8pfz0Y9+NDU1veLwAAAAAACAAvSKKz1uu+22ltvnnnvuZoHHJgcddFCOPfbYJMmzzz6b+++/v9vqAwAAAAAAKq9XhB7r169vub3XXnttdb+999675fa6deu6tCYAAAAAAKBn6RWhx7777tty+89//vNW93v44YeTJFVVVdlnn326vC4AAAAAAKDn6BWLXpx44on59Kc/ndWrV+crX/lK3v72t79iiqs//OEP+dnPfpYked/73pe6urpKlNojNG5sSpKsbthQ4Up6r9UNG1r62Po+OkY/i6WfxdLPYulnsfSzWPpZLP0sln4Wq3U/q/tVVbgaAAC6U1VTU1PT9nervDlz5uSkk05KQ0NDDjzwwJx99tnZd999s2bNmtx22235j//4j7zwwgt5/etfn5tuuim77rprm8devnz5NrevXLkyhx56aJJk2bJlGT16dKeOpSs8v3ZDTr70d0mSh1atSZKMHVHrF/wOatzYlEeeqt/sPv3sOP0sln4WSz+LpZ/F0s9i6Wex9LNY+lms1v18zcghSZKrTj0sOw7uX8mytmj58uUZM2ZMkp77700AgN6kV1zpkSTTpk3L73//+3z1q1/NZZddlhkzZmy2fZdddsnnP//5nH766amtrW3X2Jt+wQQAAAAAAHqvXrGmR5Js2LAhP/rRjzJ37txs6eKUJ554IldffXUWLFjQ/cUBAAAAAAAV1yuu9Kivr8/b3/723HLLLamurs4555yTU045JXvttVdefPHF/O53v8u//du/5Te/+U3e8Y535Gtf+1r+5V/+pc3jL1u2bJvbW09vBQAAAAAA9Ey9IvT47Gc/m1tuuSVJcumll242tdWAAQMyderUvOlNb8pb3/rWzJ8/P//3//7fvOlNb8oBBxzQpvHLNmfq2BHN03v958kHpW5Qz5uztjdY3bAhZ1y1aLP79LPj9LNY+lks/SyWfhZLP4uln8XSz2LpZ7G21E8AAPqGHh96NDU15fLLL0+S7Lvvvq9Yy2OTmpqanHfeeXnjG9+YjRs35vLLL8/Xvva17iy1x9i02GHdoP49cqG+3uLli0bqZ+foZ7H0s1j6WSz9LJZ+Fks/i6WfxdLPYlkEHgCgb+rxa3o88cQTeeaZZ5IkBx544Db3Peigg1pu33///V1aFwAAAAAA0LP0+NCjpuZvF6O89NJL29x3w4YNW3wcAAAAAABQfj0+9Bg2bFjq6uqSJLfffvs2g4+FCxe23B47dmyX1wYAAAAAAPQcPT706NevX4455pgkyWOPPZYvfvGLW9zv2WefzSc/+cmWvx977LHdUh8AAAAAANAz9Io5oD7zmc/k+uuvz9q1a/O5z30uixYtyowZM7LXXnvlxRdfzB133JGvf/3r+etf/5okefOb35y3vvWtFa4aAAAAAADoTr0i9Nhvv/1y/fXX58QTT8xTTz2VuXPnZu7cuVvcd8qUKbnmmmu6uUIAAAAAAKDSekXokSRvectbcv/99+fSSy/NTTfdlKVLl+a5555LTU1Ndt111xxyyCF5//vfn3e+852pqqqqdLkAAAAAAEA36zWhR5IMHz4855xzTs4555xKlwIAAAAAAPQwPX4hcwAAAAAAgLYQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKoabSBQAAAL3ToIb6jHhuVQaub8iLAwYlq/dPBg+vdFkAAEAfJvQAoM9z0g6gHZqakgULMvibF+XqG25I9cbGv226oDqZNi2ZOTOZPDmpqqpcnQAAQJ8k9ACgb3LSDqD9Fi9Opk9Pli5N/y1srmpsTGbPbv4zblwya1YycWK3lwkAAPRd1vQAoO9ZvDiZMCGZMiX9r5uzWeCRtDppN2VK836LF1eoUIAeZN685KijkqVL27b/0qXN+8+b17V1AQAAtCL0AKBvcdIOoP0WL26+Aq6+vn2Pq69vfpzwGAAA6CZCDwD6DiftANqvqal5Sqv2vnduUl+fzJjRPA4AAEAXE3oA0Dc4aQfQMQsWtP3quK1ZsiRZuLCQcgAAALZF6AFA3+CkHUDHXHJJzxoHAABgG4QeAPQNTtoBtN/q1cmcOcWMde21zeMBAAB0IaEHAOXnpB1AxyxfnjQ2FjNWY2OyYkUxYwEAAGyF0AOA8nPSDqBj1qwpdrwXXih2PAAAgJcRegBQfk7aAXTMkCHFjjd0aLHjAQAAvIzQA4Dyc9IOoGNGj06qq4sZq6YmGTWqmLEAAAC2QugBQPk5aQfQMXV1ybRpxYw1bVrzeAAAAF1I6AFA+TlpB9BxM2f2rHEAAAC2QegBQN/gpB1Ax0yenIwb17kxxo9PJk0qpBwAAIBtEXoA0Dc4aQfQMVVVyaxZSW1txx5fW5tceWXzOAAAAF1M6FEigxrqM2blI9nnL3/KmJWPJKtXV7okgJ7DSTuAjps4MZkzp/3vobW1zY+bOLFr6gIAAHiZmkoXQCc1NSULFmTwNy/K1TfckOqNjX/bdEF189zzM2c2f8PZiTqgr9t00m7atKS+vu2Pc9IOIJk6NbnllmT69GTp0u3vP358c1jsvRMAAOhGrvTozRYvTiZMSKZMSf/r5mwWeCRJVWNjMnt2MmVK836LF1eoUIAeZNNJu7ZOdTV+fPP+U6d2bV0AvcHEicm99ybz52fDtOPS2K96s81NNTXJCSck8+cn99wj8AAAALqdKz16q3nz2vdN5aVLk6OOav6mshN3QF+36aTdwoXZ8M2L0u/66ze/Uq6mJlWbrpSbNMmVcgCtVVUlkydn7aFH5LSLb87w55/MoHVr07DD4Jx/1tHZcdfhla4QAADow4QevdHixe2fmiVp3n/atOZvLPvWHdDXOWkH0GkNg2qzfFCrdT7q6ipXDAAAQIQevU9TU/M8yu0NPDapr09mzGiebsA3lwGSOGkHAAAAUBbW9OhtFixo28KR27JkSbJwYSHlAAAAAABATyH06G0uuaRnjQMAAAAAAD2E0KM3Wb26eSHyIlx7bfN4AAAAAABQEkKP3mT58qSxsZixGhuTFSuKGQsAAAAAAHoAoUdvsmZNseO98EKx4wEAAAAAQAUJPXqTIUOKHW/o0GLHAwAAAACAChJ69CajRyfV1cWMVVOTjBpVzFgAAAAAANADCD16k7q6ZNq0YsaaNq15PAAAAAAAKAmhR28zc2bPGgcAAAAAAHoIoUdvM3lyMm5c58YYPz6ZNKmQcgAAAAAAoKcQevQ2VVXJrFlJbW3HHl9bm1x5ZfM4AAAAAABQIkKP3mjixGTOnPYHH7W1zY+bOLFr6gIAAAAAgAoSevRWU6cmt9zS9qmuxo9v3n/q1K6tCwAAAAAAKkTo0ZtNnJjce28yf342TDsujf2qN9vcVFOTnHBCMn9+cs89rvAAAAAAAKDUaipdAJ1UVZVMnpy1hx6R0y6+OcOffzKD1q1Nww6Dc/5ZR2fHXYdXukIAAAAAAOgWQo8SaRhUm+WDWq3zUVdXuWIAAAAAAKCbmd4KAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUaipdAMVr3NiUJFndsKHClfReqxs2tPSx9X10jH4WSz+LpZ/F0s9i6Wex9LNY+lks/SxW635W96uqcDUAAHSnqqampqbt79a3LV++PGPGjEmSLFu2LKNHj65wRa/0/NoNOfnS3yVJHlq1JkkydkStX/A7qHFjUx55qn6z+/Sz4/SzWPpZLP0sln4WSz+LpZ/F0s9i6WexWvfzNSOHJEmuOvWw7Di4fyXL2qLe8O9NAIDexPRWAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApWAh8xIaO6I2SfKfJx+UukE9b87a3mB1w4accdWize7Tz47Tz2LpZ7H0s1j6WSz9LJZ+Fks/i6WfxdpSPwEA6BuEHiW0abHDukH9e+RCfb3FyxeN1M/O0c9i6Wex9LNY+lks/SyWfhZLP4uln8WyCDwAQN9keisAAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUAo1lS4AgPYb1FCfEc+tysD1DXlxwKBk9f7J4OGVLgsAAAAAKkroAdBbNDUlCxZk8DcvytU33JDqjY1/23RBdTJtWjJzZjJ5clJVVbk6AQAAAKBCTG8F0BssXpxMmJBMmZL+183ZLPBIkqrGxmT27GTKlOb9Fi+uUKEAAAAAUDlCD4Cebt685KijkqVL27b/0qXN+8+b17V1AQAAAEAPI/QA6MkWL26etqq+vn2Pq69vfpwrPgAAAADoQ4QeAD1VU1MyfXr7A49N6uuTGTOaxwEAAACAPkDoAdBTLVjQ9imttmbJkmThwkLKAQAAAICeTugB0FNdcknPGgcAAAAAejihB0BPtHp1MmdOMWNde23zeAAAAABQckIPgJ5o+fKksbGYsRobkxUrihkLAAAAAHowoQdAT7RmTbHjvfBCseMBAAAAQA8k9ADoiYYMKXa8oUOLHQ8AAAAAeiChB0BPNHp0Ul1dzFg1NcmoUcWMBQAAAAA9mNADoCeqq0umTStmrGnTmscDAAAAgJITegD0VDNn9qxxAAAAAKCHE3oA9FSTJyfjxnVujPHjk0mTCikHAAAAAHo6oQdAT1VVlcyaldTWduzxtbXJlVc2jwMAAAAAfYDQA6AnmzgxmTOn/cFHbW3z4yZO7Jq6AAAAAKAHEnoA9HRTpya33NL2qa7Gj2/ef+rUrq0LAAAAAHoYoQdAbzBxYnLvvcn8+dkw7bg09qvebHNTTU1ywgnJ/PnJPfe4wgMAAACAPqmm0gUA0EZVVcnkyVl76BE57eKbM/z5JzNo3do07DA45591dHbcdXilKwQAAACAihJ6APRCDYNqs3xQq3U+6uoqVwwAAAAA9BCmtwIAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClUFPpAtrrqaeeymWXXZbrr78+Dz/8cJ599tkMHz48Y8aMyVFHHZXjjjsub3jDGypdJl1l9epk+fJkzZpkyJBk9Oikrq7SVQFQJO/1AAAAQAf1qtDjmmuuyZlnnpmnn356s/tXrlyZlStX5s4778yDDz6Y6667rjIF0jWampIFC5JvfSu57rqksfFv26qrk2nTkpkzk8mTk6qqChUJQKd4rwcAAAAK0GtCj1mzZuWUU07Jxo0bM3LkyJx55pl54xvfmGHDhuXxxx/Pww8/nLlz56Z///6VLpUiLV6cTJ+eLF265e2Njcns2c1/xo1LZs1KJk7s3hoB6Bzv9QAAAEBBekXocd999+X000/Pxo0bc+SRR2bu3LnZcccdX7HfWWedlfXr11egQrrEvHnN3+ytr2/b/kuXJkcdlcyZk0yd2rW1AVAM7/UAAABAgXrFQuZnnXVW1q1blxEjRuTaa6/dYuCxyYABA7qxMrrM4sXtOwm2SX198+MWL+6augAojvd6AAAAoGA9PvS4//778+tf/zpJ8s///M8ZMWJEhSuiyzU1NU9z0t6TYJvU1yczZjSPA0DP5L0eAAAA6AI9PvS45pprWm6fcMIJLbefffbZPPjgg69Y1JwSWLBg6/O6t9WSJcnChYWUA0AX8F4PAAAAdIEev6bHHXfckSTZcccds//+++eHP/xhLrjggtxzzz0t+4wdOzYzZszIxz72sQwZMqRSpfYYjRubv/W6umFDhSvpmMEXXZwilqNff9HFaTj0iA49dnXDhpY+tr6PjtHPYulnsfSzWG3tZ094r+8NvD6LpZ/F0s9i6WexWvezul9VhasBAKA7VTU19ex5IcaOHZtHH300f/d3f5c3vvGN+da3vrXVfcePH59f/vKX2X333dv1HMuXL9/m9pUrV+bQQw9NkixbtiyjR49u1/jd4fm1G3Lypb9Lkjy0ak2SZOyI2l73C/6ghvpcfe4xqd7Y2OmxGvtV58Qv/ywNg2rb/9iNTXnkqc2nXOmN/ewp9LNY+lks/SxWW/rZU97rewOvz2LpZ7H0s1j6WazW/XzNyOYvxl116mHZcXARkXuxli9fnjFjxiTpuf/eBADoTXr8lR7PPPNMkua1Pf74xz9mp512yvnnn5/jjjsudXV1uffee/OZz3wmN910U5YsWZITTjght956a/r1a/vMXZt+waTyRjy3qpCTYElSvbExw59/MstLeiIMoLfyXg8AAAB0lR6/pkf9/y5wum7dulRXV+emm27KGWeckZ133jk77LBDDj744Nx44405+uijkyS//e1vc+2111ayZDph4PqGQscbtG5toeMB0Hne6wEAAICu0uOv9Bg4cGBL8HHCCSfk8MMPf8U+/fr1y4UXXpibbropSXL11Vfn+OOPb/NzLFu2bJvbW09vRdd6ccCgQsdr2GFwoeMB0Hne6wEAAICu0uNDj6FDh7aEHpuu5tiScePGZdSoUVmxYkXuuuuudj1H2eZMHTuieYqP/zz5oNQN6nlz1m7T6v3TdEF1qho7P+1JU01Nzj/r6KSurv1lNGzIGVct2uy+XtnPHkI/i6WfxdLPYrWpnz3kvb438Posln4WSz+LpZ/F2lI/AQDoG3p86DFmzJg8/vjjSbYfTowZMyYrVqzIqlWruqO0HmvTYod1g/r3yIX6tmnw8GTatGT27E4PVTVtWnbcdXiHH//yRSN7ZT97EP0sln4WSz+Ltd1+9qD3+t7A67NY+lks/SyWfhbLIvAAAH1Tj1/TY9y4cS23G7fzjdBN22tqenyWw7bMnNmzxgGgeN7rAQAAgC7Q40OPo446quX2ww8/vM19//znPydJRo0a1aU10cUmT05ahV0dMn58MmlSIeUA0AW81wMAAABdoMeHHu985zvTv3/zJd3XXnvtVvdbuHBhnn766STJkUce2S210UWqqpJZs5La2o49vrY2ufLK5nEA6Jm81wMAAABdoMeHHsOHD8+HP/zhJMm8efPy4x//+BX7vPDCCzn77LNb/n7GGWd0V3l0lYkTkzlz2n8yrLa2+XETJ3ZNXQAUx3s9AAAAULAeH3okyec///nsscceSZIPfOADOeusszJ//vwsWrQoV1xxRQ499NDcfffdSZIzzzwzhxxySAWrpTBTpya33NL26U/Gj2/ef+rUrq0LgOJ4rwcAAAAK1CtCj5133jm/+MUv8prXvCYvvfRSLr744kyZMiUHH3xwTjnllNx///1Jkg996EP5xje+UeFqKdTEicm99ybz5yfHH59UV2++vaYmOeGE5u333ONbvwC9kfd6AAAAoCA1lS6grfbff//cfffd+fa3v53Zs2fnwQcfzJo1azJy5MgcccQROeOMM/KmN72p0mXSFaqqmhe8nTw5Wb06WbEieeGFZOjQZNSopK6u0hUC0Fne6wEAAIAC9JrQI0lqa2vz8Y9/PB//+McrXQqVUlfnxBdA2XmvBwAAADqoV0xvBQAAAAAAsD1CDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKIWaShcAAADdZVBDfUY8tyoD1zfkxQGDktX7J4OHV7osAAAACiL0AACg3JqakgULMvibF+XqG25I9cbGv226oDqZNi2ZOTOZPDmpqqpcnQAAAHSa6a0AACivxYuTCROSKVPS/7o5mwUeSVLV2JjMnp1MmdK83+LFFSoUAACAIgg9AAAop3nzkqOOSpYubdv+S5c27z9vXtfWBQAAQJcRegAAUD6LFzdPW1Vf377H1dc3P84VHwAAAL2S0AMAgHJpakqmT29/4LFJfX0yY0bzOAAAAPQqQg8AAMplwYK2T2m1NUuWJAsXFlIOAAAA3UfoAQBAuVxySc8aBwAAgG4j9AAAoDxWr07mzClmrGuvbR4PAACAXkPoAQBAeSxfnjQ2FjNWY2OyYkUxYwEAANAthB4AAJTHmjXFjvfCC8WOBwAAQJcSegAAUB5DhhQ73tChxY4HAABAlxJ6AABQHqNHJ9XVxYxVU5OMGlXMWAAAAHQLoQcAAOVRV5dMm1bMWNOmNY8HAABAryH0AACgXGbO7FnjAAAA0G2EHgAAlMvkycm4cZ0bY/z4ZNKkQsoBAACg+wg9AAAol6qqZNaspLa2Y4+vrU2uvLJ5HAAAAHoVoQcAAOUzcWIyZ077g4/a2ubHTZzYNXUBAADQpYQeAACU09SpyS23tH2qq/Hjm/efOrVr6wIAAKDLCD0AACiviROTe+9N5s/PhmnHpbFf9Wabm2pqkhNOSObPT+65xxUeAAAAvVxNpQsAAIAuVVWVTJ6ctYcekdMuvjnDn38yg9atTcMOg3P+WUdnx12HV7pCAAAACiL0AACgz2gYVJvlg1qt81FXV7liAAAAKJzprQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBRqKl0AxWvc2JQkWd2wocKV9F6rGza09LH1fXSMfhZLP4uln8XSz2LpZ7H0s1j6WSz9LFbrflb3q6pwNQAAdKeqpqampu3v1rctX748Y8aMSZIsW7Yso0ePrnBFr/T82g05+dLfJUkeWrUmSTJ2RK1f8DuocWNTHnmqfrP79LPj9LNY+lks/SyWfhZLP4uln8XSz2LpZ7Fa9/M1I4ckSa469bDsOLh/Jcvaot7w700AgN7E9FYAAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClYCHzEho7ojZJ8p8nH5S6QT1vztreYHXDhpxx1aLN7tPPjtPPYulnsfSzWPpZLP0sln4WSz+LpZ/F2lI/AQDoG4QeJbRpscO6Qf175EJ9vcXLF43Uz87Rz2LpZ7H0s1j6WSz9LJZ+Fks/i6WfxbIIPABA32R6KwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlEKvDj3OOeecVFVVtfxZsGBBpUsCALrT6tXJn/6U3Hln839Xr650RUBP5f0CAAD6hF4bevzxj3/M1772tUqXAQB0t6amZP785Pjjk2HDknHjksMOa/7vsGHJCSc0b29qqnSlQKV5vwAAgD6nV4YeGzduzGmnnZaXXnopI0eOrHQ5AEB3Wbw4mTAhmTIl+elPk8bGzbc3NiazZzdvnzCheX+gb/J+AQAAfVKvDD2++c1v5q677sp+++2XU089tdLlAADdYd685KijkqVL27b/0qXN+8+b17V1AT2P9wsAAOizel3osWzZsnz6059Oknz729/OgAEDKlwRANDlFi9Opk1L6uvb97j6+ubH+QY39B3eLwAAoE/rdaHHzJkzs2bNmsyYMSOTJ0+udDkAQFdrakqmT2//CcxN6uuTGTPM2Q99gfcLAADo83pV6PGTn/wkN954Y4YNG5YLL7yw0uUAAN1hwYK2T1GzNUuWJAsXFlIO0IN5vwAAgD6vptIFtNVzzz2Xf/mXf0mSfOUrX8nOO+9c4Yp6rsaNzd9MW92wocKV9F6rGza09LH1fXSMfhZLP4uln8Xqin4Ovuji9O/UCM3WX3RxGg49ooCRuo/XZ7H0s1g9sZ+9+f2iJ/azN2vdz+p+VRWuBgCA7tRrQo9zzjknjz/+eP7P//k/hS9evnz58m1uX7lyZaHP19Ueear5cv4zrlrkF/wOatzY1NLHTfSz4/SzWPpZLP0sVtH9HNRQn6uvv76I0lJ93XU57eKb0zCotpDxuoPXZ7H0s1g9rZ+9/f2ip/Wzt2vdz9eMHFLhagAA6E69IvT4zW9+k+9///upqanJd77znVRVFfuL/5gxYwodDwAoxojnVqV6Y2MhY1VvbMzw55/M8l4UegBt5/0CAABIesGaHuvXr8/pp5+epqamfPSjH82ECRMqXRIA0E0Grm8odLxB69YWOh7Qc3i/AAAAkl5wpceXvvSl3Hfffdljjz3y2c9+tkueY9myZdvcvnLlyhx66KFd8twAwNa9OGBQoeM17DC40PGAnsP7BQAAkPTw0OP+++/Pl7/85STJRRddlNrarrm8fPTo0V0ybqWMHdHcp/88+aDUDSpiKce+Z3XDhpxx1aLN7tPPjtPPYulnsfSzWIX3c/X+abqgOlWNnZ+ypqmmJuefdXRSV9fpsbqL12ex9LNYPa6fvfz9osf1s5fbUj8BAOgbenTo8bWvfS3r16/PXnvtlbVr1+bHP/7xK/ZZsmRJy+2bb745jz/+eJLkHe94R5eFJD3dpsUO6wb1z46D/SOpo16+aKR+do5+Fks/i6WfxSq0n4OHJ9OmJbNnd7quqmnTsuOuwzs9Tnfz+iyWfharR/WzBO8XPaqfJWAReACAvqlHhx7r1q1Lkvz5z3/OiSeeuN39zzvvvJbbjzzySJ8NPQCgVGbOLOQkZmbO7PwYQM/m/QIAAPq8Hr+QOQDQx02enIwb17kxxo9PJk0qpBygB/N+AQAAfV6PDj2uuOKKNDU1bfNP68XN58+f33L/nnvuWbnCAYDiVFUls2YlHb2Cs7Y2ufLK5nGAcvN+AQAAfV6PDj0AAJIkEycmc+a0/0RmbW3z4yZO7Jq6gJ7H+wUAAPRpQg8AoHeYOjW55Za2T10zfnzz/lOndm1dQM/j/QIAAPosoQcA0HtMnJjce28yf35y/PFJdfXm22tqkhNOaN5+zz2+sQ19mfcLAADok2oqXQAAQLtUVTUvVjx5crJ6dbJiRfLCC8nQocmoUUldXaUrBHoK7xcAANDn9PrQ43Of+1w+97nPVboMAKAS6uqctATaxvsFAAD0Caa3AgAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEAp1FS6AAAAALrZ6tXJ8uXJmjXJkCHJ6NFJXV2lqwIAgE5zpQcAAEBf0NSUzJ+fHH98MmxYMm5ccthhzf8dNiw54YTm7U1Nla4UAAA6TOgBAABQdosXJxMmJFOmJD/9adLYuPn2xsZk9uzm7RMmNO8PAAC9kNADAACgzObNS446Klm6tG37L13avP+8eV1bFwAAdAGhBwAAQFktXpxMm5bU17fvcfX1zY9zxQcAAL2M0AMAAKCMmpqS6dPbH3hsUl+fzJhhjQ8AAHoVoQcAAEAZLVjQ9imttmbJkmThwkLKAQCA7lBT6QIoXuPG5m9irW7YUOFKeq/VDRta+tj6PjpGP4uln8XSz2LpZ7H0s1j6WSz9LFZX9HPwRRenf6dGaLb+oovTcOgRBYzUfVr3s7pfVYWrAQCgO1U1NblWeXuWL1+eMWPGJEmWLVuW0aNHV7iiV3p+7YacfOnvkiQPrVqTJBk7otYv+B3UuLEpjzy1+TQA+tlx+lks/SyWfhZLP4uln8XSz2LpZ7GK7ueghvpcfe4xqd7Y2Pna+lXnxC//LA2Dajs9Vndp3c/XjBySJLnq1MOy4+AiYqBi9YZ/bwIA9CamtwIAACiZEc+tKiTwSJLqjY0Z/vyThYwFAABdTegBAABQMgPXNxQ63qB1awsdDwAAuorQAwAAoGReHDCo0PEadhhc6HgAANBVLGReQmNHNM+1+58nH5S6QT1vztreYHXDhpxx1aLN7tPPjtPPYulnsfSzWPpZLP0sln4WSz+LVXg/V++fpguqU9XY+Smummpqcv5ZRyd1dZ0eq7tsqZ8AAPQNQo8S2rTYYd2g/j1yob7e4uWLRupn5+hnsfSzWPpZLP0sln4WSz+LpZ/FKrSfg4cn06Yls2d3uq6qadOy467DOz1Od+voIvAAAPRuprcCAAAoo5kze9Y4AADQDYQeAAAAZTR5cjJuXOfGGD8+mTSpkHIAAKA7CD0AAADKqKoqmTUrqa3t2ONra5Mrr2weBwAAegmhBwAAQFlNnJjMmdP+4KO2tvlxEyd2TV0AANBFhB4AAABlNnVqcsstbZ/qavz45v2nTu3augAAoAsIPQAAAMpu4sTk3nuT+fOT449Pqqs3315Tk5xwQvP2e+5xhQcAAL1WTaULAAAAoBtUVTUvbj55crJ6dbJiRfLCC8nQocmoUUldXaUrBACAThN6AAAA9DV1dUIOAABKyfRWAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAAABQCkIPAAAAAACgFIQeAAAAAABAKQg9AAAAAACAUhB6AAAAAAAApSD0AAAAAAAASkHoAQAAAAAAlILQAwAAAAAAKAWhBwAAAAAAUApCDwAAAAAAoBSEHgAAAAAAQCkIPQAAAAAAgFIQegAAAAAAAKUg9AAAAAAAAEpB6AEAAAAAAJSC0AMAAAAAACgFoQcAAAAAAFAKQg8AAAAAAKAUhB4AAAAAAEApCD0AAAAAAIBSEHoAAAAAAAClIPQAAAAAAABKQegBAAAAAACUgtADAAAAAAAoBaEHAAAAwP/f3t1HW1XX+QN/X7jydBGVUFNBRQ1hzGZURBkkwJEaf2h2dWDGlYHFmGm5zB4oa8Zy5WOG6HIqf45YWqOOmTlLcVpmyoMGI6n5CKWIPwEtpBhQLnC53Pv74y7OwPAMh3vu2ff1WsvVvmd/z+bDp724Z5/33t8vAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKISqCD2effbZXHPNNTn99NPTr1+/dO3aNT179syAAQNy/vnnZ9asWZUuEQAAAAAAqLDaShewPSNGjMjMmTM3e72xsTGvvvpqXn311dx555355Cc/mdtvvz1dunSpQJUAAAAAAECltfvQY8mSJUmSgw8+OGPHjs3w4cNz6KGHZv369Zk9e3YmT56cJUuW5Mc//nGamppy9913V7hiAAAAAACgEtp96DFw4MBcc801Oeecc9K5c+dN9p188sn55Cc/mWHDhuX3v/997rnnnlx00UUZPnx4haoFAAAAAAAqpd2v6fHwww9n3LhxmwUeG/Tp0yeTJ08u/Xz//fe3VWkAAAAAAEA70u5Djx0xcuTI0vaCBQsqVwgAAAAAAFAxhQg9GhsbS9udOhXirwQAAAAAAOykdr+mx46YMWNGaXvgwIEVrKR9WN/ckiRZuXpdhSupXitXryv1cePX2DX6WV76WV76WV76WV76WV76WV76WV76WV4b97Nzp5oKVwMAQFuqaWlpadn+sParubk5Q4cOzdNPP50kmTt3bgYPHrxTx1i8ePE297/99tsZMmRIkmTRokXp27fvrhW7B61oWJfzpv5XkuS1pe8lSfr3qfMBfxetb27JwmWrNnlNP3edfpaXfpaXfpaXfpaXfpaXfpaXfpaXfpbXxv086oCeSZKfTDwp+/TYq5JlbdHixYvTr1+/JO33ehMAoJpU/ZMeU6ZMKQUe9fX1Ox14JCl9wASgY6pbuyrvX7ksPRrXpKFLt3TteVgae/SsdFkAAAAA7KSqDj1mzJiRr33ta0mSAw44ID/4wQ8qXBEAVaOlJce++lz+z6wHcvILs1Lb0lzatb5T58z+0PA8ckp9XvzAcUmNu2wBAAAAqkHVhh4vv/xy6uvr09TUlK5du+a+++7LgQceuEvHWrRo0Tb3bzy9FQDV78hFv8tlP7k6h729cIv7Ozevzym/nZ5Tfjs9/++g/ply3jeyoN/RbVwlAAAAADurKkOPhQsX5iMf+UiWL1+ezp0755577smIESN2+XhFmzO1f5+6JMn/Pe+E9Ore/uasrQYrV6/LhT95ZpPX9HPX6Wd56efuqf3VY+lx+aWpWbVq+4OTHPb2wkz5/qVpuOenafqb0/ZwddXP+Vle+lle+lle+lle+lleW+onAAAdQ9WFHm+99VZOO+20vPXWW6mpqckdd9yR+vr6SpfVrmxY7LBX973a5UJ91eJ/Lxqpn7tHP8tLP3fRs88m545NdjDw2KBm1arUnTs2mTkzOf74PVRccTg/y0s/y0s/y0s/y0s/y8si8AAAHVOnShewM5YtW5bRo0fn9ddfT5LccsstGT9+fIWrAqAqtLQk48fvdOBRsmpVMmFC63EAAAAAaJeqJvRYsWJFPvrRj+aVV15Jklx33XX53Oc+V+GqAKga06cnL7+8e8d46aVkxoyylAMAAABA+VVF6NHQ0JAxY8bk2WefTZJ84xvfyFe/+tUKVwVAVfn+99vXcQAAAAAou3YfejQ2Nqa+vj5PPfVUkuTSSy/NVVddVeGqAKgqK1cmP/95eY71wAOtxwMAAACg3Wn3C5mfe+65efTRR5Mkp556aiZOnJiXXnppq+O7dOmSAQMGtFV5AFSDxYuT9evLc6z165MlS5JevcpzPAAAAADKpt2HHg888EBp+/HHH8+HPvShbY4/7LDD8sYbb+zhqgCoKu+9V97jvftueY8HAAAAQFm0++mtAGC39exZ3uPtvXd5jwcAAABAWbT7Jz1aWloqXQIA1a5v36Rz5/JMcVVbmxxyyO4fBwAAAICy86QHAMXXq1dSX1+eY9XXW88DAAAAoJ0SegDQMVx8cfs6DgAAAABlJ/QAoGMYOTI55pjdO8YHP5iMGFGWcgAAAAAoP6EHAB1DTU1y111JXd2uvb+uLrnzztbjAAAAANAuCT0A6DiOPz75+c93Pvioq2t93/HH75m6AAAAACgLoQcAHcvo0cnMmTs+1dUHP9g6fvToPVsXAAAAALtN6AFAx3P88cmLLyZPPJF19WdnfafOm+xuqa1Nxo5NnngieeEFT3gAAAAAVInaShcAABVRU5OMHJmGIcNywb88nveteCfd1zZkddceue6S07PP+99X6QoBAAAA2ElCDwA6vNXd67K4+0brfPTqVbliAAAAANhlprcCAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAi1lS6A8lvf3JIkWbl6XYUrqV4rV68r9XHj19g1+lle+lle+lle+lle+lle+lle+lle+lleG/ezc6eaClcDAEBbqmlpaWnZ/rCObfHixenXr1+SZNGiRenbt2+FK9rcioZ1OW/qfyVJXlv6XpKkf586H/B30frmlixctmqT1/Rz1+lneelneelneelneelneelneelneelneW3cz6MO6Jkk+cnEk7JPj70qWdYWVcP1JgBANTG9FQAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCFYyLyA+vepS5L83/NOSK/u7W/O2mqwcvW6XPiTZzZ5TT93nX6Wl36Wl36Wl36Wl36Wl36Wl36Wl36W15b6CQBAxyD0KKANix326r5Xu1yor1r870Uj9XP36Gd56Wd56Wd56Wd56Wd56Wd56Wd56Wd5WQQeAKBjMr0VAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKoepCjzfffDNf/vKXM2jQoNTV1aV3794ZMmRIvvvd76ahoaHS5QEAAO3ZypXJK68kTz/d+r8rV1a6IgAAoIxqK13Azpg2bVo+8YlPZMWKFaXXGhoaMnfu3MydOze33357HnnkkRxxxBEVrBIAAGhXWlqS6dOT730vefDBZP36/9nXuXNSX59cfHEycmRSU1OhIgEAgHKomic9nn/++YwbNy4rVqxIz549c/XVV+fXv/51fvWrX+WCCy5Ikvzud7/LmDFj8t5771W4WgAAoF149tnk2GOTU09NfvazTQOPpPXn++9v3X/ssa3jAQCAqlU1T3p84QtfSENDQ2pra/Poo49m6NChpX2nnnpqPvCBD2TSpEmZP39+brzxxlxxxRUVrBYAAKi4X/6y9SmOVat2bPzLLycf/nDy858no0fv2doAAIA9oiqe9Jg7d26mT5+eJJk4ceImgccGX/rSlzJo0KAkyU033ZR169a1ZYkAAEB78uyzOxd4bLBqVev7PPEBAABVqSpCjwcffLC0/alPfWqLYzp16pTx48cnSZYvX14KSQAAgA6mpSUZP37nA48NVq1KJkxoPQ4AAFBVqiL0mDVrVpKkrq4uJ5xwwlbHjRgxorT95JNP7vG6AACAdmj69NapqnbHSy8lM2aUpRwAAKDtVMWaHvPmzUuSHHXUUamt3XrJAwcO3Ow9HdH65tY70lauNsXXrlq5el2pjxu/xq7Rz/LSz/LSz/LSz/LSz/LSz/Jqz/3sccu/ZK8yHKfxln/J6iHDynCk7WvP/axGG/ezc6eaClcDAEBbqmlpad/PbK9Zsybdu3dPkowZMyYPP/zwNsf37Nkzq1atysknn5zZs2fv0J+xePHibe5/++23M2TIkCTJokWL0rdv3x06blta0bAu5039ryTJa0vfS5L071PnA/4uWt/ckoXLNp0OQT93nX6Wl36Wl36Wl36Wl36Wl36WV3vtZ/fVq3LP5WPSuXn9bh9rfafOOffaaVndva4MlW3nz2qn/axWG/fzqAN6Jkl+MvGk7NOjHHFYeS1evDj9+vVL0n6vNwEAqkm7f9Lj3XffLW337Nlzu+Pr6uqyatWqvPfeezv8Z2z4gAkAAFS3Pv+9tCyBR5J0bl6f9614J4vbIPQAAADKo92HHmvWrCltd+nSZbvju3btmiRZvXr1HqupPdqnx1556JJTkiRn3mI9k93VuVNN6Y4wdp9+lpd+lpd+lpd+lpd+lpd+lld77We3xvJeB3Rf21DW421Ne+1ntdq4nxuukwAA6BjafejRrVu30nZjY+N2x69duzZJSlNi7YhFixZtc//G01sBAADt15ouO34dsCNWd+1R1uMBAAB7VrsPPfbee+/S9o5MWbVqVeu8rTsyFdYGRZsz9ScTT6p0CQAAUBkrB6XlO51Ts373p7hqqa3NdZecnvTqVYbCAACAttDuQ49u3bqlT58+WbZs2XYXHF++fHkp9OjI63S0x8X5AACgTfR4X1Jfn9x//24fqqa+Pvu8/31lKAoAAGgrnSpdwI4YNGhQkuS1115LU1PTVsfNnz9/s/cAAAAdzMUXt6/jAAAAbaYqQo9TTmldeG7VqlV55plntjpuxowZpe1hw4bt8boAAIB2aOTI5Jhjdu8YH/xgMmJEWcoBAADaTlWEHh//+MdL2z/84Q+3OKa5uTl33XVXkmTffffNqFGj2qI0AACgvampSe66K6mr27X319Uld97ZehwAAKCqVEXoMWTIkAwfPjxJMnXq1MyePXuzMZMnT868efOSJJdeemn22su6FgAA0GEdf3zy85/vfPBRV9f6vuOP3zN1AQAAe1RVhB5JcvPNN6d79+5pamrKRz7ykVx77bWZM2dOnnjiiVx44YWZNGlSkmTAgAH50pe+VOFqAQCAihs9Opk5c8enuvrgB1vHjx69Z+sCAAD2mNpKF7CjjjvuuPz7v/97zjvvvKxcuTJf//rXNxszYMCATJs2LXvvvXcFKgQAANqd449PXnwxmTEj+d73Wp/iWL/+f/bX1ib19a2Llo8YYUorAACoclUTeiTJmWeemRdeeCE333xzpk2blsWLF6dLly456qijMnbs2Hz+859Pjx49Kl0mAADQntTUtC5uPnJksnJlsmRJ8u67yd57J4cckvTqVekKAQCAMqlpaWlpqXQR7d3ixYvTr1+/JMmiRYvSt2/fClcEAABAEbjeBAAor6pZ0wMAAAAAAGBbhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFUFvpAqpBU1NTafvtt9+uYCUAAAAUycbXmBtfewIAsGuEHjvgnXfeKW0PGTKkgpUAAABQVO+8804OP/zwSpcBAFDVTG8FAAAAAAAUQk1LS0tLpYto79asWZMXX3wxSbL//vuntrZ9PiDz9ttvl55Eefrpp3PQQQdVuCL4H85P2jPnJ+2Z85P2zPlJe1Yt52dTU1NpdoFjjz023bp1q3BFAADVrX1+e9/OdOvWLSeeeGKly9gpBx10UPr27VvpMmCLnJ+0Z85P2jPnJ+2Z85P2rL2fn6a0AgAoH9NbAQAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCHUtLS0tFS6CAAAAAAAgN3lSQ8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeBfHmm2/my1/+cgYNGpS6urr07t07Q4YMyXe/+900NDRUujw6oGeffTbXXHNNTj/99PTr1y9du3ZNz549M2DAgJx//vmZNWtWpUuEzUyaNCk1NTWl/6ZPn17pkujgli1blu985zsZNmxY3v/+96dr1645+OCDc9JJJ+UrX/lKZs+eXekS6aAaGxszderU/O3f/m0OOuig0u/5o48+Op/+9KczZ86cSpdIwSxdujQPP/xwrrjiipx++unp06dP6ff1+eefv9PH+8UvfpGzzz47ffv2TdeuXdO3b9+cffbZ+cUvflH+4gEAaFM1LS0tLZUugt0zbdq0fOITn8iKFSu2uP/oo4/OI488kiOOOKKNK6OjGjFiRGbOnLndcZ/85Cdz++23p0uXLm1QFWzb888/n8GDB6epqan02hNPPJGRI0dWrig6tJ/+9Ke56KKL8qc//WmrY84666w8+OCDbVcUJFm0aFHGjBmTF198cZvjLrvsskyePDk1NTVtVBlFtq3zaMKECfnRj360Q8dpaWnJZz/72dx2221bHfOZz3wmt956q3MXAKBK1Va6AHbP888/n3HjxqWhoSE9e/bM5ZdfnlGjRmX16tW5995786//+q/53e9+lzFjxmTu3Lnp2bNnpUumA1iyZEmS5OCDD87YsWMzfPjwHHrooVm/fn1mz56dyZMnZ8mSJfnxj3+cpqam3H333RWumI6uubk5F1xwQZqamnLAAQdk6dKllS6JDu6uu+7Kpz71qTQ3N+eAAw7IRRddlFNOOSW9e/fOH/7whyxYsCAPPfRQ9tprr0qXSgfT1NS0SeDxoQ99KF/84hdz9NFH5913382TTz6ZyZMnZ9WqVZkyZUoOOuigfOUrX6lw1RRNv379MmjQoDz66KM7/d5/+qd/KgUexx13XCZNmpQjjzwyCxYsyHe+850899xzue2227L//vvnqquuKnfpAAC0AU96VLlRo0Zl+vTpqa2tzcyZMzN06NBN9t9www2ZNGlSkuTKK6/MFVdcUYky6WDOOOOMjB8/Puecc046d+682f5ly5Zl2LBh+f3vf58kmTlzZoYPH97WZULJTTfdlMsuuywDBw5MfX19rr322iSe9KAy5s2bl+OOOy5r167N8OHD89BDD2WfffbZ4tjGxkZPy9Gmfvazn+Xv/u7vkiRDhw7NrFmzNvtd/8wzz2To0KFZt25d9ttvvyxdujS1te61Yvd885vfzIknnpgTTzwxBx54YN544430798/yY4/6fHaa69l0KBBaWpqyuDBgzNz5sx07969tL+hoSEjRozIb37zm9TW1mb+/Pk58sgj99RfCQCAPcSaHlVs7ty5pfnmJ06cuFngkSRf+tKXMmjQoCStX+qtW7euLUukg3r44Yczbty4LQYeSdKnT59Mnjy59PP999/fVqXBZhYtWpR//ud/TpL84Ac/8AUyFXfJJZdk7dq16dOnTx544IGtBh5JnK+0uaeeeqq0ffnll2/xd/0JJ5yQM844I0myfPnyzJ8/v83qo7iuvPLKnHHGGTnwwAN3+RhTpkwpTWN5yy23bBJ4JEmPHj1yyy23JGl9qummm27a5T8LAIDKEXpUsY3n8P7Upz61xTGdOnXK+PHjk7RedFqUl/Zi47vnFyxYULlC6PAuvvjivPfee5kwYYKnOqi4+fPn51e/+lWS5POf/3z69OlT4YpgU42NjaXtba0Xt/Hd8WvXrt2jNcGOaGlpyX/8x38kSQYOHJiTTz55i+NOPvnkHH300Ular7dMjAAAUH2EHlVs1qxZSZK6urqccMIJWx03YsSI0vaTTz65x+uCHbHxlyadOvmniMq477778vDDD6d379654YYbKl0O5Kc//Wlpe+zYsaXt5cuX59VXX93moubQFgYMGFDafv3117c6bsMNDTU1NfnABz6wx+uC7Vm4cGFp3bmNr4+2ZMP+xYsX54033tjTpQEAUGa+aaxi8+bNS5IcddRR25wneeDAgZu9ByptxowZpe2Nz1FoK//93/+dSy+9NEly/fXXZ//9969wRZDMmTMnSbLPPvtk0KBB+bd/+7f85V/+ZXr37p0BAwakT58+OeKII3LllVfmvffeq3C1dETnnntuevXqlaT1387169dvNua5557LtGnTkiT/8A//UBoPlbTxddD2Pnu6fgIAqG5Cjyq1Zs2aLFu2LEnSt2/fbY7db7/9UldXl6R17nqotObm5lx33XWln8eNG1fBauioJk2alD/84Q/567/+60ycOLHS5UCS5JVXXkmSHH744bnkkkty3nnn5YUXXthkzMKFC/Otb30rQ4cOzVtvvVWJMunA9t9///zoRz9K9+7d89RTT+XEE0/MXXfdlTlz5uSxxx7LlVdemREjRqSxsTF/9Vd/lRtvvLHSJUOSTa+Dtnf91K9fvy2+DwCA6iD0qFLvvvtuabtnz57bHb8h9HBXKO3BlClT8vTTTydJ6uvrM3jw4ApXREfz5JNP5vbbb09tbW1uvfXW1NTUVLokSJL8+c9/TtK6tsf3vve97Lvvvrn11luzdOnSrFmzJnPnzs3pp5+eJHnppZcyduzYNDc3V7JkOqD6+vr85je/ycSJE/Pb3/42EyZMyNChQzN69Oh861vfSo8ePXLjjTfmySefzPvf//5KlwtJdu76acO1U+L6CQCgGgk9qtSaNWtK2126dNnu+K5duyZJVq9evcdqgh0xY8aMfO1rX0uSHHDAAfnBD35Q4YroaBobG/OZz3wmLS0tueyyy3LsscdWuiQoWbVqVZLWhZ87d+6c//zP/8yFF16Y/fffP127ds3gwYPz8MMPl4KPX//613nggQcqWTId0Lp163L33XfnoYce2uIiz3/84x9zzz33ZPr06W1fHGzFzlw/bbh2Slw/AQBUI6FHlerWrVtpe+MFobdm7dq1SZLu3bvvsZpge15++eXU19enqakpXbt2zX333ZcDDzyw0mXRwVxzzTWZN29eDj300Hzzm9+sdDmwiY1/v48dOzYnn3zyZmM6deqUG264ofTzPffc0ya1QdIazJ122mm5+uqr86c//SmTJk3KvHnzsnbt2qxYsSKPPvpoTjnllMydOzdnnnlmbr755kqXDEl27vppw7VT4voJAKAaCT2q1N57713a3pFHrjfcObojU2HBnrBw4cJ85CMfyfLly9O5c+fcc889GTFiRKXLooOZP39+rr322iTJLbfcssn0FdAebPz7fcPTHFtyzDHH5JBDDkmSzJ07d4/XBRt885vfzMyZM5MkU6dOzfXXX5+BAwemS5cu6dWrV0aPHp0nnngio0aNSktLS774xS9uti4NVMLOXD9tuHZKXD8BAFSj2koXwK7p1q1b+vTpk2XLlmXx4sXbHLt8+fLSB/eNF+WDtvLWW2/ltNNOy1tvvZWamprccccdqa+vr3RZdEBTpkxJY2NjjjjiiDQ0NOTee+/dbMxLL71U2n788cfzhz/8IUly5plnCknY4/r161c653Zkod0lS5Zk6dKlbVEapKWlJT/84Q+TJAMGDMiECRO2OK62tjbf/va3c8opp6S5uTk//OEPM2XKlLYsFTaz8b+p27t+2njxctdPAADVR+hRxQYNGpRZs2bltddeS1NTU2prt/x/5/z58zd5D7SlZcuWZfTo0Xn99deTtN5dP378+ApXRUe1YbqK119/Peeee+52x3/7298ubS9cuFDowR53zDHHlJ7cWL9+/TbHbti/td//UG5//OMf8+c//zlJctxxx21z7AknnFDa3vizKFTKX/zFX5S2t3dOun4CAKhupreqYqecckqS1sevn3nmma2OmzFjRml72LBhe7wu2GDFihX56Ec/mldeeSVJct111+Vzn/tchasCaL8+/OEPl7YXLFiwzbEbwuQN01zBnrZxwNbU1LTNsevWrdvi+6BS+vfvn4MPPjjJptdHW7JhCrdDDjkkhx9++J4uDQCAMhN6VLGPf/zjpe0NUw38b83NzbnrrruSJPvuu29GjRrVFqVBGhoaMmbMmDz77LNJkm984xv56le/WuGq6Oh+9KMfpaWlZZv/bby4+RNPPFF63ZcetIWPfexj2WuvvZIkDzzwwFbHzZgxI3/605+SJMOHD2+T2qB3797p1atXkmT27NnbDD42/lK5f//+e7w22J6ampqcddZZSVqf5JgzZ84Wx82ZM6f0pMdZZ52VmpqaNqsRAIDyEHpUsSFDhpS+6Jg6dWpmz5692ZjJkydn3rx5SZJLL7209EUK7EmNjY2pr6/PU089laT13LvqqqsqXBVA+/e+970v//iP/5gk+eUvf7nFdWfefffdfOELXyj9fOGFF7ZVeXRwnTp1ypgxY5K0rtd19dVXb3Hc8uXLN7nR4YwzzmiT+mB7vvCFL5SePLrkkkuyevXqTfavXr06l1xySZLWJ5Q2/rcWAIDqUdPS0tJS6SLYdc8991yGDRuW1atXp2fPnvn617+eUaNGZfXq1bn33ntz2223JWldbPI3v/lN9t577wpXTEdwzjnnlO5QPvXUU3PTTTdt8y65Ll26ZMCAAW1VHmzTt771rVx55ZVJWp/0GDlyZGULosN55513Mnjw4Lz55pupra3NZz/72Zx99tnp1atXXnzxxVx//fWlu5AvuuiifP/7369wxXQk8+fPzwknnJCGhoYkyZlnnpkJEybkiCOOyJo1azJnzpzcdNNNefPNN5Mkf/M3f5PHHnuskiVTEE8++WRee+210s/Lli3LV77ylSStU/huCIw3OP/887d4nMsvvzzXXXddkta1ab761a/myCOPzIIFC3L99dfnueeeK4275ppr9sDfBACAPU3oUQAPPfRQzjvvvKxcuXKL+wcMGJBp06blqKOOauPK6Kh2dhqAww47LG+88caeKQZ2ktCD9mDevHn52Mc+tskXfP/bpz/96dx6662e4qTNPfbYYzn33HOzbNmybY479dRTc//992e//fZro8oosvPPPz933nnnDo/f2mVuc3NzLrjggtxxxx1bfe/EiRNz2223pVMnEyMAAFQjn+IK4Mwzz8wLL7yQyy67LAMGDEiPHj2y7777ZvDgwaW7lQQeAFA9Bg0alN/+9re54YYbctJJJ6V3797p0qVL+vbtm7//+7/P448/nqlTpwo8qIjTTjst8+fPz/XXX5+RI0dm//33z1577ZXu3bunf//+GTduXB588ME89thjAg/anU6dOmXq1KmZNm1azjrrrBx88MHp0qVLDj744Jx11ll55JFHcvvttws8AACqmCc9AAAAAACAQnD7CgAAAAAAUAhCDwAAAAAAoBCEHgAAAAAAQCEIPQAAAAAAgEIQegAAAAAAAIUg9AAAAAAAAApB6AEAAAAAABSC0AMAAAAAACgEoQcAAAAAAFAIQg8AAAAAAKAQhB4AAAAAAEAhCD0AAAAAAIBCEHoAAAAAAACFIPQAAAAAAAAKQegBAAAAAAAUgtADAAAAAAAoBKEHAAAAAABQCEIPAAAAAACgEIQeAAAAAABAIQg9AAAAAACAQhB6AAAAAAAAhSD0AAAAAAAACkHoAQAAAAAAFILQAwAAAAAAKAShBwAAAAAAUAj/H4WAqoxoh6ZUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 505, "width": 798 } }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(6, 6))\n", "streets.plot(ax=ax, alpha=0.8, zorder=1, label=\"streets\")\n", "facilities_snapped.plot(\n", " ax=ax,\n", " color=\"red\",\n", " zorder=2,\n", " label=f\"facility candidate sites ($n$={FACILITY_COUNT})\",\n", ")\n", "plt.legend(loc=\"upper left\", bbox_to_anchor=(1.05, 1));" ] }, { "cell_type": "markdown", "id": "b5f02e47", "metadata": {}, "source": [ "## Calculating the (network distance) cost matrix\n", "Calculate the inter-facility network distance." ] }, { "cell_type": "code", "execution_count": 12, "id": "4fbb1d6d", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.381679Z", "start_time": "2023-01-10T18:23:34.312980Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.930088Z", "iopub.status.busy": "2025-04-07T19:07:15.930005Z", "iopub.status.idle": "2025-04-07T19:07:15.950010Z", "shell.execute_reply": "2025-04-07T19:07:15.949805Z", "shell.execute_reply.started": "2025-04-07T19:07:15.930080Z" } }, "outputs": [ { "data": { "text/plain": [ "(16, 16)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cost_matrix = ntw.allneighbordistances(\n", " sourcepattern=ntw.pointpatterns[\"facilities\"], fill_diagonal=0.0\n", ")\n", "cost_matrix.shape" ] }, { "cell_type": "markdown", "id": "9a67562b", "metadata": {}, "source": [ "The expected result here is a network distance facilities points, in our case a 2D 16x16*** array." ] }, { "cell_type": "code", "execution_count": 13, "id": "98bf0abb", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.390422Z", "start_time": "2023-01-10T18:23:34.384090Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.950372Z", "iopub.status.busy": "2025-04-07T19:07:15.950312Z", "iopub.status.idle": "2025-04-07T19:07:15.952551Z", "shell.execute_reply": "2025-04-07T19:07:15.952353Z", "shell.execute_reply.started": "2025-04-07T19:07:15.950365Z" } }, "outputs": [ { "data": { "text/plain": [ "array([[ 0. , 3.78794131, 11.63723819, 4.99347068, 9.66917542],\n", " [ 3.78794131, 0. , 13.84929687, 7.20552937, 11.88123411],\n", " [11.63723819, 13.84929687, 0. , 6.6437675 , 2.66349027],\n", " [ 4.99347068, 7.20552937, 6.6437675 , 0. , 4.67570474],\n", " [ 9.66917542, 11.88123411, 2.66349027, 4.67570474, 0. ]])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cost_matrix[:5, :5]" ] }, { "cell_type": "code", "execution_count": 14, "id": "41681306", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.397069Z", "start_time": "2023-01-10T18:23:34.392434Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.952871Z", "iopub.status.busy": "2025-04-07T19:07:15.952800Z", "iopub.status.idle": "2025-04-07T19:07:15.955156Z", "shell.execute_reply": "2025-04-07T19:07:15.954966Z", "shell.execute_reply.started": "2025-04-07T19:07:15.952863Z" } }, "outputs": [ { "data": { "text/plain": [ "array([[ 0. , 3.15016768, 9.526461 , 9.71401032, 3.00949261],\n", " [ 3.15016768, 0. , 10.67662868, 6.56384263, 4.93972891],\n", " [ 9.526461 , 10.67662868, 0. , 11.24047132, 6.51696839],\n", " [ 9.71401032, 6.56384263, 11.24047132, 0. , 11.50357155],\n", " [ 3.00949261, 4.93972891, 6.51696839, 11.50357155, 0. ]])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cost_matrix[-5:, -5:]" ] }, { "cell_type": "markdown", "id": "bd231297", "metadata": {}, "source": [ "With ``PDispersion.from_cost_matrix`` we model the $p$-dispersion problem to maximize the minimum inter-facility \n", "cost (in this case network distance in generic units, as calculated above) while siting $p$ facilites." ] }, { "cell_type": "code", "execution_count": 15, "id": "43393fcb", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.515202Z", "start_time": "2023-01-10T18:23:34.399391Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.955598Z", "iopub.status.busy": "2025-04-07T19:07:15.955490Z", "iopub.status.idle": "2025-04-07T19:07:15.995219Z", "shell.execute_reply": "2025-04-07T19:07:15.994926Z", "shell.execute_reply.started": "2025-04-07T19:07:15.955586Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pdispersion_from_cm = PDispersion.from_cost_matrix(\n", " cost_matrix, P_FACILITIES, name=\"p-dispersion-network-distance\"\n", ")\n", "pdispersion_from_cm = pdispersion_from_cm.solve(solver)\n", "pdispersion_from_cm" ] }, { "cell_type": "code", "execution_count": 16, "id": "f0c9b8e8", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.526089Z", "start_time": "2023-01-10T18:23:34.519658Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.995835Z", "iopub.status.busy": "2025-04-07T19:07:15.995739Z", "iopub.status.idle": "2025-04-07T19:07:15.998088Z", "shell.execute_reply": "2025-04-07T19:07:15.997888Z", "shell.execute_reply.started": "2025-04-07T19:07:15.995827Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A maximized minimum inter-facility distance between any two sited candiate facilities of 10.706 distance units is observed while siting facilities at 3 of the available 16 locations.\n" ] } ], "source": [ "pdispersion_obj = round(pdispersion_from_cm.problem.objective.value(), 3)\n", "print(\n", " \"A maximized minimum inter-facility distance between any two sited candiate \"\n", " f\"facilities of {pdispersion_obj} distance units is observed while siting \"\n", " f\"facilities at {P_FACILITIES} of the available {FACILITY_COUNT} locations.\"\n", ")" ] }, { "cell_type": "markdown", "id": "ad67dbb2", "metadata": {}, "source": [ "Define the decision variable names used for mapping later." ] }, { "cell_type": "code", "execution_count": 17, "id": "0883d494", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.547112Z", "start_time": "2023-01-10T18:23:34.529055Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:15.998420Z", "iopub.status.busy": "2025-04-07T19:07:15.998359Z", "iopub.status.idle": "2025-04-07T19:07:16.004969Z", "shell.execute_reply": "2025-04-07T19:07:16.004742Z", "shell.execute_reply.started": "2025-04-07T19:07:15.998413Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
geometrydv
0POINT (9.32146 3.15178)y0
1POINT (8.53352 -0.04134)y1
2POINT (0.68422 6.04557)y2
3POINT (5.32799 4.10688)y3
4POINT (3.18949 6.34771)y4
5POINT (4.31956 7.5947)y5
6POINT (5.1984 5.86744)y6
7POINT (6.59891 10.39247)y7
8POINT (8.51844 4.04521)y8
9POINT (9.13894 8.56135)y9
10POINT (0.09922 7.40501)y10
11POINT (8.32388 7.60047)y11
12POINT (7.30045 5.45031)y12
13POINT (0.87307 10.03412)y13
14POINT (3.93582 1.88646)y14
15POINT (7.39003 10.43628)y15
\n", "
" ], "text/plain": [ " geometry dv\n", "0 POINT (9.32146 3.15178) y0\n", "1 POINT (8.53352 -0.04134) y1\n", "2 POINT (0.68422 6.04557) y2\n", "3 POINT (5.32799 4.10688) y3\n", "4 POINT (3.18949 6.34771) y4\n", "5 POINT (4.31956 7.5947) y5\n", "6 POINT (5.1984 5.86744) y6\n", "7 POINT (6.59891 10.39247) y7\n", "8 POINT (8.51844 4.04521) y8\n", "9 POINT (9.13894 8.56135) y9\n", "10 POINT (0.09922 7.40501) y10\n", "11 POINT (8.32388 7.60047) y11\n", "12 POINT (7.30045 5.45031) y12\n", "13 POINT (0.87307 10.03412) y13\n", "14 POINT (3.93582 1.88646) y14\n", "15 POINT (7.39003 10.43628) y15" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "facility_points[\"dv\"] = pdispersion_from_cm.fac_vars\n", "facility_points[\"dv\"] = facility_points[\"dv\"].map(lambda x: x.name.replace(\"_\", \"\"))\n", "facilities_snapped[\"dv\"] = facility_points[\"dv\"]\n", "facility_points" ] }, { "cell_type": "markdown", "id": "1f4b31a0", "metadata": { "ExecuteTime": { "end_time": "2022-10-22T14:40:39.366530Z", "start_time": "2022-10-22T14:40:39.366518Z" } }, "source": [ "## Calculating euclidean distance from a `GeoDataFrame`\n", "\n", "With ``PDispersion.from_cost_matrix`` we model the $p$-dispersion problem to maximize the minimum inter-facility \n", "cost (in this case euclidean distance in generic units) while siting $p$ facilites.\n", "\n", "Next we will solve the $p$-dispersion problem considering all candidate locations for potential selection." ] }, { "cell_type": "code", "execution_count": 18, "id": "3ae768c1", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.653494Z", "start_time": "2023-01-10T18:23:34.549901Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.005418Z", "iopub.status.busy": "2025-04-07T19:07:16.005350Z", "iopub.status.idle": "2025-04-07T19:07:16.042123Z", "shell.execute_reply": "2025-04-07T19:07:16.041865Z", "shell.execute_reply.started": "2025-04-07T19:07:16.005411Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "distance_metric = \"euclidean\"\n", "pdispersion_from_gdf = PDispersion.from_geodataframe(\n", " facilities_snapped,\n", " \"geometry\",\n", " P_FACILITIES,\n", " distance_metric=distance_metric,\n", " name=f\"p-dispersion-{distance_metric}-distance\",\n", ")\n", "pdispersion_from_gdf = pdispersion_from_gdf.solve(solver)\n", "pdispersion_from_gdf" ] }, { "cell_type": "code", "execution_count": 19, "id": "0aa3cec1", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.661088Z", "start_time": "2023-01-10T18:23:34.657115Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.042621Z", "iopub.status.busy": "2025-04-07T19:07:16.042550Z", "iopub.status.idle": "2025-04-07T19:07:16.044703Z", "shell.execute_reply": "2025-04-07T19:07:16.044469Z", "shell.execute_reply.started": "2025-04-07T19:07:16.042613Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A maximized minimum inter-facility distance between any two sited candiate facilities of 8.574 distance units is observed while siting facilities at 3 of the available 16 locations.\n" ] } ], "source": [ "pdispersion_obj = round(pdispersion_from_gdf.problem.objective.value(), 3)\n", "print(\n", " \"A maximized minimum inter-facility distance between any two sited candiate \"\n", " f\"facilities of {pdispersion_obj} distance units is observed while siting \"\n", " f\"facilities at {P_FACILITIES} of the available {FACILITY_COUNT} locations.\"\n", ")" ] }, { "cell_type": "markdown", "id": "d53d6bfe", "metadata": {}, "source": [ "However, in many real world applications there may already be existing facility locations with the goal being to add one or more new facilities. Here we will define facilites $y_{11}$ and $y_{12}$ as already existing (they must be present in the model solution). This will lead to a sub-optimal solution.\n", "\n", "***Important:*** The facilities in `\"predefined_loc\"` are a binary array where `1` means the associated location must appear in the solution." ] }, { "cell_type": "code", "execution_count": 20, "id": "7ca5aa68", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.679228Z", "start_time": "2023-01-10T18:23:34.664344Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.045079Z", "iopub.status.busy": "2025-04-07T19:07:16.044984Z", "iopub.status.idle": "2025-04-07T19:07:16.051167Z", "shell.execute_reply": "2025-04-07T19:07:16.050929Z", "shell.execute_reply.started": "2025-04-07T19:07:16.045072Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
geometrydvpredefined_loc
0POINT (9.32146 3.15178)y00
1POINT (8.53352 -0.04134)y10
2POINT (0.68422 6.04557)y20
3POINT (5.32799 4.10688)y30
4POINT (3.18949 6.34771)y40
5POINT (4.31956 7.5947)y50
6POINT (5.1984 5.86744)y60
7POINT (6.59891 10.39247)y70
8POINT (8.51844 4.04521)y80
9POINT (9.13894 8.56135)y90
10POINT (0.09922 7.40501)y100
11POINT (8.32388 7.60047)y111
12POINT (7.30045 5.45031)y121
13POINT (0.87307 10.03412)y130
14POINT (3.93582 1.88646)y140
15POINT (7.39003 10.43628)y150
\n", "
" ], "text/plain": [ " geometry dv predefined_loc\n", "0 POINT (9.32146 3.15178) y0 0\n", "1 POINT (8.53352 -0.04134) y1 0\n", "2 POINT (0.68422 6.04557) y2 0\n", "3 POINT (5.32799 4.10688) y3 0\n", "4 POINT (3.18949 6.34771) y4 0\n", "5 POINT (4.31956 7.5947) y5 0\n", "6 POINT (5.1984 5.86744) y6 0\n", "7 POINT (6.59891 10.39247) y7 0\n", "8 POINT (8.51844 4.04521) y8 0\n", "9 POINT (9.13894 8.56135) y9 0\n", "10 POINT (0.09922 7.40501) y10 0\n", "11 POINT (8.32388 7.60047) y11 1\n", "12 POINT (7.30045 5.45031) y12 1\n", "13 POINT (0.87307 10.03412) y13 0\n", "14 POINT (3.93582 1.88646) y14 0\n", "15 POINT (7.39003 10.43628) y15 0" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "facility_points[\"predefined_loc\"] = 0\n", "facility_points.loc[(11, 12), \"predefined_loc\"] = 1\n", "facilities_snapped[\"predefined_loc\"] = facility_points[\"predefined_loc\"]\n", "facility_points" ] }, { "cell_type": "code", "execution_count": 21, "id": "a8a4e8cf", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.741687Z", "start_time": "2023-01-10T18:23:34.682497Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.051539Z", "iopub.status.busy": "2025-04-07T19:07:16.051465Z", "iopub.status.idle": "2025-04-07T19:07:16.075527Z", "shell.execute_reply": "2025-04-07T19:07:16.075264Z", "shell.execute_reply.started": "2025-04-07T19:07:16.051532Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pdispersion_from_gdf_pre = PDispersion.from_geodataframe(\n", " facilities_snapped,\n", " \"geometry\",\n", " P_FACILITIES,\n", " predefined_facility_col=\"predefined_loc\",\n", " distance_metric=distance_metric,\n", " name=f\"p-dispersion-{distance_metric}-distance-predefined\",\n", ")\n", "pdispersion_from_gdf_pre = pdispersion_from_gdf_pre.solve(solver)\n", "pdispersion_from_gdf_pre" ] }, { "cell_type": "code", "execution_count": 22, "id": "3f0db1d5", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.748694Z", "start_time": "2023-01-10T18:23:34.744627Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.076053Z", "iopub.status.busy": "2025-04-07T19:07:16.075980Z", "iopub.status.idle": "2025-04-07T19:07:16.078126Z", "shell.execute_reply": "2025-04-07T19:07:16.077930Z", "shell.execute_reply.started": "2025-04-07T19:07:16.076045Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A maximized minimum inter-facility distance between any two sited candiate facilities of 2.371 distance units is observed while siting facilities at 3 of the available 16 locations.\n" ] } ], "source": [ "pdispersion_obj = round(pdispersion_from_gdf_pre.problem.objective.value(), 3)\n", "print(\n", " \"A maximized minimum inter-facility distance between any two sited candiate \"\n", " f\"facilities of {pdispersion_obj} distance units is observed while siting \"\n", " f\"facilities at {P_FACILITIES} of the available {FACILITY_COUNT} locations.\"\n", ")" ] }, { "cell_type": "markdown", "id": "837d517a", "metadata": {}, "source": [ "## Plotting the results\n", "\n", "The two cells below describe the plotting of the results. For each method from the `PDispersion` class (`.from_cost_matrix()`, `.from_geodataframe()`) there is a plot displaying the facility site that was selected with a colored star." ] }, { "cell_type": "code", "execution_count": 23, "id": "250da306", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.755858Z", "start_time": "2023-01-10T18:23:34.750701Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.078539Z", "iopub.status.busy": "2025-04-07T19:07:16.078480Z", "iopub.status.idle": "2025-04-07T19:07:16.081129Z", "shell.execute_reply": "2025-04-07T19:07:16.080936Z", "shell.execute_reply.started": "2025-04-07T19:07:16.078533Z" } }, "outputs": [ { "data": { "text/plain": [ "{'y0': 'darkcyan',\n", " 'y1': 'mediumseagreen',\n", " 'y2': 'saddlebrown',\n", " 'y3': 'darkslategray',\n", " 'y4': 'lightskyblue',\n", " 'y5': 'thistle',\n", " 'y6': 'lavender',\n", " 'y7': 'darkgoldenrod',\n", " 'y8': 'peachpuff',\n", " 'y9': 'coral',\n", " 'y10': 'mediumvioletred',\n", " 'y11': 'blueviolet',\n", " 'y12': 'fuchsia',\n", " 'y13': 'cyan',\n", " 'y14': 'limegreen',\n", " 'y15': 'mediumorchid'}" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dv_colors_arr = [\n", " \"darkcyan\",\n", " \"mediumseagreen\",\n", " \"saddlebrown\",\n", " \"darkslategray\",\n", " \"lightskyblue\",\n", " \"thistle\",\n", " \"lavender\",\n", " \"darkgoldenrod\",\n", " \"peachpuff\",\n", " \"coral\",\n", " \"mediumvioletred\",\n", " \"blueviolet\",\n", " \"fuchsia\",\n", " \"cyan\",\n", " \"limegreen\",\n", " \"mediumorchid\",\n", "]\n", "dv_colors = {f\"y{i}\": dv_colors_arr[i] for i in range(len(dv_colors_arr))}\n", "dv_colors" ] }, { "cell_type": "code", "execution_count": 24, "id": "99b1906a", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:34.770679Z", "start_time": "2023-01-10T18:23:34.758414Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.081527Z", "iopub.status.busy": "2025-04-07T19:07:16.081463Z", "iopub.status.idle": "2025-04-07T19:07:16.133136Z", "shell.execute_reply": "2025-04-07T19:07:16.132890Z", "shell.execute_reply.started": "2025-04-07T19:07:16.081521Z" } }, "outputs": [], "source": [ "def plot_results(model, p, facs, clis=None, ax=None):\n", " \"\"\"Visualize optimal solution sets and context.\"\"\"\n", " if not ax:\n", " multi_plot = False\n", " fig, ax = plt.subplots(figsize=(6, 6))\n", " markersize, markersize_factor = 4, 4\n", " else:\n", " ax.axis(\"off\")\n", " multi_plot = True\n", " markersize, markersize_factor = 2, 2\n", "\n", " ax.set_title(model.name, fontsize=15)\n", " facility_count = len(model.fac_vars)\n", " fac_sites = {}\n", "\n", " plot_clis = isinstance(clis, geopandas.GeoDataFrame)\n", " if plot_clis:\n", " cli_points = {}\n", "\n", " for i, dv in enumerate(model.fac_vars):\n", " if dv.varValue:\n", " dv, predef = facs.loc[i, [\"dv\", \"predefined_loc\"]]\n", " fac_sites[dv] = [i, predef]\n", " if plot_clis:\n", " geom = clis.iloc[model.fac2cli[i]][\"geometry\"]\n", " cli_points[dv] = geom\n", "\n", " # study area and legend entries initialization\n", " streets.plot(ax=ax, alpha=1, color=\"black\", zorder=1)\n", " legend_elements = [mlines.Line2D([], [], color=\"black\", label=\"streets\")]\n", "\n", " if plot_clis and model.name.startswith(\"mclp\"):\n", " # any clients that not asscociated with a facility\n", " c = \"k\"\n", " if model.n_cli_uncov:\n", " idx = [i for i, v in enumerate(model.cli2fac) if len(v) == 0]\n", " pnt_kws = {\n", " \"ax\": ax,\n", " \"fc\": c,\n", " \"ec\": c,\n", " \"marker\": \"s\",\n", " \"markersize\": 7,\n", " \"zorder\": 2,\n", " }\n", " clis.iloc[idx].plot(**pnt_kws)\n", " _label = f\"Demand sites not covered ($n$={model.n_cli_uncov})\"\n", " _mkws = {\n", " \"marker\": \"s\",\n", " \"markerfacecolor\": c,\n", " \"markeredgecolor\": c,\n", " \"linewidth\": 0,\n", " }\n", " legend_elements.append(mlines.Line2D([], [], ms=3, label=_label, **_mkws))\n", "\n", " # all candidate facilities\n", " facs.plot(ax=ax, fc=\"brown\", marker=\"*\", markersize=80, zorder=8)\n", " _label = f\"Facility sites ($n$={facility_count})\"\n", " _mkws = {\"marker\": \"*\", \"markerfacecolor\": \"brown\", \"markeredgecolor\": \"brown\"}\n", " legend_elements.append(mlines.Line2D([], [], ms=7, lw=0, label=_label, **_mkws))\n", "\n", " # client-facility symbology and legend entries\n", " zorder = 4\n", " for fname, (fac, predef) in fac_sites.items():\n", " cset = dv_colors[fname]\n", "\n", " if plot_clis:\n", " # clients\n", " geoms = cli_points[fname]\n", " gdf = geopandas.GeoDataFrame(geoms)\n", " gdf.plot(ax=ax, zorder=zorder, ec=\"k\", fc=cset, markersize=100 * markersize)\n", " _label = f\"Demand sites covered by {fname}\"\n", " _mkws = {\n", " \"markerfacecolor\": cset,\n", " \"markeredgecolor\": \"k\",\n", " \"ms\": markersize + 7,\n", " }\n", " legend_elements.append(\n", " mlines.Line2D([], [], marker=\"o\", lw=0, label=_label, **_mkws)\n", " )\n", " # facilities\n", " ec = \"k\"\n", " lw = 2\n", " predef_label = \"predefined\"\n", " if model.name.endswith(predef_label) and predef:\n", " ec = \"r\"\n", " lw = 3\n", " fname += f\" ({predef_label})\"\n", " facs.iloc[[fac]].plot(\n", " ax=ax, marker=\"*\", markersize=1000, zorder=9, fc=cset, ec=ec, lw=lw\n", " )\n", " _mkws = {\"markerfacecolor\": cset, \"markeredgecolor\": ec, \"markeredgewidth\": lw}\n", " legend_elements.append(\n", " mlines.Line2D([], [], marker=\"*\", ms=20, lw=0, label=fname, **_mkws)\n", " )\n", " # increment zorder up and markersize down for stacked client symbology\n", " zorder += 1\n", " if plot_clis:\n", " markersize -= markersize_factor / p\n", "\n", " if not multi_plot:\n", " # legend\n", " kws = {\"loc\": \"upper left\", \"bbox_to_anchor\": (1.05, 0.7)}\n", " plt.legend(handles=legend_elements, **kws)" ] }, { "cell_type": "markdown", "id": "eb124be7", "metadata": {}, "source": [ "### P-Dispersion built from cost matrix (network distance)" ] }, { "cell_type": "code", "execution_count": 25, "id": "05504b98", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:35.264726Z", "start_time": "2023-01-10T18:23:34.773148Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.133596Z", "iopub.status.busy": "2025-04-07T19:07:16.133505Z", "iopub.status.idle": "2025-04-07T19:07:16.265142Z", "shell.execute_reply": "2025-04-07T19:07:16.264874Z", "shell.execute_reply.started": "2025-04-07T19:07:16.133589Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYUAAAQjCAYAAAA/h0GeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Xd0VNXax/HfpFJCQktooUMoUgWk9ybFhkpVULGh4lUBUa9e8Np7w2tFwIZIuwhSpIuhGkGagFRJgCQkgUB6Oe8f3sybSWaSmcxM2nw/a2WtOWf23uc5O2cmyZM9zzEZhmEIAAAAAAAAAOARvEo6AAAAAAAAAABA8SEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAzO666y6ZTCbz1+nTp2223bJli0Xb2bNnF1ucKBm5v9/9+vUr6XAAj9GoUSPza69Ro0YlHY7L8DMHAAAAKDkkhQEAAAAAAADAg5AUBgAAduvXr5/Fik3Ak/CJCQAAAJQXJIUBAAAAAAAAwIOQFAYAAAAAAAAAD+JT0gEAKJv69esnwzBKOgwUI77fAEoKP3MAAAAA12KlMAAAAAAAAAB4EJLCAAAAAAAAAOBBKB8BuFB2drZ27typkydP6ty5c6pQoYLq1aunPn36KDg4uMTiioqKUnh4uM6dO6fMzEzVq1dPLVq00LXXXlsi8WRmZurgwYM6ePCgLl68qKtXr8rX11cBAQGqV6+emjZtqtatW8vb29vpY+3du1dHjx5VVFSUvLy8VLduXfXo0UP169d3wZlIqamp2rFjh/766y/FxsbKMAwFBwerWbNm6tatm3x8XPs2e+bMGe3du1fnz59XfHy8qlatqltuuUV169a12r4459oehw4d0v79+xUbG6ukpCTVqFFDderUUc+ePVW9enWXH2///v06dOiQoqKiZDKZFBISou7du6tZs2YuP1ZRXbx4Udu3b1dkZKQuX76sGjVqqGXLlurevbt8fX2dHj8zM1O7d+/WyZMnFRsbq7S0NAUHB6tRo0bq2bOnKlSo4IKzKD/OnTunnTt3Kjo6WgkJCQoKClJwcLC6dOmixo0bu/x4jr6mywJP/pnjqPj4eB0+fFh//vmn4uPjlZqaqsDAQNWoUUMdOnRQq1atZDKZXH5cd783XrlyRTt27NC5c+d08eJFZWRkKDAwUI0bN1bbtm2d+hl8/vx57dq1SzExMYqLi1NAQIBCQkLUpUsXNWnSxCXxAwAAeAQDgN02b95sSDJ/zZo1yzAMw0hJSTH+/e9/G/Xr17d4PufL29vbGDZsmHHo0KFijXfPnj1Gv379DJPJZDWuFi1aGB988IGRmZlpGIZhTJo0yeL5U6dO2Rzb1lwU5MKFC8bUqVONGjVqWI0n91elSpWMIUOGGPPmzbM53qlTpyz6TJo0yTAMw8jMzDQ++OADo0WLFlbHNplMRs+ePY3w8HAHZtPSzp07jRtuuMGoWLGizXMIDAw0HnjgASMqKsrucXP379u3r3n/8uXLje7du1v9Xi5fvjzfOK6e64JiK8yVK1eM559/3ubrQ5Lh5eVl9OrVy1izZo3d4xZ0Dc6fP99o06aNzeO1b9/eoWM5o2HDhubjNmzY0Lz/8OHDxs0332z4+vravH6ef/55Izk5uUjHPXz4sDF+/HgjMDDQ5jxUrFjRGDNmjHH06NECx5o1a1ah15G1r9zXyYIFCyyemzt3bqHn8Nhjj+Ub88SJE4X269Chg7l9tWrVjKysrALbZ2VlGV9//bXRvn37As8nLCzMmDNnjpGenl5oDDlc8Zq2dQ0VJDs725g5c6bFuFWqVDF+/PFHu2N3VHn9mdO3b98iXf+2Yty5c6fxxBNPGG3btrU5VzlfNWrUMGbOnGmcP3/eju9A4XPlzvfGrKws4/vvvzd69Ohh+Pj4FHhezZs3N2bOnGnX69kwDCM9Pd346KOPjLZt2xY67ieffGJkZGQU6RwAAAA8CUlhwAHW/tA6f/68RQKioC9fX1/jo48+KpZYX331VcPLy8uuuAYNGmRcuXLFrX+gb9y40QgKCnL4j+p69erZHNNaUvjKlSvGoEGD7BrbZDIZzz77rEPzmpSUZIwbN86hc6hUqZKxePFiu8bP3a9v375GRkaGMXny5ALHz5tAcsdcW4vNHuHh4UatWrUciuPGG280rly5UujY1q7Bq1evGrfddpvdx3rttdfsOg9nWEvoffHFF0alSpXsirFnz55GQkKC3cfLzMw0HnvsMbtf/5IMHx8f491337U5piuSwufPn7d4bsyYMYWeyzXXXJNvzMLeQ2NiYiwSbbfddluB7c+dO2dcd911Dp1XixYtjGPHjhUav2G45jXtaFI4KSnJuOWWWyzGrF+/vvH777/bFXNRlOefOa5MCi9durRIY9WoUcP46aef7PpelMR749GjRwv9p4q1r5x/5hbk119/NZo0aeLQuB06dDAiIyMdOgcAAABPQ/kIwAlpaWkaMWKE9u3bJ0ny8vJSp06d1KhRI6Wnp+uPP/7QsWPHzO0zMjI0ZcoUmUwmPfDAA26L67XXXtNTTz2Vb3/79u3VtGlTSdLx48e1f/9+SdKGDRs0btw41ahRwy3x/Pnnnxo5cqRSUlIs9jds2FCtWrVStWrVJEmJiYk6deqU/vzzT2VkZBTpWOPGjdOGDRvM2+3atTN/HDb3OUuSYRh68cUXlZWVpZdffrnQsWNjY3X99dfrt99+s9hfsWJFdezYUXXr1pW3t7fOnj2rPXv2mM8hOTlZo0eP1ueff6577rnHofOZPn265s6da95u0aKFwsLCVLlyZZ0/f1579uyxaF+cc12YtWvX6pZbblFqaqrF/nr16ql9+/YKDAzU+fPntXPnTqWlpZmf/+GHH9S3b19t3rxZgYGBdh8vOztb48eP1w8//CBJ8vb2VqdOnVS/fn15e3vr+PHj2rt3rwzDMPeZOXOm2rZtq2HDhjl5tvZbvHixJk+ebI6jYcOGatOmjYKCghQbG6udO3fqypUr5vbh4eF64IEHtGjRokLHTklJ0c0336yffvrJYr+vr686dOig0NBQ+fv768KFC9q9e7eSk5Ml/f3x+scee0wJCQmaPXu26042l9q1a6tNmzY6ePCgJGnjxo0yDMPmR+PPnTunQ4cO5du/fv16PfjggzaPs379eovv8eDBg222PXPmjPr27aszZ85Y7K9SpYquu+46hYSEKD4+Xr/++qvi4uLMzx89elQ9evTQhg0b1L59e5vjW+Poa9pR58+f1w033KCIiAjzvs6dO+uHH35QnTp1nBrbFk/+meOo7Oxsi21vb281b95cjRs3VmBgoEwmk+Li4nTgwAFduHDB3C4uLk4jRozQ1q1b1b17d4eP6c73xi1btujmm2/W5cuXLfb7+PioY8eOqlevnipVqqRLly7p6NGjOnnypMWxCrJq1SqNGTPG/F6Vo06dOmrfvr2qV6+upKQkcwmOHPv27VPXrl21c+dOhYaG2nUsAAAAj1OCCWmgzMm7+qZatWrmx+PGjbO6KmX37t1Gp06dLPr5+fkZBw8edEuMO3fuNLy9vS2ON3ToUKur2v744w9jwIABVs9HLly1NXbsWIu2AwYMMPbt22ezfWpqqrFu3TrjwQcfNFq2bGmzXd6VwrnjHzRokHHkyJF8fY4cOWJ1JXFhK7CysrKMgQMHWvSpW7eu8cUXXxipqan52ickJBhPP/20xcq5ChUqFHjehmG5qrBKlSrmxyNGjDAOHz6cr31iYqIRGxtr3nbXXOeNrbCVwmfPnjWqV69u0adx48bGjz/+aGRnZ1u0vXz5svHPf/4z38eNx48fX+Ax8l6DNWvWNKS/y7U89dRTxsWLF/P1OXLkSL5Voc2aNcsXkyvlXuVZuXJlc8mRPn36GLt3787XPjk52XjqqafyXaM///xzoce6++67LfoEBQUZ77zzjpGYmGj1OG+++aZRoUIFc3uTyWSsXr06X9uEhATj1KlTxqlTp4yuXbvme5+w9ZX3I+9PPPGERd9ff/3V5rnMnz/f6grAqlWrmssPWHPXXXdZtD958qTVdhkZGUb37t0t2gYEBBjvvfeekZKSkq/tV199Zb7Gcr7CwsIKXdXu7GvaMOxfKbx3714jNDTU4pijRo0ykpKSCozRGZ7wM+f8+fPmazr3uF27di3w+re2wn/x4sVG1apVjUceecRYt25dvmstt+3btxv9+/e3OGaDBg2MtLQ0m32szZU73xtPnDiR7/tYo0YN4+233zYuX75stU9sbKzx6aefGt26dStwpfChQ4eMypUrW4x9/fXXG7t27bLa/rfffjN69+5t0b5Xr14Fvl8AAAB4MpLCgAPy/qGV8zVt2rQC+yUlJVn9Q8Ud2rVrZ3GccePGFVhPMzMz0xg1apTV83LFH+jZ2dkWf9SFhYVZTaLaUlA91bx/oOd8jR49utBzvv322y36NGrUqMAahK+//rpF+2uvvdbqH9Z5LV682OKj7P379y+wvbXzeeCBB+xKWrpzrvPGVlhSOO9H11u2bGlER0cX2Oe7777L9/HzVatW2Wxv7fXo7e1trFy5ssDjXL58OV994w0bNhTYxxm5E3o5X+PHjy+05uU//vEPiz533HFHge2///57i/YNGzYs8DWcIzw83CIx3KxZswJfP3k/Su+INWvWWPR9+eWXbbYdP368RSIo97Wxfft2m/3q1atncS62vPfeexaxVK5cucBxDePvOs15E8PTp08vsI8zr+kc9iSFf/jhByMgIMDiODNmzHDrPzwMw7N+5hhG0Wur54iJiXEoSZ+dnZ3vnz2F1X8vzvfGHj165HuvP336tN3nZ6tWclZWVr7ax7Nnzy50vIyMjHzX14IFC+yOBwAAwJOQFAYcYO0PrU6dOhV6EyPD+HvlZN4/2CMiIlwa38aNGy3Gb9CggV1/fCYmJhp169Z1yx/oMTExFu0KS6A7wlpSODQ01K56tFeuXLFIHkkyli5darVtcnKyERwcbG4XFBRknDt3zu44H3roIbu/73nPp1WrVoWuCsvhzrnOG1tByZDjx49bJPC8vb2NvXv32nWMRx55xOI4BSXRrb0en3nmGbuOM2fOnCL1K4q8SeFmzZrZdfO4uLg4w8/Pz9yvbt26NttmZ2dbJFB8fHwcqh+b958etl4LhuFcUjg5Odnw9/cv9PubnZ1thISEWCTBunTpYt5+/vnnrfY7dOiQRWxTpkyx2i4rK8to3LixRdsPPvjArnNYsmSJRb/AwECrK7FzOPOazlFYUvidd96xeM35+voan3/+uUPHKApP+5ljGM4nhYsiKSnJ4vUwaNCgAtsX13vjTz/9ZNE2ICDA+PPPPx06N1sWL15sMfbo0aPt7nvlyhWL+Wrbtq1LYgIAAChvvATAKbNnz5aXV+EvpdDQUN1///0W++bPn+/SWL788kuL7ZkzZ6pSpUqF9qtSpYqefPJJl8ZiS0xMjFvHnzlzpgICAgptFxAQoJkzZ1rss/X9WLhwoWJjY83bjz32mEO1OadNm2axnVPX0R5PPPGE/Pz87G6fm7vn2pavvvrKom7m6NGj1aFDB7v6Pv/88/L39zdvb968OV+9V1sqVqyYb65tGTlypMX23r177ernCtOmTVPFihULbVe9enX16NHDvH3u3Dmb39PNmzeba/VK0oQJE9SuXTu7Y3r44YdVoUIF87Yj16gjKlasqJ49e5q3w8PDlZSUlK/d/v37Lc518ODBGjJkiHk7b83kHOvXr7fYtlVP+Oeff9apU6fM26GhoXrooYfsOodbb71VnTt3Nm8nJiZq+fLldvWVnHtN55WZmakpU6bo8ccfN7/mqlatqrVr12ry5MkuOUZB+JlTPCpVqmRR23fXrl35ahMXxF3vjR999JHF9rRp08w1/J31/vvvmx+bTCa9+uqrdvcNCAiwuG/DgQMHdPr0aZfEBQAAUJ6QFAacUK1aNV1//fV2tx8/frzF9i+//OLSeHKPZzKZNGbMGLv7jh8/3uYNn5xRs2ZN1axZ07y9ZMkSbdu2zeXHkf4+57Fjx9rdfty4cRbnHB4ebvXmN3kTTY7MqyQ1adJEDRo0MG87cv433XST3W2Lc64Lkve6vuOOO+zuW716dY0YMcJiX3h4uF19u3fvrurVq9vVtmHDhhbJq+JMHOU9v4K0atXKYttWnM5eo5UqVdJ1111n3nbndZM7uZuenq6tW7fma5M76du6dWvVq1fPot+uXbuUmJhYYD9vb2/179/fagx5r9Fx48bZ9c+9HBMnTixwvII48pouyOXLlzVixAh9/PHH5n1NmzbVjh07NGDAAJccozCe/jPH1VJTUxUbG6szZ87o9OnTFl9VqlQxt7ty5YoiIyPtHtcd743Z2dnasmWLxT5X3UA3KSlJO3fuNG936dJFjRs3dmiMvK/9snINAAAAFCefkg4AKMs6deokHx/7X0bt27dXhQoVlJqaKunv1XDp6enmVWOXLl3SpUuX7BqratWqqlq1qnn70qVLOnHihHm7WbNmDt3ZPTg4WI0bN9bJkyft7mOPnETtnDlzJEkpKSnq37+/brvtNo0dO1aDBg2ya2WvPZo2bWqRDChMzZo11aRJE/O8xcfH6+TJk2ratKlFu9yJDz8/P/n7+zu86qh69er666+/JMni+1SQ0NBQBQcH232M4pzrgvz6668W2927d3eof48ePbRs2TLz9p49e/L9Q8Wa1q1bO3ScqlWrmu9of/nyZattLl68qKtXr9o1Xs2aNQud34CAANWvX9/uGKtVq2axbSvOvEnJ6tWrO3yNBgYGmh+fPn1a2dnZDiVK7TV48GA99dRT5u3169dr+PDhFm1yJ7lzksHdu3dXQECArl69qszMTG3evNkiwZqRkWGRYL7uuuss3iNzy3uN5l6RbY+87ffs2WNXP0df07acOnVKI0eO1OHDh837evXqpeXLlzv0HsjPnJK1a9cuLV68WDt27NChQ4dsvr6tSUhIsPhnY0Hc8d74xx9/KCEhwbzdokULhz5BU5CdO3cqIyPDvN2kSROH38/yrqS29+cuAACAJyEpDDghLCzMofY+Pj5q1KiRjhw5IknKyspSXFyc+Q+pd999V88//7xdY82aNUuzZ882b0dHR1s837x5c4dik/4+H1f/gS79XWJjzZo15j/KsrKytGjRIi1atEje3t7q0KGDunfvrl69eqlPnz5F/sPS0e+H9Pc85f5jMSYmxiIpnJ2drXPnzpm309PT8yWNHRUfH29Xu5CQEIfHLq65tiU9Pd0iiRAcHJwvsVmYli1bWmzbu4rX0eP4+vqaH+dOQOQ2ffp0LViwwK7x5s2bp7vuuqvANs7EKNmO8+zZsxbb3bp1c+g4eWVnZ+vSpUt2ry50RMeOHRUcHGwuyZK3FERqaqrFqr6cpLCvr6/69eunVatWmfvlTgrnLUVhq3SElP+acvS9o6jXaFFe03nFx8era9euFiVtJkyYoLlz51qUXrEHP3Pc8z5YmIMHD+rhhx/Wzz//XOQxHEkgu+O98fz58xbb11xzjUPHKEje97PvvvtO3333nVNj2vtzFwAAwJNQPgJwQu6VdfYKCgqy2HbVHyq5V+xIronNVWrUqKEdO3bo1ltvzfdcVlaWIiIiNGfOHI0dO1b16tVTjx49NHfuXJt/jNriju9HQkKCQ7Ub7XHlyhW72uX+uLC9imuubcl7HRblmirqa8Qdq1pdzV0xxsXFuXxMe69TR5lMJg0cONC8ffjwYUVFRZm3t23bZv40hb+/v/r27Wt+rqC6wvbWE5acv04rV65s8SkRe6/Rorym87py5YpFQrhq1ap65ZVXHE4IO4ufOUXzyy+/qEePHk4lhKX8K2EL4o73nbzvOY4mnh0Z2xXc9X4GAABQlpX+v6CBUswV9RDdUVPRneMWVXBwsJYsWaIDBw7oySefVNu2ba3GaBiGduzYoXvvvVdt27bV77//bvcx3PH9SE9Pd3rM4lYcc21L3prMpfk1Up644zq1Vl/bVfImbHMndHM/7tmzp0V909z9jh8/bvGR8tz9qlSpUuBqaVdfp8V5jYaEhKhr167m7UuXLql37976888/iy0Ga0rb67Qk3wdtSUxM1OjRoy0SlEFBQXrggQe0cOFC7d27V9HR0UpKSlJWVpYMwzB/zZo1y21xuYIrv/9l7f0MAACgrCIpDDjBkY9v2uqTe3XN7NmzLf4ILOgr98d4847jqtjcoU2bNnrttde0f/9+xcfHa+3atXruuefUu3fvfPWZjx49qoEDB+rUqVN2je3q74ekfDUyw8LC7P4eFfRVHNw517bkLTfgju9JcZo/f77d39PCSke4U+46shUqVFB2drbT12ijRo3cFm/uFb+S5arf3I/ztmvZsqVFHdWctvHx8YqIiDDv79+/f4H13p29TpOSkpSZmWneLs5rtGLFitqwYYMGDRpk3nfmzBn16tVLe/fudWgsfua4533Qlo8//tii7ELXrl31559/6uOPP9bYsWPVoUMHhYSEqFKlSvlW91q7sWJJylu72pXlGfKO/fLLLzv9fjZ//nyXxQcAAFBekBQGnHDs2DGH2mdmZlqsbPP29nZZzc68tSqLsmrM0fNxVtWqVTV06FD9+9//1s8//6zo6Gi98cYbFh8pjouL03PPPWfXeEWJP+885Z1HPz8/i+THqVOniuUjxq7m6rm2xc/Pz2LMmJgYu29klePo0aMW266ow1re1apVy/w4NTXVfFPD0io0NNSiLu+GDRtkGIZiYmK0f/9+8/68SWHJcrVwTlJ448aNFh+nL6h0hJT/mnL0vaOkr9GAgACtWrVKo0aNMu+LiYlR//79LeoxuxM/cxy3YsUK82OTyaRvv/3W7hsP5q5tXxrkrcOc+6aHzsr9fiYV/3UCAADgKUgKA06IiIiwWC1WmN9//91cK1OS2rVr57I6kNWqVbO4Adrx48cdqssXGxvrttVR9qpevbqmT5+udevWWXwU9YcffrCrfuKJEyd08eJFu4938eJFi5scVa9eXU2aNMnXrkePHubHGRkZ2rJli93HKK2cneuCdO7c2WJ7x44dDvXfvn27xXaXLl2ciscT5L5Gpfz1dl3JVR8Tz53wjY2N1b59+7R+/XrzSvrg4GB16NAhX7/cCd9NmzYpOzs73/kWlhTOe43mveYKUxquUX9/f33//fe65557zPsuX76soUOHavXq1W4/Pj9zHJc7cd6qVSurP29scfR91N1atWpl8U/to0eP6sKFCy4Zu3v37hbfj9zvCwAAAHAdksKAExISErR27Vq723/77bcW27169XJpPLnHMwzDobt1f/vtt6Xmj66uXbuqTZs25u0rV67Ylex19JwXLlxocc49e/a0mvAaOnSoxfZnn31m9zFKu6LOdUHyXtfffPON3X0TEhK0atUqi309e/Z0Kh5PkPca/fzzz912rLz/yEpLSyvSOHkTtz/99JNFXeBBgwZZfT0OGjTI/NH6hIQE7dmzx6JfgwYN1KJFiwKPnfcaXbhwoUNJwK+++qrA8YqLt7e35s6dq+nTp5v3paSk6Oabb87388YdPPFnTu7r39FrP/enJhy5yd6mTZtK3ep/k8mkAQMGmLcNw9Cnn37qkrGDg4PVsWNH83ZUVJTWrFnjkrEBAADw/0gKA06aPXu2XcmEyMjIfH8wTZo0yaWxTJw40WL79ddfV3JycqH9rly5otdff92lsTgrb61He1dUv/baa7p69Wqh7a5evZrvnG19P+68805VrVrVvL148WJt3LjRrnjKgqLOtS133HGHRT3MRYsW6cCBA3b1nT17tkWipV+/fmrYsKFT8XiCYcOGWaza3L17t7744gu3HCv3a0GSRY1UR/Tr10++vr7m7Z9++kkbNmwwb1srHSH9Xef72muvNW/PmTNHZ86cMW8XtkpYkvr06aPGjRubt8+ePatPPvnErriXL1+u3bt3m7cDAwN1880329XXXd544w29/PLL5u2MjAzdcccd+s9//uPW43riz5zc17+j137uUkR//vmnXb87ZGRk6Omnn3boOMXl4Ycftth+6623LD5944xHHnnEYnv69Ol2/WwHAACA/UgKA06KiIjQzJkzC2yTkpKi8ePHW/xB07NnT3Xq1MmlsQwYMEBt27Y1b//111+67777CvzDMysrS3fffbfb6hXu27dPy5cvV1ZWlt199u/fb3EH+Dp16ti9qioyMlKTJ08u8Jyzs7M1efJkRUZGmvc1atRIN910k9X2VatW1YwZMyz23Xbbbfrll1/siilHVlaWli1b5tIb8uRW3HNtS7NmzXTjjTeatzMzMzV27NhCVyAvWbJEc+bMsdg3bdo0p2LxFD4+Pvr3v/9tsW/KlClatmyZw2Nt2LChwMROq1atLLaLWqoiICBA3bt3N29v3rxZUVFR5m1bSWHJMvGbdyW6PUlhLy8v/eMf/7DYN3PmTItkrzVHjx7Vgw8+aLHvvvvuU2BgYKHHdLenn35aH3/8sfkfMoZh6OGHH9aLL77otmN64s+c3Nf/mTNn8tWXLkj79u3Njy9evFjoiv6srCw98MADhV6XJaVfv37q06ePeTsxMVE33nijzp49a/cYtkpOTJw40aLu+B9//KFbbrlFCQkJDsUYGxtbpPdBAAAAT0BSGHBCzqqfN998UxMmTLBIaOTYs2ePevfubXHzHz8/P3388cduienTTz+1WKX57bffasSIEVZvAnTkyBENHTpUS5culZT/bvKucPr0aY0aNUpNmzbVk08+qe3bt9u8UVtmZqaWLFmioUOHWiQV7F1RnRP/999/r2HDhlm9Oc2xY8d0/fXX6/vvv7fY/8knn+RbKZbbk08+aZGkunTpkvr166eHH364wKRARkaGtm/frpkzZ6pp06a69dZb3XYX+eKc68K8//77FtfT4cOH1b17d61bty7fR8avXLmiWbNmafz48RaxjBkzRiNHjnRJPJ5g/PjxFvVl09PTdeutt2rChAmKiIiw2S8rK0t79+7V888/r9atW2vw4MEFflS9f//+FtszZszQ66+/rp07d+r48eM6ffq0+auwGqO5X1O5r4trrrlGdevWdbifyWTSwIEDCzxmjocfflhdu3Y1b1+5ckWDBw/Wf/7zn3xlATIzM/XNN9+od+/eiomJMe9v1qyZZs2aZdfxisMDDzygb7/91mIF9nPPPacnnnjCbaUaPO1nTt7r/6abbtL8+fO1b98+nTp1yuL6z3uTzTFjxlhsP/LII3r//feVnp6e7zh79uzRgAEDNG/ePEmy+4Z0xe3LL79UjRo1zNuHDh1Sp06d9P777+vKlStW++QkxLt3766nnnrKahtvb28tWbLE4h8uGzZsULt27fTRRx/ZHFuS4uPjtWjRIo0bN07169fX+++/X8SzAwAAKOcMAHbbvHmzIcn89dRTTxkdOnQwb3t5eRldu3Y1Ro8ebdx8881GixYtLNrnfH388cdujfPVV1+1etwOHToYt912m3Hrrbca7du3t3hu+PDhxsSJEy32nTp1yu65mDVrltV2y5cvzxeHn5+f0aFDB2PEiBHGhAkTjLFjxxr9+vUzgoKC8rVt2bKlcfXqVatjnzp1yqLtxIkTjeHDh9t9zjlfTz/9tF3zeunSJaNHjx5Wx6hXr54xdOhQY9y4ccaYMWOMYcOGGW3btjV8fX3ztS1oXnO369u3r11xFcdcFyW2VatWGf7+/vmOExoaaowcOdIYN26c0a9fP6NChQpWr9VLly4VOL6916AtDRs2NPdt2LChQ32L6zizZs2yOMfNmzcX2D49Pd245ZZbrF6jwcHBxqBBg4wxY8YY48aNM0aMGGF07NjR6vwXdpzOnTtbPUber8Kuk127dlnt9/jjjxfYLy0tzahcuXK+fp06dSqwX14nT5406tevn2+cwMBAY/Dgwca4ceOM66+/3qhZs2a+NtWrVzd+++23Qo/hzGs6h6PX0Jo1a4xKlSpZHPvuu+82MjMzi3T8wnjKzxzDMIyoqCijSpUqdl3/eWPMyMgw2rVrl69dtWrVjOuvv96YMGGCMXLkSKNRo0b5rpt//vOfdr9Gi/u9cevWrUbVqlXznZePj49x3XXXGbfccosxfvx4Y/jw4UazZs0Mk8lkbjNp0qQCx16/fr3V75O3t7fRoUMH48YbbzTuuOMOY9SoUcaAAQOM0NBQh9+HAAAAPBVJYcAB1v7QOnfunNG2bVu7/kD09fU1Pvroo2KJ9eWXXza8vLzsiqtfv35GYmKiMWnSpGL5A93er549exrR0dE2Y8ibFJ40aZKRmJho9O/f367xTSaT8c9//tOheU1PTzeeeOIJw9vbu0jnVKlSJePcuXM2x3fmD1l3znVRY/v555+NkJAQh2IZMWKEkZiYWOjYJIWty87ONl577TWryV5736d2795d4DFOnDhhtGzZstCxCrtOsrKyjOrVq+frt2bNmkLPM+8/gKS//1HnqKioKKNTp04OzVHz5s2NI0eO2DW+M6/pHEW5hsLDw/Ml6m655RYjNTW1SDEUxhN+5uRYvXq11SRo3i9rMZ45c8Zo2rSp3TENGjTIuHz5skPvBSXx3njkyBHjmmuucXjOC0sKG4Zh/Pnnn3b/I8ra18033+zQ+QMAAHgKykcATqpTp4527typf/3rX6pXr57VNt7e3rr++uu1b9++fPUo3eXpp5/Wzp071bdvX5lMJqttmjVrprffflvr169XlSpV3BLHkCFDtGzZMt17771q1qxZoe1NJpN69+6tb775Rtu2bVNISIhDx6tSpYp++uknvf322zaPZzKZ1KNHD/3yyy8O19v09fXVW2+9pWPHjmnKlCmqVatWoX1q1KihUaNGaf78+YqOjladOnUcOqa9inuu7dG7d28dP35cs2bNsvn6kP6u8dqjRw+tWrVKq1atctv16AlMJpOefPJJnTp1Sk899ZRdN+qrUqWKhg8frg8//FDnz59Xly5dCmzfpEkT7du3T19//bVGjx6tVq1aKSgoqMASLNZ4eXlpwIABFvv8/f0t6pTaYq3msD31hPOqW7eudu/erQULFqhdu3YFtm3evLnef/99HTx4UC1atHD4WMWpR48e2rp1q2rXrm3et3z5cg0fPtwtN+zypJ85w4YN09GjR/XWW29p+PDhatSokQICAizKaNjSoEED/fbbb3r00UdVqVIlm+06duyoTz75ROvWrSsVNasL06JFC/3+++/68ssv1blzZ5vXQI5WrVrpueeey1cL3ZpmzZpp9+7dWrlypQYNGmTXzVBbtWqlqVOnatu2bdQUBgAAsMFkGG4qMgeUQ1u2bLGoJzhr1izNnj3bvJ2dna0dO3bo5MmTOnfunCpUqKB69eqpT58+bkm42SsyMlLh4eGKiopSdna26tatq7CwMHXu3LnYY4mLi9OhQ4d06tQpxcXFKTk5Wf7+/goMDFSzZs3UoUMHi/qEBTl9+rQaN25s3p40aZLmz59v0SYiIkJHjx7VuXPn5OXlpbp166pHjx5q0KCBy87pjz/+0P79+xUXF6dLly7Jx8dHgYGBql+/vlq2bKkmTZoU+geyO7hyrl3l4MGD+v3333Xx4kUlJSWpRo0aqlOnjnr27FnssXiSU6dO6bffflNsbKwSEhLk5eWlKlWqqG7dumrZsqWaN28ub2/vkg6zVIiKitLOnTsVHR2tS5cuqUqVKgoJCVGXLl3UpEmTkg6vTCivP3NcLSkpSdu3b9fRo0eVmJiooKAg1a5dW+3bt7croV2aXbx4UTt27ND58+cVFxcnk8mkoKAgNW7cWO3bt3fqn6OpqanatWuXzpw5o7i4OCUlJaly5cqqVq2amjVrplatWvHzBAAAwA4khQEHFJYURvGyJykMAAAAAAAAS5SPAAAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAmwzCMkg4CAAAAAAAAAFA8WCkMAAAAAAAAAB6EpDAAAAAAAAAAeBCSwgAAAAAAAADgQUgKAwAAAAAAAIAHISkMAAAAAAAAAB7Ep6QDKAtSU1N14MABSVJwcLB8fJg2AAAAACjNMjMzFRsbK0lq27atKlSoUMIRAQBQepDdtMOBAwd03XXXlXQYAAAAAIAi2L17t7p06VLSYQAAUGpQPgIAAAAAAAAAPAgrhe0QHBxsfrx7927VqVOnBKMBAABAUS1evFhPPPGEzeffeecd3XbbbcUYEQB3OX/+vPkTn7n/pgMAACSF7ZK7hnCdOnUUGhpagtEAAACgqDZv3lzo84899ljxBAOg2HBfGAAALFE+AgAAAB4hMTFR69atK7DNunXrdOXKlWKKCAAAACgZJIUBAADgEX788Uelp6cX2CYtLU0//vhjMUUEAAAAlAySwgAAAPAIS5cudWk7AAAAoKwiKQwAAIByLzk5WWvWrLGr7erVq5WcnOzmiAAAAICSQ1IYAAAA5d7atWutJnor+QTk25ecnFxo7WEAAACgLCMpDAAAgHJvyZIlVvff1/4Jh9oDAAAA5QFJYQAAAJRraWlpWrVqVb79tSrV07DGt6pWpbr5nlu1apXS0tKKIzwAAACg2JEUBgAAQLm2fv16XblyJd/+3qGD5GXyUq/QQfmeS0xM1IYNG4ojPAAAAKDYkRQGAABAubZ06VKr+3OSwb3qDXaoHwAAAFDWkRQGAABAuZWRkaEVK1bk21+jQohaVm8nSWpVo51qVAjJ12bFihXKyMhwe4wAAABAcSMpDAAAgHJr8+bNSkhIyLe/V+hAeZn+/lXYy+SlnvUG5GsTHx+vLVu2uDtEAAAAoNiRFAYAAEC5ZasERO/QwXm2hzjUHwAAACjLSAoDAACgXMrKytJ///vffPur+lfXNTWvtdjXJvhaBflXz9d2+fLlysrKcleIAAAAQIkgKQwAAIBy6ZdfflFMTEy+/T3qDZC3ydtin7fJWz3q9s/XNiYmRuHh4W6LEQAAACgJJIUBAABQLtkq/dCr3mCr+/OWlChsHAAAAKCsIikMAACAcic7O9tqMreKb6A6hHSx2qd9yHUK8K2Sb//SpUuVnZ3t8hgBAACAkkJSGAAAAOXOrl27dO7cuXz7u9XtJx8vX6t9fL181c1KCYmoqCjt3r3b5TECAAAAJYWkMAAAAModWyUfeocOKbAfJSQAAADgCUgKAwAAoFwxDMNqEreST2VdW6t7gX071equij6V8u1funSpDMNwWYwAAABASSIpDAAAgHJl7969On36dL79Xev0kZ+3X4F9/bz91bVO33z7T506pX379rkoQgAAAKBkkRQGAABAubJkyRKr+3vZKA2Rv90gh8YFAAAAyhqSwgAAACg3bJWO8PeuoM61e9o1RpfaveTvXSHffkpIAAAAoLwgKQwAAIBy49ChQzp27Fi+/V1q97ZaK9iaij6V1KV2r3z7jx49qsOHDzsdIwAAAFDSfEo6AAAAAJQfWVlZevnll7Vq1SolJCQU+/ETExOt7u9toySELb1CB+mXqA359g8cOFCBgYFFis0Z1apV08iRI/XMM8/I29u72I8PAACA8oWkMAAAAFzm8ccf1wcffFDSYVjw9fLVdXX6ONSna52+8vXyVUZ2hsX+6OhoRUdHuzI8u+3evVsXL17Ue++9VyLHBwAAQPlB+QgAAAC4RFZWlhYsWFDSYeRzba0equwb4FCfyr4BurZWdzdFVHQLFixQdnZ2SYcBAACAMo6kMAAAAFzC29tbFStWLOkw8ukdOriI/Ya4OBLnVaxYUV5e/AoPAAAA5/AbJQAAAFzmiSeeKOkQLDQMbKb+DYYXqW//BsPVMLCpiyNyzuOPP17SIQAAAKAcoKYwAACAB8tMTVX8oUOqfs018qlQwenxZsyYoezsbD377LPKysoqsG1oQCPVDajv9DGt8TJ5q0nVMN0WNkm+Xr5FGsPXy1fv9P9SS44t0MlLx5RtFHw+RRV19S9FXT1TYBsfHx+9+OKLmjFjhltiAAAAgGchKQwAAODBwqdPV9TmzQodMEB9XHCDOJPJpKeeekr9+vXT+PHjderUKZttY5LPa1TYnRrR5HaZTCanj+0OAX6BuqvNVLeMbRiGVp38Xp/se6PAdo0bN9bChQvVtWtXt8QBAAAAz0P5CAAAAA+VfOGCojZvliRFbtqk5Ohol43drVs37d27V+PGjbPZJj07Te//9oJe2PGEEtMvu+zYZUFi+mX9e8fj+uC3F5WenWaz3bhx47R3714SwgAAAHApksIAAAAe6uzGjZbbGza4dPygoCB98803mjdvnipXrmyz3S9RG/TgT7dqf+yvLj1+abU/9lc9+NOtCo/aaLNN5cqVNX/+fH3zzTcKCgoqxugAAADgCUgKAwAAeKiz69cXuO0KJpNJd911lyIiItSxY0eb7S6mROvJLZP15aH/KCs70+VxlAZZ2Zn68tCHenLLZF1Msb0qu2PHjvrtt980adKkUltWAwAAAGUbSWEAAAAPlBoXp9iICIt9sRERSo2Pd8vxWrRooR07dujxxx+32SZb2fr68EeasXWyYpLPuyWOkhKddE7Tt9yjrw9/rGxl22z3xBNPaMeOHQoLCyvG6AAAAOBpSAoDAAB4oMiNG2VkWyYnjexsRW60XdLAWf7+/nr77bf1448/Kjg42Ga7gxd/04M/3aptka5fuVwStkWu15T1t+lQ3F6bbYKDg7V69Wq99dZb8vf3L8boAAAA4IlICgMAAHigv2yUinBHCYm8hg8frt9//12DBg2y2eZqxhW9sOMJvRfxb6Vmprg9JndIzUzRuxHP64UdT+hqxhWb7QYPHqz9+/dr2LBhxRgdAAAAPBlJYQAAAA+TdumSonfvtvrchV27lH75sttjqFOnjtatW6fXXntNPj4+Ntv9eHKxpm4cp1OXj7k9Jlc6eemopm4cp9Unl9hs4+Pjo9dff11r165V7dq1izE6AAAAeDqTYRhGSQdR2kVGRqp+/fqSpLNnzyo0NLSEIwIAALAu8cwZHfjgA6UVkNhNv3xZ8YcO2Xy++jXXyC8oyObz/kFBajt1qgIbNnQq1hy7d+/WuHHjdPLkSZttfL389ED7Gbqh6ZhSffM1wzC08sR3+uT3N5WRnW6zXdOmTbVw4UJ16dKlGKMDPAt/xwEAYJvtZRkAAAAocw5/+qnOrFnj1BgFJYxzePv7q9tLLzl1nBzXXXed9u7dqylTpujbb7+12iYjO11z9r6kiOjtmtb53wr0r+qSY7tSYtolvfXrv7Tj3OYC202YMEH/+c9/FBgYWEyRAQAAAJYoHwEAAFCO1O3TR3L3SlqT6e/juFBgYKC+/vprLViwQJUrV7bZbse5zXpw/a3aH7vHpcd31u8xe/Tg+lsLTAgHBAToyy+/1Ndff01CGAAAACWKpDAAAEA50mDoUA34/HNVDAlxy/gVQ0I0cO5cNRg61OVjm0wmTZw4UXv37tW1115rs93FlBjN2DJZCw7OUVZ2psvjcERWdqbmH/xAT26drIspMTbbderUSb/99pvuvPPOYowOAAAAsI6kMAAAQDlTu1s3DVu2TPX69XPpuPX69dOwZctUq2tXl46bV/PmzbVjxw5NmzbNZhtDhr754xNN23K3opPOuTUeW6KTzmnalrv17R+fypDt23RMnz5d27dvV/PmzYsxOgAAAMA2ksIAAADlUIVq1dRnzhx1euYZefn5OTWWl5+fOj3zjPrMmaMK1aq5KMKC+fn56c0339TatWsVUsCq58Nx+/Tg+tu0L2Z3scSVY1/Mbj24/jYdjttns01ISIjWrl2rN954Q35Ofg8AAAAAVyIpDAAAUE6ZTCa1mDBBQxcuVGCTJkUaI7BJEw397ju1mDBBJnfXKrZi6NCh+v333zVkyBCbbZIyrmh2+D+UnJFULDElZyRpdvijSsq4YrPN0KFDtX//fg11Q5kNAAAAwFkkhQEAAMq5ai1b6vrvv1fVsDCH+lUNC9P133+vai1auCky+9SuXVtr1qzRG2+8IV9fX6ttkjOv6kj8/mKJ50j8fiVnWk9A+/r66s0339Tq1atVq1atYokHAAAAcBRJYQAAAA9g8vLS1agoh/pcjYqSydvbTRE5xsvLy1ybNzg42Gqb6hWs73e1ahVqWt0fEhKi7du3a9q0afLy4tdsAAAAlF78tgoAAOABzm/frswkx8orZCYl6cL27W6KqGjatm2rtLS0fPtrVaqnhoFNiyWGRoHNVKtS3Xz7U1NT1bZt22KJAQAAAHAGSWEAAAAPcHb9+mLt5y4bNmxQYmJivv29QgcWW81jk8mknvUG5tufmJiojRs3FksMAAAAgDNICgMAAJRz2RkZitq8uUh9IzdtUnZGhosjKrqlS5da3d+r3uBijaN3qPXj2YoPAAAAKE1ICgMAAJRz0bt3K93K6lpJCh04UCNXr1bogAFWn09PTFT0nj3uDM9uGRkZWrFiRb79NSqEqFWNdsUaS6sa7a3WMF6xYoUyMzOLNRYAAADAUSSFAQAAyjlrJSC8/PzU5bnn1Pu99xTYsKF6v/++Oj/7rLz8/OzqXxK2bt2q+Pj4fPt71hsgL1Px/lrrZfJSz3r5E+lxcXHaunVrscYCAAAAOIqkMAAAQDmWnZWlyE2bLPYFNW2q6xctUvOxY811eE0mk8LGjdP1ixYpqKnlDdsiN25UdlZWscVsy5IlS6zu7x06pJgjKfi4tuIEAAAASguSwgAAAOVYSnS0UuPizNvNxozR0EWLVDUszGr7qmFhGrpokZqNHm3elxoXp5ToaLfHWpCsrCwtX7483/4g/+pqE3xtCUQkta15rYL8quXbv3z5cmWVgiQ6AAAAYAtJYQAAgHKsYq1aanTDDQpq1ky9331X1/3rX/KpWLHAPj4VK+q6WbPU6513FNSsmRrdeKMq1a5dTBFbFx4erpiYmHz7e9TtL2+Tt8PjGYahvTG7tPTYl9obs0uGYTg8hreXj3pYKSERHR2t7du3OzweAAAAUFx8SjoAAAAAuI+Xt7d6vPpqkfo2GDJEDYaUTGmGvJYuXWp1f+/QwQ6PdSktXm/teU67zv9s3te1Th9N6/KCqvpXd2isXqGDtOZU/tiWLl2q3r17OxwbAAAAUBxYKQwAAIBSLTs7W8uWLcu3P8C3itqHXOfQWHujd+rBn261SAhL0q7zP+vBn27T3uidDo3XIaSrKvtWybd/2bJlRVp9DAAAABQHksIAAAAo1fbs2aPIyMh8+7vV7S9fL1+7xsjMztDc/e/oqZ/vV3zqRatt4lNj9dTP92vugXeVmZ1h17i+Xr7qXrdfvv1nz57Vnj177BoDAAAAKG4khVGuZaamKiYiQpmpqSUdCgAAKKIlS5ZY3W9v6YjzV8/q8c2TtOjoFzJU8OpdQ4YWHZmrxzdP0vmrZ+0a31YctuIGAAAAShpJYZRr4dOna8PEido+Y0ZJhwIAAIrAMAyr9YQr+lRSp1rdC+2/+a/VmrL+dh2NP+DQcY/GH9CU9bdr81+rC23bqVYPVfSplG//0qVLKSEBAACAUomkMMqt5AsXFLV5syQpctMmJUdHl3BEAADAUfv27dOpU6fy7e9ap6/8vP1t9kvJTNabe57VK7tmKjkzyWa70NBQm88lZybplV0z9dae55SSmWyznZ+3v66r0yff/pMnT+r333+32Q8AAAAoKSSFUW6d3bjRcnvDhhKKBAAAFJW1VcKS1Ct0kM0+fyYc1kPrR+un0ytstvHz89O7776rM2fO6J133pGvr+3axOtO/1cPrx+jPxMO22zTu571eGzFDwAAAJQkksIot86uX1/gNgAAKN0Mw7Bal9ffu4K61O6Vb3+2ka2lx77UPzZOUNTVMzbHDQsL086dO/WPf/xDXl5eeuyxx7Rz506FhYXZ7BN59bT+sXGClh770mpJiC51esvPK//KZZLCAAAAKI1ICqNcSo2LU2xEhMW+2IgIpcbHl1BEAADAUYcPH9bRo0fz7e9cu2e+Gr4JqXF67peH9cnvbyjTyLQ55j333KOIiAh17NjRYv+1116riIgI3X333Tb7ZhqZ+uT3N/TcLw8rITXO4rmKPpXUuXbPfH3++OMPHT5se4UxAAAAUBJICqNcity4UUZ2tsU+IztbkXlKSgAAgNLL1irb3qGDLbYjorfrwZ9u1Z4Lv9gcKzAwUAsXLtTcuXMVEBBgtU1AQIC++OILffvttwoMDLQ51u4L2zRl/W36LXpHgXEVdh4AAABASXFrUjgmJkarVq3Sv/71Lw0bNkw1a9aUyWSSyWTSXXfd5fB4a9eu1ahRoxQaGip/f3+FhoZq1KhRWrt2reuDR5n2l41SEZSQAACg7LCWTPX18lXXOn0lSRnZGfp8/9t6+ucHlJAWl69tjm7dumnfvn0aO3asXccdN26c9u7dq65du9psE596UU///IDm7n9HmdkZfx+nbl/5mHzsOg8AAACgJOX/rdWFatWq5ZJxDMPQgw8+qE8//dRif1RUlJYvX67ly5fr/vvv18cffyyTyeSSY6LsSrt0SdG7d1t97sKuXUq/fFl+QUHFHBUAAHDE8ePHtX///nz7r63VXZV9A3Tu6lm9svNJHU04aHMMk8mkp59+WrNnzy7wRnLWNGnSRNu2bdOsWbP06quvWq0jbMjQoqNfaF/sHj3d9TXVDaiva2t11+4L2yza/f777zpx4oSaNm3qUAwAAACAu7g1KZxb/fr11apVK/30008O93322WfNCeGOHTvqySefVNOmTXXixAm9/vrr2rt3rz799FMFBwfrxRdfdHXoKEUSz5zRgQ8+UNrlyzbbpF++LCPTei1BIzNTm+67r8CksH9QkNpOnarAhg2djhcAABSNrdW1veoN0sYzq/TBby8qOTPJZv86dero66+/1oABA4ocg6+vr15++WUNHDhQd955p86fP2+13dH4A3po/e16tNNz6hU6OF9SWPr7fJ588skixwIAAAC4ksmwtuzBRWbNmqUuXbqoS5cuqlWrlk6fPq3GjRtLkiZNmqT58+cXOsbx48fVqlUrZWZmqnPnzvr5559VsWJF8/PJycnq27evfv31V/n4+OjIkSMuX4URGRmp+vXrS5LOnj2r0NBQl44P++385z918r//dftxmtx8s7q99JLbjwMAAKzr0qWLfv3113z7u9bpq13ntxbYd+TIkZo3b55q1qzpsnhiY2N1991368cffyywna34unTpot02PskEwD34Ow4AANvcWlP4+eef18iRI50qI/HOO+8o83+rPj/44AOLhLAkVapUSR988IEkKTMzU++++26Rj4XSr26fPpK7S4SYTH8fBwAAlIgzZ85YTQhLKjAh7Ofnp/fff18//PCDSxPCkhQcHKyVK1fqvffek5+fn812tuLbs2eP/vrrL5fGBAAAABSVW5PCzjIMQytWrJAktWzZUt26dbParlu3bmrRooUk6b///a/Vmm8oHxoMHaoBn3+uiiEhbhm/YkiIBs6dqwZDh7plfAAAULhly5Y53Kdly5bavXu3pk6d6rZ7TJhMJj366KPatWuX+XdPRxTlvAAAAAB3KNVJ4VOnTikqKkqS1Ldv3wLb5jwfGRmp06dPuzs0lKDa3bpp2LJlqtevn0vHrdevn4YtW6ZaBdxpHAAAuJ+tesK23Hvvvfr111/Vvn17N0VkqUOHDoqIiNDkyZMd6ufoeQEAAADuUmw3miuKP/74w/y4ZcuWBbbN/fwff/xhrl3sSWJjY0s6hGLVatYsBbRrpz8/+kjZGRlFHsfL11fNp0xR/Vtu0ZXMTF3xsHkEAKA0uXDhgrZv325X28DAQL311lu66aablJycrOTkZDdHZ+mVV15R165dNW3aNF25cqXQ9uHh4Tp48KBTpdWA0iY4OLikQwAAAEVQqpPCZ8+eNT8u7KYAOTcQyNvPHpGRkQU+b+tO06VNiJtKKpR2Dfz99UhoqOr5+zvcNyotTR+cOKGzDz4oPfigG6IDAADukpiYqPvuu0/33XdfSYdiF8Mw1LZt25IOA3ApSvcBAFA2leqkcO4VFwEBAQW2rVy5svnx1atXHTpO7oQyyp6/0tL07MmTmt24sRpWqGB3vzOpqZp96pTS+UUWAAAAAAAAHqRU1xROTU01Py7oLs+S5J9rlWhKSorbYiptYmNjZTKZ3HZDlbLCkBTi6+tQnxBfX2W7JxwAAADAI+T8LeJppewAACjrSvVK4Qq5Vn2mp6cX2DYtLc38uGLFig4dp7ByE+fPn9d1113n0JgoXm0qV1ZFb2+H+lT09lbbypW118GV5QAAAAAAAEBZVqqTwlWqVDE/LqwkRFJSkvlxYaUm8iqsXnFZc/jwYdWsWbOkwyhWB195RefXrXO438uTJmnYhx9a7PPE+SuqixcvqnXr1hb7mD/7MX/OYf6cxxw6h/lzjq35e/311zV//nzzPn9/f82ePVv33HNPmfpklGEY+uKLLzR79myLxQt33323XnvtNafH5/pzDvPnHGvzBwAAypZSnRTOnawt7GZwuVf7enqN4Jo1a3rUXYCzMzIUt2NHkfom/vqrvCVl5drnafPnasyfc5g/5zB/zmMOncP8OadmzZr67LPP1LJlS23evFn169fX448/XmaTT0899ZRuvPFGvfPOOzp79qz69++vadOmycfHPb+Cc/05h/kDAACepFQnhXP/AXDkyJEC2+Z+vlWrVm6LCaVP9O7dSk9MtPpc6MCB6jBtmva9+aYiN23K93zmlStqVbmyDuZaaQ4AAEqOj4+PZs6cqZkzZ5Z0KC7RunVrffbZZyUdBgAAAGChVN9ornHjxqpbt64kaevWrQW2/fnnnyVJ9erVU6NGjdwdGkqRs+vX59vn5eenLs89p97vvafAhg3V+/331fnZZ+Vl5YaF1+UqUwIAAAAAAACUd6U6KWwymXTTTTdJ+nsl8M6dO62227lzp3ml8E033VSm6s3BOdlZWflWAAc1barrFy1S87FjzdeCyWRS2Lhxun7RIgU1bWrRvnNgoLhiAAAAAAAA4ClKdVJYkh577DFz3bWpU6cqJSXF4vmUlBRNnTpV0t8fN3zssceKO0SUoJToaKXGxZm3m40Zo6GLFqlqWJjV9lXDwjR00SI1Gz3avC/Ix0c1fH3dHisAAAAAAABQGri1pvAvv/yi48ePm7cvXrxofnz8+HGLO0tL0l133ZVvjLCwME2fPl2vvvqqfv31V/Xs2VMzZ85U06ZNdeLECb322mvau3evJGnGjBlq3ry5W84FpVPFWrXU6IYblPDHH2r3yCOqP3hwoX18KlbUdbNmqXb37tr73ntau2+f4jIyiiFaAAAAAAAAoOS5NSn8+eefa8GCBVafCw8PV3h4uMU+a0lhSXrppZcUExOjL774Qnv37tXYsWPztZk8ebJefPFFp2NG2eLl7a0er75apL4NhgxRxY4ddXNIiIujAgAAAAAAAEqvUl8+QpK8vLw0d+5c/fjjj7rppptUt25d+fn5qW7durrpppu0evVqff755/LyKhOnAwAAAAAAAAAlxq0rhefPn5+vRIQzhg8fruHDh7tsPAAAAAAAAADwNCytBQAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAPQlIYAAAAAAAAADwISWEAAAAAAAAA8CAkhQEAAAAAAADAg5AUBgAAAAAAAAAP4lPSAcD1Ll68WNIhlBnW5or5sx/z5xzmzznMn/OYQ+cwf85h/pzD/DmH+XMOcwUAQNlnMgzDKOkgSrvIyEjVr19fknT27FmFhoaWcET/LzY2ViEhISUdBgAAAAAPFhMTo+Dg4JIOw0Jp/jsOAICSRvkIAAAAAAAAAPAgJIUBAAAAAAAAwIOQFAYAAAAAAAAAD8KN5sqhw4cPq2bNmiUdRplw8eJFtW7d2mIf82c/5s85zJ9zmD/nMYfOYf6cw/w5h/lzDvPnHGvzBwAAyhaSwuVQzZo1S91NHsoS5s85zJ9zmD/nMH/OYw6dw/w5h/lzDvPnHOYPAAB4EspHAAAAAAAAAIAHISkMAAAAAAAAAB6EpDAAAAAAAAAAeBCSwgAAAAAAAADgQUgKAwAAAAAAAIAHISkMAAAAAAAAAB6EpDAAAAAAAAAAeBCSwgAAAAAAAADgQUgKAwAAAAAAAIAHISkMAAAAAAAAAB6EpDAAAAAAAAAAeBCSwgAAAAAAAADgQUgKAwAAAAAAAIAHISkMAAAAAAAAAB6EpDAAAAAAAAAAeBCSwgAAAAAAAADgQUgKAwAAAAAAAIAHISkMAAAAAIXITE1VTESEMlNTSzoUAAAAp5EUBgAAAIBChE+frg0TJ2r7jBklHQoAAIDTSAoDAAAAQAGSL1xQ1ObNkqTITZuUHB1dwhEBAAA4h6QwAAAAABTg7MaNltsbNpRQJAAAAK5BUhgAAAAACnB2/foCtwEAAMoaksIAAAAAYENqXJxiIyIs9sVGRCg1Pr6EIgIAAHAeSWEAAAAAsCFy40YZ2dkW+4zsbEXmKSkBAABQlpAUBgAAAAAb/rJRKoISEgAAoCwjKQwAAAAAVqRduqTo3butPndh1y6lX75czBEBAAC4hk9JBwAAAAAAxa2Wn59uCw5WFW9vSVLE9Ony8/OzaJN++bKMzEyr/Y3MTG267z75BQXZPIZ/UJDaTp2qwIYNXRc4AACAC5AUBgAAAOBxbqpZUz1yJXTjf/3V4THiDx0qtI23v7+6vfSSw2MDAAC4E+UjAAAAAHicfVeuKNsw3HsQk0l1+/Rx7zEAAACKgKQwAAAAAI+z+8oVvXLmjOIzMtwyfsWQEA2cO1cNhg51y/gAAADOICkMAAAAwCMdTk7W0ydPKuLKFZeOW69fPw1btky1unZ16bgAAACuQlIYAAAAgMe6mpWlt8+eVYtHH5VXnhvNOcrLz0+dnnlGfebMUYVq1VwUIQAAgOuRFAYAAADg8RqMGqWhCxcqsEmTIvUPbNJEQ7/7Ti0mTJDJZHJxdAAAAK5FUhgAAAAAJFVr2VLXf/+9qoaFOdSvaliYrv/+e1Vr0cJNkQEAALgWSWEAAAAA+B+Tl5euRkU51OdqVJRM3t5uiggAAMD1SAoDAAAAwP+c375dmUlJDvXJTErShe3b3RQRAACA65EUBgAAAID/Obt+fbH2AwAAKAkkhQEAAABAUnZGhqI2by5S38hNm5SdkeHiiAAAANyDpDAAAAAASIrevVvpiYlWnwsdOFAjV69W6IABVp9PT0xU9J497gwPAADAZUgKAwAAAICsl4Dw8vNTl+eeU+/33lNgw4bq/f776vzss/Ly87OrPwAAQGlEUhgAAACAxzOyshS5aZPFvqCmTXX9okVqPnasTCaTJMlkMils3Dhdv2iRgpo2tWgfuXGjsrOyii1mAACAoiIpDAAAAMDjpcbGKjUuzrzdbMwYDV20SFXDwqy2rxoWpqGLFqnZ6NH/P0ZcnFKio90eKwAAgLN8SjoAAAAAAChpFYKD1eiGG5Twxx9q98gjqj94cKF9fCpW1HWzZql29+468OGHqta6tSrVrl0M0QIAADiHpDAAAAAAj2fy9laPV18tUt8GQ4aowZAhLo4IAADAfSgfAQAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHgQksIAAAAAAAAA4EFICgMAAAAAAACAByEpDAAAAAAAAAAehKQwAAAAAAAAAHiQMpUUTk9P19y5c3X99derTp068vf3V0BAgFq0aKF77rlHO3fuLOkQAQAAAAAAAKBU8ynpAOx19uxZjRgxQgcOHLDYn56ermPHjunYsWOaN2+eHn/8cb311lsymUwlFCkAAAAAAAAAlF5lYqVwZmamRUK4Xbt2mj9/vnbs2KGffvpJ//rXv1S5cmVJ0jvvvKM333yzJMMFAAAAAAAAgFKrTKwUXrFihTkh3L17d23btk3e3t7m5wcPHqwbb7xR3bt3V0ZGhl555RU9/vjj8vEpE6cHAAAAAAAAAMWmTKwUDg8PNz9++umnLRLCOTp16qSRI0dKkhISEnTkyJFiiw8AAAAAAAAAyooykRROT083P27SpInNdk2bNjU/TktLc2tMAAAAAAAAAFAWlYmkcFhYmPnxyZMnbbY7ceKEJMlkMql58+ZujwsAAAAAAAAAypoyUXR33Lhxeu6555SYmKjXXntNw4cPz1dCYu/evfrxxx8lSWPHjlVgYGBJhFoqXLx4saRDKDOszRXzZz/mzznMn3OYP+cxh85h/pzD/DmH+XMO8+cc5goAgLLPZBiGUdJB2GP58uWaMGGCUlJS1LFjRz322GMKCwvT1atXFR4errfeektXrlxRhw4dtGbNGtWuXdvusSMjIwt8/vz587ruuuskSWfPnlVoaKhT5+JKsbGxCgkJKekwAAAAAHiwmJgYBQcHl3QYFiIjI1W/fn1Jpe/vOAAASlqZWCksSbfccot+/fVXvf322/riiy80adIki+dr1aql559/Xvfff78qV67s0Ng5vygAAAAAAAAAQHlXJmoKS1JGRoa+/fZbrVy5UtYWN0dHR2vhwoXasmVL8QcHAAAAAAAAAGVEmVgpnJSUpOHDh+vnn3+Wt7e3nnzySd19991q0qSJUlNTtWvXLv373//WL7/8ohtuuEHvvPOO/vGPf9g9/tmzZwt8Pnf5CAAAAAAAAAAoy8pEUnjWrFn6+eefJUlz5861KB3h5+enwYMHq3///hoyZIg2b96sJ554Qv3791e7du3sGr+81ZY6fPiwatasWdJhlAkXL15U69atLfYxf/Zj/pzD/DmH+XMec+gc5s85zJ9zmD/nMH/OsTZ/AACgbCn1SWHDMDRv3jxJUlhYWL5awjl8fHz0wgsvqFevXsrOzta8efP0zjvvFGeopUbNmjVL3U0eyhLmzznMn3OYP+cwf85jDp3D/DmH+XMO8+cc5g8AAHiSUl9TODo6WvHx8ZKkjh07Fti2U6dO5sdHjhxxa1wAAAAAAAAAUBaV+qSwj8//L2bOzMwssG1GRobVfgAAAAAAAACAv5X6pHD16tUVGBgoSdqxY0eBieGtW7eaHzdu3NjtsQEAAAAAAABAWVPqk8JeXl4aMWKEJOncuXN66aWXrLZLSEjQzJkzzdsjR44slvgAAAAAAAAAoCwpEzUW/vWvf2nFihVKTk7W7NmzFRERoUmTJqlJkyZKTU3Vzp079e677+qvv/6SJA0cOFBDhgwp4agBAAAAAAAAoPQpE0nhli1basWKFRo3bpwuXryolStXauXKlVbbDhgwQIsXLy7mCAEAAAAAAACgbCgTSWFJGjRokI4cOaK5c+dqzZo1OnTokC5duiQfHx/Vrl1bXbp00fjx43XjjTfKZDKVdLgAAAAAAAAAUCqVmaSwJNWoUUNPPvmknnzyyZIOBQAAAAAAAADKpFJ/ozkAAAAAAAAAgOuQFAYAAAAAAAAAD0JSGAAAAAAAAAA8CElhAAAAAAAAAPAgJIUBAAAAAAAAwIOQFAYAAAAAAAAAD0JSGAAAO2SmpiomIkKZqaklHQoAFDveAwEAAMoXksIAANghfPp0bZg4UdtnzCjpUACg2PEeCAAAUL6QFAYAoBDJFy4oavNmSVLkpk1Kjo4u4YgAoPjwHggAAFD+kBQGAKAQZzdutNzesKGEIgGA4sd7IAAAQPlDUhgAgEKcXb++wG0AKM94DwQAACh/SAoDAFCA1Lg4xUZEWOyLjYhQanx8CUUEAMWH90AAAIDyiaQwAAAFiNy4UUZ2tsU+IztbkXk+Tg0A5RHvgQAAAOUTSWEAAArwl42PSfPxaQCegPdAAACA8omkMAAANqRduqTo3butPndh1y6lX75czBEBQPHhPRAAAKD88inpAAAAKAmJZ87owAcfKK2ApEb65csyMjOtPmdkZmrTfffJLyjIZn//oCC1nTpVgQ0bOh0vALgS74EAAACejaQwAMAjHf70U51Zs8apMeIPHSq0jbe/v7q99JJTxwEAV+M9EAAAwLNRPgIA4JHq9ukjmUzuPYjJ9PdxAKCU4T0QAADAs5EUBgB4pAZDh2rA55+rYkiIW8avGBKigXPnqsHQoW4ZHwCcwXsgAACAZyMpDADwWLW7ddOwZctUr18/l45br18/DVu2TLW6dnXpuADgSrwHAgAAeC6SwgAAj1ahWjX1mTNHnZ55Rl5+fk6N5eXnp07PPKM+c+aoQrVqLooQANyH90AAAADPRFIYAODxTCaTWkyYoKELFyqwSZMijRHYpImGfvedWkyYIJO763QCgAvxHggAAOB5SAp7iMzUVMVERCgzNbWkQwGAUqtay5a6/vvvVTUszKF+VcPCdP3336taixZuigwA3I/3QAAAAM9BUthDhE+frg0TJ2r7jBklHQoAlGomLy9djYpyqM/VqCiZvL3dFBEAFB/eAwEAADwDSWEPkHzhgqI2b5YkRW7apOTo6BKOCABKr/PbtyszKcmhPplJSbqwfbubIgKA4sN7IAAAgGcgKewBzm7caLm9YUMJRQIApd/Z9euLtR8AlCa8BwIAAHgGksIeIO8v6fzSDgDWZWdkmD9Z4ajITZuUnZHh4ogAoPjwHggAAOA5SAqXc6lxcYqNiLDYFxsRodT4+BKKCABKr+jdu5WemGj1udCBAzVy9WqFDhhg9fn0xERF79njzvAAwK14DwQAAPAcJIXLuciNG2VkZ1vsM7KzFZmnpAQAwPonKbz8/NTluefU+733FNiwoXq//746P/usvPz87OoPAGUF74EAAACeg6RwOfeXjV/O+aUdACxlZ2UpctMmi31BTZvq+kWL1HzsWJlMJkmSyWRS2Lhxun7RIgU1bWrRPnLjRmVnZRVbzADgKrwHAgAAeBaSwuVY2qVLit692+pzF3btUvrly8UcEQCUXinR0UqNizNvNxszRkMXLVLVsDCr7auGhWnookVqNnq0eV9qXJxSoqPdHisAuBrvgQAAAJ7Fp6QDQNEknjmjAx98oCuxsXqqQQOL5yKmT5efn5/SL1+WkZlptb+RmalN990nv6Agm8fwDwpS26lTFdiwoUtjB4DSqGKtWmp0ww1K+OMPtXvkEdUfPLjQPj4VK+q6WbNUu3t3HfjwQ1Vr3VqVatcuhmgBwLV4DwQAAPAsJIXLqMOffqoza9ZIktoGBFg8F//rr3aNEX/oUKFtvP391e2llxwPEADKGC9vb/V49dUi9W0wZIgaDBni4ogAoPjwHggAAOBZKB9RRtXt00f6X203tzGZ/j4OAAAAAAAAgHKDpHAZ1WDoUA34/HP516zplvErhoRo4Ny5ajB0qFvGBwAAAAAAAFAySAqXYbW7dVO3zz9XxJUrLh23Xr9+GrZsmWp17erScQEAAAAAAACUPGoKl3F+Vavq7bNnNbhaNY2vVUt+XkXP83v5+anj9OkKGz9eJneXpgAAAAAAAABQIkgKlxPrExJ0NDlZj4SGqp6/v8P9A5s0Uc8331S1Fi3cEB0AAAAAAACA0oLyEeXIX2lpevbkSQU0bepQv6phYbr+++9JCAMAAAAAAAAegKRwOWNISjl/3qE+V6OiZPL2dk9AAAAAAAAAAEoVksLlTJvKlZWVnOxQn8ykJF3Yvt1NEQEAAAAAAAAoTagpXM5cFxhYpH5n169XvX79XBsMAAAAAKDYGIahpKQkJSYmKjU1VVlZWSUdEgCgCLy8vOTn56fKlSsrICBAfn5+Lj8GSeFyxFvStVWqFKlv5KZNys7IkJevr2uDAgAAAAC4XXZ2tv766y+lpKSUdCgAABdIT0/X1atXFR0dreDgYNWoUUMmk8ll45MULkdaV66sABu1gUMHDlSHadO07803FblpU77n0xMTFb1nj+r06OHuMAEAAAAALmQYRr6EsMlkkjf3jgGAMikrK0uGYZi3Y2NjlZ6errp167rsGCSFy5EuVkpHePn5qdPMmWo2ZoxMJpN6v/++/vzuO/32+uvKTk+3aHt2/XqSwgAAAABQxiQlJZkTwt7e3qpdu7YCAgLk5cVthACgLDIMQ2lpaUpMTFRcXJwk6fLly6pRo4b8/f1dcgx+QpQTJkmd85SOCGraVNcvWqTmY8eal5ebTCaFjRun6xctUlDTphbtIzduVDY1pwAAAACgTElMTDQ/rl27tgIDA0kIA0AZZjKZVKFCBYWEhCgkJMS8PyEhwWXH4KdEOVHD11dBPv+/8LvZmDEaumiRqoaFWW1fNSxMQxctUrPRo837UuPilBId7fZYAQAAAACuk5qaKunvJEJAQEAJRwMAcKWqVauaHycnJ7tsXMpHlBNxGRn65dIlNaxQQSNef11tbr210D4+FSvqulmzVLt7dx348ENVa91alWrXLoZoAQAAAACukvW/T3x6e3uzQhgAyhlvb295e3srKyvL/H7vCiSFywlD0kfnzkmS7unTx6G+DYYMUYMhQ9wQFQAAAAAAAABn5JSFdSX+hQgAAAAAAAAAHoSkMAAAAAAAAAB4EJLCAAAAAAAAAOBBSAoDAAAAAAAAgAchKQwAAAAAAAAAHoSkMAAAAAAAAAB4EJLCAAAAAAAAbtaoUSOZTCbdddddJR2KW5T38wPKG5LCAAAAAAAAAOBBSAoDAAAAAAAAgAchKQwAAAAAAAAAHoSkMAAAAAAAgAPOnTunp556Stdee62CgoLk5+en2rVrq23btho3bpzmz5+vxMRESVK/fv1kMpl05swZSdKCBQtkMpksvvr162ce+/Tp0+b98+fPlyQtW7ZMw4cPV926deXj42PRPkdkZKSefvppXXvttapWrZoqVKigBg0aaMyYMdq8ebNd55WQkKAXX3xR3bt3V82aNeXv76+6devqpptu0rJly6z2cfT8JCkrK0vz58/X0KFDVbt2bfn5+alq1apq3ry5Bg4cqJdfflmHDx+2K2YAReNT0gEAAAAAAACUFdu2bdPIkSPNSd8c0dHRio6O1sGDB/Xdd9+pZs2aGjlypFPHMgxDEydO1FdffVVgu7lz52rq1KlKSUmx2H/27FmdPXtW33//vSZPnqyPP/5YPj7WU0GrV6/WhAkTdOnSJYv958+f1w8//KAffvhBI0aM0HfffaeAgIAin9PVq1c1fPhwbdu2zWL/5cuXdfnyZR0/flybNm3Sb7/9piVLlhT5OAAKRlIYAAAAAADADmlpaRo7dqwSExNVpUoVTZkyRf3791dISIgyMjJ05swZ7dixQ0uXLjX3mTdvnpKSkjR06FCdO3dON910k1588UWLcStXrmz1eO+++67279+v3r17a8qUKQoLC9OlS5d0+vRpc5svvvhC9957rySpTZs2euCBB9SxY0dVqlRJp06d0ty5c7V69WrNnTtXQUFBeuutt/IdZ/369brxxhuVlZWlRo0aacqUKeratasCAwMVFRWlRYsW6euvv9aPP/6oSZMmOXV+s2fPNieER44cqQkTJqhBgwaqUKGCYmNj9fvvv2vVqlUymUx2flcAFAVJYQAAAAAAyrns7GzFxcWVdBjFpkaNGvLycn3FzPDwcJ07d06S9O233+ZbCdy1a1eNHj1ab7zxhpKTkyVJjRs3liT5+vpKkqpWrao2bdrYdbz9+/dr4sSJmj9/vtUk6dmzZzV16lRJ0qRJk/T5559brATu2LGjRo0apX/+8596+eWX9e677+qBBx5QWFiYuU1SUpLuvPNOZWVlaciQIVq+fLkqVapkMcbIkSPVp08f3X///Vq2bJk2btyogQMHFun8vv/+e0nSbbfdpsWLF+d7fujQoXryyScVHx9v1xwBKBqSwgAAAAAAlHNxcXEKCQkp6TCKTUxMjIKDg10+7oULF8yP+/TpY7Odj4+PAgMDnT5e1apVNWfOHJurZt977z0lJyerbt26BZaGeP7557VgwQJFRUXpyy+/tFjJO2/ePEVHR6tChQr66quvLBLCud133336/PPPtXv3bs2bN8+cFHZUzhz27t27wHbVq1cv0vgA7MON5gAAAAAAAOxQp04d8+N58+a5/Xg33HCDqlSpYvP5FStWmNtVqFDBZjsfHx91795dkrRjxw6rY/Tt27fQfxzkJMLzjuGInDlctGiReTU1gOLHSuFy6OLFiyUdQplhba6YP/sxf85h/pzD/DmPOXQO8+cc5s85zJ9zmD/nMFfwZL169VKTJk108uRJPfbYY/rmm290yy23qG/fvurcubP8/Pxcerx27drZfC7npmyS9Mknn+iTTz6xa8zcq50l6ddff5UkrVu3zu46vnnHcMSkSZP0wgsvaPv27WrcuLFuv/12DRw4UL169XLL6m4A1pEULodat25d0iGUacyfc5g/5zB/zmH+nMccOof5cw7z5xzmzznMHwB7+Pr6auXKlbrtttv0xx9/aM+ePdqzZ48kqWLFiurbt6/uvPNOjRkzRt7e3k4fr1q1ajafi4mJKdKYuVfnZmRk6NKlS06N4ajnnntOUVFRmjdvnmJiYvThhx/qww8/lMlk0jXXXKNRo0bpoYceUq1atYp8DACFIykMAAAAAEA5V6NGjSInEcuiGjVquG3s1q1b68CBA1q5cqVWrlyprVu36sSJE0pJSdHatWu1du1avf3221q9erXTdZwLSixnZWWZHz/22GOaPHmyXWPmXs2ce4zRo0frueeeK0KUjvH19dXcuXM1bdo0LVy4UJs2bdKvv/6q9PR0HTx4UAcPHtTbb7+tr7/+WjfddJPb4wE8FUlhAAAAAADKOS8vLz6a70Le3t66+eabdfPNN0uSzp8/rzVr1ug///mPIiIiFBERoQceeEDLly93Wwy5E9/Jyclq06aNw2NUqFBBlSpVUnJysi5dulSkMYqqdevWeuGFF/TCCy8oJSVF4eHh+vbbb/Xll1/q6tWrGjdunE6cOGFRxxmA63CjOQAAAAAAACfUqVNH99xzj3bs2KFrr71WkrRq1SqlpKSY29hbr9dewcHBqlevniRpw4YNMgyjSON07NhRkhQeHu5UWQhnzq9ixYoaNGiQvvjiC73xxhuSpJSUFK1atarIYwIoGCuFy6HDhw+rZs2aJR1GmXDx4sV89eOYP/sxf85h/pzD/DmPOXQO8+cc5s85zJ9zmD/nWJs/AH/z9fVV37599dtvvykzM1OXLl1SxYoVJf29KleS0tLSXHa8G2+8UR999JFOnjypJUuW6Pbbby/SGOHh4UpKStKHH36oGTNmFCkWV53fwIEDzY+5sSXgPiSFy6GaNWvysSAnMH/OYf6cw/w5h/lzHnPoHObPOcyfc5g/5zB/AOyxbds21alTR82aNbP6fHp6urZu3SpJCggIsHhfqVOnjo4cOaITJ064LJ4ZM2boiy++UFpamh588EE1btxYnTt3ttl+9erVCg0NVbt27cz7HnzwQb3xxhu6ePGinnvuObVp00bDhg2zOUZ4eLiysrLUp08fi/32nF98fLx++eUX3XDDDTZXFv/000/mx40bN7Y5FgDnkBQGAAAAAACww8aNG/XCCy+od+/eGjFihNq1a6fg4GClpKTo2LFj+vjjj/Xbb79Jku699175+Px/2qVHjx7avHmz9uzZo1dffVXDhg1T5cqVJf1dPiGnFIQjGjdurI8//lh333234uPj1bNnT915550aOXKkGjRooMzMTEVGRmr37t1asmSJTpw4oZUrV1okhQMDA7Vw4UINGzZMaWlpGjlypG699Vbdeuutatq0qaS/ayZHRERo+fLl2r9/vz744IN8SWF7zi8xMVE33XSTGjVqpFGjRqlr165q2LChfHx8dP78ea1cuVKff/65JCk0NFQ33HCDw3MCwD4khQEAAAAAAOyUnZ2trVu3mlcEWzNq1Ci98sorFvumTJmijz76SPHx8Xr66af19NNPm5/r27evtmzZUqR47rrrLlWsWFH333+/EhMTNXfuXM2dO9dqWy8vL3OiNrdBgwZp3bp1mjBhgi5cuKDFixdr8eLFNo8ZGBiYb58j53f69Gm9/fbbNsevV6+efvjhB6uxAnANksIAAAAAAAB2ePLJJ9W1a1etX79eO3bs0Llz5xQTEyNJql27trp27aqJEydq+PDh+frWq1dPu3fv1iuvvKKtW7cqMjJSqampLolrzJgxGjJkiD799FOtXbtWhw8fVkJCgnx9fVW7dm1dc8016t+/v2677TbVr1/f6hgDBgzQiRMnNG/ePK1atUq///674uLi5OXlpeDgYLVq1Up9+/bVrbfeqhYtWhTp/Bo2bKh9+/Zp/fr12rRpk06ePKno6GhdvXpVVatW1TXXXKMbbrhB999/v6pUqeKSuQFgHUlhAAAAAAAAO1SqVEnDhg0rsOZuQZo2bWouj2BLo0aNZBiGw2NXq1ZNM2fO1MyZM4sUm/T3+T388MN6+OGHi9S/sPMzmUxq37692rdvr+nTpxc1TAAu4FXSAQAAAAAAAAAAig9JYQAAAAAAAADwICSFAQAAAAAAAMCDkBQGAAAAAAAAAA9CUhgAAAAAAAAAPAhJYQAAAAAAAADwICSFAQAAAAAAAMCDkBQGAAAAAAAAAA9CUhgAAAAAAAAAPAhJYQAAAAAAAADwICSFAQAAAAAAAMCDkBQGAAAAAAAAAA9CUhgAAAAAAAAAPAhJYQAAAAAAAADwICSFAQAAAAAAAMCDkBQGAAAAAAAAAA9CUhgAAAAAAAAAPAhJYQAAAAAAAADwICSFAQAAAAAAAMCDkBQGAAAAAAAAAA9CUhgAAAAAAAAAPAhJYQAAAAAAAA8xf/58mUwmmUwmnT592u7n7Hm+PPGkc80tIyNDLVq0kMlk0qJFi0o6nDLvoYcekslk0qRJk0o6lHxICqPUS0lJUWRkpFJSUko6FAAAAACAh9uyZYs5WWjP1/z580s6ZMBuH3zwgY4dO6ZWrVrp9ttvL+lwiiQmJkarVq3Sv/71Lw0bNkw1a9Y0vx7vuuuuIo158eJFvf766+rZs6dq164tf39/1a1bV127dtWMGTO0Y8cOq/2efvpp+fn56auvvtKePXucOCvXIymMUm316tVq0qSJ6tevryZNmmj16tUlHRIAAAAAoBDZmZladcMNWj5ggFbdcIOyMzNLOiQUA09ZXVtez/Pq1at65ZVXJEn/+te/5OVVNtOGtWrV0g033KAXXnhBa9euVVxcnFPjLV68WC1bttTMmTO1fft2RUdHKz09XefPn9fu3bv15ptv6rXXXrPat379+po0aZIMw9Czzz7rVByu5lPSAQC2xMfH684771R8fLwk6cKFC5o4caKOHTum6tWrl3B0AAAAAABbLv7+uxJPnpQkpUiK279fwddeW7JBucGUKVP00EMPFdgmNDS0mKKxz1133VXk1ZLO9C1rPOlcc3z00Ue6ePGi6tevr9GjR5d0OC5Rv359tWrVSj/99FOR+n/55Ze6++67lZ2drZCQEE2ZMkW9evVS9erVdeHCBZ04cUIrV66Ur6+vzTGmTZumzz77TD/99JP27NmjLl26FPV0XIqkMEqtJUuWmBPCOeLi4rR06VLdd999JRQVAAAAAKAw53/5xWL73LZt5TIpHBISojZt2pR0GIDTsrKyNGfOHEnSuHHjyuwqYenvVc5dunRRly5dVKtWLZ0+fVqNGzd2eJw//vhD999/v7Kzs9W7d2+tXLlSQUFB+dpNnTpV6enpNsdp0aKFrr32Wv32229677339PXXXzscizuU3e8wyr2lS5c6tB8AAAAAUDqc27bNcjtPkhhA6bJ+/Xr99ddfkqQ77rijhKNxzvPPP6+RI0eqVq1aTo0zdepUpaWlqWbNmlq2bJnVhHAOPz+/AseaMGGCpL9zWpcvX3YqLlchKYxSKSEhQZs2bbL63MaNG5WQkFDMEQEAAAAA7JESG6uEP/6w2Jdw+LBSYmNLKKLS5eDBg3rxxRc1dOhQhYaGyt/fXwEBAWrevLkmTZqknTt32j1WeHi47r33XrVo0UKBgYEKCAhQy5YtdfPNN+vLL79UYmJivj7O1MO11Tfn5nt33323eV/jxo3z3XRvy5YtysjIUO3atWUymTRs2LBCj3nw4EFz/5dfftmheCXp3Llzeuqpp3TttdcqKChIfn5+ql27ttq2batx48Zp/vz5ds+TI+dpze7du3XfffcpLCxMAQEBqly5slq2bKmHH35Yf/75p1vOw17ff/+9JKl58+Zq27atzXa5vx9LliyR9HdCeezYsWrQoIH8/f1Vr1493X///Yotw6/5I0eOaOPGjZKkRx55RDVr1nRqvFtvvVWSlJqaqhUrVjgdnytQPgKl0g8//KBMGzciyMzM1MqVKzVx4sRijgoAAAAAUJi8pSPM+8PD1eTmm4s3mFJmy5Yt6t+/f7796enpOn78uI4fP64vv/xSTz31lPmGX9akpKRo8uTJWrhwYb7njh49qqNHj2rFihWaNWuWZs+e7cpTcJqvr68mTpyoN954Qz/99JOioqJUr149m+2/+OILSZK3t7cmTZrk0LG2bdumkSNH5kuWRkdHKzo6WgcPHtR3332nmjVrauTIkY6fjJ0yMzP16KOP6qOPPsr3XM7367PPPtOHH35otVxmcZzH5s2bJUndunUrsN3vv/9ufty4cWPddttt+T7Rfe7cOX322Wf6+eefFRERocqVKxcpppK0ePFi8+Pbb7/d/DghIUEXL15U9erVVaNGDbvHa9iwoerUqaPz589ry5YtpSKnRVIYpVJhJSKWLl1aKl5AAAAAAOCp9vz734q0siIy48oVq+1/fekl/f7++/n2h/brpy7/+perwyuVMjMzVblyZY0YMUIDBgxQy5YtFRgYqJiYGB06dEjvv/++zpw5o1dffVVhYWEWK1JzZGdn66abbtL69esl/b2y86GHHlLnzp1VqVIlnT9/Xtu3bzev/CwOXbp00YEDB7RixQo9++yzkqR169apbt26Fu1y6rree++9euONN5Sdna0vv/xSTz/9tNVxMzIyzPVXhwwZUmDyOK+0tDSNHTtWiYmJqlKliqZMmaL+/fsrJCREGRkZOnPmjHbs2OFQiUpHzzPH5MmT9eWXX0qShg0bpgkTJigsLEwmk0n79u3Tu+++q0OHDun+++9X7dq1dcMNN7j1PPKKjIw0r4Yu7CZoOUlhb29vPfroo9qzZ4/uu+8+3XzzzapVq5b+/PNPvfDCCzp8+LCOHj2qL774QlOnTi1ybCUlZ8V+UFCQWrVqpW+++Uavv/669u/fb27TuHFjTZo0SdOmTVNAQEChY3bp0kU//PCDtuUpr1NSSAqj1ElMTNS6desKbLNu3TpduXJFVapUKaaogNIpMzVV8YcOqfo118inQoWSDgcAAAAeIjMlRSdXrFBWaqr9fZKTlZmcnG//qR9+UMcZM+RTsaIrQywWMTExOnjwoM3nQ0JCFBISYt7u0KGDIiMjVbVq1Xxthw4dqkceeUQjR47U+vXr9fzzz2vixIny9va2aPfBBx+YE8K33HKLFi5cKH9/f4s2I0aM0AsvvKALFy44cXb2q1y5stq0aaNff/3VvC8sLEyNGjWy2j4sLEx9+vTRzz//rHnz5tlMCq9atcpcgmDy5MkOxRQeHq5z585Jkr799tt8K2i7du2q0aNH64033lCylevSGkfPU/p7UVtOQvizzz7Tvffea/F8586ddccdd2jEiBHatGmTHn30UQ0bNkw+Pj5uO4+8tm/fbn7csWPHAtvmJIWzsrJ08OBBbdu2TV27djU/36lTJ/Xu3VtNmzZVWlqatm/fbjUpbDKZihRrbvPmzdNdd93l9DjWHD58WJLUqFEjTZ06VR9++GG+NqdOndLs2bO1ZMkSq/8cyKtTp0764YcfdPz4ccXExFi8N5QEagqj1Pnxxx8LvGuj9Pd/yn788cdiiggovcKnT9eGiRO1fcaMkg4FAAAAHuTSn38qKy3NJWNlpqbqUiH1VEurjz76SG3btrX59Z///Meifc2aNa0mhHP4+fnpjTfekCSdOXNG+/bts3g+Ozvb/Hy9evX05Zdf5ksI5/Dy8io0SVWScpKjf/75p8LDw622mTdvnqS/5y336ll75E6I9+nTx2Y7Hx8fBQYGOjS2I3LKgNxyyy35EsI5KlSooDlz5kiSTp8+bVGTuDjOIzIy0vy4sERl7vIRn376qUVCOEe9evXUvHlzSdLVq1eLFFNJi4+Pl/R3beEPP/xQVatW1ccff6yYmBilpqZqz5495prYBw8e1O23367s7OwCx8w9t1FRUe4L3k6sFEapY+9HHpYuXaqxY8e6ORqg9Eq+cEFR/6v7FLlpk5Kjo1XJyburAgAAAPao2a6d+n74obbPnGmzXIQ9fKtUUY/XX1fNdu1cGF3ZkZaWpujoaF29etWcUDIMw/z877//rk6dOpm39+3bZ04m3XfffXZ9ZL20uu222/Too4/q0qVLmjdvnnr27GnxfHR0tNasWSNJuuOOO+Tn5+fQ+HXq1DE/njdvnv7xj384H7SDoqKiFBERIUkaPXp0gW1btWqlmjVr6uLFi9qxY4cGDRokqXjOI/cN4apVq2azXUxMjKKjoyVJAwYM0JgxY2y2TUlJkSSbdXcPHDhQlFAthIaGOj2GLUlJSZL+fo16e3trzZo1FvWWO3furFWrVmnkyJFas2aNtm/frmXLlum2226zOWb16tXNj0vDTfhICqNUSU5ONr/pF2b16tVKTk5WpUqV3BwVUDqd/d+dUM3bGzaoxYQJJRQNAAAAPE29vn01dNEibZs6VZdPnHC4f1DTpur9wQcKbNjQDdEVj6LcyC0pKUnvv/++vvvuOx06dEhZWVk22168eNFie+/evebHBa0aLQsqVqyo8ePH6z//+Y++//57vffeexY3JPvqq6/MN6C/5557HB6/V69eatKkiU6ePKnHHntM33zzjW655Rb17dtXnTt3djjJXBS5y0yMGzdO48aNs6tf7tXBxXEeOatipYKTwrlXrheU5E5LSzPXKG7RooXVNm3atHEsyGJWoUIFc2L49ttvt3oDPi8vL73xxhvmPNbChQsLTArnntu4uDgXR+w4ykegVFm7dq3VGjgVfPLXmklOTi609jBQnp39Xx0xW9sAAACAuwU2bKghCxcq9H+rGu1Vf9AgDVm4sEwnhIvi9OnTatu2rZ555hnt37+/wISw9P+rLXPkThLnXkFaVt13332SpCtXruT71HBO6YguXbqobdu2Do/t6+urlStXqlWrVpKkPXv26JlnnlHPnj1VtWpVDRs2TN9++22h3wNnxMTEFKlf7rxIcZxHhVz3p8l7zeWWu3RE3trGuR08eNAcT7sy+imA3PewyikTYc0111xjvgHinj17Chwz99xWLAU11FkpjFJlyZIlVvePaF5JS/9Istr+lltucXdYQKmTGhen2P99DClHbESEUuPjVSHXR1IAAAAAd/OtXFktJ05U5IYNdvdpOWmSfHOtCvUUd955p06dOiWTyaS7775bY8eOVatWrRQcHGyuDZydnW2+uVzuUhJ5ueJGXSWtQ4cO6tSpkyIiIjRv3jxNnDhRkrRr1y7zjb6Ksko4R+vWrXXgwAGtXLlSK1eu1NatW3XixAmlpKRo7dq1Wrt2rd5++22tXr3aLTf9yp2o/eabb+xOkOZdrevu8wgODjY/jo+Pt0iI5paTFK5Vq5Y5EWpN7hXFHTp0sNqmoBs02is0NLTAGt3OqF+/vnnFdmFlKurXr6+oqKhC/wmQe0V27jkvKSSFUWqkpaVp1apV+fZXq+Cl6+r5a9OpFCWkWhbtXrVqldLS0mwW1gfKq8iNG2XkKWJvZGcrcuNGNbv99hKKCgAAAJ7q/C+/ONT+3LZtCr72WjdFUzodOXJEv/xvnp5++mm99NJLVtslJCTYHKNmzZrmx+fOnbP50fyy5N5771VERIS2bt2qkydPqkmTJuZVwhUrVrS75IIt3t7euvnmm3XzzTdLks6fP681a9boP//5jyIiIhQREaEHHnhAy5cvd/ZU8sldT9dkMjlVMsGd55E7QZmQkKCGNlbw5ySFO3bsWOB4OWVOatasaTN5XJTV33nNmzdPd911l9PjWHPNNdeYV/4Wtgo753kfn4LTrLlf26UhKUz5CJQa69ev1xUrNyhoW8tPXiaT2obkr5OTmJioDQ78NxooL/6yUSqCEhIAAAAoCee2bXOsvYNJ5PLg0KFD5scF3TQ9dx3avK7NlUj/+eefXROYCxVl9fL48eNVqVIlGYahBQsWKCUlRd99950kadSoUQoKCnJpjHXq1NE999yjHTt2mOdz1apVBZZNyMve88ydPP3pp58cC7QQrjiPHLkTtMeOHbPaJj09XUeOHJFkf1LY1irhsiB3ze4ThdRMP3nypCQVuHpa+v+5rVy5spo0aeJkhM4jKYxSI2/9oBw5yeC2tawXT7fVDyiv0i5dUvTu3Vafu7Brl9IvXy7miAAAAODJUmJjlfDHHw71STh8WCmxsW6KqHTKuWmaJKv30snx8ccf23yuffv2ql+/viTp888/19WrV10XoAvkrk2blpZmV5/AwEDzTcsWLFigJUuW6PL//qaZPHmy64P8H19fX/Xt21fS39+bS5cu2d3X3vNs1qyZWrduLUn67rvv9NdffxUt2AI4cx45OnfubK5xa6su7qFDh8zX8LUFrPI3DEP79++XVHBS2DAMp7/ctUpYkm688Ub5+vpKkpYtW2az3datW803jevdu3eBY+bMbbdu3QpdVVwcSj4CQFJGRoZWrFiRb3+gv0kNgv6+TBsE+SjQ36TENMuaSitWrFBGRob5xQqUZUmRkTr22mtKKyCxm375soxcv1DmZmRmatN998mvgP+m+wcFqe3UqR53Uw8AAAC4h61Vv1VbtNA199+vQ598oktWVh+e/+UXNfGge8Q0b97c/HjBggXq2rVrvjYfffSR/vvf/9ocw8vLSzNmzNCjjz6qyMhITZw4Ud999538/PIvosrOztaFCxdUt25dl8Rvj9w3vztx4oTd5S3uvfdezZ8/X2fOnNGTTz4pSWrcuLH69etX5Fi2bdumOnXqqFmzZlafT09P19atWyVJAQEBDn2c35HzfPbZZzV+/HilpqZq1KhRWrNmjc1jpaWlae7cubrnnnvMiWd3nkcOPz8/XXfdddq6dat221iAlPsmcwWtFP7zzz/N/6woyyuFa9SooXvvvVcfffSR1q9fr++++y7fCv8rV67oscceM28/8MADNsdLS0szJ8sLSx4XF5LCKBU2b95stW5S2xB/ef3vYxleJpPahPhp+1nL/8LFx8dry5YtGjx4cLHECrjT6a+/1rm1a50aIz7Xx9Js8fb3VzcbNcwAAAAAR5zPUzrC5OOja+6/X9fcd5+8/fwUOmCADn36qQ599pnF4oZzHpYU7tixo9q0aaODBw/qo48+0qVLlzRhwgTVqVNHZ8+e1ddff60lS5aoZ8+eCg8PtznOww8/rJUrV2r9+vVavny52rZtq4ceekidO3dWpUqVdOHCBe3cuVMLFy7U+PHjNXv27GI9xwoVKig1NVXPPfecfHx81KhRI3l5/f1B9Xr16plXpObWs2dPtWrVSn/88Yf55l533323UzfT27hxo1544QX17t1bI0aMULt27RQcHKyUlBQdO3ZMH3/8sX777TdJfyelHVm56ch5jhs3TuvWrdOCBQsUERGh1q1b64EHHlDfvn0VHByspKQknThxQtu2bdOyZcsUHx9vvuGeu88jtxEjRpiTwleuXMl3s7mcpHBgYGCBpQ9ySkdIJZcU/uWXX3T8+HHz9sWLF82Pjx8/rvnz51u0t7Xi+Pnnn9ePP/6ov/76S3feeafCw8M1atQoBQYG6sCBA3rttdfMJTWmTJmiLl262Izp559/VkZGhqS/57o0ICmMUqGw0hE52oX450sK5/QnKYzyoGa3bjq3bp1UwF2GnWYyqW6u+kgAAACAM0IHDFDU1q3KSk1V1RYt1P2ll1StVSvz895+fmr3yCMKHThQO595RpeOHZN3xYoK7d+/BKMufiaTSV999ZUGDBighIQELVy4UAsXLrRo07ZtWy1evLjA1b1eXl7673//q0mTJmnJkiU6duyYxWrFklSlShU9+uijev311/Xbb79p6NChFs9v3rzZ5urfyZMna/r06ZL+PkdXlAbIzs7W1q1bzStprRk1apReeeUVh8Z19Dznzp2rWrVq6a233tLFixf10ksv2bzRYOXKleXt7V0s55Hb+PHj9fTTTys1NVXLly+3SExL/58U7tChQ4HJ+n379kn6u8RGy5YtixyPMz7//HMtWLDA6nPh4eH5/uli61oLDg7W2rVrdeONN+r48eOaM2eO5syZk6/dPffco/fee6/AmL799ltJUosWLdS5c2c7zsL9qCmMEpeVlWX14zEBfiY1rmb5f4vG1XxU2Tf/m8/y5csLvRskUBbU6tdPAz7/XBVDQtwyfsWQEA2cO1cN8vzSAgAAABRVo5EjNWzZMnWcPl1Dv/vOIiGcW/VWrTR00SJ1nD5dw5YuVaORI4s50pLXoUMH7du3Tw8++KAaNmwoX19fVa9eXdddd53efPNN7d6926I0gS2VKlXS4sWLtWnTJt15551q3LixKlasqCpVqqhly5YaNWqUvv32W82YMaMYzsrSq6++qs8++0y9e/dW9erV8yU4bbnzzjvNjwcPHmyunVxUTz75pFavXq3HH39c3bp1U4MGDVShQgVVqFBBjRo10pgxY/Tjjz9q6dKlFjWC7eXIeXp7e+u1117T4cOHNW3aNHXs2FHVqlWTt7e3qlSpomuuuUYTJkzQggULdP78eYvV1O4+jxz16tXTTTfdJEn65ptv8j2fU/rA3pvMtWnTxu7vfWnWqlUr7du3T2+88Ya6du2q6tWry8/PT6GhoRozZow2bdqkuXPnFljSNCfRLkkPPfRQcYVeKJNhuHM5WvkQGRlpfjM6e/asQkNDSzii/xcbG6uQPMmjmJiYItWQKSlbt261+p/CrvX8dVvrgHz7lxy+ql1R+VcLb9261eLukPYoD/NXkpg/5xQ0f6kJCdr17LOK2rLFZcer16+fur74oipUq+ayMUsS15/zmEPnMH/OYf6cw/w5h/lzTlmZv9L8d5yr/fnnn8rMzJSPj49F3VqgLNm4caMGDRokSVq0aJH55nMoPjt37lT37t3l7e2t48ePq1GjRiUdUrnw9ddf684771T16tV1+vTpfKU57OGO93lWCqPE2SwdUSt/oXwpf0mJwsYByqIK1aqpz5w56vTMM/KyctMIR3j5+anTM8+oz5w55SYhDAAAAKB8+eKLLyT9fYOvnBWrKF7dunXTsGHDlJWV5VQpCvy/7Oxsvfzyy5Kk6dOnFykh7C4khVGisrOzrSZzK/qY1Kya9aX3Tav7qqJP/hISS5f+H3v3HR5Vmfd//DOTZJKQkBBSqKEbykpEkb66iCvgqutPH0WBtWJZnxXLKhbsrnXXFUVXXR8bFpASiktRgSBICYFIQhBUhFASISEBUkmbmd8fLNE4M2mTaZz367q4rsl97nOfb+5rRPLJme9Jkc1ma/UaAV8xmUzqO3myxs2Zo6gGGvk3JKpXL4379FP1nTzZrYc0AAAAAICn7Nu3T/Pnz5d08gFzoaGhPq7IuF588UUFBQXp/fff14EDB3xdTsCbP3++du3apcTERL/p/X0KoTB8avPmzfrpp58cxgfEWxRkdh5gBZtNGhDveOdkXl6e0tPTW71GwNdi+vXT+Hnz1C4pqVnntUtK0vh58xTTt6+HKgMAAACAlsnLy9Pu3bv15Zdf6sorr1RNTY3CwsL8LjgzmoEDB+qDDz7Q9OnTCYVbgdVq1RNPPKGPP/64Xq9ofxDc+BTAc1y1fEh20Tril8czDjn2FU5JSdHw4cNbpTbAn5jMZpXl5TXrnLK8PJlOg8b+AAAAAE4/kydP1tq1a+uNPf300+rSpYuPKsIpf/rTn3xdwmlj0qRJvi7BJe4Uhs/Y7XanoXBokElJsa6f2ihJZ7QPUaiTrCslJUU8OxGno0MbN6q2vLxZ59SWl+vwxo0eqggAAABw7tprr9WAAQPq/Zk4caKvy4KfatOmjQYNGqQPPvhA06ZN83U5gGFwpzB8Ztu2bdq3b5/DeP/4EAW7aB1xSkiQSf3jLMrMr643npOTo8zMTJ199tmtWSrgcwdXrmzxeV1Gj27dYgAAAAAXCgoKNG/ePIebdb7//nvNnDlT8fHxPqoM/uarr77ydQmAoXGnMHxmwYIFTscHJjTcOqJunosWE67WBQKVraZGeWvWtOjc3NRU2WpqWrkiAAAAwLnPPvvM6ac3bTabPvvsMx9UBABwhlAYPuGqdUSIWeoX17RQuF+cRSFO3sG0kMDpJj89XdUlJU6Pdb3wQl26fLm6jhnj9Hh1SYnyt2zxZHkAAABAnUWLFrXoGADAuwiF4RPffvutfvjhB4fxfnEWWYIabh1xiiXIpL5OAuTvv/9eO3fudLtGwF84ax1htlg05LHHdN6rryqqe3edN3Omzn30UZktjv9NtLT1BAAAANAcpaWlWrVqlcvjq1atUmlpqRcrAgC4Qk9hg7JarXruuee0dOlSHTt2zOvXL3Fx12NTW0eckpxg0Y6CaofxCy+8UFFRUY2eb7VaHcaGDx+uoCAnT7FrgpiYGF166aWaPn16i9cAfslmtSo3NbXeWHTv3hr10ktql5RUN2YymZQ0caISBg/WhvvvV/GePXXHclevPhkY854EAACAB61YsULV1Y4/n51SVVWlzz//XFdffbUXqwIAOEMobFD33nuvXnvtNV+XUU+Q6eRD5pqjf3yIgkyS9VfdIvLz85Wfn9+iOvbu3dui805JT09XYWGhXn31VbfWASTpRH6+KouK6r7uc801OmfaNAWHhzud3y4pSePmztU3f/+7fpw3T5JUWVSkE/n5iujc2Ss1AwAAwJia0h5i0aJFhMIA4AdoH2FAVqtVs2bN8nUZDpJiQxQW3Ly3ZFiwWUmxzQuSvWHWrFmy2Wy+LgOngfAOHdTjsssU3aePznvlFQ19/HGXgfApweHhGvrEE/rtjBmK7tNHPf74R7Xp2NFLFQMAAMCIqqqqtGzZskbnLVu2rMG7iQEA3sGdwgYUFBSk8PBwly0cfCW5Q/NaR/zyvF2FNa1cjXvCw8NlNvM7F7jPHBSkkS+80KJzu40dq25jx7ZyRQAAAICj1NTUJvULLikpUWpqqsaPH++FqgAArpBaGdRf//pXX5dQT4eIIA3qGNqicwd1DFWHCP/qlXrvvff6ugQAAAAA8JqmtI5oyVwAgGdwp7BBTZs2TTabTY8++qjTh639Unwbs2LbeCZ0NUvq1DZYv+sepmCzqUVrBJtN+suQKK3dX6lDpbXyVNOGwgqrCisaXj04OFjPPPOMpk2b5qEqAAAAAMC/WK1WLVmyxGE8pF0bSVLN8Yp640uWLNGbb77JpysBwIcIhQ3KZDLpoYce0ujRozVp0iTl5OS4nHus0qbzuoVreNdQmUwtC249LTzErPF92nhkbbvdrk25VfrPD+UNzuvZs6fmzJmjYcOGeaQOAAAAAPBHaWlpKigocBiPHdZbdtmV/8WOeuP5+flKS0vTyJEjvVUiAOBX+LWcwQ0fPlzbtm3TxIkTXc6ptUkLvyvXh9vLVFFjrIenVdTY9OH2Mi36rly1DXzrEydO1LZt2wiEAQAAABiOq3YQsSP6KHZ4n2adAwDwDkJhKDo6Wp988onef/99RUREuJy3o6BaL28q1t5j/vVQN0/Ze6xGL28q1o4C10/GjYiI0AcffKBPPvlE0dHRXqwOAAAAAHzPbrc7DXiD2lgUnZyodmclKijc8aHiixYtkt1u90aJAAAnAi4ULiws1N///neNGjVKHTt2VGhoqDp37qxhw4Zp2rRp2rRpk69LDEgmk0k33nijMjIydPbZZ7ucV1xl01tbS/TlngpZbafn/8CtNru+2FOht7aWqLjK9e3BZ599tr755hvdcMMNfttWAwAAAAA8KTs7W3v37nUYb39uT5lDgmQOCVbMkJ4Ox/fs2aMdO3Y4jAMAvCOgQuH58+erX79+evDBB7Vx40bl5+erurpahw4dUnp6ul566SW9+OKLvi4zoPXt21ebNm3Svffe63KOXdLKvSf074wSHTvR8EPqAs2xE1a9lVGiVXtPqKHI+69//as2bdqkpKQkr9UGAAAAAP6modYRda+H927WuQAAzwuYUPjDDz/Utddeq6KiIiUkJOiJJ57QypUrlZGRoWXLlmnmzJm66KKLFBIS4utSA15oaKhefvllLVu2TPHx8S7n5Ryv1Yy0Ym3Pr/JidZ6zPb9KM9KKte94rcs58fHxWr58uf75z38qNDTUi9UBAAAAgP9xFuyaQoLU7pwedV/HDO4pU3BQk84FAHhHsK8LaIpdu3bptttuk81m03nnnaf//Oc/Tvu3Tp06VdXVrvu/onn+8Ic/KCsrS9dff71WrVrldM6JWrs+2l6m4V1qdFnfCFmCAq+NQrXVrs++L9fmvIbD7YsuukgffvihOnbs6KXKAAAAAKD15eXl6aqrrnJ7HbvdrqysLIfxdmd1U3Cbn/sIB7exqN2gbjq2NafevMzMTA0fPrxV2vGlpKSoc+fObq8DAEYREKHw1KlTVVVVpbi4OC1cuLDBB3pZLI4N7NFynTp10hdffKGXXnpJjzzyiGprnd9Fm5ZXpZzjtZo8MFKd2gbE20qS9FNprWZnlym/3HUbjODgYD333HO67777ZDYHzM31AAAAAOBUSkqK0tLSPLb+L1tH1I0N7+0QCkvS5s2bW+WaKSkpmjp1aqus5Wm1tbXKzs5Wenq6tmzZovT0dO3cuVNW68mfS3NyctSjRw/fFgngtOf3Cdd3332n1atXS5LuvPNOxcXF+bgi4zGbzXrggQe0YcMG9erVy+W8/HKrZqYXa+PBSr9/iqzdbteGg5V6Lb24wUC4d+/e2rhxo6ZNm0YgDAAAAOC0MH/+fM8tbjYpdpjjz43th/WWzJ77ZKlHv6dW9uyzz+qcc87Rn//8Z7377rvKzs6uC4QBwFv8PuX65V/sV199dd3rY8eOaffu3SoqKvJFWYY0dOhQbdu2TZMmTXI5p9YmLfquXLOySlVebfNidU1XXm3TrKxSLf6uXLUNlDh58mR98803GjJkiPeKAwAAAAAPysvL0/r16z22fvSZXRUS3cZh3NKujaLP7Oqx665fv14//fSTx9ZvTb+8iSosLEzDhw9X797OH8YHAJ7i95/zP/WRlujoaPXv31+ffPKJ/v73v2v79u11c3r27KkbbrhB9913nyIjI31Vqt8oLCz06PozZszQiBEj9OCDD6qiosLpnG+P1Cg3rVgTz4xU7/b+8/C/PUdrNGdHmYqrXKfBbdq00d///ndNmDBBVVVVOnLkiBcrDCzO3muefv+dTtg/97B/7mutPbRWVank++8V1bevggz0EE7eg+5h/9zD/rmH/XMPexXYUlJSPLZ27Ig+OuOui1we7//wpdo9c6WKNv3Y6te22+0B00JixIgReuuttzRkyBAlJycrODhYN954o/bs2ePr0gAYiMnu55/z79mzp/bt26ezzjpLv/3tb/Wvf/3L5dwzzzxTX3zxRbOby+fm5jZ4/NChQxo6dKgk6eDBg+ra1XO/3WyuI0eOKCEhwddluGSSdGHPcP2+V7iCPPhRocZYbXat3HtCqTkn5NdveAAIQH9NTNTgtm21taREMxr5fyoA4PRUUFCg+Ph4X5dRT25urhITEyX5389xrW337t2qra1VcHCwzjjjjAbnLlmyRH/6059UVlbW4DxLXKRCY9s2uYaEMf3V8eLkRh8aZ7fbdXjFdhWk7mry2lVFpaoubLjeyMhIffzxx7r88subvK4/ufHGGzVr1ixJ9BQG4Kg5f883ld/fKXz06FFJJ3sLZ2VlqV27dnrhhRd05ZVXKioqStnZ2Xr88ce1YsUK7dixQ1dffbW+/vrrZvV/PfUPBbQ+u6RVOSe0+2iNJg+MVEx4kNdrOHbCqk+yy7S/2PlD8gAALdc+OFiD2578gfHcqCjFBAfrmIuHkgIAAN+7/PLLtXXrVk2YMKHeJ3B/zVpepc43nqf43/Vr1eubTCZ1+sNZ6vSHs5o0v+Cr7/Tjv1Y1OCc5OVnz589XUlJSa5ToUk1NjRITE5Wfn6/x48drxYoVDc7fsWOHBg4cKOlkH+Hp06d7tD4AaA6/7ylcXl4uSaqqqlJQUJBWrFih22+/XfHx8QoNDdW5556rpUuX6uKLL5Ykbdy4UQsXLvRlyXBif3GtXk4r1o9Ha7x63R+P1ujltGICYQDwkHPbtm3wawAA4H/69u2rtLQ03XbbbS7nWE/U6PuXVujH11fJWuX9n6esVbXa/fpK/fDPFbJVuv458vbbb1daWprHA2FJCgkJ0fXXXy9J+vLLL5WXl9fg/Pfee0+SFBQUpBtuuMHj9QFAc/h9KBwWFlb3+uqrr9bw4cMd5pjNZv3jH/+o+3rOnDnNusbBgwcb/JOent7ybwB1KmvtmpVVqspa7zRwqKy164NM710PAIxoSFRUva+H/uprAADgn8LDw/Xvf/9bn3zySYPP5jn8Rbay7p+jityjXqutIveosu6fo/wvdricExkZqdmzZ+utt95SeHi412q75ZZbJEk2m00ffvihy3k1NTX6+OOPJUljx45Vly5dvFIfADSV37ePaNu2bd3dwqfuBnbmN7/5jbp06aK8vDxt2bKlWdc43XpL7dy5U3FxcT65ts1m05tvvqnnnntONTWOv82trLXrQHGNkmItHq/lQHGNqqzOA+GQkBA98sgjuuqqq3TmmWfWO+bL/Qs0hYWFGjBgQL0x9q/p2D/3sH/uc3cPq48d09r/+R/J9vPDOwe0bavcH36QpV271izVL/EedA/75x72zz3sn3uc7R8C16RJkzR48OAG20lU7CtU1l9nq89fft/q7SR+7VS7iIbuDj7rrLM0b948r9wd/GtJSUk6//zztW7dOr3//vt6+OGHnc5bunRp3UPLp0yZ4s0SAaBJ/D4UTkxM1OHDhyU1Ht4mJiYqLy9PBQUF3ijNb8XFxfn0IQ9PPvmkLr30Uv3hD3+o+5/gL0WFeucGdVfXSUhI0LJly3Tuuec6rc/X+xfo2D/3sH/uYf/c15w9/HHNmnqBsCTJZtOJzEx1ufpqD1Tn/3gPuof9cw/75x72D0Z2qp3EPffco7ffftvpnFPtJIqzc9Xz1tEKCm3dOMFaVau9/7emwbuDpZPtImbMmOHVu4N/7ZZbbtG6deu0e/dubdiwQaNGjXKY8/7770s6+XfLZZdd5u0SAaBRft8+4je/+U3da6vV2uDcU8eDg/0+6z7tDRw4UFVVVQ7jMWFmdYjwzsPmOkQEKSbM8S1eWVlZ1+wfANByB1audDp+0MU4AADwX75sJ+HP7SKcueqqq9Tuv5+KOhX+/lJ+fn7dQ+j+9Kc/yWLx/CdlAaC5/D4UPv/88+te79mzp8G5e/fulSR69fiBVatWqaSkxGF8YIJFJpPJKzWYTCadmeD4P9+SkhKtXr3aKzUAwOmq6vhx5bvouX9482ZVFxd7uSIAANAaJk2apK1btyo5OdnlnFPtJAo37Hb7eoUbflDmvbNVsa/Q5ZyzzjpLGRkZmjhxotvXaw3h4eGaNGmSJGnevHl1LS9P+eijj1Rbe/LhfDfffLPX6wOApvD7W2r/+Mc/KiQkRDU1NVq4cKH+/Oc/O523du1aFRUVSZLOO+88b5YIJ1JSUpyOD+zg3d+QDuxg0dcHKh3GU1JS9Ic//MGrtQBAoCjZv1/Zr72mqgaC3eriYtlrnT+J3F5bq9Rbb5UlOtrl+aHR0Ro4daqiund3u14AANC6mtpOYu/baxQ7oo9M5pbd+GO32bX37a8a7B/sD+0inLn11lv1xhtvqLS0VCkpKbr++uvrjp26e3jIkCF8ShWA3/L7UDg2Nla33HKL3nzzTa1cuVKffvqprr322npzSktLdc8999R9ffvtt3u5SvxSTU2NlixZ4jAeFWpSt2jvvuW6RwcrymJSSXX9B84tWbJE//73v71aCwAEip1vv639//3IY0sd/fbbRucEhYZq+LPPunUdAADgGafaSYwePVq33XabysrKHOZUHy1X6Q+HFdWvU4uuUfrDIVUfLXd6LDIyUm+//bbf3B38a4MGDdLgwYOVkZGh999/vy4U3rx5s3bu3CmJu4QB+De/bx8hSU899ZS6desmSbruuus0depUrVmzRhkZGfrggw80dOhQZWZmSpLuuOMODRkyxIfVYu3atTp61LG/1JkJFpm91DriFLPJpN84aSFRVFSktWvXerUWAAgUnc8/X/L039cm08nrAAAAvzZx4kRlZGS4bCdRlPZji9cuSnPeItLf2kW4csstt0g6+TPwqXaWp+4SDg8P9/v6ARhbQITC8fHx+vzzz9WnTx/V1tbq9ddf15gxY3Tuuefqpptu0nfffSfp5G/hXn31VR9XiwULFjgdT04I9XIl/71uB+fXdVUnABhdt3HjNOaddxSekOCR9cMTEnThu++q27hxHlkfAAC0rqSkJE2dOtXpMUtMRIvXtbRzfu6dd96ppKSkFq/rLZMmTVKbNm1kt9s1a9YsnThxQp9++qkk6corr1R0A620AMDXAiIUlqT+/fsrMzNT//jHPzRs2DC1b99eFotFXbt21TXXXKPU1FS9++67CgkJ8XWphma1WrVo0SKH8YgQk3rG+KZbSc92wYoIcbzjbdGiRbJarT6oCAD8X8fhw3XxwoXqMnp0q67bZfRoXbxwoToMG9aq6wIAAM9y9nOeJMUO793iNV2du3jx4hav6U1RUVGaMGGCJGnWrFlasGCBiv/7TIYpU6b4sjQAaFTAhMKSFBERofvvv19paWkqKipSVVWVDh48qE8//VQXXHCBr8uDpA0bNqigoMBhvKWtI+x2u348WqN1+0/ox6M1stvtjZ/0K0Fm5y0k8vPztWXLlmavBwBGERYTo/Nff12Dp0+X2eLeg0LNFosGT5+u819/XWExMa1UIQAA8IaSkhKtWrXKYTyiV7zCOrT8btiwjtGK6BnvML5y5UqVlpa2eF1vOtVCYv/+/XrggQckST179tToVv7FOgC0Nr9/0BwCS0pKitPxgU5C2caUVds079sy7Sr8+Um0/eNCNOE3kYq0NO/3GQMTLErPq3IYX7p0abPrAgAjMZlM6jt5shIGD9aGadNU8t9+ec0R1auXRr30kmL69vVAhQAAwNNWrFih6upqh/HY4X3cXjt2RG+V5xypN1ZdXa0VK1bU3YXrz0aNGqX+/ftr165dOnz4sCTppptukqmBm6LKysoc2hn++OPPvZkXLFiguLi4uq8HDRqkQYMGtW7hAAyPUBitxmazaeHChQ7j4cEm9W7fvLYeu4tqNGdHqUqr698ZvKuwRjM2Hde1Z7bVGbFNX7NP+xCFBZtUWVt/vWXLljWrLgAwqph+/TR+3jx9OWmSjv/wQ5PPa5eUpLGzZys4PNyD1QEAAE9y1c4hdoTrULhkZ55qK04GycERoYrq39n5GsP76MDsNKfXDIRQWDrZKuL++++XJJnNZt14440Nzi8sLNRNN93k8vi0adPqff3EE08QCgNodYTCaDVbtmxRbm6uw/iAeIuCzU1rHWG12fXFngp9ta9SrhpFlFTb9X/flGh0jzCN691GQU1YO9hs0oD4EH1zqP5vt/Py8ppUFwBAMpnNKmvm35tleXkyBQV5qCIAAOBpVVVVTm+mCesUrTbdYx3Ga0ortefN1Sr8uv4vkePO76vefx6jkLZh9cbb9IhTWMdoVR4urje+bNkyVVdXy+JmCytvuO666+pC4YsuukiJiYk+rggAGhdQPYXh33798ZdTkjs07X/iRRVW/WtLidY0EAifYpe0Zl+l/rWlREUVTXtYXHJCaJPmAQCcO7Rxo2rLy5t1Tm15uQ5v3OihigAAgKelpqY67e8bO6yPQ4uEo1tztO3ODx0CYUkqXPe9tt35oY5l7Ks3bjKZnLahKCkpUWpqqnvFe0l2dnbd65tvvrnR+T169JDdbm/ynyeffNKD1QMwKkJhtAq73e60n3BokHRGE1pHbDtUpRlpxTpYUtus6x4sqdWMtGJtO+TYL/jXkmJDFMrNagDQYgdXrvTqeQAAwPcWLVrkdDx2RO+619YT1frxX6u086nFqj7q+hfI1UfL9e2Ti/TjG6tlPfHzpzjbD+/tdL6ra/ub9957T5IUGxuryy+/3MfVAEDTEAqjVWRmZionJ8dhvH+cRSFBrts7VNXaNffbMs3eUaYqq+v7g7t27ep6Datds3eUad63Zaqqdb1GSJBJ/eL8/6NHAOCPbDU1yluzpkXn5qamylZT0/hEAADgV6xWq5YsWeIwHtKujdr2O9kjuGRnnrbd9bEOf57tMM+Vwyu2a9vdH6tk10+SpKh+nRTSro3DvCVLlshqbdonQ31l3759mj9/vqSTD5gLDeUTqgACA6EwWoWzu4QlaWADrSNyS2r1yubj2vqT67t8LRaLXnnlFe3fv18zZsxQSIjru463/FSlVzcfV24Ddxs3VA8AwLX89HRVl5Q4Pdb1wgt16fLl6jpmjNPj1SUlyt+yxZPlAQAAD9i0aZMKCgocxmOH9ZbdatW+Weu1/eH5Dv2Am6LyULG2PzRP+2atl91mU/thvRzm5OfnKy3N8SF0vpaXl6fdu3fryy+/1JVXXqmamhqFhYXpnnvu8XVpANBkhMJwm91ud9pPOMQsp3fm2ux2rdt/Qq+nF6uwwuZy3aSkJKWlpenuu++W2WzWPffco7S0NCUlJbk850iFTa+nF2vd/hOy2x3vGu4Xa1Ew73oAaDZnLSDMFouGPPaYznv1VUV1767zZs7UuY8+KrOTB8LQQgIAgMCzePFip+NhnaKV+dc5yl2wRbI19kSYBtjsyl2wRZl/naPwju2aVYMvTZ48WUlJSRo3bpy2bdsmSXr66afVpUsXH1cGAE1HPAa37dy5U99//73DeN84iyy/ah1RVm3T+9tK9Z8fKtRAtwjdfPPNysjI0Nlnn11v/JxzzlFGRoZuuukml+da7dJ/fqjQe5mlKquuHzqHBpvUN7bxHscAgJ/ZrFbl/upBL9G9e2v83Lk649pr6x4yYzKZlDRxosbPnavo3vV7A+auXi2bn3/8EwAA/Mxut7vs6btv1npV7CtstWtV7CvUvg/XOz22aNEipzf8+IM2bdpo0KBB+uCDDzRt2jRflwMAzUIoDLe5ah2RnFD/TrEfiqr1z03H9V2R676SUVFRmjNnjt59911FRkY6nRMZGan33ntPs2fPVlRUlMu1vius0cubjuuHoup648kd6PEEAM1xIj9flUVFdV/3ueYajZs7V+1cfHKjXVKSxs2dqz4TJtSNVRYV6UR+vsdrBQAArSM7O1t79+51frCBjDYmJqZFx1ytuWfPHu3YscP1eT7w1VdfyW63q7y8XNu2bdMNN9zg65IAoNkIheE2Z6FwkEnqH3/yjtxam13Ldpfr/74pVVm16389DB8+XJmZmbr22mubdN2JEydq27ZtGjZsmMs5pdV2vfNNqZbvLpf1vx9r6h8XogaefQcA+JXwDh3U47LLFN2nj8575RUNffxxBYeHN3hOcHi4hj7xhH47Y4ai+/RRjz/+UW06dvRSxQAAwF2u7hJ2xWKx6Omnn1Z5ebnLORUVFXrqqacafFZMa9QCAGgcoTDc8uOPP2r79u0O40mxIQoLNquwwqo3thTrq32VLtcwmUyaPn261q1bp549ezbr+r169dLXX3+thx9+uO7jy79ml7RmX6X+taVEhRVWhYeYdQYtJACgycxBQRr5wgu6ZMkSJV50UbPO7TZ2rC5ZskQjn39eJjP/7AAAIFA0J4hNTk7Wli1b1LdvX1VXV7ucV1VVpf79+2vr1q1KTk72SC0AgKbhpzO4xVXriIEJFn1zqEqvpBXrYInrHpKdOnXSqlWr9Oyzzzb7t8WnhISE6LnnntPKlSvVqVMnl/MOltTqlbRibTtUpYEJjg9BAgAAAABIOTk5ysrKanSe2WzWww8/rPT0dCUnJzcpvF20aJGSk5OVnp6uhx56SOYm/NI4MzNT+/bta0rpAIAmIhSGWxYsWOB0PLugWnN2lKmqgafJXXrppdq+fbvGjBnTKrVceOGFysrK0iWXXOJyTpXVrtk7yrSjwPVvrwEAAADAyBYvXtzonN69e+vrr7/Wc889p9DQUFVVVWnZsmWNnrds2TJVV1crNDRUzz//vNatW6fev3pAbUtrAgA0HaEwWmz//v3aunWr02O7Cl0/TM5isWjmzJn67LPPFBcX16o1xcfH6z//+Y9effVVWSyu7wZuqL7c3NxWrQkAAAAAAslZZ52l+Ph4l8fvuOMOZWZmauTIkXVjqampKi0tbXTtkpISpaam1n09atQoZWZm6s9//rPLc+Lj45vVbgIA0DhCYbTYwoULm31Ov379lJ6erqlTp7rsAewuk8mku+66S5s3b1bfvn2bfX5TfrsNAAAAAKerMWPGKDMzU6NHj6433rlzZ61YsUJvvPGGIiMj6x1rTt/fX8+NjIzUm2++qeXLlzu0BLzggguUmZnZap8wBQCcRCiMFnPVT9iVW265RVu3btVZZ53loYrqGzRokDIyMjRlypRmnbd06VIPVQQAAAAAgaFz585atWqVnnrqKZnNZk2cOFHZ2dkaP368w1yr1aolS5Y4jEdaTIq0ON4MtGTJEtlsNofxiy++WDt27NC1114rs9msp556SitXrlTnzp1b55sCANQhFEaL/PTTT9q4cWOT5kZHR2vu3Ln6v//7P0VERHi4svoiIiL0zjvv6NNPP1VUVFSTzklPT9ehQ4c8XBkAAAAA+LegoCA9/vjjysnJ0ezZs9W+fXun89LS0lRQUOAw/pt4i34T79jWLz8/X2lpaU7Xat++vebMmaOcnBw9/vjjCgoKcu+bAAA4RSiMFlm0aJHsdtcPkTtlxIgRyszM1IQJE7xQlWvXXHONsrKyNHz48Ebn2u32Zn30CQAA+K/aykoVZGSotrLS16UAQMDq1q1bg8dd/fx0ZoJFZyY4f9ZLYz9zNXZNAIB7CIXRIo21jjCZTHr00Ue1bt069ejRwztFNaJHjx5at26dHnnkkUb7GTe3NQYAAPBPG+6/X6uuv14bp03zdSkAcFpydVNNWLBJfdqHqE/7EIUGOf781dQbjQAAnkEojGaz2+1av369y+OdO3fW6tWr9be//U3BwcFerKxxISEheuaZZ7R69eoG+1KtX7+ef6AAABDgKg4fVt6aNZKk3NRUVeTn+7giADj9ZGdna+/evQ7j/eJCFGw2KdhsUv+4EIfje/bs0Y4dO7xRIgDACUJhNFttba3LO23/+Mc/KisrSxdccIGXq2qeCy64QFlZWRo3bpzLObW1tV6sCAAAtLaDq1fX/3rVKh9VAgCnr4ZaRzh73ZRzAQCeRyiMZgsJCdGUKVPqjYWGhur111/X4sWLFRcX56PKmicuLk4ffvih02O33HKLQkIcf5sNAAACx8GVKxv8GgDgPmfBbrBZ6hv7cxDcN84iJx0kCIUBwIf867P9CBgzZ85U9+7dtWbNGiUmJuree+/VgAEDfF1Wszm74/nRRx/VE0884YNqAABAa6ksKtKRjIx6Y0cyMlR59KjC2rf3UVUA4B/y8vJ01VVXub2O3W5XVlaWw/gZ7UMUFvzzz1phwSadERui7wpr6s3LzMzU8OHDG33mS1OkpKQ02CIQAFAfoTBaJDg4WA8++KAefPBBX5fS6u666y6/64UMAACaJ3f1atlttnpjdptNuatXq8/VV/uoKgDwDykpKUpLS/PY+s7aRZwZb3EIhSVp8+bNrXLNlJQUTZ06tVXW8rSSkhItX75cq1evVkZGhvbu3auKigpFR0frN7/5jS699FLdcsstateuna9LBXAao30EAAAATjsHXLSKoIUEAEjz58/32NomSQPiHUPh3yRY5P79wK558ntqTStWrFBCQoImTpyod955R9u2bVNxcbFqampUWFiotWvXatq0aerXr5/W/PdhqQDgCYTCAAAAOK1UHT+u/PR0p8cOb96s6uJiL1cEAP4jLy9P69ev99j6vWKCFWlxjBoiLWb1ivHcJzLXr1+vn376yWPrt5aioiJVVVXJbDZr3LhxmjFjhlJTU/XNN9/os88+0zXXXCNJys/P16WXXqrMzEzfFgzgtMVn5AEAABAwSvbvV/Zrr6mqgWC3urhY9tpap8fstbVKvfVWWaKjXZ4fGh2tgVOnKqp7d7frBQB/k5KS4rG1z0yw6OoBES6PX39WW83fWa4dBdWtfm273R4QLSRCQkJ0++23a/r06erWrVu9Y2effbYuu+wyjRo1SnfddZcqKip03333afXq1T6qFsDpjFAYAAAAAWPn229r/4oVbq1x9NtvG50TFBqq4c8+69Z1AMAfde/eXZGRkSorK2twXnSoWdFhTf9w8eBOoRrRNbTBh8a1CTHr+uRIbcqtUsahqiavXVxpU3GVrcE5kZGRDiGrP7rmmmvq7gZ2ZerUqfrwww+1detWffXVVyoqKlJsbKyXKgRgFITCAAAACBidzz9fe5cskex2z13EZFLn88/33PoA4EOXX365tm7dqgkTJmj79u0u51XW2nRJYhud3Sm0Va9vMpk0MjFMIxPDmjR/26EqLdjVcICdnJys+fPnKykpqTVKdKmmpkaJiYnKz8/X+PHjtaKRX1Lu2LFDAwcOlCQ9++yzmj59epOvNXr0aG3dulU2m005OTmEwgBaHT2FAQAAEDC6jRunMe+8o/CEBI+sH56QoAvffVfdxo3zyPoA4A/69u2rtLQ03XbbbS7nVFml2TvKtGBnmWqsHvxFnAs1VrsW7CzT7B1lqra6nnf77bcrLS3N44GwdLL1w/XXXy9J+vLLL5WXl9fg/Pfee0+SFBQUpBtuuKFZ16qq+vlOarOZ6AZA6+NvFgAAAASUjsOH6+KFC9Vl9OhWXbfL6NG6eOFCdRg2rFXXBQB/FB4ern//+9/65JNPFBkZ6XLe5rwqvZZerILyBpLZVlZQbtVr6cXanOe6xURkZKRmz56tt956S+Hh4V6r7ZZbbpEk2Ww2ffjhhy7n1dTU6OOPP5YkjR07Vl26dGnWddauXStJCg4OVp8+fVpYLQC4RigMAACAgBMWE6PzX39dg6dPl9licWsts8WiwdOn6/zXX1dYTEwrVQgAgWHSpEnaunWrkpOTXc45VGbVzM3Hta0ZfYBbatuhKr26+bgOlbkOoc866yxlZGRo4sSJHq/n15KSknT+f1sMvf/++y7nLV26VEeOHJEkTZkypVnXWLZsWV1rj3HjxikqKqqF1QKAa4TCAAAACEgmk0l9J0/WuDlzFNWrV4vWiOrVS+M+/VR9J09u8OFIAHA684d2Es1pF7Fp0yavtItw5dTdwrt379aGDRuczjkVGMfFxemyyy5r8tpHjx7VX/7yF0kn20787W9/c7NaAHCOUBgAAAABLaZfP42fN0/tmhkQtEtK0vh58xTTt6+HKgOAwOHLdhIF5VbN9NN2Ec5cddVVateunSTndwvn5+fXPYTuT3/6kyxN/ESL1WrV5MmTtX//fknSo48+qrPPPrt1igaAXyEUBgAAQMAzmc0qa+SBP79WlpcnU1CQhyoCgMDUnHYS2/PdbyexPf9ku4jDftouwpnw8HBNmjRJkjRv3jyVl5fXO/7RRx+ptrZWknTzzTc3ed3//d//1eeffy5JuuSSS/TYY4+1UsUA4IhQGAAAAAHv0MaNqv3VD+WNqS0v1+GNGz1UEQAErqa2k1jyfbls9pa3krDZ7VryXbnft4tw5tZbb5UklZaWKiUlpd6xU3cPDxkyRAMHDmzSeg8//LDefvttSdJvf/tbzZ8/X0H84hKABxEKAwAAIOAdXLnSq+cBwOnuVDuJ2bNnu2wnUVJl18Hi2hZf40BxrUqqnYfK/tQuwplBgwZp8ODBkuq3kNi8ebN27twpqel3Cb/44ot64YUXJEnnnHOOli5d6pffM4DTC6EwAAAAApqtpkZ5a9a06Nzc1FTZampauSIAOH1MnDhRGRkZLttJ7DhS3eK1v3Vxrr+1i3Dl1APn1q5dq71790r6OSAODw9vUv1vvPGGHnroIUlS//799cUXXyg6OtpDFQPAzwiFAQAAENDy09NVXVLi9FjXCy/UpcuXq+uYMU6PV5eUKH/LFk+WBwABLykpSVOnTnV6LMrS8lihrYtz77zzTr9rF+HMpEmT1KZNG9ntds2aNUsnTpzQp59+Kkm68sorGw13P/roI915552SpF69emnVqlWKi4vzeN0AIBEKAwAAIMA5awFhtlg05LHHdN6rryqqe3edN3Omzn30UZmdPAGeFhIA0LhFixY5Hf9NguPfq011potzFy9e3OI1vSkqKkoTJkyQJM2aNUsLFixQcXGxJGnKlCkNnrtw4ULddNNNstvt6tq1q1avXq3OnTt7vGYAOIVQGAAAAAHLZrUqNzW13lh0794aP3euzrj2WplMJkmSyWRS0sSJGj93rqJ79643P3f1atmsDTzlCAAMrqSkRKtWrXIY79w2SO3DW/4wtPbhQeoU6Xj+ypUrVVpa2uJ1velUC4n9+/frgQcekCT17NlTo0ePdnnOl19+qYkTJ8pqtSohIUGrVq1Sjx49vFAtAPyMUBgAAAAB60R+viqLiuq+7nPNNRo3d67aufjYcbukJI2bO1d9/ntnlyRVFhXpRH6+x2sFgEC1YsUKVVc79v89M77ldwnXreHkbuHq6mqtWLHC7bW9YdSoUerfv78k6fDhw5Kkm266qe6Xkr+WlpamK664QtXV1QoJCdGMGTNUU1OjHTt2uPxz/Phxb307AAwk2NcFAAAAAC0V3qGDelx2mY7t2qXkO+9U4kUXNXpOcHi4hj7xhDqOGKHsf/1LMQMGqE3Hjl6oFgACk6t2Dq7aP0hSzvEaVdbYJUnhISb1aBfico2Ve084veaEX/wCz59NmTJF999/vyTJbDbrxhtvdDn3888/V0VFhSSppqZGkydPbnT9999/v8E1AaAlCIUBAAAQsMxBQRr5wgstOrfb2LHqNnZsK1cEAKeXqqoqLVu2zGE8Ntysjk5aP1TU2LRwV7my8uvfWTyog0VX9I9Qm5D6H1juFBmk9uFmHT1hqze+bNkyVVdXy+KkF7y/ue666+pC4YsuukiJiYk+rggAGkf7CAAAAAAA4FRqaqrT/r6/SbA4tEj4rrBa/9x43CEQlqTM/JPHviusf8xkMjm947ikpESpv+oZ76+ys7PrXt98880Nzn3yySdlt9ub9Ye7hAF4AqEwAAAAAABwatGiRU7HfxnkVtXalbKzTO9uK1VJtd3lWiXVdr27rVQpu8pUVfvzPFe9iV1d29+89957kqTY2FhdfvnlPq4GAJqGUBgAAAAAADiwWq1asmSJw3ikxaTu0Se7UeYcr9HLaceVllfV5HXTcqs0I+249h2vkSR1bxesSIvjg9mWLFkiq9Xawuq9Y9++fZo/f76kkw+YCw0N9XFFANA0hMIAAAAAAMDBpk2bVFBQ4DD+m3iLbHZp+e5yvbmlxKEfcFMUnbDpjS0lWr67XDb7yTV/LT8/X2lpaS2q3ZPy8vK0e/duffnll7ryyitVU1OjsLAw3XPPPb4uDQCajAfNAQAAAAAAB4sXL3Y6HtsmSDM3F+tQmXt38dolrdlXqe8Ka3R2R+d32C5evFijRo1y6zqtbfLkyVq7dm29saefflpdunTxUUUA0HzcKQwAAAAAAOqx2+0ue/qu2F3hdiD8S4fKrFrxY4XTY4sWLZLd7rpPsS+1adNGgwYN0gcffKBp06b5uhwAaBbuFAYAAAAAAPVkZ2dr7969To81FNHGxMTo2LFjzT7mas09e/Zox44dGjhwYANX9a6vvvrK1yUAgNu4UxgAAAAAANTj6i5hVywWi55++mmVl5e7nFNRUaGnnnpKISEhHq0FANA4QmEAAAAAAFBPc4LY5ORkbdmyRX379lV1dbXLeVVVVerfv7+2bt2q5ORkj9QCAGgaQmEAAAAAAFAnJydHWVlZjc4zm816+OGHlZ6eruTk5CaFt4sWLVJycrLS09P10EMPyWxuPJbIzMzUvn37mlI6AKCJCIUBAAAAAECdxYsXNzqnd+/e+vrrr/Xcc88pNDRUVVVVWrZsWaPnLVu2TNXV1QoNDdXzzz+vdevWqXfv3q1SEwCg6QiFAQAAAABAnbPOOkvx8fEuj99xxx3KzMzUyJEj68ZSU1NVWlra6NolJSVKTU2t+3rUqFHKzMzUn//8Z5fnxMfHN6vdBACgcYTCAAAAAACgzpgxY5SZmanRo0fXG+/cubNWrFihN954Q5GRkfWONafv76/nRkZG6s0339Ty5cvVqVOnescuuOACZWZmasyYMc37JgAADSIUBgAAAAAA9XTu3FmrVq3SU089JbPZrIkTJyo7O1vjx493mGu1WrVkyRKH8ZjQWMWExjqML1myRDabzWH84osv1o4dO3TttdfKbDbrqaee0sqVK9W5c+fW+aYAAHUIhQEAAAAAgIOgoCA9/vjjysnJ0ezZs9W+fXun89LS0lRQUOAwPqLLBRreebTDeH5+vtLS0pyu1b59e82ZM0c5OTl6/PHHFRQU5Nb3AABwjlAYAAAAAAC41K1btwaPu2odMarLhRrV5cJmndPUawIA3EMoDAAAAAAAWsRutzsNeNsER2pQwjANShimNsERDscXLVoku93ujRIBAE4QCgMAAAAAgBbJzs7W3r17HcaHdTpPIeYQWYIsGtrpfIfje/bs0Y4dO7xRIgDACUJhAAAAAADQIg21jvj59ZhmnQsA8DxCYQAAAAAA0CLOgt0Qs0Xndvxt3ddDOp68a7gp5wIAvCPY1wWg9RUWFvq6hIDhbK/Yv6Zj/9zD/rmH/XMfe+ge9s897J972D/3sH/uYa8CX15enq666iq317Hb7crKynIYP6fDcLUJ+bmPcJuQCJ2dMFzph7+uNy8zM1PDhw+XyWRyu5aUlBR17tzZ7XW8oba2VtnZ2UpPT9eWLVuUnp6unTt3ymq1SpJycnLUo0ePRtfp0aOH9u/f3+i87t27a9++fW5WDeB0Qyh8GhowYICvSwho7J972D/3sH/uYf/cxx66h/1zD/vnHvbPPewfjCQlJUVpaWkeW3/kL1pHnDKqy4UOobAkbd68uVWumZKSoqlTp7bKWp727LPP6sknn/R1GQAMjlAYAAAAAAADmT9/vsfWNsusEZ1HO4wP7zxa5gyzbLJ55Lrz588PmFDYbrfXvQ4LC9OgQYN05MgR7dmzp0XrXX755XrmmWdcHrdYLC1aF8DpjVAYAAAAAACDyMvL0/r16z22/sD4c9UutL3DeExYrAbGn6usI+keue769ev1008/BUQLiREjRuitt97SkCFDlJycrODgYN14440tDoXbtWunM888s5WrBHC640FzAAAAAAAYREpKisfW/m2X3+vxkS+7PP74yJc1yklridZgt9s9+r21pnHjxun222/XOeeco+Bg7tUD4Bv87XMa2rlzp+Li4nxdRkAoLCx06B/H/jUd++ce9s897J/72EP3sH/uYf/cw/65h/1zj7P9Q+Do3r27IiMjVVZW1uC8uPAOig/v0OR1f9/jj7q014QGHxrX1hKtx0fM0NK987Rq32dNXvvIiXwVnshvcE5kZKS6devW5DVboqamRomJicrPz9f48eO1YsWKBufv2LFDAwcOlHSyj/D06dM9Wh8ANAeh8GkoLi5O8fHxvi4jYLF/7mH/3MP+uYf9cx976B72zz3sn3vYP/ewfzCKyy+/XFu3btWECRO0fft2l/PKa0p1a/JfdUG3P7Tq9U0mky7rfY0u631Nk+anHlimV7Y+1eCc5ORkzZ8/X0lJSa1RokshISG6/vrr9Y9//ENffvml8vLy1KVLF5fz33vvPUlSUFCQbrjhBo/WBgDNRfsIAAAAAAAMpG/fvkpLS9Ntt93mcs6J2go9v/lBvZLxlKqslV6s7qQqa6VmbH1SL2x+SJXWEy7n3X777UpLS/N4IHzKLbfcIkmy2Wz68MMPXc6rqanRxx9/LEkaO3Zsg+Gxu9atW6fk5GRFRESoTZs26tmzp6655hotXry43kPtAOCXCIUBAAAAADCY8PBw/fvf/9Ynn3yiyMhIl/OW712gu1dP1sHSHK/VdrA0R3evnqwVOa57BEdGRmr27Nl66623FB4e7rXakpKSdP7550uS3n//fZfzli5dqiNHjkiSpkyZ4tGacnJylJ2drYqKCp04cUL79u3TvHnzdMUVV+i8885TXl6eR68PIDARCgMAAAAAYFCTJk3S1q1blZyc7HLO3uIfdOeqa7XmwHKP15N6YJn+svIa7S3+weWcs846SxkZGZo4caLH63Hm1N3Cu3fv1oYNG5zOORUYx8XF6bLLLvNIHRaLRX/84x/1+uuv66uvvtK2bdu0Zs0aPffcc0pMTJQkbdiwQRdddJGKi4s9UgOAwEUoDAAAAACAgflDO4nmtIvYtGmT19pFOHPVVVepXbt2kpzfLZyfn1/3ELo//elPslgsHqkjPT1dS5Ys0V/+8hf97ne/06BBgzR69Gg9/PDD+vbbbzV27FhJ0q5du/TUUw33ZQZgPITCAAAAAAAYnC/bSRwszdFdqyf5ZbsIZ8LDwzVp0iRJ0rx581ReXl7v+EcffaTa2lpJ0s033+yxOk4F0860bdtW8+bNU2xsrCTp7bffVnV1tcdqARB4CIUBAAAAAICk5rWT+Dp3pdvXW5f7pf6y8hrlFO92OcfX7SKcufXWWyVJpaWlSkmpH2afunt4yJAhGjhwoNdrOyU6OlrXXnutJKm8vFxbt271WS0A/A+hMAAAAAAAqNPUdhJvbHtBNrutxdex2W16Y9sLft8uwplBgwZp8ODBkuq3kNi8ebN27twpybN3CTfVgAED6l7zwDkAv0QoDAAAAAAA6jnVTmL27Nku20kUVRbo+6PZLb7Gd0e362jlEafH/KldhCunHji3du1a7d27V9LPAXF4eLhf3Nlst9t9XQIAP0UoDAAAAAAAnJo4caIyMjJctpPYkLe6xWtvzEt1Ou6P7SKcmTRpktq0aSO73a5Zs2bpxIkT+vTTTyVJV155paKjo31coeruWpakzp07+7ASAP6GUBgAAAAAALiUlJSkqVOnOj3WPiy+xevGhMU5Hb/zzjv9rl2EM1FRUZowYYIkadasWVqwYIGKi4slSVOmTPFlaZKk4uJizZ07V5LUpk0bnXvuuT6uCIA/IRQGAAAAAAANWrRokdPxkV3GtHhNV+cuXry4xWt626kWEvv379cDDzwgSerZs6dGjx7t0et+/vnnOnHCdS/m0tJSTZgwQUVFRZJOhtShoaEerQlAYAn2dQEAAAAAAMB/lZSUaNWqVQ7jvdv1U8eILi1et1NEV/WK7qu9xd/XG1+5cqVKS0vVtm3bFq/tLaNGjVL//v21a9cuHT58WJJ00003yWQyuTynrKxMCxYsqDf2448/1r1esGCB4uJ+vot60KBBGjRoUL35L7zwgiZPnqwrr7xSv/3tb9W7d29FRkbq+PHj2rRpk958800dPHhQ0skHBz755JNufqcATjeEwgAAAAAAwKUVK1aourraYXyUG3cJ/7zGhQ6hcHV1tVasWFHXmsHfTZkyRffff78kyWw268Ybb2xwfmFhoW666SaXx6dNm1bv6yeeeMIhFJako0eP6p133tE777zjcq3zzz9fs2fPVvv27RusCYDx0D4CAAAAAAC45Kqdw6guF7o859vCbUo/tE7ph9bp28JMl/NcBcuB1ELiuuuuq3t90UUXKTEx0ePXfOmll/TCCy/o8ssvV79+/RQXF6fg4GBFRUWpX79+uuGGG/T555/rq6++UpcuLb+bG8DpizuFAQAAAACAU1VVVVq2bJnDeOeIRPWIOsNhvKS6WK9984zWHvy83vjoxIt15zmPKMoSXW+8Z3SSOkV01aHy3Hrjy5YtU3V1tSwWSyt8F56VnZ1d9/rmm29udH6PHj1kt9vduua5557Lg+MAuIU7hQEAAAAAgFOpqakqLS11GB/ZZYxD39z0Q1/rti+ucAiEJemrgyt02xdXaMvh9fXGTSaT0zuOS0pKlJqa6mb13vHee+9JkmJjY3X55Zf7uBoAaBpCYQAAAAAA4NSiRYucjv8yyD1RW6FXM57Wo+v/V0crj7hc62jlET3y9R2amfE3naitqBsf6aKFhKtr+5N9+/Zp/vz5kk4+YC40NNTHFQFA0xAKAwAAAAAAB1arVUuWLHEYjwmNVf/YsySd7B385y//R8v2zm/yukv3ztMdX15V12u4f+xZahfq+CC0JUuWyGq1tqx4D8rLy9Pu3bv15Zdf6sorr1RNTY3CwsJ0zz33+Lo0AGgyQmEAAAAAAOBg06ZNKigocBgf0eUC1dpq9W72K7pvzY0O/YCb4qfyg7pvzQ16N/sVWW1Wjeh8gcOc/Px8paWltah2T5o8ebKSkpI0btw4bdu2TZL09NNP80A3AAGFB80BAAAAAAAHixcvdjreOSJRd62eqL3FPzR4/vjx4yVJn3/u2GNYkmyyae5372rLoa91Qbc/uKxh1KhRTS/ai9q0aaOkpCTdc889uuGGG3xdDgA0C6EwAAAAAACox263u+zp+272K7LL7vLciIgIvfzyy7r11lslSW+//bb++te/qqKiwun8vcU/KCd7t9NjixYt0t///neHh9r50ldffeXrEgDAbbSPAAAAAAAA9WRnZ2vv3r1OjzUUCI8aNUpZWVm67bbbZDKZZDKZdPvttysrK0sjR450eZ6rNffs2aMdO3Y0r3gAQKMIhQEAAAAAQD2u7hJ2xWKx6MUXX9TatWvVu3dvh+N9+vTRunXr9MILLygkJMSjtQAAGkcoDAAAAAAA6mlOEJucnKwtW7bogQceUFBQkMt5QUFBevDBB7V161YlJyd7pBYAQNMQCgMAAAAAgDo5OTnKyspqdJ7ZbNbDDz+s9PT0ZoW8ycnJSk9P10MPPSSzufFYIjMzU/v27Wvy+gCAxhEKAwAAAACAOosXL250Tu/evfX111/rueeeU2hoaLOvERoaqueff17r1q1z2m6iJTUBAJqOUBgAAAAAANQ566yzFB8f7/L4HXfcoczMzAYfHNdUo0aNUmZmpv785z+7nBMfH9+sO5EB4HRjt7t+wGdLEQoDAAAAABDATvXxtVqtstlsbq83ZswYZWZmavTo0fXGO3furBUrVuiNN95QZGSk29c5JTIyUm+++aaWL1+uTp061Tt2wQUXKDMzU2PGjGm16wFAILFarbJarZLUYN/25iIUBgAAAAAggIWFhUk6eSdZWVlZq6zZuXNnrVq1Sk899ZTMZrMmTpyo7OxsjR8/vlXWd+biiy/Wjh07dO2118psNuupp57SypUr1blzZ49dEwD83fHjx+tet2nTptXWDW61lQAAAAAAgNdFRUWpuLhYknT48GFJJ+++bcpD3BoSFBSkxx9/XDfeeKO6devmdp1N0b59e82ZM0cvvvii164JAP7GbrerqqpKJSUlKioqqhuPiYlptWsQCgMAAAAAEMAiIiIUHh6uEydOyGq1Ki8vTyaTqVU/Zrx79+5WW8ufrwkA/sBqtTr0EY6Ojm7Rgz1dIRQGAAAAACCAmUwmdevWTQcOHNCJEycknbzLrLa21seVAQBaQ3x8vGJjY1t1TUJhAAAAAAACnNlsVvfu3VVeXq7S0tK6u4YBAIHHbDbLYrEoIiJCkZGRslgsrX4NQmEAAAAAAE4DJpNJkZGRioyM9HUpAAA/517XeQAAAAAAAABAQCEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAABeUVtZqYKMDNVWVvq6FAAAAAAwNEJhAADgFRvuv1+rrr9eG6dN83UpAAAAAGBohMIAAMDjKg4fVt6aNZKk3NRUVeTn+7giAAAAADAuQmEAAOBxB1evrv/1qlU+qgQAAAAAQCgMAAA87uDKlQ1+DQAAAADwHkJhAADgUZVFRTqSkVFv7EhGhiqPHvVRRQC8jQdNAgAA+BdCYQAA4FG5q1fLbrPVG7PbbMr9VUsJAKcvHjQJAADgXwiFAQCARx1w0SqCFhKAMfCgSQAAAP9DKAwAADym6vhx5aenOz12ePNmVRcXe7kiAN7GgyYBAAD8T7CvCwAAAIGpZP9+Zb/2mqoaCHari4tlr611esxeW6vUW2+VJTra5fmh0dEaOHWqorp3d7teAL7h7EGTfSdP9lE1AAAAkAiFAQBAC+18+23tX7HCrTWOfvtto3OCQkM1/Nln3boOAN9o6EGTYe3b+6gqAAAA0D4CAAC0SOfzz5dMJs9exGQ6eR0AAYkHTQIAAPgnQmEAANAi3caN05h33lF4QoJH1g9PSNCF776rbuPGeWR9AJ7HgyYBAAD8U0CHwg888IBMJlPdn6+++srXJQEAYCgdhw/XxQsXqsvo0a26bpfRo3XxwoXqMGxYq64LwHt40CQAAID/CtiewllZWZoxY4avywAAwPDCYmJ0/uuv64fZs7XtpZdkq65u8Vpmi0Vn33+/kiZNksnTrSkAtBgPmgQAAAhsARkK22w23XrrraqtrVVCQoIKCgp8XRIAAIZmMpnUd/JkJQwerA3Tpqlk795mrxHVq5dGvfSSYvr29UCFAFoTD5oEAAAIbAHZPmLmzJnasmWL+vXrpylTpvi6HAAA8F8x/fpp/Lx5apeU1Kzz2iUlafy8eQTCQIDgQZMAAACBLeBC4YMHD+qxxx6TJL355puyWCw+rggAAPySyWxWWV5es84py8uTKSjIQxUBaG08aBIAACCwBVwo/L//+78qKyvTDTfcoNGt/FAbAADgvkMbN6q2vLxZ59SWl+vwxo0eqgiAJ/CgSQAAgMAVUKHwvHnztHTpUrVv317/+Mc/fF0OAABw4uDKlV49D4DvnHrQ5ODp02V28xN8ZotFg6dP1/mvv66wmJhWqhAAAADOBMyD5o4fP667775bkvTiiy8qPj7exxX5r8LCQl+XEDCc7RX713Tsn3vYP/ewf+7zxB7aamt1MDW1ReceWL1aPe+8U+bgwPjnCe9B97B/7vG3/Ws/dqyG9uql7KefVvmBA80+P6J7dw18/HG17d3bK9+Hv+1foGGvAAAIfIHxU5ekBx54QIcPH9bIkSNb/eFyubm5DR4/dOhQq17P0wYMGODrEgIa++ce9s897J972D/3ubuHAyMi9FD37k6PbSkp0ZyCAk1KSNC5UVEOx2tLS/X7M87Qjma2nvAnvAfdw/65xx/2z2Iy6cmePdU9LKzJ5+yvrNSTn3+u6hUrPFhZ4/xh/wAAALwlIELh9evX65133lFwcLDeeustmVr5SceJiYmtuh4AAEY1xEnYW22z6eP8fK0+dkySNCM3V7+PidHkDh1kMdfvZDW0bduADoUBo7NLSggJadY5CSEhsnmmHAAAALjg9z2Fq6urddttt8lut+vee+/VwIEDfV0SAABwwiTp3LZt643lVlbq8ZycukD4lFXHjunxnBzlVlbWGz83Kkqt+6tfAN50ZkSEwoOCmnVOeFCQBkZEeKgiAAAAOOP3dwo/99xz2rVrl7p166YnnnjCI9c4ePBgg8cPHTqkoUOHeuTaAACcLmJDQhT9i37Aq44e1Sf5+aq2253OP1hVpcdycvSnDh10Yfv2kqTo4GDFhoSosKbGKzUDaF1DnXxaoCmGREVpW1lZK1cDAAAAV/w6FP7uu+/0/PPPS5Jee+01RXjoDoKuXbt6ZF1f2blzp+Li4nxdRkAoLCx06B/H/jUd++ce9s897J/7WnsP7Varvn3hBZXs3q3eN9+si84/Xy828dz8tWu15/33FZWUpG9TU2Uy+/2HmXgPuon9c48/7p+ttlZrr7hCtaWlzT73wsREPb11q9ceNOmP+xdInO0fAAAILH4dCs+YMUPV1dXq1auXKioq9OmnnzrM2bFjR93r1NRUHT58WJJ02WWXeSxE9ndxcXGKj4/3dRkBi/1zD/vnHvbPPeyf+9zdw4RXXmnRefFXXaUzr7qqxdf1F7wH3cP+ucfX+3dowwaXgXDXCy/UoPvuU+ZLLyk3NdXheG1pqWw5OeowcqSny3TJ1/sHAADgTX4dCldVVUmS9u7dq4kTJzY6/29/+1vd65ycHMOGwgAAAIC3HVy50mHMbLFo8IMPqs8118hkMum8mTO1+9NP9c3f/y5bdbXD+Z18GAoDAAAYif9/NhMAAACAX7NZrQ53AEf37q3xc+fqjGuvlcl08hGSJpNJSRMnavzcuYru3bve/NzVq2WzWr1WMwAAgJH5dSj8wQcfyG63N/jnlw+fW7NmTd14jx49fFc4AAAAYCAn8vNVWVRU93Wfa67RuLlz1S4pyen8dklJGjd3rvpMmFA3VllUpBP5+R6vFQAAAH7ePgIAAACA/wvv0EE9LrtMx3btUvKddyrxoosaPSc4PFxDn3hCHUeMUPa//qWYAQPUpmNHL1QLAAAAQmEAAAAAbjEHBWnkCy+06NxuY8eq29ixrVwRAAAAGuLX7SMAAAAAAAAAAK2LUBgAAAAAAAAADCTgQ+Enn3yy7uFyo0eP9nU5AAAAAAAAAODXAj4UBgAAAAAAAAA0HaEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAAAAAAYCKEwAAAAAAAAABgIoTAAAAAAAAAAGAihMAAAAAB4UG1lpQoyMlRbWenrUgAAACQRCgMAAACAR224/36tuv56bZw2zdelAAAASCIUBgAAAACPqTh8WHlr1kiSclNTVZGf7+OKAAAACIUBAAAAwGMOrl5d/+tVq3xUCQAAwM8IhQEAAADAQw6uXNng1wAAAL5AKAwAAAAAHlBZVKQjGRn1xo5kZKjy6FEfVQQAAHASoTAAAAAAeEDu6tWy22z1xuw2m3J/1VICAADA2wiFAQAAAMADDrhoFUELCQAA4GuEwgAAAADQyqqOH1d+errTY4c3b1Z1cbGXKwIAAPhZsK8LAAAAAIBAUrJ/v7Jfe01VDQS71cXFstfWOj1mr61V6q23yhId7fL80OhoDZw6VVHdu7tdLwAAwK8RCgMAAABAM+x8+23tX7HCrTWOfvtto3OCQkM1/Nln3boOAACAM7SPAAAAAIBm6Hz++ZLJ5NmLmEwnrwMAAOABhMIAAAAA0Azdxo3TmHfeUXhCgkfWD09I0IXvvqtu48Z5ZH0AAABCYQAAAABopo7Dh+vihQvVZfToVl23y+jRunjhQnUYNqxV1wUAAPglQmEAAAAAaIGwmBid//rrGjx9uswWi1trmS0WDZ4+Xee//rrCYmJaqUIAAADnCIUBAAAAoIVMJpP6Tp6scXPmKKpXrxatEdWrl8Z9+qn6Tp4sk6d7FQMAAIhQGAAAAADcFtOvn8bPm6d2SUnNOq9dUpLGz5unmL59PVQZAACAI0JhAAAAAGgFJrNZZXl5zTqnLC9PpqAgD1UEAADgHKEwAAAAALSCQxs3qra8vFnn1JaX6/DGjR6qCAAAwDlCYQAAAABoBQdXrvTqeQAAAC1FKAwAAAAAbrLV1ChvzZoWnZubmipbTU0rVwQAAOAaoTAAAAAAuCk/PV3VJSVOj3W98EJduny5uo4Z4/R4dUmJ8rds8WR5AAAA9RAKAwAAAICbnLWAMFssGvLYYzrv1VcV1b27zps5U+c++qjMFkuTzgcAAPCUYF8XgNZXWFjo6xIChrO9Yv+ajv1zD/vnHvbPfeyhe9g/97B/7mH/3NPa+2e3WnVg1ap6YxE9emjg44+rba9e9daO+f3vNbRXL2U//bTK9+2rGz+wcqV63H67TEFBLa7DW3ivAQAQ+Ex2u93u6yL8XW5urhITEyVJBw8eVNeuXX1c0c+OHDmihIQEX5cBAAAAGFZcSIhePeOMuq9XHT2qT/LzVd3Aj1oWk0l/6tBBF7ZvXzd29+7dKgzQ3sIFBQWKj4/3dRn1+PPPcQAA+Bp3CgMAAACAG4pqarT++HF1DwvTgiNHtLW0tNFzqu12vXf4sLLLy/U/8fHaV1mpogANhAEAQOAhFAYAAAAAN9glvfnTTy06d0tpqbY0IUQGAABoTTxoDgAAAAAAAAAMhDuFT0M7d+5UXFycr8sICIWFhRowYEC9Mfav6dg/97B/7mH/3Mceuof9cw/75x72zz3sn3uc7R8AAAgshMKnobi4OL97yEMgYf/cw/65h/1zD/vnPvbQPeyfe9g/97B/7mH/AACAkdA+AgAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADCQgQuFvvvlGzz33nC6++GIlJiYqNDRUkZGRSkpK0o033qivv/7a1yUCAAAAAAAAQEAI9nUBjfnd736ndevWOYxXV1dr9+7d2r17t2bNmqXrrrtO77zzjiwWiw+qBAAAAAAAAIDA4PehcF5eniSpc+fOuvrqq3XeeeepW7duslqt2rRpk/75z38qLy9PH330kWprazV79mwfVwwAAAAAAAAA/svvQ+F+/frpueee0//8z/8oKCio3rHhw4fruuuu06hRo/TDDz9ozpw5uuOOO3Teeef5qFoAAAAAAAAA8G9+31N46dKlmjBhgkMgfEpcXJz++c9/1n29YMECb5UGAAAAAAAAAAHH70Phphg9enTd6z179viuEACAR9VWVqogI0O1lZW+LgUAAAAAgIB1WoTC1dXVda/N5tPiWwIAOLHh/vu16vrrtXHaNF+XAgAAAABAwPL7nsJNsXbt2rrX/fr182El/qGwsNDXJQQMZ3vF/jUd++ce9q95KgsKlLdmjSQpNzVV0ddc4zCH/Wse3oPuYf/cw/65h/1zD/vnHvYKAIDAZ7Lb7XZfF+EOm82mESNGKD09XZK0ZcsWnXvuuc1aIzc3t8Hjhw4d0tChQyVJBw8eVNeuXVtWrAccOXJECQkJvi4DADxubEyMbujUqe7rDw4d0spjx3xYEQAAOKWgoEDx8fG+LqOe3NxcJSYmSvK/n+MAAPC1gL9TeMaMGXWB8BVXXNHsQFhS3T8UAAD+a0hUVL2vh0ZFEQoDAAAAANACAd2Ad+3atXrooYckSQkJCXrzzTd9XBEAwBOigoLUr02bemP92rRR26AgH1UEAAAAAEDgCtg7hb/99ltdccUVqq2tVWhoqObNm6cOHTq0aK2DBw82ePyX7SMAAN43uG1bmU2memNmk0nntm2rNceP+6YoAAAAAAACVECGwjk5ORo7dqyOHTumoKAgzZkzR7/73e9avN7p1ltq586diouL83UZAaGwsFADBgyoN8b+NR375x72r+m+mTZNRVu2OIwPiYqqFwqzf83De9A97J972D/3sH/uYf/c42z/AABAYAm4UPinn37S73//e/30008ymUx67733dMUVV/i6LL8SFxfndw95CCTsn3vYP/ewf46qjh/X0W3bnB77TUSE2pjNqrDZJLF/rYE9dA/75x72zz3sn3vYPwAAYCQBFQoXFhbqoosu0t69eyVJr732mq6//nofVwUAaKmS/fuV/dprqioudjmnurhY9tpap8eCTSY93L27yq1WSVLG/ffLYrHUmxMaHa2BU6cqqnv31iscAAAAAIAAFjChcHFxscaNG6edO3dKkl544QX95S9/8XFVAAB37Hz7be1fscKtNXqFh9e9Prp1q9M5QaGhGv7ss25dBwAAAACA04XZ1wU0RUVFhS655BJ98803kqRHHnlEDz74oI+rAgC4q/P550u/eoBcqzOZTl4HAAAAAABICoBQuLq6WldccYU2bNggSbr77rv1zDPP+LgqAEBr6DZunMa8847CExI8sn54QoIufPdddRs3ziPrAwAAAAAQiPy+fcTEiRP15ZdfSpLGjBmjKVOmaMeOHS7nWywWJSUleas8AICbOg4frosXLtTmRx9V3ldftdq6XUaP1rBnnlFYTEyrrQkAAAAAwOnA70PhhQsX1r1OTU1VcnJyg/O7d++uffv2ebgqAEBrCouJ0fmvv64fZs/Wtpdekq26usVrmS0WnX3//UqaNEkmT7emAAAAAAAgAPl9+wgAgDGYTCb1nTxZ4+bMUVSvXi1aI6J7d4379FP1nTyZQBgAAAAAABf8PhS22+3N+sNdwgAQ2GL69dP4efPUrpmtgPZXVmrYv/+tmL59PVQZAAAAAACnB78PhQEAxmMym1WWl9escxJCQmQy8781AAAAAAAaw0/PAAC/c2jjRtWWlzfrnPCgIBVt3eqhigAAAAAAOH0QCgMA/M7BlStbdF7BunWtXAkAAAAAAKcfQmEAgF+x1dQob82aFp1bsGGDbDU1rVwRAAAAAACnF0JhAIBfyU9PV3VJidNjXS+8UJcuX66uY8Y4PV5bWqr8LVs8WR4AAAAAAAGPUBgA4FectY4wWywa8thjOu/VVxXVvbvOmzlT/e65R9U2W5POBwAAAAAAPyMUBgD4DZvVqtzU1Hpj0b17a/zcuTrj2mtlMpkkSSaTSYn/7//p8Zwc5VZW1pufu3q1bFar12oGAAAAACDQEAoDAPzGifx8VRYV1X3d55prNG7uXLVLSnI6/2BVlR7LydHqo0frxiqLinQiP9/jtQIAAAAAEKiCfV0AAACnhHfooB6XXaZju3Yp+c47lXjRRY2eU223673Dh5VdXq5HzjtP8cnJatOxoxeqBQAAAAAgMBEKAwD8hjkoSCNfeKFF524pLdXIDz5QfHx8K1cFAAAAAMDphfYRAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAghMIAAAAAAAAAYCCEwgAAAAAAAABgIITCAAAAAAAAAGAgwb4uAK2vsLDQ1yUEDGd7xf41HfvnHvbPPeyf+9hD97B/7mH/3MP+uYf9cw97BQBA4DPZ7Xa7r4vwd7m5uUpMTJQkHTx4UF27dvVxRT87cuSIEhISfF0GAAAAAAMrKChQfHy8r8uox59/jgMAwNdoHwEAAAAAAAAABkIoDAAAAAAAAAAGQigMAAAAAAAAAAbCg+ZOQzt37lRcXJyvywgIhYWFGjBgQL0x9q/p2D/3sH/uYf/cxx66h/1zD/vnHvbPPeyfe5ztHwAACCyEwqehuLg4v3vIQyBh/9zD/rmH/XMP++c+9tA97J972D/3sH/uYf8AAICR0D4CAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAgMedOHFCubm5OnHihK9LAQAAMDxCYQAAAAAetXz5cvXq1UuJiYnq1auXli9f7uuSAAAADI1QGAAAAIDHHD16VNddd50OHz4sSTp8+LCuv/56HT161MeVAQAAGBehMAAAAACPWbBggUMAXFRUpJSUFB9VBAAAAEJhAAAAAB7jKvwlFAYAAPAdQmEAAAAAHnHs2DGlpqY6PbZ69WodO3bMyxUBAABAIhQGAAAA4CGfffaZamtrnR6rra3Vf/7zHy9XBAAAAIlQGAAAAICHNNYighYSAAAAvkEoDAAAAKDVlZSU6IsvvmhwzhdffKHS0lIvVQQAAIBTCIUBAAAAtLply5apurq6wTlVVVVatmyZlyoCAADAKYTCAAAAAFpdU1tD0EICAADA+wiFAQAAALSqiooKrVixoklzly9froqKCg9XBAAAgF8iFAYAAADQqj7//HOnQW9QG4vDWEVFRaO9hwEAANC6CIUBAAAAtKoFCxY4He9503nNmg8AAADPIBQGAAAA0Gqqqqq0dOlSh/HQhCh1GDtQoQlRDseWLl2qqqoqb5QHAAAAEQoDAAAAaEUrV65UaWmpw3jcyDNkMpsUO7KPw7GSkhKtWrXKG+UBAABAhMIAAAAAWlFKSorT8dhRJ8PguJFnNOs8AAAAtD5CYQAAAACtoqamRkuWLHEYt7SPUNukTpKktn07ydI+wmHOkiVLVFNT4/EaAQAAQCgMAAAAoJWsWbNGx44dcxiP/W/rCEknW0iMcGwhcfToUX311VeeLhEAAAAiFAYAAADQSly1gPh1y4jYUbSQAAAA8CVCYQAAAABus1qtWrx4scN4SLs2ihrQud5Y9IAuCokOd5i7aNEiWa1WT5UIAACA/yIUBgAAAOC29evXq6CgwGE8dlhvmYLq/9hhCjKr/fDeDnMLCgq0YcMGj9UIAACAkwiFAQAAALjNVeuH2JHOW0X8uqVEY+sAAACg9RAKAwAAAHCLzWZzGuYGR4YqOrmr03OiByYqKCLUYTwlJUU2m63VawQAAMDPCIUBAAAAuGXz5s366aefHMbbD+0tc3CQ03PMIUGKHdbLYTwvL0/p6emtXiMAAAB+RigMAAAAwC2uWj7EjXLeIuKUWBfHaSEBAADgWYTCAAAAAFrMbrc7DXGDwi1qd3a3Bs+NGdRdQeEhDuMpKSmy2+2tViMAAADqIxQGAAAA0GLbtm3Tvn37HMbbD+kpc0hwg+eaLcGKGeLYQiInJ0eZmZmtVCEAAAB+jVAYAAAAQIstWLDA6XjsyIZbR5wSN7JPs9YFAACA+wiFAQAAALSIq9YRZkuwYgb3aNIaMYN7ymxxvKOYFhIAAACeQygMAAAAoEW+/fZb/fDDDw7jMef2UFCYY69gZ4LCQpwGyN9//7127tzpbokAAABwouEmXwAAAAACwvDhwxUUFOTVa5aUlDgdj2ti64hTYkeeoaJNPzqMX3jhhYqKimpRbQ2xWq0OY7/cv5iYGF166aWaPn261/cUAADAGwiFAQAAgNPA3r17fV2CJMkUHKSYIT2bdU77oT1lCg6SvbZ+WJufn6/8/PzWLM+lX+9fenq6CgsL9eqrr3rl+gAAAN4UcO0jDhw4oPvvv1/9+/dXRESE2rdvr6FDh+qll15SRUWFr8sDAAAADK3d2d0U3Ca0WecEtwlVu0HdPFRRy82aNUs2m83XZQAAALS6gLpTeNmyZZo8ebKKi4vrxioqKrRlyxZt2bJF77zzjpYvX65evXr5sEoAAADAuOJGNa91RN15vz1Dx7bmtHI17gkPD5fZHHD30QAAADQqYP6Fk5WVpQkTJqi4uFiRkZF69tlntXHjRq1evVq33nqrpJMPo7jkkktUVlbm42oBAAAA42nTLVbx5/dr0bnx5/dTm8T2rVyRe+69915flwAAAOARAXOn8D333KOKigoFBwfryy+/1IgRI+qOjRkzRmeccYYeeOABfffdd3r55Zf1+OOP+7BaAAAAwL+Ed4lRWKd2HlnbZDYpome8uvy/c2QOadmD2cwhQUr++zXKW/yNynOOyG6zt3KVJ5346Zgqfzre4Jzg4GA988wzmjZtmkdqAAAA8LWACIW3bNmir776SpI0ZcqUeoHwKffdd5/ef/997dq1S6+88ooefvhhhYSEeLlSAAAAwDe6deumAwcOuDxedaREnS8/Wx3HJ8tkMnmxsqYLjgxT9z+N9Mjadrtdh1dsV867rvdIknr27Kk5c+Zo2LBhHqkDAADAHwRE+4jFixfXvb7pppuczjGbzbr++uslSceOHasLkQEAAAAjSE1N1cSJE10et1VbteeNVH33/FLVlFZ6sTLfqymt1HfPL9WeN1Nlq7a6nDdx4kRt27aNQBgAAJz2AiIU/vrrryVJERERGjx4sMt5v/vd7+per1+/3uN1AQAAAP4iKipKn3zyid5//31FRES4nFe06Udtu+sjFe/I9WJ1vlO8I1fb7vpIRZt+bHDezJkz9cknnyg6OtpLlQEAAPhOQLSP2LVrlySpT58+Cg52XXK/fj8/1OLUOUZUWFjo6xIChrO9Yv+ajv1zD/vnHvbPfeyhe9g/97B/7mlo/y655BL17dtXt99+u7Kzs52eX11YpuxHFijxmmHqds0wmYIC4l6RZrFbbTrwaZoOzkuXmtCf+Pe//z3vwSZinwAACHx+HwpXVlbW/aOja9euDc6NiYlRRESEysvLdfDgwSZfIze34bskDh061OS1/MGAAQN8XUJAY//cw/65h/1zD/vnPvbQPeyfe9g/9zR7/2x2HZyTpuKsA0q672KFJUR5pjAfqCwo0Q8vrVDJrp+afA7vPwAAYCR+HwqXlpbWvY6MjGx0/qlQuKysrMnXSExMbFFtAAAAQKAr2fmTtt31sc6YepHiRp3h63LcVrhht3a/tlLW8ipflwIAAOC3/D4Urqz8+SEYFoul0fmhoaGSpBMnTnisJn8SHx8vu/3kx+H89SnSAAAA8G/W8ip998JSdRw/UD2n/E5BYSG+LqnZrJU1ynlnrQ5/4bxlBjzj1M8iAAAgsPh9KBwWFlb3urq6utH5VVUn7wgIDw9v8jUaazVx6NAhDR06tMnrAQAAAIHo8OfZKvk2T30fuEQRPeJ8XU6Tlecc0ff/WK6Kg0d9XQoAAEBA8PtQuG3btnWvm9ISory8XFLTWk2c0liv4kBRUFDg6xIAAADg57755hvdfvvt2r9/v9PjFQePKvOvs9Vryu/U8Q/Jfv1pNLvdrkPLs5Tz7jrZa6wu5/Xo0UP//ve/dfbZZ3uxOgAAAP/l96FwWFiY4uLiVFhY2OgD4Y4dO1YXChuxT3B8fLyvSwAAAICfGzdunLZv36477rhDs2fPdjrHXmPVnrdSdWzbfp1x10UKiWr6p/C8pabkhHbPXKmjm/c0OG/y5Ml64403FBV1+jxIDwAAwF1mXxfQFP3795ck/fjjj6qtrXU577vvvnM4BwAAAEB9UVFR+vjjjzVr1ixFRES4nHd08x5tu+tjFWc3fHOGtx3PPqhtd33cYCAcGRmpDz/8UB9//DGBMAAAwK8ERCj829/+VtLJ1hAZGRku561du7bu9ahRozxeFwAAABCoTCaTrr/+em3btk3nnHOOy3nVRWXKfmS+9n+8UXarzYsVOrJbbdr/8UbteGSBqotct5YbPHiwvvnmG1133XVerA4AACBwBEQo/P/+3/+re/3+++87nWOz2fThhx9Kktq1a6cLLrjAG6UBAAAAAe2MM87Qpk2bdN9997meZJcOzt2s7Q/PU2VBifeK+4XKghJtf3ieDs7dLNldz7v//vu1ceNGnXHGGd4rDgAAIMAERCg8dOhQnXfeeZKkd999V5s2bXKY889//lO7du2SJN19990KCQnxao0AAABAoLJYLHrppZf0+eefKyEhweW80l2HtO2uj3V8+0EvVicd336yXUTprkMu5yQkJOjzzz/XP/7xD1ksFi9WBwAAEHgCIhSWpFdffVXh4eGqra3V2LFj9fzzzystLU1r1qzR7bffrgceeECSlJSU1PBdDgAAAACcGjdunLKysjR27FiXc6zlVdr17Geqraj2Sk21FdXa9cxnspZXuZxz6uF548aN80pNAAAAgS5gQuGzzz5bc+fOVVRUlMrKyjR9+nSNGDFCY8aM0dtvvy3pZCC8bNkytW3b1sfVAgAAAIGpY8eOWrFihf7xj3+4/PSdtaJaZT+4vmu3NZX9cEjWE84D6JCQEL300ktavny5OnTo4JV6AAAATgcBEwpL0mWXXabt27fr3nvvVVJSktq0aaN27drp3HPP1Ysvvqht27apT58+vi4TAAAACGhms7muN298fLzTOSExEV6pxdV1EhIStHHjRt13330ymwPqxxoAAACfC/Z1Ac3VvXt3vfzyy3r55Zd9XQoAAABwWhs4cKCqqhzbNoQmRKlNt1iv1NCmW6xCE6JU9asH3FVWVmrgwIFeqQEAAOB0w6/UAQAAADi1atUqlZSUOIzHjuwjk8nklRpMJpNiRzh+GrCkpESrV6/2Sg0AAACnG0JhAAAAAE6lpKQ4HY8beYZX64gb6bxFnKv6AAAA0DBCYQAAAAAOampqtGTJEodxS/sIte3byau1tO3XWZb2jr2FlyxZotraWq/WAgAAcDogFAYAAADgYO3atTp69KjDeOyIPjKZvdM64hST2aTY4Y53CxcVFWnt2rVerQUAAOB0QCgMAAAAwMGCBQucjseO8m7riMau66pOAAAAuEYoDAAAAKAeq9WqRYsWOYyHRIcrekAXH1QkRf+mi4Kjwh3GFy1aJKvV6oOKAAAAAhehMAAAAIB6NmzYoIKCAofx9sN7yxTU/B8h7Ha7jmcdUN7ib3Q864Dsdnuz1zAFmRU7vLfDeH5+vjZu3Njs9QAAAIws2NcFAAAAAPAvKSkpTsfjRja/dURNcYV+eOVLHduaUzcWc25PJd0zViHRbZq1VtzIM5T/5Q6H8ZSUFJ133nnNrg0AAMCouFMYAAAAQB2bzaaFCxc6jAdFhCp6YGKz1jqedUDfTP2oXiAsSce25mjbXR/reNaBZq0XnZyooIhQh/GFCxe26O5jAAAAoyIUBgAAAFBny5Ytys3NdRiPHdZL5pCgJq1hq7Vq3wdfa8djKao5VuF0TvXRcu14LEX7Zq2XrbZpPYHNIUFqP7SXw/jBgwe1ZcuWJq0BAAAAQmEAAAAAv7BgwQKn47GjmtY6ovLwcW1/cJ5yU7ZKjd28a5dyF2zR9gfnqfLw8SatH+eiDld1AwAAwBGhMAAAAABJJx8I56yfcFB4iGIGdW/0/CNrv9O2uz5R2Q+Hm3Xdsh8Oa9tdn+jI2u8anRtzdncFhYc4jKekpNBCAgAAoIkIhQEAAABIkjIzM5WTk+MwHjOkl8wW18+otp6o1g+vfKHvX1oh64lql/O6du3a4Brfv7RCP7z6ZYNrmC3Bijm3p8P43r17lZWV5fI8AAAA/IxQGAAAAIAkOb1LWJLiRvZxeU7Zj/nads8nKli90+Uci8WiV155Rfv379eMGTMUEuJ4p+8pBau+Vea9s1X2Y77LOXEjnbeQcFU/AAAA6iMUBgAAACC73e60L6/ZEqyYwY535tptduUt/kZZ0z5V5U/HXa6blJSktLQ03X333TKbzbrnnnuUlpampKQkl+ecyDumrGmfKm/xN05bQsQM7iGzxfGhd4TCAAAATUMoDAAAAEA7d+7U999/7zAeM7iHgsLq39lbfbxCO59erJx318pea3O55s0336yMjAydffbZ9cbPOeccZWRk6KabbnJ5rr3Wppx312rn00tUfbyi3rGgcIvandPD4Zxdu3Zp507XdywDAADgJEJhAAAAAC7vso39VauGY9v2a9vUj3QsY5/LtaKiojRnzhy9++67ioyMdDonMjJS7733nmbPnq2oqCiXax3bmqNtd32k45n7643HjaKFBAAAQEsRCgMAAABwGqaagoPUfujJ1hG2GqtyPvha3z6+UDW/unP3l4YPH67MzExde+21TbruxIkTtW3bNg0bNszlnJpjFdrx+ELt++Br2WqtkqT2Q3rJFOz44wyhMAAAQOMIhQEAAACD+/HHH7V9+3aH8XaDuim4TahOHDqu7Q/OVV7KVpdrmEwmTZ8+XevWrVPPno49iBvSq1cvff3113r44YdlMpmcT7JLuSlbtf3BeTpx6LiCI0LVblB3h2lZWVnas2dPs64PAABgNITCAAAAgMG5urs2btQZKvhqlzLv/kRlu/Ndnt+pUyetWrVKzz77rEJCQlzOa0hISIiee+45rVy5Up06dXI5r+yHw8q8+xMVfPWdYkf2cTqHu4UBAAAaRigMAAAAGNyCBQucjhdu3K0f/vm5rCeqXZ576aWXavv27RozZkyr1HLhhRcqKytLl1xyics51hPV+uGfK1S06Uenx119PwAAADiJUBgAAAAwsP3792vrVudtIY5tyXF5nsVi0cyZM/XZZ58pLi6uVWuKj4/Xf/7zH7366quyWCwu57mqb8uWLTpw4ECr1gQAAHA6IRQGAAAADGzhwoXNPqdfv35KT0/X1KlTXfcAdpPJZNJdd92lzZs3q2/fvs0+vyXfFwAAgFEQCgMAAAAG1tz+u7fccou2bt2qs846y0MV1Tdo0CBlZGRoypQpzTqPvsIAAACuEQoDAAAABvXTTz9p48aNTZobHR2tuXPn6v/+7/8UERHh4crqi4iI0DvvvKNPP/1UUVFRTTpnw4YNOnTokIcrAwAACEyEwgAAAIBBLVq0SHa7vdF5I0aMUGZmpiZMmOCFqly75pprlJWVpeHDhzc61263a9GiRV6oCgAAIPAQCgMAAAAG1ViLBZPJpEcffVTr1q1Tjx49vFNUI3r06KF169bpkUceabSfMS0kAAAAnCMUBgAAAAzIbrdr/fr1Lo937txZq1ev1t/+9jcFBwd7sbLGhYSE6JlnntHq1avVuXNnl/PWr1/fpDuhAQAAjIZQGAAAADCg2tpal3fa/vGPf1RWVpYuuOACL1fVPBdccIGysrJ02WWXuZxTW1vrxYoAAAACA6EwAAAAYEAhISGaMmVKvbHQ0FC9/vrrWrx4seLi4nxUWfPExcVpyZIleu211xQaGlrv2C233KKQkBAfVQYAAOC//OtzYAAAAAC8ZubMmerevbvWrFmjxMRE3XvvvRowYICvy2o2k8mkO++8U2PGjNGMGTN08OBBXXDBBbrvvvt8XRoAAIBfMtlpstWo3NxcJSYmSpIOHjyorl27+rgiAAAAAEBD+DkOAADXuFO4CX7Zh+zQoUM+rAQAAAAA0BS//NmN3tIAANRHKNwER44cqXs9dOhQH1YCAAAAAGiuI0eOqEePHr4uAwAAv8GD5gAAAAAAAADAQOgp3ASVlZXKzs6WJMXHxys42L9usD506FDdHczp6enq1KmTjyuCkfD+gy/x/oOv8R6EL/H+gy8Fwvuvtra27lOfAwcOVFhYmI8rAgDAf/hXuumnwsLCNGTIEF+X0SSdOnXiAQrwGd5/8CXef/A13oPwJd5/8CV/fv/RMgIAAOdoHwEAAAAAAAAABkIoDAAAAAAAAAAGQigMAAAAAAAAAAZCKAwAAAAAAAAABkIoDAAAAAAAAAAGQigMAAAAAAAAAAZCKAwAAAAAAAAABmKy2+12XxcBAAAAAAAAAPAO7hQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQGAAAAAAAAAAMhFAYAAAAAAAAAAyEUBgAAAAAAAAADIRQOcAcOHND999+v/v37KyIiQu3bt9fQoUP10ksvqaKiwtfl4TT0zTff6Lnn/n97dx9Tdfn/cfwFIogSKoE3KCVqILlunJiSEGJaOVRCg3KZeJN3FfOmidmNyrxFh9Bc6UjUbKlTczbAnJk3iMlC8zahEnHeTQkjU0EROb8/GOcHXxFv8pzP4PN8bGzX4bzP8cU843C9z/W5rvkaMGCAfHx85OLiIjc3N/n5+WnkyJHau3ev0RFhUnFxcXJwcLB+7d692+hIaOCKioq0aNEi9e7dW23atJGLi4u8vb3Vs2dPTZs2Tfv37zc6IhqosrIypaam6rXXXlPbtm2t78X+/v4aPXq0srOzjY6IeqiwsFDp6emaOXOmBgwYIE9PT+t76siRIx/4+bZt26YhQ4aoffv2cnFxUfv27TVkyBBt27bt0YcHAAAPzMFisViMDoGHk5GRobfffltXrlyp9X5/f39t3bpVHTt2tHMyNFShoaHKzMy8Z90777yjFStWyNnZ2Q6pAOnIkSMKDAxUeXm59Xu7du1Snz59jAuFBm3jxo2aOHGiLl++fNeaiIgIbdmyxX6hYApnz55VeHi4jh07VmfdlClTlJiYKAcHBzslQ31X12slJiZGq1evvq/nsVgsmjBhglJSUu5aM27cOC1fvpzXJwAABnIyOgAezpEjRxQdHa2SkhK5ublpxowZCgsLU2lpqdavX6+vvvpKv//+u8LDw5WTkyM3NzejI6MBOH/+vCTJ29tbUVFRCgkJ0RNPPKHbt29r//79SkxM1Pnz5/XNN9+ovLxca9euNTgxzKCiokJjx45VeXm5WrVqpcLCQqMjoYFbs2aNRo0apYqKCrVq1UoTJ05UcHCwPDw8dPHiReXn5ystLU2NGzc2OioamPLy8hoN4WeffVZTp06Vv7+/rl69qqysLCUmJur69etKSkpS27ZtNW3aNINToz7y8fFRQECAtm/f/sCP/fTTT60N4W7duikuLk6dOnVSfn6+Fi1apEOHDiklJUVeXl6aO3fuo44OAADuEyuF66mwsDDt3r1bTk5OyszMVFBQUI37Fy9erLi4OElSfHy8Zs6caURMNDADBw7UiBEjNHToUDVq1OiO+4uKitS7d2/98ccfkqTMzEyFhITYOyZMJjk5WVOmTFGXLl0UGRmpBQsWSGKlMGwjNzdX3bp1082bNxUSEqK0tDQ1b9681tqysjKumMAj9d133+mNN96QJAUFBWnv3r13vB8fPHhQQUFBunXrllq2bKnCwkI5ObEOBPc2a9Ys9ejRQz169FDr1q11+vRp+fr6Srr/lcInT55UQECAysvLFRgYqMzMTLm6ulrvLykpUWhoqA4cOCAnJyfl5eWpU6dOtvqRAABAHdhTuB7Kycmx7pU5ZsyYOxrCkvThhx8qICBAUmXD5NatW/aMiAYqPT1d0dHRtTaEJcnT01OJiYnW25s2bbJXNJjU2bNn9dlnn0mSli1bRgMONhcbG6ubN2/K09NTmzdvvmtDWBKvRzxy+/bts45nzJhR6/tx9+7dNXDgQElScXGx8vLy7JYP9Vt8fLwGDhyo1q1bP/RzJCUlWbdyWrp0aY2GsCQ1bdpUS5culVS58j05Ofmh/y0AAPDf0BSuh6rvTzhq1KhaaxwdHTVixAhJlRMCDlyCvVRfmZmfn29cEJjCe++9p2vXrikmJoZVwbC5vLw8/fTTT5KkDz74QJ6engYngtmUlZVZx3WdGVF95eXNmzdtmgmoYrFY9P3330uSunTpol69etVa16tXL/n7+0uqnNdw4SoAAMagKVwP7d27V5LUrFkzde/e/a51oaGh1nFWVpbNcwFSzQmroyO/YmA7GzZsUHp6ujw8PLR48WKj48AENm7caB1HRUVZx8XFxfrzzz/rPHQOeBT8/Pys41OnTt21rupDWQcHBz311FM2zwVIUkFBgfX8ierzkNpU3X/u3DmdPn3a1tEAAEAt6NjUQ7m5uZKkzp0717lHXJcuXe54DGBre/bssY6rvwaBR+mff/7RpEmTJEkJCQny8vIyOBHMIDs7W5LUvHlzBQQE6Ntvv9Vzzz0nDw8P+fn5ydPTUx07dlR8fLyuXbtmcFo0RMOGDZO7u7ukyt99t2/fvqPm0KFDysjIkCS99dZb1nrA1qrPN+71NyDzFAAAjEdTuJ65ceOGioqKJEnt27evs7Zly5Zq1qyZpMp9NwFbq6io0MKFC623o6OjDUyDhiwuLk4XL17Uiy++qDFjxhgdByZx4sQJSVKHDh0UGxur4cOH6+jRozVqCgoKNHv2bAUFBenChQtGxEQD5uXlpdWrV8vV1VX79u1Tjx49tGbNGmVnZ2vHjh2Kj/Ovru4AAAkCSURBVI9XaGioysrK9Pzzz2vJkiVGR4aJVJ9v3Gue4uPjU+vjAACA/dAUrmeuXr1qHbu5ud2zvqopzIol2ENSUpJ++eUXSVJkZKQCAwMNToSGKCsrSytWrJCTk5OWL18uBwcHoyPBJP7++29JlXsLf/HFF2rRooWWL1+uwsJC3bhxQzk5ORowYIAk6fjx44qKilJFRYWRkdEARUZG6sCBAxozZowOHz6smJgYBQUFqX///po9e7aaNm2qJUuWKCsrS23atDE6LkzkQeYpVXMUiXkKAABGoSlcz9y4ccM6vp9TzV1cXCRJpaWlNssESJXbRnz00UeSpFatWmnZsmUGJ0JDVFZWpnHjxslisWjKlCl65plnjI4EE7l+/bqkyoO7GjVqpB9++EHjx4+Xl5eXXFxcFBgYqPT0dGtj+Oeff9bmzZuNjIwG6NatW1q7dq3S0tJqPaDr0qVLWrduHYcMw+4eZJ5SNUeRmKcAAGAUmsL1TJMmTazj6gd63U3VidOurq42ywT89ttvioyMVHl5uVxcXLRhwwa1bt3a6FhogObPn6/c3Fw98cQTmjVrltFxYDLV34OjoqLUq1evO2ocHR1rHHy4bt06u2SDOVy/fl39+vXTvHnzdPnyZcXFxSk3N1c3b97UlStXtH37dgUHBysnJ0eDBg3S559/bnRkmMiDzFOq5igS8xQAAIxCU7ieeeyxx6zj+7nUqmpV0/1sNQE8jIKCAr3yyisqLi5Wo0aNtG7dunueOA08jLy8PC1YsECStHTp0hqXngL2UP09uGo1cG26du2qdu3aSZJycnJsngvmMWvWLGVmZkqSUlNTlZCQoC5dusjZ2Vnu7u7q37+/du3apbCwMFksFk2dOvWOfa8BW3mQeUrVHEVingIAgFGcjA6AB9OkSRN5enqqqKhI586dq7O2uLjY+gdX9cMcgEflwoUL6tevny5cuCAHBwetXLlSkZGRRsdCA5WUlKSysjJ17NhRJSUlWr9+/R01x48ft4537typixcvSpIGDRpEExn/mY+Pj/U1dT+HKJ0/f16FhYX2iAYTsFgsWrVqlSTJz89PMTExtdY5OTlpzpw5Cg4OVkVFhVatWqWkpCR7RoVJVf+9eK95SvXD5ZinAABgDJrC9VBAQID27t2rkydPqry8XE5Otf835uXl1XgM8CgVFRWpf//+OnXqlKTKlZsjRowwOBUasqpLTU+dOqVhw4bds37OnDnWcUFBAU1h/Gddu3a1rvy9fft2nbVV99/tPRp4UJcuXbIedtitW7c6a7t3724dV/97ELClp59+2jq+1+uOeQoAAMZj+4h6KDg4WFLlZVcHDx68a92ePXus4969e9s8F8zjypUrevXVV3XixAlJ0sKFC/X+++8bnAoAbOull16yjvPz8+usrfrArGobCeC/qv4BQ3l5eZ21t27dqvVxgC35+vrK29tbUs15SG2qtkFp166dOnToYOtoAACgFjSF66HXX3/dOq66jPB/VVRUaM2aNZKkFi1aKCwszB7RYAIlJSUKDw/Xr7/+Kkn65JNPNH36dINTwQxWr14ti8VS51f1w+d27dpl/T4TTjwKgwcPVuPGjSVJmzdvvmvdnj17dPnyZUlSSEiIXbKh4fPw8JC7u7skaf/+/XU2hqs35Hx9fW2eDZAkBwcHRURESKpcCZydnV1rXXZ2tnWlcEREhBwcHOyWEQAA/D+awvXQCy+8YJ1kpqamav/+/XfUJCYmKjc3V5I0adIk6yQW+C/KysoUGRmpffv2Sap8bc2dO9fgVABgH48//rjeffddSdKPP/5Y677WV69e1eTJk623x48fb694aOAcHR0VHh4uqXJP/3nz5tVaV1xcXOPD2oEDB9olHyBJkydPtq5Oj42NVWlpaY37S0tLFRsbK6lyFXv135cAAMC+HCwWi8XoEHhwhw4dUu/evVVaWio3Nzd9/PHHCgsLU2lpqdavX6+UlBRJlQeRHDhwoMZpwMDDGjp0qHV1XN++fZWcnFzn6g5nZ2f5+fnZKx6g2bNnKz4+XlLlSuE+ffoYGwgNzl9//aXAwECdOXNGTk5OmjBhgoYMGSJ3d3cdO3ZMCQkJ1hVwEydO1JdffmlwYjQkeXl56t69u0pKSiRVHqIZExOjjh076saNG8rOzlZycrLOnDkjSXr55Ze1Y8cOIyOjHsnKytLJkyett4uKijRt2jRJlVvRVX0oVmXkyJG1Ps+MGTO0cOFCSZX7X0+fPl2dOnVSfn6+EhISdOjQIWvd/PnzbfCTAACA+0FTuB5LS0vT8OHD9e+//9Z6v5+fnzIyMtS5c2c7J0ND9aCX9z355JM6ffq0bcIAtaApDHvIzc3V4MGDazRP/tfo0aO1fPlyrtTBI7djxw4NGzZMRUVFddb17dtXmzZtUsuWLe2UDPXdyJEj9fXXX993/d2mkRUVFRo7dqxWrlx518eOGTNGKSkpcnTkwlUAAIzCu3A9NmjQIB09elRTpkyRn5+fmjZtqhYtWigwMND6KTwNYQAAHq2AgAAdPnxYixcvVs+ePeXh4SFnZ2e1b99eb775pnbu3KnU1FQawrCJfv36KS8vTwkJCerTp4+8vLzUuHFjubq6ytfXV9HR0dqyZYt27NhBQxiGcHR0VGpqqjIyMhQRESFvb285OzvL29tbERER2rp1q1asWEFDGAAAg7FSGAAAAAAAAABMhI9nAQAAAAAAAMBEaAoDAAAAAAAAgInQFAYAAAAAAAAAE6EpDAAAAAAAAAAmQlMYAAAAAAAAAEyEpjAAAAAAAAAAmAhNYQAAAAAAAAAwEZrCAAAAAAAAAGAiNIUBAAAAAAAAwERoCgMAAAAAAACAidAUBgAAAAAAAAAToSkMAAAAAAAAACZCUxgAAAAAAAAATISmMAAAAAAAAACYCE1hAAAAAAAAADARmsIAAAAAAAAAYCI0hQEAAAAAAADARGgKAwAAAAAAAICJ0BQGAAAAAAAAABOhKQwAAAAAAAAAJkJTGAAAAAAAAABMhKYwAAAAAAAAAJgITWEAAAAAAAAAMBGawgAAAAAAAABgIjSFAQAAAAAAAMBE/g9txaVYFldF3wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 529, "width": 706 } }, "output_type": "display_data" } ], "source": [ "plot_results(pdispersion_from_cm, P_FACILITIES, facility_points)" ] }, { "cell_type": "markdown", "id": "8f774853", "metadata": {}, "source": [ "### P-Dispersion built from geodataframe (euclidean distance)" ] }, { "cell_type": "code", "execution_count": 26, "id": "39baa5ed", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:35.681008Z", "start_time": "2023-01-10T18:23:35.267574Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.265548Z", "iopub.status.busy": "2025-04-07T19:07:16.265465Z", "iopub.status.idle": "2025-04-07T19:07:16.392320Z", "shell.execute_reply": "2025-04-07T19:07:16.392072Z", "shell.execute_reply.started": "2025-04-07T19:07:16.265539Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYUAAAQjCAYAAAA/h0GeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Xd4FOX6//HPphJKaEnoHUITBOkgEEBAigqCCqKgYj96rNgVPZaj4rGhxwYCNkQpB0Glg0DoLUiVDqGkkEAIpGd+f/hjv2x2N9nNtiT7fl1XLjLPPPPMPc/uTth7Z+8xGYZhCAAAAAAAAADgFwJ8HQAAAAAAAAAAwHtICgMAAAAAAACAHyEpDAAAAAAAAAB+hKQwAAAAAAAAAPgRksIAAAAAAAAA4EdICgMAAAAAAACAHyEpDAAAAAAAAAB+hKQwAAAAAAAAAPgRksIAAAAAAAAA4EdICgMAAAAAAACAHyEpDAAAAAAAAAB+hKQwAAAAAAAAAPgRksIAAAAAAAAA4EdICgMAAAAAAACAHyEpDAAAAAAAAAB+hKQwAAAAAAAAAPgRksIAAAAAAAAA4EdICgMAAAAAAACAHyEpDAAAAAAAAAB+hKQwUIbcddddMplM5p+jR4/a7btq1SqLvq+++qrX4oRvXPl4x8TE+DoclEENGzY0P8caNmxYaN/p06dbPCenT59eIuJC6eLMec2Zv5EAAABAWUdSGAAAAAAAAAD8CElhAAAAwAu8eYU8AAAAUBiSwgAAAAAAAADgR0gKAwAAAAAAAIAfCfJ1AAB8IyYmRoZh+DoMeBGPN0qSu+66S3fddZevw4AfmT59OuUaAAAAgP+PK4UBAAAAAAAAwI+QFAYAAAAAAAAAP0L5COAK+fn52rBhgw4fPqxTp06pXLlyqlOnjnr16qXIyEifxXXy5EnFxsbq1KlTys3NVZ06ddS8eXNdc801PoknNzdXu3bt0q5du5ScnKz09HQFBwerYsWKqlOnjpo0aaJWrVopMDDQ5X1t375d+/fv18mTJxUQEKDatWure/fuqlevnhuORMrMzNT69et1/PhxJSUlyTAMRUZGqmnTpuratauCgtx7mjx27Ji2b9+u06dPKyUlRVWqVNHw4cNVu3Ztm/29OdeO2L17t3bu3KmkpCRdvHhR1atXV61atdSjRw9Vq1bN7fvbuXOndu/erZMnT8pkMikqKkrdunVT06ZN3b4vZ6WkpGjdunU6c+aMkpOTVa5cOUVGRqpdu3Zq3bq1r8Nz2oULF7R+/XqdOnVKycnJysnJUXh4uBo1aqQ2bdq47TXnTjt37lRcXJxOnz6tsLAw1alTR+3bt1ejRo3cvi9PnytOnDihvXv36vDhw0pLS1NeXp6qVq2qqKgodenSRXXq1HHTkfyfvLw8xcbG6vDhwzpz5ozKly9fIv7mGYahTZs2ae/evUpISFClSpVUp04ddenSRTVr1vRJTKmpqdqxY4cOHDig8+fPKysrS2FhYapSpYoaNGigli1beuQxcsShQ4e0b98+HTt2TGlpaTKZTKpatapq166tLl26eOSxzMzM1Nq1a3Xs2DElJiYqPDxcDRo0UK9evRQeHu6WfRw+fFjbt29XUlKSUlJSFBISomrVqql58+Zq166dKlSoUKxxDcMw/9/i8t+yiIgI1a1bV9dee60qVarklvgBAABKPAPwIytXrjQkmX8mTpxoGIZhZGRkGP/617+MevXqWay//BMYGGgMGjTI2L17t1fj3bx5sxETE2OYTCabcTVv3tyYPHmykZubaxiGYYwbN85i/ZEjR+yObW8uCnPmzBnj0UcfNapXr24znit/ypcvbwwYMMCYNm2a3fGOHDlisc24ceMMwzCM3NxcY/LkyUbz5s1tjm0ymYwePXoYsbGxTsympQ0bNhg33HCDERYWZvcYwsPDjQceeMA4efKkw+NeuX3v3r3N7fPmzTO6detm87GcN2+e1TjunuvCYivKhQsXjNdee83u60OSERAQYFx77bXG77//7vC4hT0Hp0+fblx11VV293f11Vc7tS93yc/PN2bOnGl06dLFCAgIsBtfnTp1jLffftu4dOmSQ+NOnDjRYvuVK1c6HJO915Ej8vLyjJ9++sno3r27ERQUVOjzrFmzZsazzz5rHDp0yO54DRo0MPdv0KBBofueNm2axfhFPX+v9MMPPxjR0dF2zw+9evWyeH44E1dBnjpXZGVlGb/88osxbty4Ql9bl3+io6ONTz/91MjIyHB4H/aeVxkZGcZLL71k1KxZ0+4c3njjjcbevXudmitX5eXlGZMnTy70b/HgwYONDRs2mLdx5rzmzN/Iy1asWGEMGDDACAwMLPIxqlOnjnHvvfcaO3bssBij4GvUmR9bMaanpxs//vijceuttxpRUVFFjnHNNdcY3333nfn/Co6wN1epqanGI488YlSpUsXmvoKCgoyxY8ca8fHxDu/rSsnJycaLL75o8Zq19RMSEmLExMQYU6dOdfg8e/z4cePBBx80IiIi7I4bHBxsDBo0yNi8eXOx4gcAAChNSArDr9hKQp0+fdpo166dQ2/OgoODjc8++8wrsb799tuFJp2u/LnuuuuMCxcueDQpvHz5cqNy5cpOv6GtU6eO3TFtJbMuXLhgXHfddQ6NbTKZjJdeesmpeb148aIxevRop46hfPnyxs8//+zQ+AUTFDk5Ocb48eMLHb9gUtgTc20rNkfExsYaNWrUcCqOG2+80bhw4UKRY9t6DqanpxsjR450eF/vvPOOQ8fhDocOHTLat2/v1Fw0bNjQ2LVrV5Fj+yIpvH//fuPqq692+nlW2PieTgpnZWUZw4cPdzjWZ5991um4LvP0ueLRRx91eu6lvz8QKSwxfyVbz6u//vrLaNu2rUP7qlSpkrF8+XKH9uWq1NRUo0ePHg7FFRAQYHzyySeGYXguKZyfn2/885//LNZj9OKLL1qM5e6k8A033FCssfr27WskJiY69HjYmquNGzcWmay9/FOrVi0jLi7OoX1dNmXKFKNixYpOH5cj58u3337bCA0NdXhMk8lkTJgwwcjPz3fqGAAAAEoTykfAr2VlZWnIkCHasWOHJCkgIEAdOnRQw4YNlZ2drb179+qvv/4y98/JydFDDz0kk8mkBx54wGNxvfPOO3ruuees2q+++mo1adJEknTw4EHt3LlTkrRs2TKNHj1a1atX90g8Bw4c0NChQ5WRkWHRfvkrs1WrVpUkpaWl6ciRIzpw4IBycnKKta/Ro0dr2bJl5uW2bduaSwVcecySZBiG3njjDeXl5emtt94qcuykpCRdf/312rZtm0V7WFiY2rdvr9q1ayswMFAnTpzQ5s2bzcdw6dIl3XrrrZoyZYruuecep47n6aef1tSpU83LzZs3V3R0tCpUqKDTp09r8+bNFv29OddFWbRokYYPH67MzEyL9jp16ujqq69WeHi4Tp8+rQ0bNigrK8u8/pdfflHv3r21cuVKp75GnJ+fr9tvv12//PKLJCkwMFAdOnRQvXr1FBgYqIMHD2r79u0yDMO8zbPPPqs2bdpo0KBBLh5t4TZt2qQhQ4YoOTnZor169epq3769IiIilJWVpQMHDmjXrl3m9UePHlWPHj20atUqtWvXzqMxOmPVqlUaNmyYzp8/b9EeFBSk9u3bq06dOipfvrzOnTun/fv36/Dhwxbz7gv5+fm6+eab9euvv1q0BwcHm8srpKena+fOnTpx4oSkv8+lERERTu/LG+eK/Px8i+Xy5curZcuWqlWrlsLDw5Wdna0zZ84oLi5OFy5cMPeLi4tTnz59tH37dqdLtiQlJemee+7RkSNHJEkVKlRQ586dVaNGDWVlZSkuLk6HDx82979w4YJGjhypXbt22S1x4w4XL15U//79tWXLFov28uXLm0tGpKamatu2bUpMTFR+fr4eeeQRRUVFeSymt956Sx9//LFFW1BQkNq2basGDRqoQoUKysjIUGpqqvbt26dTp055LJaCCj53wsPD1apVK0VFRalSpUrKzMxUfHy8du7cafG3ZMWKFbr++uu1bt06hYaGOrXPv/76S6NHj1ZKSookqWrVqurYsaMiIiJ08eJFbdmyxWIOTp8+reHDh2vnzp0OlXl4/PHH9dFHH1m1V6tWTe3atVNkZKTy8vKUlJSknTt3KjU11aG48/Pzdc8992jGjBkW7QEBAWrTpo0aNmyoChUqKCkpSZs2bTKfEw3D0KRJk5SYmKjp06c7tC8AAIBSx7c5acC7Cl6ZWLVqVfPvo0ePtvl1x02bNhkdOnSw2C4kJMShq/+KY8OGDVZfUx04cKDx119/WfXdu3ev0bdvX5vHoyKugnLmSuFRo0ZZXW1U8OuxV8rMzDQWL15sPPjgg0aLFi3s9it49dSV8V933XXGvn37rLbZt2+fzSuJlyxZYnc/hvH315L79etnsU3t2rWNr7/+2sjMzLTqn5qaajz//PMWV2uXK1eu0OM2DMur1ipVqmT+fciQIcaePXus+qelpRlJSUnmZU/NdcHYirqi7sSJE0a1atUstmnUqJHx66+/Wl05df78eePFF1+0Kj9w++23F7qPgs/By1/pDQwMNJ577jkjOTnZapt9+/YZnTt3ttiuadOmHr2a6/Tp00atWrUs9tmlSxdjyZIlNvd74MABY9iwYRb9mzVrZqSlpdndhzevFD506JDVuaJ69erG+++/b5w/f97mNklJScaXX35pdO3a1WdXCr/77rtWV/I9/vjjRkpKikW//Px8Y9GiRUbjxo3N5+sKFSo4HJe3zhX/+Mc/jCZNmhivvfaasWXLFiMvL89mv+zsbOOnn34yH8/ln9tuu63Q8Q3D+nl1+TVWvXp148svvzSysrKstlm0aJERGRlpsd0999xT5L5c8fDDD1vsLzQ01HjzzTeN9PR0i365ubnGzJkzzSUTCp6j3HWl8Llz54xy5cqZ+wUGBhqvvvqqkZqaanfsU6dOGV9//bURExNj9Q2WnJwc48iRI8aRI0eMSZMmWcQwadIk8zpbPzk5OVb7GjJkiHH11VcbkyZNKrSs1cWLF42vvvrKqsTE5SvonZmry8+dBg0aGD///LNVKYr8/Hzju+++M8qXL2+x3b/+9a8i9/X+++9b/U3v1q2bsXz5cruvix07dhgvvPCCERkZWej58tVXX7V6bk2cONHmFdM5OTnG119/bXV+/Pzzz4s8BgAAgNKIpDD8SsEk1OWfp556qtDtLl68aPTs2dNim2uvvdYjMRb8Wu/o0aPtvikyjL/fJN988802j8sdSeH8/HyLhEp0dLTNxIg9hdX6s/eV2ltvvbXIY77lllsstmnYsKHNN8+XFUwoXXPNNTaTjgX9/PPPFnWA+/TpU2h/W8fzwAMPOJS09ORcF4ytqORJwa/ot2jRwkhISCh0mx9//NGq5MnChQvt9rf1egwMDDQWLFhQ6H7Onz9vVXN02bJlhW7jisGDB1vsa/z48Q7V5iz41fPXXnvNbl9vJoW7d+9u9dgePXrU4f2dPn3a7jpPJYXj4+MtknSSiizlk5CQYLPucFFxeetccezYsULPcwWlpKRYlDoKCAgosoxEweeV9PfX+g8ePFjodps3b7b4cLJ8+fKFfqjhis2bN1vMW1BQUJHngH379tmspeuupPCsWbMc+vtoT2HnYldqaV/mSC3kKx07dszinBkeHm73A6DLCs6VJKN169ZFlp+YN2+exTb169cv9O/f7t27rT5Q/Mc//uHwa+PSpUvGuXPnbK7bsGGDxd+kqlWrGtu2bStyzP3791vU869cubLHnv8AAAC+FCDAz3Xo0EHvvvtuoX3Kly+vH374QRUrVjS3rV271uqrxa5asWKFRXmE+vXra8qUKQoIsP9SDQwM1PTp0z321d7k5GRdvHjRvHzDDTc49bXTsLAwp/ZXt25dTZ06tchj/vrrry3u9H706FFz2YGCMjIyNGnSJPNy5cqVtXDhQofKbYwcOVIPPfSQeXnlypVOPe4tW7bUxx9/LJPJVGRfb8+1PYcOHdL8+fPNy4GBgZo5c2aRX9W+7bbb9PDDD1u0/ec//3Fq388++6yGDh1aaJ/w8HA9++yzFm0rVqxwaj+O2rJli3777Tfzcrdu3fTll18qMDCwyG3ff/99tW3b1rz8ySefWJTZ8IWlS5dq3bp15uWKFStqwYIFatCggcNj1KxZ0xOhFeqLL76wKGMyYsQIPfjgg4VuExUVpe+++67Qc0lB3jxX1K9f36nYqlatqilTppiX8/PzNXPmTIe3v2zGjBnmMkT2dOzYUcOHDzcvX7p0SRs2bHB6X474+OOPLUqTPPbYY0WeA5o3b67//ve/HolHko4dO2axPHLkSKe2d9e52J6GDRs61b9+/fr64IMPzMtpaWlasGCBU2MEBQXp559/VmRkZKH9hg0bpo4dO5qXjx8/roMHD9rt/+abbyo3N9e8PGjQIE2ePNnh10ZYWJgqV65sc93rr79uUWrj+++/V/v27YscMzo6Wp999pl5+fz58/rqq68cigcAAKA0ISkMv/fqq6869Oajbt26uv/++y3a3F1n7ptvvrFYfvbZZ1W+fPkit6tUqZKeeeYZt8ZiT2JiokfHf/bZZy2S7/ZUrFjRKjFo7/GYOXOmkpKSzMuPP/64atWq5XBMTz31lMWyveSzLU8++aRCQkIc7n8lT8+1Pd9++63FG+lbb73V4Xq4r732mkUie+XKlVYJFnvCwsKs5tqegkmj7du3O7SdswrWFH3rrbccTlYEBgbqscceMy8nJSVp/fr1bo3PWVcmOqS/n9uXa3aXZAXPja+99ppD23Xq1Ek33nijw/vx5bnCER06dLBI4F+Z4HdEly5d1L9/f4f6euM1lpmZqZ9//tm8HBoaqhdeeMGhbUeMGOG1Ot2+Ohe70w033GDxt8jZ586IESPUsmVLh/o6+txJSUnRrFmzzMsBAQGaPHmyQx+iFuXQoUMW9cd79+7tVO35kSNHWrzW3P1aBgAAKAlICsOvVa1aVddff73D/W+//XaL5bVr17o1nivHM5lMuu222xze9vbbb3fLG6mCIiIiLG7UNHv2bK1Zs8bt+5H+PuZRo0Y53H/06NEWxxwbG2vzZlhLly61WHZmXiWpcePGql+/vnnZmeO/6aabHO7rzbkuTMHn9R133OHwttWqVdOQIUMs2mJjYx3atlu3bg7fOKtBgwYWH5h4Kmlz5U0Pa9asqd69ezu1fZ8+fSyWffF4Xpafn69Vq1ZZtHnyhpnuEh8fb/HBQtu2bdW6dWuHtx8zZozDfX15rrjMMAylp6fr9OnTOnr0qNXPlVdq7t2716mxC742C1MwAeiJ19iWLVssrgAfOHCgUzfPc+axdUaLFi0sll988UWlp6d7ZF/ulJ+frwsXLujUqVNWz5tTp05ZzG1JeO788ccfysvLMy/379+/yKvYHXXluVty/rVsMpkszvcbN25Udna2W2IDAAAoKYJ8HQDgSx06dFBQkOMvg6uvvlrlypUzv4nduXOnsrOzzVffnDt3TufOnXNorCpVqqhKlSrm5XPnzunQoUPm5aZNmzr0leXLIiMj1ahRI4s7x7vD5UTtJ598Iunvr1f36dNHI0eO1KhRo3Tdddc5dGWvI5o0aWKRFC1KRESEGjdubJ63lJQUHT582OpN5ZVJzpCQEIWGhuro0aNOxVatWjUdP35ckiwep8LUrVu3yK/aXsmbc12YLVu2WCx369bNqe27d++uuXPnmpc3b95s9YGKLa1atXJqP1WqVNGlS5ckyXzH+IKSk5MdTuZERERYzO+hQ4d0+vRp83LTpk0dvur5soJJBEefO56wd+9epaammpebN2/u1FWwvlLw+dilSxentnemvy/OFdnZ2VqyZInmzp2rbdu2ad++fQ6XGbny8XSEM6+xqlWrWizbe43Fx8dbfP2/MHXr1rX4m+vNx9YZ/fr1U1RUlDmZuWHDBjVr1kzjx4/X8OHD1b59e6dKf3jKxYsXtXDhQs2fP187duzQgQMHHH4sSsJzp+DVyjExMU7FVJiCH25GRUU5/Vq+8oPHzMxMnTp1yunSHQAAACUZSWH4tejoaKf6BwUFqWHDhtq3b58kKS8vT2fPnjUnVj788EOHv9Y8ceJEvfrqq+blhIQEi/XNmjVzKjbp7+Nxd1JY+rvExu+//25OcOTl5WnWrFmaNWuWAgMD1a5dO3Xr1k3XXnutevXqVexEk7OPh/T3PF2ZeElMTLRICufn5+vUqVPm5ezsbJevREpJSXGoX1E1eG3x1lzbk52dbfEGPjIy0uoNflEKXmXn6BWGzu4nODjY/HtOTo7NPk8//bRmzJjh0HjTpk3TXXfdZV4+ceKExfq1a9eqUaNGTsVYkKPPHU+4MsEtyamrbX3J1XNjvXr1LD7Ms8cX54r58+friSee0JEjR4o1vr1kmz3OvMaufH1J9l9j1157rcMflhw5csQiqebqY1ucvxmOKF++vD7//HONHDnSXErnzJkzevPNN/Xmm2+qSpUq6tatm7p166aePXuqa9euKleunEdisWfKlCl64YUXLMqdOKMkPHc8eU4qeP52ti60LSkpKSSFAQBAmeL7yxwAHwoPD3d6m4I3NHFXkqfgVTvuiM1dqlevrvXr12vEiBFW6/Ly8rR161Z98sknGjVqlOrUqaPu3btr6tSpdt8I2uOJxyM1NdWiPq47XLhwwaF+lSpVcnpsb821PQWfh8V5ThX3NVISrry70tmzZ90+pqPPHU8oeDzOJuF9xVvnRm+fKz788EMNGzas2AlhSTbL5RSmpL3GXH1sPfU3T5KGDx+uRYsW2ay5fe7cOf3+++965ZVX1KdPH0VGRmrMmDHavHmzx+K50hNPPKH77ruv2AlhSU4/1z3x3PHkOamsnb8BAAA8oWS9OwC8zB01eD1Rx9eT4xZXZGSkZs+erT///FPPPPOM2rRpYzNGwzC0fv163XvvvWrTpo3i4uIc3ocnHo/SWAPQG3NtT8EkU0l+jXiaJ547zibxPKm0Pi6eitub54qNGzda3ZSuYcOGeuGFF7Rw4ULt2bNHKSkpysjIUH5+vgzDMP84W9e6NHH2sfX0c7h///7au3ev5s6dq1GjRqlGjRo2+6Wnp+uHH35Q586ddc899ygjI8NjMf3888/68MMPLdpat26t119/XYsXL9b+/ft17tw5ZWZmWjxvDMOwuHFaSeTOx7Osn78BAADcgfIR8GvOfn3S1jZXXtny6quvWpSEcIajNficic0TrrrqKr3zzjt65513dO7cOW3cuFGxsbFatWqV1q9fb1HPcP/+/erXr582b97s0Nfu3f14SLKqyxwdHa39+/c7vR9f8ORc21PwJk+eeEy8afr06Zo+fXqxti1Y3/r+++/XF1984Yao3OvKGzUVpuDx+LKUhTO8dW705rnitddes7hS8/7779enn37qUI37tLQ0j8RUXM7Wab2Sq4+tozX8XREUFKThw4dr+PDhkqSDBw9q/fr1io2N1dKlS61KNk2bNk3nzp2zqKvuThMnTrRYfv311/Xiiy86lFAtac8dT56TIiIi9Ndff5mXT506VSpqqAMAAHgTVwrDr135hsERubm5Fm+AAwMDnbpTemEK1p89cOCA02M4ezyuqlKligYOHKh//etfWr16tRISEjRp0iSLr/SePXtWL7/8skPjFSf+gvNUcB5DQkIsEg9HjhxxW6kFb3L3XNsTEhJiMWZiYqLTiZeCibTi1FYuCQpeFejJ11fBZKCjN4uSHL9hVMGEyJ49exzehy8VfBycPTeeOHGiyHrCkvfOFRcvXtTy5cvNy40bN3Y4ISxZ12EtzVx9bL39N0/6+4aTd955pz7//HMdOnRI27dv1+jRoy36zJs3T8uWLXP7vg8cOKC9e/eal3v16qWXXnrJoYRwRkaGV5LozvDkOcmb528AAIDSiqQw/NrWrVudSr7ExcVZJBfatm2r0NBQt8RStWpVi5saHTx40KmaeElJSS7VpnSHatWq6emnn9bixYst3qT+8ssvDtUvPHTokJKTkx3eX3JyssVVWtWqVVPjxo2t+nXv3t38e05OjlatWuXwPkoqV+e6MB07drRYXr9+vVPbF7yjfKdOnVyKx1dat25tkSBfv369x2pKFqyl6kzyZvfu3Q71a9mypcWHWPv379eZM2cc3o+vFHw+btiwwantN27c6HBfb5wrjh07ZvHV9uuvv97hhPDhw4dLxWPmKG8+tp7Srl07/fDDD3r44Yct2ufNm2ezvyslEgomzYcOHerwtuvXry9x5Q969OhhsezO19uVr2VJWrJkidvGBgAAKCtICsOvpaamatGiRQ73/+GHHyyWr732WrfGc+V4hmHoxx9/dHjbH374ocS84evSpYuuuuoq8/KFCxccSvY6e8wzZ860OOYePXrYfMM9cOBAi+WvvvrK4X2UdMWd68IUfF5///33Dm+bmpqqhQsXWrQVfONfWgQGBqpfv37m5aysLH377bce2VfBq6mduWLu119/daifyWRS3759zcuGYejLL790eD++UrduXYtaqH/++afDiXDJueevN84VBRP+ztwsrbilUEqqjh07qly5cublxYsXO1VCwJnH1tPGjx9vsWzvQ9qCHyRnZWU5vI+y9tzp3bu3xQciS5YscduH2wVfy99++61D3xgAAADwJySF4fdeffVVh66sjI+Pt0qgjBs3zq2xjB071mL53Xff1aVLl4rc7sKFC3r33XfdGourCl755ugV1e+8847S09OL7Jeenm51zPYejzvvvFNVqlQxL//8888WX98u7Yo71/bccccdFneanzVrlv7880+Htn311VctkhwxMTEl/uZGhXn00Uctll977TWPfH3/mmuusVhesGCBQ9vt3r3bqdql//jHPyyW//Of/1jVRC2JCp4bC9ZVtWfz5s365ZdfHN6PN84VBevo7tu3z6Htjh07po8//titsfhauXLldMstt5iXs7Oz9dZbbzm07Zw5c7Rjxw4PReY8R8/DVz6/JOfKgRT3ubNlyxanPnD1lipVqmjMmDHm5fz8fP3zn/90y9ht2rSxuCnjiRMnHH5uAQAA+AuSwvB7W7du1bPPPlton4yMDN1+++0WycoePXqoQ4cObo2lb9++atOmjXn5+PHjuu+++wpNWufl5enuu+/WqVOn3BrLZTt27NC8efMcvpmVJO3cuVNxcXHm5Vq1ajl8RVN8fLzGjx9f6DHn5+dr/Pjxio+PN7c1bNhQN910k83+VapU0YQJEyzaRo4cqbVr1zoU02V5eXmaO3eux27Q5e25tqdp06a68cYbzcu5ubkaNWpUkVcgz549W5988olF21NPPeVSLL4WExOj/v37m5cTExM1ePBgi+eeIy5cuGD1TYMrNWvWTPXq1TMvb9myRf/73/8KHTMhIUG33HKLU8+XmJgY9erVy7yclpamG2+8USdOnHB4DF+UL3jggQcsriidM2dOkTf9S0xM1B133OFUORVvnCuaNGmiihUrmpcXLlyoXbt2FTpecnKybr75Zq/cTNTb/vnPf1p8w+Ojjz6y+rZBQX/99ZdVuQZ3+v777y1q9zrim2++sVhu2bKlzX4F250pa3D11VdbLM+YMaPI1+Phw4d1yy23lNha+s8//7yCg4PNywsXLtTjjz/u8Os2IyPD7uvizTfftHhuvf7661Z/oxyxceNGbd++3entAAAASjqSwvBrl6+6ee+99zRmzBidPHnSqs/mzZvVs2dPrVmzxtwWEhKizz//3CMxffnllxZXaf7www8aMmSIzRvw7Nu3TwMHDtScOXMkWV9F5A5Hjx7VzTffrCZNmuiZZ57RunXr7L65zM3N1ezZszVw4ECLN3SOXlF9Of6ffvpJgwYNsnljmL/++kvXX3+9fvrpJ4v2L774otC6nM8884wGDBhgXj537pxiYmL0j3/8w+rGaFfKycnRunXr9Oyzz6pJkyYaMWKEx+7g7s25LsrHH39s8Xzas2ePunXrpsWLF1uVKblw4YImTpyo22+/3SKW2267zamalyXVjBkzVLduXfPyjh071LZtW7377ruFJsovXLigX375RePHj1edOnX0wgsv2O1rMpl07733WrTdcccdmjlzplXfvLw8/fzzz+rcubP27t3r9Ov+m2++UfXq1c3Lu3fvVocOHfTxxx/brZmcnJysKVOmqFu3bnruueec2p871KlTR//6178s2h5++GE99dRTNm+0t2TJEnXv3l1//fWXQkJCVKFCBYf35elzRUhIiIYNG2ax3cCBA22WMsrLy9OcOXPUqVMnbdu2TSaTyeKxKws6duyohx56yLycm5urkSNH6t///rfVN2Xy8vI0a9Ys9ezZU4mJiR75myf9fYV469at1adPH3366acWN5gtKCkpSU8//bTef/99c1tAQIDuuOMOm/0bNGhgUft+/fr1GjNmjBYtWqT9+/fr6NGjFj9X3vegdu3aFuV9UlJS1KdPH5u1mLOysjRlyhR17dpVR48eVbly5Sw+jCgpmjdvbjF30t8fDPTu3VsrV660mxyOi4vTiy++qAYNGthN2Pbo0UOvvvqqRdujjz6qQYMGadWqVXbHNgxD+/bt06RJk9S5c2d17drV4sNXAACAMsMA/MjKlSsNSeaf5557zmjXrp15OSAgwOjSpYtx6623GsOGDTOaN29u0f/yz+eff+7RON9++22b+23Xrp0xcuRIY8SIEcbVV19tsW7w4MHG2LFjLdqOHDni8FxMnDjRZr958+ZZxRESEmK0a9fOGDJkiDFmzBhj1KhRRkxMjFG5cmWrvi1atDDS09Ntjn3kyBGLvmPHjjUGDx7s8DFf/nn++ecdmtdz584Z3bt3tzlGnTp1jIEDBxqjR482brvtNmPQoEFGmzZtjODgYKu+hc3rlf169+7tUFzemOvixLZw4UIjNDTUaj9169Y1hg4daowePdqIiYkxypUrZ/O5eu7cuULHd/Q5aE+DBg3M2zZo0MCpbZ21Y8cOo3bt2lbHaTKZjFatWhlDhw41xowZY4wcOdK47rrrjEaNGhkmk8mib1ExXrhwwWjUqJHN5+ZNN91k3H777caAAQOMqlWrmtdVrFjRmDNnjkX/cePGFXk8f/zxh1GlShWrfQUFBRmdO3c2hg8fbtx+++3G4MGDjaZNm1ocS2HjO/OYTJs2zWLf06ZNK7R/bm6uMWTIEKuYg4ODjZ49exqjRo0ybrjhBqN+/foW69955x2nnyuePlccPHjQqFixolX/Bg0aGMOGDbP5WEsyXnzxRaN3794WbYWZOHGiRd+VK1cWeeyXFTw/O/K8Kq709HSjQ4cOVvNRvnx5o2/fvsbo0aONwYMHG1FRURbrf/zxR6fOa+PGjXPo8bnpppusYqlevbrRq1cvY/jw4cYdd9xh3HzzzUa7du2MwMBAq74vvfRSoXFMnjzZ5nPL1k/BGGNjY42goCCrfs2bNzdGjBhhjB492ujbt6/V8+urr75y6nXg6FzZUpxz+xNPPGHz+KtXr25cd911xqhRo4xbbrnFiImJMapVq+bU8/qRRx6xOXblypWNmJgY45ZbbjFuv/12Y+jQoUbnzp1tvjaLOj8BAACURiSF4VdsvVE5deqU0aZNG4fenAUHBxufffaZV2J96623jICAAIfiiomJMdLS0px6E+dKUtjRnx49ehgJCQl2Y7CVdEhLSzP69Onj0Pgmk8l48cUXnZrX7Oxs48knn7T5Rt6Rn/LlyxunTp2yO74zCYqCPDnXxY1t9erVVomYon6GDBlipKWlFTl2aUoKG4ZhJCQkGAMGDCj2Y9SuXbsi9xEXF2fUrFnTofEiIiKMNWvWFDt5t2/fPqN169ZOH4evksKGYRiZmZnGsGHDHI71qaeecjquyzx9rli0aJHN5JO9nwkTJhiGYZTJpLBhGEZqaqrdRHzBn4CAAOPDDz80DMO585orSWFHfoKCgozXXnutyGPNz883HnzwQYfGtBXjtGnTbH4IYesnMDDQ+OijjwzDcO514O2ksGEYxhdffGGUL1/e6Xl35Hk9Y8YMIzw8vFiPa0BAgDF37lyHjx8AAKC0oHwE/F6tWrW0YcMGvfLKK6pTp47NPoGBgbr++uu1Y8cOPfjgg16J6/nnn9eGDRvUu3dvi5p4V2ratKnef/99LV26VJUqVfJIHAMGDNDcuXN17733qmnTpkX2N5lM6tmzp77//nutWbNGUVFRTu2vUqVKWrJkid5//327+zOZTOrevbvWrl2rN954w6nxg4OD9Z///Ed//fWXHnroIdWoUaPIbapXr66bb75Z06dPV0JCgmrVquXUPh3l7bl2RM+ePXXw4EFNnDjR7utD+vvr0t27d9fChQu1cOFCjz0ffSkqKkqLFy/W6tWrNWzYMIdKEjRq1Ej33nuvfv/9d23ZsqXI/m3bttWWLVs0btw4u+VQwsPD9cADD+jPP/+0+Cq5s5o3b664uDh988036tixo93zzGUtW7bUyy+/bFXGwZtCQ0M1b948ff/994qOjrbbr3v37lqwYIHee++9Yu/L0+eKgQMHasuWLbrpppvszn1QUJAGDhyo5cuXl7ibibpblSpVtGbNGn388ccW5VquFBgYqAEDBmjNmjV67LHHPBbLRx99pI8//liDBw92qERFeHi4xo0bp507d+qVV14psr/JZNJnn32mjRs36rHHHlO3bt0UFRVlUTe7MHfddZfWrFmjmJgYu33KlSunESNGaNOmTW67eZun3X///Tpy5IieeuqpIv/OhoaGqn///vr222/VrVu3IsceO3asjh8/rrfeekvNmzcvsn+5cuXUt29fTZo0ScePH9fw4cMdPg4AAIDSwmQYBYpDAmXYqlWr1KdPH/PyxIkTLerN5efna/369Tp8+LBOnTqlcuXKqU6dOurVq5dHEm6Oio+PV2xsrE6ePKn8/HzVrl1b0dHR6tixo9djOXv2rHbv3q0jR47o7NmzunTpkkJDQxUeHq6mTZuqXbt2Dte8PHr0qBo1amReHjdunKZPn27RZ+vWrdq/f79OnTqlgIAA1a5dW927d1f9+vXddkx79+7Vzp07dfbsWZ07d05BQUEKDw9XvXr11KJFCzVu3LjIhJknuHOu3WXXrl2Ki4tTcnKyLl68qOrVq6tWrVrq0aNHmat1WpTc3Fxt2bJFBw8e1NmzZ3XhwgWVL19elStXVuPGjdWyZUvVrFmz2OOnpaVp9erVOnr0qNLS0hQZGan69eurV69eCgsLc+OR/C05OVnr16/X6dOndfbsWZlMJlWuXFmNGjXS1Vdf7bEPQ1wRFxenHTt26MyZMwoLC1Pt2rV1zTXXWNRsdSdPnSsSEhK0du1aHT9+XBkZGYqMjFStWrXUtWtXRUREeOBISjbDMLRx40bt2bNHiYmJqlSpkmrXrq2uXbt6/XloGIYOHjyoAwcO6Pjx4zp//rxycnJUsWJFVa9eXa1bt9ZVV12lkJAQr8Z12fHjxxUbG6tTp04pJydHUVFRql27tnr06FHqP5zbtWuXdu3apaSkJJ0/f15hYWGKiIhQdHS02rVr59J58PTp09q0aZMSExOVkpKi/Px8VapUSTVr1lTz5s3VvHlznz2mAAAA3kJSGH6lqKQwvMuRpDAAAAAAAADci/IRAAAAAAAAAOBHSAoDAAAAAAAAgB8hKQwAAAAAAAAAfoSkMAAAAAAAAAD4EZLCAAAAAAAAAOBHSAoDAAAAAAAAgB8hKQwAAAAAAAAAfsRkGIbh6yAAAAAAAAAAAN7BlcIAAAAAAAAA4EdICgMAAAAAAACAHyEpDAAAAAAAAAB+hKQwAAAAAAAAAPgRksIAAAAAAAAA4EeCfB1AaZCZmak///xTkhQZGamgIKYNAAAAAEqy3NxcJSUlSZLatGmjcuXK+TgiAABKDrKbDvjzzz/VuXNnX4cBAAAAACiGTZs2qVOnTr4OAwCAEoPyEQAAAAAAAADgR7hS2AGRkZHm3zdt2qRatWr5MBoAAAAAQFFOnz5t/sbnle/pAAAASWGHXFlDuFatWqpbt64PowEAAAAAOIP7wgAAYInyEQAAAAAAAADgR0gKAwAAAAAAAIAfISkMAAAAAAAAAH6EpDAAAAAAAAAA+BGSwgAAAAAAAADgR0gKAwAAAAAAAIAfISkMAAAAAAAAAH6EpDAAAAAAAAAA+BGSwgAAAAAAAADgR0gKAwAAAAAAAIAfISkMAAAAAAAAAH6EpDAAAAAAAAAA+BGSwgAAAAAAAADgR0gKAwAAAAAAAIAfISkMAAAAAAAAAH6EpDAAAAAAAAAA+BGSwgAAAAAAAADgR0gKAwAAAAAAAIAfISkMAAAAAAAAAH6EpDAAAAAAAAAA+BGSwgAAAAAAAADgR0gKAwAAAAAAAIAfISkMAAAAAAAAAH6EpDAAAAAAAAAA+BGSwgAAAAAAAADgR0gKAwAAwC/lZmYqcetW5WZm+joUAAAAwKtICgMAAMAvxT79tJaNHat1Eyb4OhQAAADAq0gKAwAAwO9cOnNGJ1eulCTFr1ihSwkJPo4IAAAA8B6SwgAAAH7MX0sonFi+3HJ52TIfRQIAAAB4H0lhAAAAP+avJRROLF1a6DIAAABQlpEUBgAA8FP+WkIh8+xZJW3datGWtHWrMlNSfBQRAAAA4F0khQEAAPyUv5ZQiF++XEZ+vkWbkZ+v+ALzAQAAAJRVJIUBAAD8lL+WUDhu5zj95fgBAAAAksIAAAB+yF9LKGSdO6eETZtsrjuzcaOyz5/3ckQAAACA9wX5OgAAAAB4X2ElFJrecouPonJN2rFj+nPyZGUVktjNPn9eRm6uzXVGbq5W3HefQipXtrt9aOXKavPoowpv0MDleAEAAABfISkMAADghworoVBak8J7vvxSx37/3aUxUnbvLrJPYGiour75pkv7AQAAAHyJ8hEAAAB+pqyWUKjdq5dkMnl2JybT3/sBAAAASjGuFAYAAChD/LmEQv2BA9W3cmWtf/55ZSQmun38sKgodX/7bdXo0sXtYwMAAADeRFIYAACgDPH3Ego1u3bVoLlztfGll3Ry1Sq3jVsnJkZd3nhD5apWdduYAAAAgK9QPgIAAKAMoYSCVK5qVfX65BN1eOEFBYSEuDRWQEiIOrzwgnp98gkJYQAAAJQZJIUBAADKkPoDB6rvlCkKi4ryyPhhUVHqN3Wq6g8c6JHx3cVkMqn5mDEaOHOmwhs3LtYY4Y0ba+CPP6r5mDEyeTrRDgAAAHgRSWEAAIAy5nIJhToxMW4dt05MjAbNnVuqaupWbdFC1//0k6pERzu1XZXoaF3/00+q2ry5hyIDAAAAfIekMAAAQBlECYX/YwoIUPrJk05tk37ypEyBgR6KCAAAAPAtksIAAABlFCUU/nZ63TrlXrzo1Da5Fy/qzLp1HooIAAAA8C2SwgAAAGWcv5dQOLF0qVe3AwAAAEo6ksIAAAB+wF9LKOTn5OjkypXF2jZ+xQrl5+S4OSIAAADA90gKAwAA+AF/LaGQsGmTstPSbK6r26+fhv72m+r27WtzfXZamhI2b/ZkeAAAAIBPkBQGAADwA/5aQsFW/AEhIer08svq+dFHCm/QQD0//lgdX3rJ5g35SvvxAwAAALaQFAYAACjj/LWEQn5enuJXrLBoq9ykia6fNUvNRo0y3zjPZDIpevRoXT9rlio3aWLRP375cuXn5XktZgAAAMAbSAoDAACUcf5aQiEjIUGZZ8+al5vedpsGzppl94Z7VaKjNXDWLDW99VZzW+bZs8pISPB4rAAAAIA3Bfk6AAAAAHiWvRIKHZ59Vk1vu00mk0k9P/5YB378UdvefVf52dlW29fq3t1b4bpNWI0aanjDDUrdu1dtH3lE9fr3L3KboLAwdZ44UTW7ddOfn36qqq1aqXzNml6IFgAAAPAek2EYhq+DKOni4+NVr149SdKJEydUt25dH0cEAADgmPy8PP2vTx+LK2YrN2miHu+9Z/OK2XN//aXYp5/W+UOHzG3lqlfXsJUrFRAY6JWYAcAdeB8HAIB9lI8AAAAowyihAAAAAKAgykcAAACUYZRQAAAAAFAQSWEAAIAyLCAwUN3ffrtY29YfMED1Bwxwc0QAAAAAfI3yEQAAAAAAAADgR0gKAwAAAAAAAIAfISmMMi03M1OJW7cqNzPT16EAAAAAAAAAJQJJYZRpsU8/rWVjx2rdhAm+DgUAAAAAAAAoEUgKo8y6dOaMTq5cKUmKX7FClxISfBwRAAAAAAAA4HskhVFmnVi+3HJ52TIfRQIAAAAAAACUHCSFUWadWLq00GUAAAAAAADAH5EURpmUefaskrZutWhL2rpVmSkpPooIAAAAAAAAKBlICqNMil++XEZ+vkWbkZ+v+AIlJQAAAAAAAAB/49GkcGJiohYuXKhXXnlFgwYNUkREhEwmk0wmk+666y6nx1u0aJFuvvlm1a1bV6Ghoapbt65uvvlmLVq0yP3Bo1Q7bqdUBCUkAAAAAAAA4O+CPDl4jRo13DKOYRh68MEH9eWXX1q0nzx5UvPmzdO8efN0//336/PPP5fJZHLLPlF6ZZ07p4RNm2yuO7Nxo7LPn1dI5cpejgoAAAAAAAAoGTyaFL5SvXr11LJlSy1ZssTpbV966SVzQrh9+/Z65pln1KRJEx06dEjvvvuutm/fri+//FKRkZF644033B06SpC0Y8f05+TJyjp/3m6f7PPnZeTm2lxn5OZqxX33FZoUDq1cWW0efVThDRq4HC8AAAAAAABQ0ng0KfzKK6+oU6dO6tSpk2rUqKGjR4+qUaNGTo1x8OBBvfvuu5Kkjh07avXq1QoLC5MkderUSTfeeKN69+6tLVu26J133tHdd9+tJk2auP1YUDLs+fJLHfv9d5fGSNm9u8g+gaGh6vrmmy7tBwAAAAAAACiJPFpT+LXXXtPQoUNdKiPxwQcfKPf/X/U5efJkc0L4svLly2vy5MmSpNzcXH344YfF3hdKvtq9ekmeLhFiMv29HwAAAAAAAKAM8mhS2FWGYWj+/PmSpBYtWqhr1642+3Xt2lXNmzeXJP3vf/+TYRheixHeVX/gQPWdMkVhUVEeGT8sKkr9pk5V/YEDPTI+AAAAAAAA4GslOil85MgRnTx5UpLUu3fvQvteXh8fH6+jR496OjT4UM2uXTVo7lzViYlx67h1YmI0aO5c1ejSxa3jAgAAAAAAACWJ1240Vxx79+41/96iRYtC+165fu/evU7XLi4LkpKSfB2CV7WcOFEV27bVgc8+U35OTrHHCQgOVrOHHlK94cN1ITdXF/xsHgEAAIDiioyM9HUIAACgGEp0UvjEiRPm3+vWrVto33r16tnczhHx8fGFrj99+rRT4/lKlIdKKpR09UND9UjduqoTGur0tiezsjT50CGdePBB6cEHPRAdAAAAUHZRug8AgNKpRCeFL1y4YP69YsWKhfatUKGC+ff09HSn9nNlQhmlz/GsLL10+LBebdRIDcqVc3i7Y5mZevXIEWXzH1kAAAAAAAD4kRJdUzgzM9P8e0hISKF9Q6+4SjQjI8NjMZU0SUlJMplMMplMvg7FpwxJUcHBTm0TFRysfM+EAwAAAPiFy+9F/K2UHQAApV2JvlK43BVXfWZnZxfaNysry/x7WFiYU/spqtzE6dOn1blzZ6fGhHddVaGCwgIDndomLDBQbSpU0HYnrywHAAAAAAAASrMSnRSuVKmS+feiSkJcvHjR/HtRpSYKKqpecWmzZ88eRURE+DoMr9r173/r9OLFTm/31rhxGvTppxZt/jh/xZWcnKxWrVpZtDF/jmP+XMP8uY45dA3z5xrmzzXMn2uYP9fYmj8AAFC6lOik8JXJ2qJuBnfl1b7+XiM4IiLCr+4CnJ+To7Pr1xdr27QtWxQoKe+KNn+bP3dj/lzD/LmG+XMdc+ga5s81zJ9rmD/XMH8AAMCflOiawld++rxv375C+165vmXLlh6LCSVPwqZNyk5Ls7mubr9+Gvrbb6rbt6/N9bkXLqjlFTcpBAAAAAAAAMq6Ep0UbtSokWrXri1J+uOPPwrtu3r1aklSnTp11LBhQ0+HhhLkxNKlVm0BISHq9PLL6vnRRwpv0EA9P/5YHV96SQE2bljY+YoyJQAAAAAAAEBZV6KTwiaTSTfddJOkv68E3rBhg81+GzZsMF8pfNNNN8lkMnktRvhWfl6e4lessGir3KSJrp81S81GjTI/F0wmk6JHj9b1s2apcpMmFv07hoeLZwwAAAAAAAD8RYlOCkvS448/rqCgv0sfP/roo8rIyLBYn5GRoUcffVSSFBQUpMcff9zbIcKHMhISlHn2rHm56W23aeCsWaoSHW2zf5XoaA2cNUtNb73V3FY5KEjVg4M9HisAAAAAAABQEnj0RnNr167VwYMHzcvJycnm3w8ePKjp06db9L/rrrusxoiOjtbTTz+tt99+W1u2bFGPHj307LPPqkmTJjp06JDeeecdbd++XZI0YcIENWvWzCPHgpIprEYNNbzhBqXu3au2jzyiev37F7lNUFiYOk+cqJrdumn7Rx9p0Y4dOpuT44VoAQAAAAAAAN/zaFJ4ypQpmjFjhs11sbGxio2NtWizlRSWpDfffFOJiYn6+uuvtX37do0aNcqqz/jx4/XGG2+4HDNKl4DAQHV/++1ibVt/wACFtW+vYVFRbo4KAAAAAAAAKLlKfPkISQoICNDUqVP166+/6qabblLt2rUVEhKi2rVr66abbtJvv/2mKVOmKCCgVBwOAAAAAAAAAPiMR68Unj59ulWJCFcMHjxYgwcPdtt4AAAAAAAAAOBvuLQWAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAAAAAPwISWEAAAAAAAAA8CMkhQEAAAAAAADAj5AUBgAAAAAAAAA/QlIYAAAAAIqQkZGh+Ph4ZWRk+DoUAAAAl5EUBgAAAIBC/Pbbb2rcuLHq1aunxo0b67fffvN1SAAAAC4hKQwAAAAAdqSkpOjOO+/UmTNnJElnzpzR2LFjlZKS4uPIAAAAio+kMAAAAADYMXv2bKsE8NmzZzVnzhwfRQQAAOA6ksIAAAAAYIe95C9JYQAAUJqRFAYAAAAAG1JTU7VixQqb65YvX67U1FQvRwQAAOAeJIUBAAAAwIZffvlFubm5Ntfl5uZqwYIFXo4IAADAPUgKAwAAAIANRZWIoIQEAAAorUgKAwAAAEABaWlpWrx4caF9Fi9erAsXLngpIgAAAPcJ8nUAcL/k5GRfh1Bq2Jor5s9xzJ9rmD/XMH+uYw5dw/y5hvlzDfPnGkfmb+7cucrOzi50nKysLM2cOVPDhw93a3wlHc81AABKP5NhGIavgyjp4uPjVa9ePUnSiRMnVLduXR9H9H+SkpIUFRXl6zAAAAAA+LHExERFRkb6OgwLJfl9HAAAvkb5CAAAAAAAAADwIySFAQAAAMAB4aFU3wMAAGUDSWEAAAAAcMCk/lf5OgQAAAC34KPuMmjPnj2KiIjwdRilQnJyslq1amXRxvw5jvlzDfPnGubPdcyha5g/1zB/rmH+XFPY/GVlZally5ZKT0+3WN+wSnnde00DvbVmv46dz7BYV6lSJe3Zs0ehoaEej70ksDV/AACgdCEpXAZFRESUuJs8lCbMn2uYP9cwf65h/lzHHLqG+XMN8+ca5s81l+dv4cKFVglhSRrRsrYCTCaNaFlb7284ZLHuwoULiouL05AhQ7wVLgAAgEsoHwEAAAAA/9+cOXNsto9oWfvvf1vVdmo7AACAkoikMAAAAABIysnJ0fz5863aa1cqpy51q0qSutatptqVyln1mT9/vnJycjweIwAAgDuQFAYAAAAASStXrlRqaqpV+80tainAZJIkBZhMGt6illWflJQUrVq1ytMhAgAAuAVJYQAAAACQ/RIQI1vVKbBMCQkAAFC6kRQGAAAA4Pfy8vL0v//9z6o9qkKorq1f3aKtZ/0IRZYPseo7b9485eXleSpEAAAAtyEpDAAAAMDvbdy4UYmJiVbtw5rXUmCAyaItMMCkYTZKSCQmJio2NtZjMQIAALgLSWEAAAAAfm/hwoU220fYKRUxoiUlJAAAQOlFUhgAAACA37OVFK5aLlh9GkbY7N+nUaSqlAu2ap8zZ47y8/PdHh8AAIA7kRQGAAAA4PfOnDlj1XZj85oKDrT9likkMEA3Nq9p1X7y5Elt2rTJ7fEBAAC4E0lhAAAAALBhZKs6ha+nhAQAACilSAoDAAAAQAGVQoLUv3FkoX36N4lSxZAgq/Y5c+bIMAxPhQYAAOAyksIAAAAAUMDQ6JoKDQostE+5oEANja5h1X7kyBHt2LHDQ5EBAAC4jqQwAAAAABQwomUtB/vZLiExe/Zsd4YDAADgViSFAQAAAOAKYUGBur6p9RXAtgxqWkNhNq4opoQEAAAoyUgKAwAAAMAVBjeroQo2agXbUiEkSIOaRVm179+/X3v27HF3aAAAAG7h2P90AAAAAMDN8vLy9NZbb2nhwoVKTU316n4LY68kRGH95+49bdXer18/hYeHOzWWO1StWlVDhw7VCy+8oMDAwusiAwAA/0RSGAAAAIBPPPHEE5o8ebKvw7AQEhigITZuHleYodE1FRIYoOy8fIv2hIQEJSQkuDM8h23atEnJycn66KOPfLJ/AABQslE+AgAAAIDX5eXlacaMGb4Ow8qAJpEKDw12apvw0GD1bxzpoYiKb8aMGcrPzy+6IwAA8DskhQEAAAB4XWBgoMLCwnwdhpWRLesUa7tbWhVvO08KCwtTQABv+QAAgDX+hwAAAADAJ5588klfh2ChdWQljW5Tt1jbjm5TV60iK7k5Itc88cQTvg4BAACUUNQUBgAAAOATEyZMUH5+vl566aUib/4WXb2imlar4JE4Ak0mXV0jXE91b6qQwOJdNxMSGKDYe3rqP+sOKi4hTXmG4eYo/3bgbLoOpFwstE9QUJDeeOMNTZgwwSMxAACA0o+kMAAAAACfMJlMeu655xQTE6Pbb79dR44csdv3+PlLeqJrEz3QoaFMJpMXo3RclXIher1vK4+MbRiGPt9yVE8e+bPQfo0aNdLMmTPVpUsXj8QBAADKBspHAAAAAPCprl27avv27Ro9erTdPpm5+Xro1ziN/HmTUjKyvRid76VkZGvET5v08G9xysy1f+O40aNHa/v27SSEAQBAkUgKAwAAAPC5ypUr6/vvv9e0adNUoYL9MhFz957W1Z+v1OpjyV6MzndWH0vW1Z+v1Lx9p+32qVChgqZPn67vv/9elStX9mJ0AACgtCIpDAAAAKBEMJlMuuuuu7R161a1b9/ebr/4tAz1mbFWr67aq9x8+1fOlma5+fmauHKv+sxYq/i0DLv92rdvr23btmncuHEltqwGAAAoeUgKAwAAAChRmjdvrvXr1+uJJ56w2yffkF77Y7/6zIjV8fOXvBid5x07d0kx09fqX6v3K7+Q+9U9+eSTWr9+vaKjo70XHAAAKBNICgMAAAAocUJDQ/X+++/r119/VWRkpN1+a4+f1dWfr9ScPSe9GJ3nzNlzUu2+WKnYEyl2+0RGRuq3337Tf/7zH4WGhnoxOgAAUFaQFAYAAABQYg0ePFhxcXG67rrr7PY5l5mjkT9v1oMLd+hSTq4Xo3OfSzm5emDBDo38ebPOZebY7de/f3/t3LlTgwYN8mJ0AACgrCEpDAAAAKBEq1WrlhYvXqx33nlHQUFBdvt9sfWoOn31h/5MOO/F6Fy3M+G8On31h77cdtRun6CgIL377rtatGiRatas6b3gAABAmURSGAAAAECJFxAQoGeeeUaxsbFq3Lix3X57ki6o01d/6L+bD8swCinIWwIYhqFPNx1W56/+0J6kC3b7NWnSROvWrdOECRMUEMBbOAAA4Dr+RwEAAACg1OjcubO2b9+u22+/3W6frLx8/eO3nRo+a6POXsr2YnSOO3spW8NnbdQjv+9UVl6+3X5jxozRtm3b1KlTJy9GBwAAyjqSwgAAAABKlfDwcH333XeaMWOGKlSoYLff/P1ndPXnK/TH0WQvRle0VUeTdPXnKzR//xm7fSpWrKhvvvlG3333ncLDw70YHQAA8AckhQEAAACUOiaTSWPHjtX27dt1zTXX2O138kKm+sxYq1dW7lVuvv0rcr0hNz9fL6/Yo74zYnXyQqbdfh06dNC2bdt05513ejE6AADgT0gKAwAAACi1mjVrpvXr1+upp56y28eQ9Prq/eo9fa2OnbvkveCucOzcJfWevlZvrPlLhVU6fvrpp7Vu3To1a9bMa7EBAAD/Q1IYAAAAQKkWEhKi9957T4sWLVJUVJTdfutOpOjqz1do5ZEkL0YnrTzyd7mIdSdS7PaJiorSokWLNGnSJIWEhHgxOgAA4I9ICgMAAAAoEwYOHKi4uDgNGDDAbp/zWbkaNmujLmTleCWmC1k5uunHjTqflWu3z8CBA7Vz504NHDjQKzEBAACQFAYAAABQZtSsWVO///67Jk2apODgYJt90rJytfFkqlfi2XgyVReybSeEg4OD9d577+m3335TjRo1vBIPAACARFIYAAAAQBkTEBBgrs0bGRlps0+tiuW8EktNO/uJiorSunXr9NRTTykggLdlAADAu/jfBwAAAIAyqU2bNsrKyrJqb1ilvFpFVvJKDK0jK6lB5TCr9szMTLVp08YrMQAAABREUhgAAABAmbRs2TKlpaVZtd/copZMJpNXYjCZTLq5ZW2r9rS0NC1fvtwrMQAAABREUhgAAABAmTRnzhyb7SNaWSdpPWmEjaSwZD8+AAAATyMpDAAAAKDMycnJ0fz5863aa1cqp651q3k1lm71qtmsYTx//nzl5tq+CR0AAIAnkRQGAAAAUOb88ccfSklJsWof3qKWArxUOuKyAJNJw1vUsmo/e/as/vjjD6/GAgAAIJEUBgAAAFAGzZ4922b7SC+Xjihqv/biBAAA8CSSwgAAAADKlLy8PM2bN8+qPbJ8iHrWj/BBRFLPBtUVUT7Eqn3evHnKy8vzQUQAAMCfkRQGAAAAUKbExsYqMTHRqn1Yi1oKDHC+dIRhGFpxJEkfrD+oFUeSZBiG02MEBQRoWHPrEhIJCQlat26d0+MBAAC4IsjXAQAAAACAO82ZM8dm+4iWzpeOSLqYpbvnb9OvBxLMbUOa1dC0m65RZIVQp8Ya0aq2pmw/ZtU+Z84c9ezZ0+nYAAAAiosrhQEAAACUGfn5+Zo7d65Ve5VywerTKNKpsZYfTlLbz1dYJIQl6dcDCbr685VafjjJqfH6NopU5VDr63Lmzp1brKuPAQAAioukMAAAAIAyY/PmzYqPj7dqv7F5TYUEOvb2JycvX88t263+38bqTHqWzT6n0zPV/9tYPb9st3Ly8h0aNyQwQDfaKCFx4sQJbd682aExAAAA3IGkMAAAAIAyY/bs2TbbRzpYOuJw6kVdO22N3ok9oKKu3TUkvR17QNdOW6PDqRcdGn9kK9tx2IsbAADAE0gKAwAAACgTDMOwWU+4YkiQ+jeJKnL7mX/Gq93nK7XpZKpT+910MlXtPl+pmX9aX6Fc0IAmUaoYYl1CYs6cOZSQAAAAXkNSGAAAAECZsGPHDh05csSqfWh0DZULCrS7XXp2ru6ev023z92iC9m5dvvVrVvX7roL2bm6fe4W3TN/m9ILGaNcUKCGNKth1X748GHFxcXZ3Q4AAMCdSAoDAAAAKBNsXSUsSSMKKR2x7fQ5XfPFSk3fcdxun5CQEH344Yc6duyYPvjgAwUHB9vtO23HcXX4cpW2nT5nt4+9eOzFDwAA4G4khQEAAACUeoZh2KzLGxYUqEFNra/MzTcMfbD+oLpO+UMHUuzXA46OjtaGDRv02GOPKSAgQI8//rg2bNig6Ohou9v8dTZdXaf8oQ/WH7RZEmJQsxoqF2T9VoykMAAA8BaSwgAAAABKvT179mj//v1W7dc3jVKFAjV8Ey9maegPG/Tkkl3Kybdfx/eee+7R1q1b1b59e4v2a665Rlu3btXdd99td9ucfENPLtmloTM3KPFilsW6iiFBut5Gonrv3r3as2eP3TEBAADchaQwAAAAgFLP3lW2I1tZlmpYeihRbT9bod8PJtgdKzw8XDNnztTUqVNVsWJFm30qVqyor7/+Wj/88IPCw8PtjvXbgQRd/fkKLTucaBkXJSQAAIAPkRQGAAAAUOrZSqaGBAZoaHRNSVJ2Xr6eXbpbA75bp4QCV+5eqWvXrtqxY4dGjRrl0H5Hjx6t7du3q0uXLnb7nEnP0oBv1+m5ZbuVk5cvSRoaXVPBASaHjgMAAMDdSAoDAAAAKNUOHjyonTt3WrX3bxyp8NBgHUq5qGu/Xq131x2wO4bJZNILL7yg1atXq1GjRk7tv3HjxlqzZo2ef/55mUzWiV5JMiS9E3tA105bo0MpF1W5XLD6N4my6hcXF6dDhw45tX8AAABnkRQGAAAAUKrZu7p2RMva+n7nCbX/YqU2nzpX6BizZ8/Wm2++qeDg4GLFEBwcrLfeektLly5VrVq17PbbdDJV7b9YqR/+PKERlJAAAAA+QlIYAAAAQKk2e/Zsm+1z953SHfO26kJ2bpFj9OzZ0y2x9OvXT3FxcRoyZIjdPheyczVm7lbN23fK5np7xwMAAOAuJIUBAAAAlFrHjh3Tli1bbK5b+Jf9m8l5UmRkpBYsWKCPPvpIISEhdvvZi2/z5s06fvy4p8IDAAAgKQwAAACg9Jo7d67T2zRr1swDkVgymUz65z//qY0bN6p58+ZOb1+c4wIAAHAUSWEAAAAApZaz9XfvvfdeLVmyxEPRWGvXrp22bt2q8ePHO7UddYUBAIAnkRQGAAAAUCqdOnVK69atc6hv5cqVNWvWLH311VeqUKGChyOzVKFCBU2ZMkU//vijwsPDHdomNjZWp0+f9nBkAADAX5EUBgAAAFAqzZs3T4ZhFNmvW7du2rFjh2699VYvRGXfbbfdpri4OHXt2rXIvoZhaN68eV6ICgAA+COSwgAAAABKpaJKLJhMJr300ktavXq1GjZs6J2gitCwYUOtXr1aL774okwmU6F9KSEBAAA8pVQlhbOzszV16lRdf/31qlWrlkJDQ1WxYkU1b95c99xzjzZs2ODrEAEAAAB4gWEYWrt2rd31tWvX1vLly/X6668rKCjIi5EVLTg4WG+88YaWL1+u2rVr2+23du1ah66EBgAAcFapSQqfOHFCHTt21L333qvFixfrzJkzys7O1sWLF/XXX39p2rRp6tatm5588kn+4wQAAACUcbm5uXavtL3xxhsVFxenPn36eDkq5/Tp00dxcXG64YYb7PbJzc31YkQAAMBflIqkcG5uroYMGaI///xTktS2bVtNnz5d69ev15IlS/TKK6+YbxbxwQcf6L333vNluAAAAAA8LDg4WOPHj7doCw0N1SeffKL//e9/ioiI8FFkzomIiND8+fM1efJkhYaGWqy79957FRwc7KPIAABAWVayvkdlx/z5880J4W7dumnNmjUKDAw0r+/fv79uvPFGdevWTTk5Ofr3v/+tJ554osR9TQwAAACA+3z88cdq0KCBVq5cqXr16umJJ55Qq1atfB2W00wmkx555BH17dtXH3zwgU6cOKE+ffroqaee8nVoAACgjCoVWdPY2Fjz788//7xFQviyDh06aOjQoZo3b55SU1O1b98+XXXVVd4MEwAAAIAXBQUF6dlnn9Wzzz7r61DcolWrVvrqq698HQYAAPADpaJ8RHZ2tvn3xo0b2+3XpEkT8+9ZWVkejQkAAAAAAAAASqNSkRSOjo42/3748GG7/Q4dOiTp769fNWvWzONxAQAAAAAAAEBpUyrKR4wePVovv/yy0tLS9M4772jw4MFWJSS2b9+uX3/9VZI0atQohYeH+yLUEiE5OdnXIZQatuaK+XMc8+ca5s81zJ/rmEPXMH+uYf5cw/y5hvlzDXMFAEDpZzIMw/B1EI6YN2+exowZo4yMDLVv316PP/64oqOjlZ6ertjYWP3nP//RhQsX1K5dO/3++++qWbOmw2PHx8cXuv706dPq3LmzJOnEiROqW7euS8fiTklJSYqKivJ1GAAAAAD8WGJioiIjI30dhoX4+HjVq1dPUsl7HwcAgK+ViiuFJWn48OHasmWL3n//fX399dcaN26cxfoaNWrotdde0/33368KFSo4Nfbl/ygAAAAAAAAAQFlXKmoKS1JOTo5++OEHLViwQLYubk5ISNDMmTO1atUq7wcHAAAAAAAAAKVEqbhS+OLFixo8eLBWr16twMBAPfPMM7r77rvVuHFjZWZmauPGjfrXv/6ltWvX6oYbbtAHH3ygxx57zOHxT5w4Uej6K8tHAAAAAAAAAEBpViqSwhMnTtTq1aslSVOnTrUoHRESEqL+/furT58+GjBggFauXKknn3xSffr0Udu2bR0av6zVltqzZ48iIiLMy8uWLdPjjz+uxMRERUVF6cMPP9R1113nwwhLjuTkZLVq1cqireD8wT7mzzXMn2uYP9cxh65h/lzD/LmG+XMN8+caW/MHAABKlxKfFDYMQ9OmTZMkRUdHW9USviwoKEivv/66rr32WuXn52vatGn64IMPvBlqiREREWG+yUNKSooeeeQRpaSkSPr7BhCPPvqo/vrrL1WrVs2XYZZYV84fnMf8uYb5cw3z5zrm0DXMn2uYP9cwf65h/gAAgD8p8TWFExISzAnN9u3bF9q3Q4cO5t/37dvn0bhKi9mzZ5vn77KzZ89qzpw5PooIAAAAAAAAgC+V+KRwUND/Xcycm5tbaN+cnByb2/kze8lfksIAAAAAAACAfyrxSeFq1aopPDxckrR+/fpCE8N//PGH+fdGjRp5PLaSLjU1VStWrLC5bvny5UpNTfVyRAAAAAAAAAB8rcQnhQMCAjRkyBBJ0qlTp/Tmm2/a7Jeamqpnn33WvDx06FCvxFeS/fLLL3aT6Lm5uVqwYIGXIwIAAAAAAADgayU+KSxJr7zyisqXLy9JevXVV3XjjTdqzpw52r59u9avX68PPvhA7dq10549eyRJ/fr104ABA3wZcolQVIkISkgAAAAAAAAA/qdUFN5t0aKF5s+fr9GjRys5OVkLFiywe5Vr37599fPPP3s5wpInLS1NixcvLrTP4sWLdeHCBVWqVMlLUQEAAAAAAADwtVJxpbAkXXfdddq3b5/eeecdxcTEKDIyUsHBwQoLC1OjRo1066236n//+5+WLVumqlWr+jpcn/v111+VnZ1daJ+srCz9+uuvXooIAAAAAAAAQElQKq4Uvqx69ep65pln9Mwzz/g6lBLP0dIQc+bM0ahRozwcDQAAAAAAAICSotRcKQzHXbp0Sb///rtDfX/77TddunTJwxEBAAAAAAAAKClICpdBK1assJnorWAKtWq7dOlSkbWHAQAAAAAAAJQdJIXLoIULF9psf6TC9TbbZ8+e7clwAAAAAAAAAJQgJIXLoCVLlli11QqoqhvLdVTNgCpW6xYuXKisrCwvRAYAAAAAAADA10gKl0Hp6elWbTGhrRVgClCf0NZW69LS0rRs2TJvhAYAAAAAAADAx0gK+4nLyeAYG0lhSZozZ443wwEAAAAAAADgIySF/UBEQCW1DqorSboqqJ4iAipZ9Zk/f75ycnK8HRoAlBq5mZlK3LpVuZmZvg4FALyOcyAAAEDZQlLYD8SE/F06QpICTAHqHdLKqk9KSopWrVrl5cgAoPSIffppLRs7VusmTPB1KADgdZwDAQAAyhaSwn6gT+hVFst9CyxfRgkJALDt0pkzOrlypSQpfsUKXUpI8HFEAOA9nAMBAADKHpLCZVxVUwVdHdzAou3q4Iaqaqpg1XfevHnKy8vzVmgAUGqcWL7ccpmbcwLwI5wDAQAAyh6SwmVcr9BWCjRZPsyBpgD1Cm1p1TcxMVGxsbHeCg0ASo0TS5cWugwAZRnnQAAAgLKHpHAZ1ye0tc32GEpIAIBDMs+eVdLWrRZtSVu3KjMlxUcRAYD3cA4EAAAom0gKl2GVTGHqENzY5roOwY1UyVTOqn3OnDnKz8/3dGgAUGrEL18uo8B50cjPV3yBr1MDQFnEORAAAKBsIilchvUMaaEgU6DNdcGmIF0bYl1C4uTJk9q0aZOnQwOAUuO4na9J8/VpAP6AcyAAAEDZRFK4DOtjp0TE/623XVqCEhIA8Lesc+eUYOeDsjMbNyr7/HkvRwQA3sM5EAAAoOwK8nUAcI1hGDbby5tC1TmkaaHbdg5pqvKmEF0ysi3a58yZo3fffVcmk8ltcQJASZN27Jj+nDxZWYUkNbLPn5eRm2tznZGbqxX33aeQypXtbh9aubLaPPqowhs0cDleAHAnzoEAAAD+jaRwKffnn3/abO8R0lwhpsIf3lBTsHqEtNDSrJ0W7UeOHNGOHTvUvn17t8UJACXNni+/1LHff3dpjJTdu4vsExgaqq5vvunSfgDA3TgHAgAA+DfKR5RyCxYssNlurzREQTF2+s2ePbvYMQFAaVC7Vy/J09+IMJn+3g8AlDCcAwEAAPwbSeFSzDAMLVy40Ko9VMHqGhLt0BjdQqIVqmCr9jlz5tgtTQEAZUH9gQPVd8oUhUVFeWT8sKgo9Zs6VfUHDvTI+ADgCs6BAAAA/o2kcCm2e/duHTp0yKq9e0i0wkwhDo0RZgpRNxsJ5P3792vPnj0uxwgAJVnNrl01aO5c1YmJceu4dWJiNGjuXNXo0sWt4wKAO3EOBAAA8F/UFHZBXl6e3nrrLS1cuFCpqale339aWprNdnslIeyJCW2tVdnWNeH69eun8PDwYsXmiqpVq2ro0KF64YUXFBgY6PX9A/Av5apWVa9PPtFfP/yg7e+9p/zs7KI3siMgJETtn35a0bffzs06AZQKnAMBAAD8E0lhFzzxxBOaPHmyr8OwEKxA9Qhp7tQ214Y0V7AClaM8i/aEhAQlJCS4MzyHbdq0ScnJyfroo498sn8A/sVkMqn5mDGK6tBBsRMmKO3wYafHCG/cWD3ee09Vmzt3DgYAX+McCAAA4H8oH1FMeXl5mjFjhq/DsNI5pKkqBJRzapsKAeXUKaSphyIqvhkzZig/P9/XYQDwI1VbtND1P/2kKtGO1WW/rEp0tK7/6SeSIQBKNc6BAAAA/oOkcDEFBgYqLCzM12FY6RN6VbG261vM7TwpLCxMAQE8RQF4lykgQOknTzq1TfrJkzJR7gZAGcA5EAAAwD+QcXPBk08+6esQLDQOjNKA0LbF2nZAaFs1CvTM3aeL64knnvB1CAD80Ol165R78aJT2+RevKgz69Z5KCIA8B7OgQAAAP6BmsIumDBhgvLz8/XSSy8pLy+v0L71AyNUN7CaR+IIUICaBtXU7WHXKthUvIc02BSkL6rcrx8y1upg7hnlyzNlG07kndWJvLOF9gkKCtIbb7yhCRMmeCQGACjMiaVLi71dnZgY9wYDAF7GORAAAMA/kBR2gclk0nPPPaeYmBjdfvvtOnLkiN2+Z/LO6baw7hpernOJvRtzpYAwPVChv0fGNgxD8zI36aP03wrt16hRI82cOVNdunTxSBwAUJj8nBydXLmyWNvGr1ih/JwcBQQHuzkqAPAOzoEAAAD+g/IRbtC1a1dt375do0ePttsnW7malP6LXkibqfP5l7wYne+dz7+k59N+0KT0X5StXLv9Ro8ere3bt5MQBuAzCZs2KTstzea6uv36aehvv6lu374212enpSlh82ZPhgcAHsU5EAAAwH+QFHaTypUr6/vvv9e0adNUoUIFu/1WZe/W2NRPtD3b/lXFZcn27CMam/qJ/sjeY7dPhQoVNH36dH3//feqXLmyF6MDAEu2vjYdEBKiTi+/rJ4ffaTwBg3U8+OP1fGllxQQEuLQ9gBQWnAOBAAA8B8khd3IZDLprrvu0tatW9W+fXu7/RLzz+uR81M15eJy5RqF1yIurXKNPH11cZkeOT9Vifnn7fZr3769tm3bpnHjxpXYshoA/EN+Xp7iV6ywaKvcpImunzVLzUaNMp+jTCaTokeP1vWzZqlykyYW/eOXL1d+ETXmAaAk4hwIAADgX0gKe0Dz5s21fv16PfHEE3b75MvQ1Esr9Mi5qTqTd857wXnB6bxU/ePcVH19aaXyZdjt9+STT2r9+vWKjo72YnQAYFtGQoIyz/7fjTCb3nabBs6apSp2zlFVoqM1cNYsNb31VnNb5tmzykhI8HisAOBunAMBAAD8Czea85DQ0FC9//77uu6663TXXXcpKSnJZr+43GMamzpZz1carj6hV3k5SvdbmbVL/74wTxeMTLt9IiMjNWPGDA0aNMiLkQFA4cJq1FDDG25Q6t69avvII6rXv+gbbwaFhanzxImq2a2b/vz0U1Vt1Urla9b0QrQA4F6cAwEAAPwLSWEPGzx4sOLi4jR27FgtW7bMZp8LRqZeSJupYeU66bGKg1XOZF2jraTLNLL1Yfpvmp9Z+A1G+vfvr2+++UY1ecMAoIQJCAxU97ffLta29QcMUP0BA9wcEQB4D+dAAAAA/0L5CC+oVauWFi9erHfeeUdBQfbz8P/L3Kx7Uj/TwdwzXozOdQdzz+ie1M8KTQgHBQXp3Xff1aJFi0gIAwAAAAAAAD5EUthLAgIC9Mwzzyg2NlaNGze22+9IXqLGp36mORkbZBj26/GWBIZhaHbGBo1P/UxH8hLt9mvSpInWrVunCRMmKCCApxwAAAAAAADgS2TovKxz587avn27br/9drt9spWr99IX6Lm073U+/5IXo3Pc+fxLei7te/0nfYGylWu335gxY7Rt2zZ16tTJi9EBAAAAAAAAsIeksA+Eh4fru+++04wZM1ShQgW7/VZn79WdqZO1LfuIF6Mr2rbsw7ozdbJWZ++126dixYr65ptv9N133yk8PNyL0QEAAAAAAAAoDElhHzGZTBo7dqy2b9+ua665xm6/pPw0PXJ+qr68uEy5Rp4XI7SWa+Tpi4tL9cj5r5WUn2a3X4cOHbRt2zbdeeedXowOAAAAAAAAgCNICvtYs2bNtH79ej311FN2+xgyNO3SSj18bopO56V6Mbr/czovVQ+fm6Lpl1bJkP1ax08//bTWrVunZs2aeTE6AAAAAAAAAI4iKVwChISE6L333tOiRYsUFRVlt9+fucc1NvUTbc0+7MXopK3ZhzU29RP9mXvcbp+oqCgtWrRIkyZNUkhIiBejAwAAAAAAAOAMksIlyMCBAxUXF6cBAwbY7ZNuZOrZtO90MT/LKzFdzM/SM2nfKd3ItNtn4MCB2rlzpwYOHOiVmAAAAAAAAAAUX5CvA4ClmjVr6vfff9f777+vF154QTk5OVZ9LhpZ2p17Qp1Dmno8nt25J3TJsJ2ADg4O1r///W898cQTCgjg8wUAAAAA8CXDMHTx4kWlpaUpMzNTeXm+vS8NAKB4AgICFBISogoVKqhixYoe+VY+SeESKCAgQE8//bRiYmI0ePBgJSUlWfWJCKjklViq29lPVFSUfv31V3Xs2NErcQAAAAAA7MvPz9fx48eVkZHh61AAAG6QnZ2t9PR0JSQkKDIyUtWrV5fJZHLb+CSFS7A2bdooK8v6Kt1aAVXVKNB+7WF3ahwYpZoBVXQm/5xFe2Zmptq0aeOVGAAAAAAA9hmGYZUQNplMCgwM9GFUAIDiysvLk2EY5uWkpCRlZ2erdu3abtsHSeESbNmyZUpLS7Nqjwlt5dZPBgpjMpkUE9paP2bEWrSnpaVp+fLlGjx4sFfiAAAAAADYdvHiRXNCODAwUDVr1lTFihUp8wcApZRhGMrKylJaWprOnj0rSTp//ryqV6+u0NBQt+yDvxAl2Jw5c2y2x4S29moc9vZnLz4AAAAAgPdceTFRzZo1FR4eTkIYAEoxk8mkcuXKKSoqSlFR/1ctIDU11W374K9ECZWTk6P58+dbtUcEVNJVQfW8GkuboHo2axjPnz9fubm5Xo0FAAAAAGApMzNT0t9JhIoVK/o4GgCAO1WpUsX8+6VLl9w2LknhEuqPP/5QSkqKVXvvkFYKMHn3YQswBahXSCur9rNnz+qPP/7waiwAAAAAAEt5eXmS/i4dwRXCAFC2BAYGmmvEXz7fuwN/LUqo2bNn22zvG3qVlyMpfL/24gQAAAAAAADgOk/cW4ykcAmUl5enefPmWbVXNVXQ1cENvR+QpKuDG6iKqbxV+7x589z6KQUAAAAAAAAAzyIpXALFxsYqMTHRqr1XaEsFFqN0hGEY2pJ9SDMvxWpL9iEZhuH0GEGmQPUKtS4hkZCQoHXr1jk9HgAAAAAAAADfCPJ1ALA2Z84cm+0xxSgdkZp/UW9cmKN12fvNbd1DmuulSiNUNaCCU2PFhLbWL5lbrNrnzJmjnj17Oh0bAAAAAAAAAO/jSuESJj8/X3PnzrVqr2Qqpw7BjZwaa3P2Id2Z+rFFQliS1mXv19jUydqcfcip8ToGN1ZFUzmr9rlz5xbr6mMAAAAAAAAA3kdSuITZvHmz4uPjrdqvDWmpYJNjF3bnGnn6b/piPXZ+ms7mp9vsk5x/QY+dn6b/pi9WruFYTeBgU5CuDWlh1X7ixAlt3rzZoTEAAAAAAAAA+BZJ4RJm9uzZNtv7hLZ2aPuTeSl64NyX+jZjtQwVfvWuIUPfZqzWA+e+1Mm8FIfG72unhIW9uAEAAAAAAACULCSFSxDDMGzWEy5vClHnkKZFbr8kM05jUz/RnlzrK40Lsyc3XmNTP9GSzLgi+3YOaaryphCr9jlz5lBCAgAAAAAAOxo2bCiTyaS77rrL16F4RFk/PqCsISlcguzYsUNHjhyxau8R0kKhpmC7210ysvRG2hxNvPCTLhlZdvvVrVu30DEmXvhJb1yYU+gYoaZgdQ9pbtV++PBhxcUVnVQGAAAAAAAA4FskhUsQW1cJS1JMIaUj9uec1F2pn+rXrG12+4SEhOjDDz/UsWPH9MEHHyg42H6C+dfMbbo79b/an3PSbh978diLHwAAAAAAAEDJQVK4hDAMw2Zd3lAFq1tItFV7vpGvmZdide+5L3Qi76zdcaOjo7VhwwY99thjCggI0OOPP64NGzYoOtp6zMuO5yXr3nNfaOalWJslIbqFRCtE1je9IykMAAAAAAAAlHwkhUuIPXv2aP/+/VbtXUOaKaxADd+U/HQ9nfatPr74m3KVZ3fMe+65R1u3blX79u0t2q+55hpt3bpVd999t91tc5Wnjy/+pqfTvlFKfrrFuvKmUHUNaWa1zd69e7Vnzx67YwIAAAAAUBacOnVKzz33nK655hpVrlxZISEhqlmzptq0aaPRo0dr+vTpSktLkyTFxMTIZDLp2LFjkqQZM2bIZDJZ/MTExJjHPnr0qLl9+vTpkqS5c+dq8ODBql27toKCgiz6XxYfH6/nn39e11xzjapWrapy5cqpfv36uu2227Ry5UqHjis1NVVvvPGGunXrpoiICIWGhqp27dq66aabNHfuXJvbOHt8kpSXl6fp06dr4MCBqlmzpkJCQlSlShU1a9ZM/fr101tvvUV+AfAw68s94RP2rrLtE3qVxfKm7IN6Le1npRjpNvtLUqVKlfTll19q1KhRdvtUrFhRX3/9tfr3768HH3zQ/MeqoHXZf2ls6mS9UukWi5vd9Q29Squz99o8jlatWtndLwAAAAAApdmaNWs0dOhQq/fRCQkJSkhI0K5du/Tjjz8qIiJCQ4cOdWlfhmFo7Nix+vbbbwvtN3XqVD366KPKyMiwaD9x4oROnDihn376SePHj9fnn3+uoCDbqaDffvtNY8aM0blz5yzaT58+rV9++UW//PKLhgwZoh9//FEVK1Ys9jGlp6dr8ODBWrNmjUX7+fPndf78eR08eFArVqzQtm3bbH6jGoB7kBQuIWwlhYMVqGv//03dcoxcfXlxmb7LWGPVr6AVK1aoY8eODu139OjR6tKli26//XZt3LjRZp+z+el6/Px03RHWU/dXuE5BpkD1CGmhIAVaXak8Z84cvfzyyw7tGwAAAACA0iQrK0ujRo1SWlqaKlWqpIceekh9+vRRVFSUcnJydOzYMa1fv97iPf60adN08eJFDRw4UKdOndJNN92kN954w2LcChUq2Nzfhx9+qJ07d6pnz5566KGHFB0drXPnzuno0aPmPl9//bXuvfdeSdJVV12lBx54QO3bt1f58uV15MgRTZ06Vb/99pumTp2qypUr6z//+Y/VfpYuXaobb7xReXl5atiwoR566CF16dJF4eHhOnnypGbNmqXvvvtOv/76q8aNG+fS8b366qvmhPDQoUM1ZswY1a9fX+XKlVNSUpLi4uK0cOFCmUwmBx8VAMVBUrgEOHjwoHbu3GnV3imkqSoElFN83lm9kjZLe3Pt3/ztSg0aNHBq/40bN9aaNWs0ceJEvf322zbrCBsy9G3Gam3NOazXwm9V3cDq6hzSROuy/7LoFxcXp0OHDqlJkyZOxQAAAAAA8Jz8/HydPWv/fjRlTfXq1RUQ4P6KmbGxsTp16pQk6YcffrC6ErhLly669dZbNWnSJF26dEmS1KhRI0ky3/S9SpUquuoqy28F27Nz506NHTtW06dPt5kkPXHihB599FFJ0rhx4zRlyhSLK4Hbt2+vm2++WS+++KLeeustffjhh3rggQcs7jN08eJF3XnnncrLy9OAAQM0b948lS9f3mKMoUOHqlevXrr//vs1d+5cLV++XP369SvW8f3000+SpJEjR+rnn3+2Wj9w4EA988wzSklJcWiOABQPSeESwH7piNZanLlD76b/oktGlkdjCA4O1ltvvaV+/frpzjvv1OnTp23225Mbr3Gpn+qZijcpJqS1VVJY+vt4nnnmGY/GCwAAAABw3NmzZxUVFeXrMLwmMTFRkZGRbh/3zJkz5t979eplt19QUJDCw8Nd3l+VKlX0ySef2L1q9qOPPtKlS5dUu3btQktDvPbaa5oxY4ZOnjypb775xuJK3mnTpikhIUHlypXTt99+a5EQvtJ9992nKVOmaNOmTZo2bZo5Keysy3PYs2fPQvtVq1atWOMDcAw3misB7NXIWZW1W69e+LnQhPCAAQPcGku/fv0UFxenIUOG2O1zycjSqxd+0h/Ztou+U/MHAAAAAFAW1apVy/z7tGnTPL6/G264QZUqVbK7fv78+eZ+5cqVs9svKChI3bp1kyStX7/e5hi9e/cu8oODy4nwgmM44/Iczpo1y3w1NQDv40phHzt27Ji2bNlic11s9n6724WEhOi9997Tbbfdpho1alisS05Odjmur7/+WlOmTNFrr72m7Oxsp+LbvHmztm/frrp167och6fZmit3zJ+/YP5cw/y5hvlzHXPoGubPNcyfa5g/1zB/rmGu4M+uvfZaNW7cWIcPH9bjjz+u77//XsOHD1fv3r3VsWNHhYSEuHV/bdu2tbvu8k3ZJOmLL77QF1984dCYV17tLMmck1i8eLHDdXwLjuGMcePG6fXXX9e6devUqFEj3XLLLerXr5+uvfZaj1zdDcA2ksI+NnfuXKe3adGihX788UddffXVSkpKslrfqlUrd4TmkmuuucbXIRRbSZi/0oz5cw3z5xrmz3XMoWuYP9cwf65h/lzD/AFwRHBwsBYsWKCRI0dq79692rx5szZv3ixJCgsLU+/evXXnnXfqtttuU2BgoMv7q1q1qt11iYmJxRrzyqtzc3JydO7cOZfGcNbLL7+skydPatq0aUpMTNSnn36qTz/9VCaTSa1bt9bNN9+shx9+2OoCOADuRVLYx+zVE7bn3nvv1Ycffmj3zqQAAAAAABRUvXr1YicRS6Pq1at7bOxWrVrpzz//1IIFC7RgwQL98ccfOnTokDIyMrRo0SItWrRI77//vn777TeX6zgXlljOy8sz//74449r/PjxDo155dXMV45x66236uWXXy5GlM4JDg7W1KlT9dRTT2nmzJlasWKFtmzZouzsbO3atUu7du3S+++/r++++0433XSTx+MB/BVJYR86deqU1q1b51DfypUr68svv9Stt97q4agAAAAAAGVNQEAAX813o8DAQA0bNkzDhg2TJJ0+fVq///67/vvf/2rr1q3aunWrHnjgAc2bN89jMVyZ+L506ZKuuuoqp8coV66cypcvr0uXLuncuXPFGqO4WrVqpddff12vv/66MjIyFBsbqx9++EHffPON0tPTNXr0aB06dMiijjMA9+FGcz40b948GYZRZL9u3bppx44dJIQBAAAAACiBatWqpXvuuUfr1683l1NcuHChMjIyzH0crdfrqMjISNWpU0eStGzZMofyC7a0b99ekhQbG+tSWQhXji8sLEzXXXedvv76a02aNEmSlJGRoYULFxZ7TACF40phHyqqdITJZNKLL76oiRMnKijI8Ydqz549ioiIcDU8u3JycvTee+/pww8/LPSPTs+ePZ0uj+FtycnJVvXjPD1/ZQnz5xrmzzXMn+uYQ9cwf65h/lzD/LmG+XONrfkD8Lfg4GD17t1b27ZtU25urs6dO6ewsDBJf1+VK0lZWVlu29+NN96ozz77TIcPH9bs2bN1yy23FGuM2NhYXbx4UZ9++qkmTJhQrFjcdXz9+vUz/86NLQHPISnsI4ZhaO3atXbX165dW99995369Onj9NgREREe/1rQ+++/rxtuuEF33HGHTp06ZbPPxo0bFRER4fZPQz3NG/NXljF/rmH+XMP8uY45dA3z5xrmzzXMn2uYPwCOWLNmjWrVqqWmTZvaXJ+dna0//vhDklSxYkWL80qtWrW0b98+HTp0yG3xTJgwQV9//bWysrL04IMPqlGjRurYsaPd/r/99pvq1q2rtm3bmtsefPBBTZo0ScnJyXr55Zd11VVXadCgQXbHiI2NVV5ennr16mXR7sjxpaSkaO3atbrhhhvs5gqWLFli/r1Ro0Z2xwLgGpLCPpKbm2v3BHjjjTdq6tSpJf5KhT59+iguLk733HOPFixYYLNPbm6ugoODvRwZAAAAAADut3z5cr3++uvq2bOnhgwZorZt2yoyMlIZGRn666+/9Pnnn2vbtm2S/r5R/JXf+u3evbtWrlypzZs36+2339agQYPMN5EPCwszl4JwRqNGjfT555/r7rvvVkpKinr06KE777xTQ4cOVf369ZWbm6v4+Hht2rRJs2fP1qFDh7RgwQKLpHB4eLhmzpypQYMGKSsrS0OHDtWIESM0YsQINWnSRNLfNZO3bt2qefPmaefOnZo8ebJVUtiR40tLS9NNN92khg0b6uabb1aXLl3UoEEDBQUF6fTp01qwYIGmTJkiSapbt65uuOEGp+cEgGNICvtIcHCwxo8fr88++8zcFhoaqv/85z96+OGHS83VtREREZo/f74+/fRTPf300xZfE7n33ntJCAMAAAAAypT8/Hz98ccf5iuCbbn55pv173//26LtoYce0meffaaUlBQ9//zzev75583revfurVWrVhUrnrvuukthYWG6//77lZaWpqlTp2rq1Kk2+wYEBJgTtVe67rrrtHjxYo0ZM0ZnzpzRzz//rJ9//tnuPsPDw63anDm+o0eP6v3337c7fp06dfTLL7/YjBWAe5AU9qGPP/5YDRo00MqVK1WvXj098cQTpbI2l8lk0iOPPKK+ffvqgw8+0IkTJ9SnTx899dRTvg4NAAAAAAC3eeaZZ9SlSxctXbpU69ev16lTp5SYmChJqlmzprp06aKxY8dq8ODBVtvWqVNHmzZt0r///W/98ccfio+PV2Zmplviuu222zRgwAB9+eWXWrRokfbs2aPU1FQFBwerZs2aat26tfr06aORI0eqXr16Nsfo27evDh06pGnTpmnhwoWKi4vT2bNnFRAQoMjISLVs2VK9e/fWiBEj1Lx582IdX4MGDbRjxw4tXbpUK1as0OHDh5WQkKD09HRVqVJFrVu31g033KD7779flSpVcsvcALDNZBT39pR+JD4+3nzSPHHihOrWrevjiP5PUlKSoqKiLNoSExOph+Yg5s81zJ9rmD/XMH+uYw5dw/y5hvlzDfPnGubPNaVl/kry+zh3O3DggHJzcxUUFKRmzZr5OhwAgJt54jwf4JZRAAAAAAAAAAClAklhAAAAAAAAAPAjJIUBAAAAAAAAwI+QFAYAAAAAAAAAP0JSGAAAAAAAAAD8CElhAAAAAAAAAPAjJIUBAAAAAAAAwI+QFAYAAAAAAAAAP0JSGAAAAAAAAAD8CElhAAAAAAAAAPAjJIUBAAAAAAAAwI+QFAYAAAAAAAAAP0JSGAAAAAAAAAD8CElhAAAAAAAAAPAjJIUBAAAAAAAAwI+QFAYAAAAAAAAAP0JSGAAAAAAAAAD8CElhAAAAAAAAAPAjJIUBAAAAAAAAwI+QFAYAAAAAAAAAP0JSGAAAAAAAAAD8CElhAAAAAAAAPzF9+nSZTCaZTCYdPXrU4XWOrC9L/OlYr5STk6PmzZvLZDJp1qxZvg6n1Hv44YdlMpk0btw4X4dihaQwAAAAAACAg1atWmVOFjryM336dF+HDDhs8uTJ+uuvv9SyZUvdcsstvg6nWBITE7Vw4UK98sorGjRokCIiIsyvx7vuuqtYYyYnJ+vdd99Vjx49VLNmTYWGhqp27drq0qWLJkyYoPXr19vc7vnnn1dISIi+/fZbbd682YWjcr8gXwcAAAAAAADKlvzcXP02fLhyLl5UcIUKGjxvngKCSEGUddOnT9fdd98tSTpy5IgaNmzo24A8pKweZ3p6uv79739Lkl555RUFBJTOa0lr1Kjh1vF+/vlnPfTQQzp79qxF++nTp3X69Glt2rRJBw4c0P/+9z+rbevVq6dx48bpq6++0ksvvaTFixe7NTZXcEYGAAAAAABulRwXp7TDhyVJGZLO7typyGuu8W1QHvDQQw/p4YcfLrRP3bp1vRSNY+66665iXy3pyraljT8d62WfffaZkpOTVa9ePd16662+Dsct6tWrp5YtW2rJkiXF2v6bb77R3Xffrfz8fEVFRemhhx7Stddeq2rVqunMmTM6dOiQFixYoODgYLtjPPXUU/rqq6+0ZMkSbd68WZ06dSru4bgVSWEAAAAAAOBWp9eutVg+tWZNmUwKR0VF6aqrrvJ1GIDL8vLy9Mknn0iSRo8eXWqvEpb+vsq5U6dO6tSpk2rUqKGjR4+qUaNGTo+zd+9e3X///crPz1fPnj21YMECVa5c2arfo48+quzsbLvjNG/eXNdcc422bdumjz76SN99953TsXhC6X2EAQAAAABAiXRqzRrL5QJJYgAly9KlS3X8+HFJ0h133OHjaFzz2muvaejQoS6XkXj00UeVlZWliIgIzZ0712ZC+LKQkJBCxxozZowkac6cOTp//rxLcbkLSWEAAAAAAOA2GUlJSt2716Itdc8eZSQl+SiikmXXrl164403NHDgQNWtW1ehoaGqWLGimjVrpnHjxmnDhg0OjxUbG6t7771XzZs3V3h4uCpWrKgWLVpo2LBh+uabb5SWlma1zfTp08033Tp69KhTsdvb9vLN9y7X2ZWkRo0aWd10b9WqVcrJyVHNmjVlMpk0aNCgIve5a9cu8/ZvvfWWU/FK0qlTp/Tcc8/pmmuuUeXKlRUSEqKaNWuqTZs2Gj16tKZPn+7wPDlznLZs2rRJ9913n6Kjo1WxYkVVqFBBLVq00D/+8Q8dOHDAI8fhqJ9++kmS1KxZM7Vp08Zuvysfj9mzZ0v6O6E8atQo1a9fX6GhoapTp47uv/9+JZXi1/y+ffu0fPlySdIjjzyiiIgIl8YbMWKEJCkzM1Pz5893OT53oHwEAAAAAABwm4KlI8ztsbFqPGyYd4MpYVatWqU+ffpYtWdnZ+vgwYM6ePCgvvnmGz333HPmG37ZkpGRofHjx2vmzJlW6/bv36/9+/dr/vz5mjhxol599VV3HoLLgoODNXbsWE2aNElLlizRyZMnVadOHbv9v/76a0lSYGCgxo0b59S+1qxZo6FDh1olSxMSEpSQkKBdu3bpxx9/VEREhIYOHer8wTgoNzdX//znP/XZZ59Zrbv8eH311Vf69NNPdd999/nkOFauXClJ6tq1a6H94uLizL83atRII0eO1Jw5cyz6nDp1Sl999ZVWr16trVu3qkKFCsWKyZd+/vln8++33HKL+ffU1FQlJyerWrVqql69usPjNWjQQLVq1dLp06e1atUqjR071q3xFgdJYQAAAAAA4LTN//qX4m1cEZlz4YLN/lvefFNxH39s1V43JkadXnnF3eGVSLm5uapQoYKGDBmivn37qkWLFgoPD1diYqJ2796tjz/+WMeOHdPbb7+t6OhoiytSL8vPz9dNN92kpUuXSvr7ys6HH35YHTt2VPny5XX69GmtW7fOfOWnN3Tq1El//vmn5s+fr5deekmStHjxYtWuXdui3+W6rvfee68mTZqk/Px8ffPNN3r++edtjpuTk2OuvzpgwIBCk8cFZWVladSoUUpLS1OlSpX00EMPqU+fPoqKilJOTo6OHTum9evXWyU03Xmcl40fP17ffPONJGnQoEEaM2aMoqOjZTKZtGPHDn344YfavXu37r//ftWsWVM33HCDR4+joPj4ePPV0EXdBO1yUjgwMFD//Oc/tXnzZt13330aNmyYatSooQMHDuj111/Xnj17tH//fn399dd69NFHix2br1y+Yr9y5cpq2bKlvv/+e7377rvauXOnuU+jRo00btw4PfXUU6pYsWKRY3bq1Em//PKL1hQor+MrJIUBoBTLzcxUyu7dqta6tYLKlfN1OAAAAPATuRkZOjx/vvIyMx3f5tIl5V66ZNV+5Jdf1H7CBAWFhbkzRK9ITEzUrl277K6PiopSVFSUebldu3aKj49XlSpVrPoOHDhQjzzyiIYOHaqlS5fqtdde09ixYxUYGGjRb/LkyeaE8PDhwzVz5kyFhoZa9BkyZIhef/11nTlzxoWjc1yFChV01VVXacuWLea26OhoNWzY0Gb/6Oho9erVS6tXr9a0adPsJoUXLlxoLkEwfvx4p2KKjY3VqVOnJEk//PCD1RW0Xbp00a233qpJkybpko3npS3OHqf0dw3Zywnhr776Svfee6/F+o4dO+qOO+7QkCFDtGLFCv3zn//UoEGDFBQU5LHjKGjdunXm39u3b19o38tJ4by8PO3atUtr1qxRly5dzOs7dOignj17qkmTJsrKytK6detsJoVNJlOxYr3StGnTdNddd7k8ji179uyRJDVs2FCPPvqoPv30U6s+R44c0auvvqrZs2fb/HCgoA4dOuiXX37RwYMHlZiYaHFu8AVqCgNAKRb79NNaNnas1k2Y4OtQAAAA4EfOHTigvKwst4yVm5mpc0XUUy2pPvvsM7Vp08buz3//+1+L/hERETYTwpeFhIRo0qRJkqRjx45px44dFuvz8/PN6+vUqaNvvvnGKiF8WUBAQJFJKl+6nBw9cOCAYmNjbfaZNm2apL/n7cqrZx1xZUK8V69edvsFBQUpPDzcqbGdcbkMyPDhw60SwpeVK1dOn3zyiSTp6NGjFjWJvXEc8fHx5t+LSlReWT7iyy+/tEgIX1anTh01a9ZMkpSenl6smHwtJSVF0t+1hT/99FNVqVJFn3/+uRITE5WZmanNmzeba2Lv2rVLt9xyi/Lz8wsd88q5PXnypOeCdxBXCgNAKXXpzBmd/P91n+JXrNClhASVd/HuqgAAAIAjItq2Ve9PP9W6Z5+1Wy7CEcGVKqn7u+8qom1bN0ZXemRlZSkhIUHp6enmhJJhGOb1cXFx6tChg3l5x44d5mTSfffd59BX1kuqkSNH6p///KfOnTunadOmqUePHhbrExIS9Pvvv0uS7rjjDoWEhDg1fq1atcy/T5s2TY899pjrQTvp5MmT2rp1qyTp1ltvLbRvy5YtFRERoeTkZK1fv17XXXedJO8cx5U3hKtatardfomJiUpISJAk9e3bV7fddpvdvhkZGZJkt+7un3/+WZxQLdStW9flMey5ePGipL9fo4GBgfr9998t6i137NhRCxcu1NChQ/X7779r3bp1mjt3rkaOHGl3zGrVqpl/Lwk34SMpDACl1In/fydU8/KyZWo+ZoyPogEAAIC/qdP7/7F33+FRlvn+xz8zSSYJCQkJSaihG4qCKB2WsqiUn51jAxYUEdE94rJHcJW171pQV9ey6rqiYqGHokJUIBhqCEQCoSi9JEAgtISSPr8/2IyEmUmbzrxf1+V1zdzP/dzPd+6T45pPnvk+/TV49mytmjBBZ/bsqfH5ka1bq+977ymieXMXVOcetXmQ27lz5/Tuu+9q1qxZ2rZtm0pLS+3Ozc3NrfB+06ZNlteV3TXqC0JDQzVixAh98MEHmjNnjt55550KDyT78ssvVVJSIkl68MEHa7z+7373O7Vq1Up79+7VxIkT9fXXX+vOO+9U//791bVr1xqHzLVxaZuJ4cOHa/jw4dU679K7g93xOcrvipUqD4UvvXO9spC7sLDQ0qO4bdu2Nudcc801NSvSzUJCQizB8N13323zAXxGo1FvvPGG5Y8XM2fOrDQUvnRvT5w44eSKa472EQDgow79t4+YvfcAAACAq0U0b65BM2eq6X/vaqyu+Btv1KCZM306EK6N/fv3q2PHjpoyZYq2bNlSaSAs/Xa3ZblLQ+JL7yD1VePGjZMk5efnWz0orbx1RLdu3dSxY8carx0UFKRvv/1W7du3lyRt2LBBU6ZMUZ8+fVSvXj0NHTpUM2bMqPL/Bo44duxYrc67tDewOz5HyCXPp7n8Z+5Sl7aOuLy38aW2bt1qqaeTj34LoG7dupbX5W0ibLn66qstD0DcsGFDpWteurehXtBDnTuFAcAHFZw4oeP//RpSuePp6So4eVIhl3wlBQAAAHC1oLAwtRs9WlnLllX7nHb336+gS+4K9RejRo3Svn37ZDAYNGbMGN13331q3769YmNjLb2By8rKLA+Xu7SVxOWc8aAuT+vcubO6dOmi9PR0ffbZZxo9erQkaf369ZYHfdXmLuFyHTp0UGZmpr799lt9++23SklJ0Z49e3ThwgV9//33+v777/XWW29pyZIlLnno16VB7ddff13tgPTyu3Vd/TliY2Mtr0+ePFkhEL1UeSjcoEEDSxBqy6V3FHfu3NnmnMoe0FhdTZs2rbRHtyPi4+Mtd2xX1aYiPj5e2dnZVf4R4NI7si/dc08hFAYAH5S1fLnMlzWxN5eVKWv5crW5+24PVQUAAAB/dWT16hrNP7xqlWKvv95F1XinX375Rav/u09PP/20Xn75ZZvzTp06ZXeNmJgYy+vDhw/b/Wq+L3nooYeUnp6ulJQU7d27V61atbLcJRwaGlrtlgv2BAQE6I477tAdd9whSTpy5IiSkpL0wQcfKD09Xenp6Ro/frwWLFjg6Eexcmk/XYPB4FDLBFd+jksDylOnTqm5nTv4y0Ph6667rtL1ytucxMTE2A2Pa3P39+U+++wzPfDAAw6vY8vVV19tufO3qruwy48HBlYes176/9veEArTPgIAfNBBO60iaCEBAAAATzi8alXN5tcwRL4SbNu2zfL6vvvuszvv0j60l7v+kiB95cqVzinMiWpz9/KIESNUp04dmc1mTZ8+XRcuXNCsWbMkScOGDVNkZKRTa2zUqJEefPBBrVu3zrKf3333XaVtEy5X3c95aXj6448/1qzQKjjjc5S7NKDduXOnzTlFRUX65ZdfJFU/FLZ3l7AvuLRn954qeqbv3btXkiq9e1r6bW/DwsLUqlUrByt0HKEwAPiYwtOnlZOWZvPY0fXrVXTmjJsrAgAAgD+7cPy4Tu3YUaNzTm3frgvHj7uoIu9U/tA0qWLP2Mt99NFHdo9de+21io+PlyR98sknOnv2rPMKdIJLe9MWFhZW65yIiAjLQ8umT5+uefPm6cx/f6cZO3as84v8r6CgIPXv31/Sxf/bnD59utrnVvdztmnTRh06dJAkzZo1SwcPHqxdsZVw5HOU69q1q6XHrb2+uNu2bbP8DF9fyV3+ZrNZW7ZskVR5KGw2mx3+x1V3CUvSbbfdpqCgIEnS/Pnz7c5LSUmxPDSub9++la5Zvrc9e/as8q5id/B8BQAAi3NZWdo5daoKKwl2i86ckfmS/6C8lLmkRMnjxslUyV/TgyMj1XHCBL97qAcAAABcw95dv/XattXVDz+sbf/+t07buPvwyOrVanXnna4uz2tcddVVltfTp09Xjx49rOZ8+OGHWrhwod01jEajJk+erMcff1xZWVkaPXq0Zs2aJZPJZDW3rKxMR48eVePGjZ1Sf3Vc+vC7PXv2VLu9xUMPPaTPP/9cBw4c0JNPPilJatmypQYMGFDrWlatWqVGjRqpTZs2No8XFRUpJSVFkhQeHl6jr/PX5HM+88wzGjFihAoKCjRs2DAlJSXZvVZhYaGmTZumBx980BI8u/JzlDOZTOrevbtSUlKUZucGpEsfMlfZncK7du2y/LHCl+8Url+/vh566CF9+OGHWrp0qWbNmmV1h39+fr4mTpxoeT9+/Hi76xUWFlrC8qrCY3chFAYAL7L/q690+PvvHVrj5CVfS7MnIDhYPe30MAMAAABq4shlrSMMgYG6+uGHdfW4cQowmdR04EBt+/hjbfvPfyrc3HDYz0Lh6667Ttdcc422bt2qDz/8UKdPn9bIkSPVqFEjHTp0SF999ZXmzZunPn36aM2aNXbX+d///V99++23Wrp0qRYsWKCOHTvqj3/8o7p27ao6dero6NGjSk1N1cyZMzVixAi98MILbv2MISEhKigo0LPPPqvAwEC1aNFCRuPFL6o3adLEckfqpfr06aP27dtrx44dlod7jRkzxqGH6S1fvlx/+9vf1LdvX918883q1KmTYmNjdeHCBe3cuVMfffSRfv75Z0kXQ+ma3LlZk885fPhw/fDDD5o+fbrS09PVoUMHjR8/Xv3791dsbKzOnTunPXv2aNWqVZo/f75OnjxpeeCeqz/HpW6++WZLKJyfn2/1sLnyUDgiIqLS1gflrSMkz4XCq1ev1u7duy3vc3NzLa93796tzz//vMJ8e3ccv/jii1q8eLEOHjyoUaNGac2aNRo2bJgiIiKUmZmpqVOnWlpqPProo+rWrZvdmlauXKni4mJJF/faGxAKA4AXienZU4d/+EGq5CnDDjMY1PiS/kgAAACAI5oOHKjslBSVFhSoXtu26vXyy4pq395yPMBkUqfHHlPTG25Q6pQpOr1zpwJCQ9X097/3YNXuZzAY9OWXX2rgwIE6deqUZs6cqZkzZ1aY07FjR82dO7fSu3uNRqMWLlyo+++/X/PmzdPOnTsr3K3oSXXr1tXjjz+u119/XT///LMGDx5c4fiKFSvs3v07duxYTZo0SdLFz+iM1gBlZWVKSUmx3Elry7Bhw/Tqq6/WaN2afs5p06apQYMG+sc//qHc3Fy9/PLLdh80GBYWpoCAALd8jkuNGDFCTz/9tAoKCrRgwYIKwbT0WyjcuXPnSsP6jIwMSRdbbLRr167W9Tjik08+0fTp020eW7NmjdUfXez9rMXGxur777/Xbbfdpt27d+v999/X+++/bzXvwQcf1DvvvFNpTTNmzJAktW3bVl27dq3Gp3A9egoDgBdpMGCABn7yiULj4lyyfmhcnG6YNk3NLvuPFgAAAKC2Wtxyi4bOn6/rJk3S4FmzKgTCl4pu316DZ8/WdZMmaWhiolrccoubK/W8zp07KyMjQ4888oiaN2+uoKAgRUdHq3v37nrzzTeVlpZWoTWBPXXq1NHcuXOVnJysUaNGqWXLlgoNDVXdunXVrl07DRs2TDNmzNDkyZPd8Kkqeu211/Sf//xHffv2VXR0tFXAac+oUaMsr2+66SZL7+TaevLJJ7VkyRL9+c9/Vs+ePdWsWTOFhIQoJCRELVq00L333qvFixcrMTGxQo/g6qrJ5wwICNDUqVO1fft2PfHEE7ruuusUFRWlgIAA1a1bV1dffbVGjhyp6dOn68iRIxXupnb15yjXpEkT3X777ZKkr7/+2up4eeuD6j5k7pprrqn2/+29Wfv27ZWRkaE33nhDPXr0UHR0tEwmk5o2bap7771XycnJmjZtmqX/sC3lQbsk/fGPf3RX6VUymM2uvB3typCVlWX5l9GhQ4fUtGlTD1f0m+PHjyvusvDo2LFjteoh44/YP8ewf46pbP8KTp3S+meeUfZPPzntek0GDFCPv/9dIVFRTlvTk/j5cxx76Bj2zzHsn2PYP8ewf47xlf3z5t/jnG3Xrl0qKSlRYGBghb61gC9Zvny5brzxRknS7NmzLQ+fg/ukpqaqV69eCggI0O7du9WiRQtPl3RF+OqrrzRq1ChFR0dr//79Vq05qsMV/57nTmEA8EIhUVHq9/776jJliow2HhpRE0aTSV2mTFG/99+/YgJhAAAAAFeWTz/9VNLFB3yV37EK9+rZs6eGDh2q0tJSh1pR4DdlZWV65ZVXJEmTJk2qVSDsKoTCAOClDAaD2o4cqcEzZyqikkb+lYlo1UqDZ81S25EjHXpIAwAAAAC4yv79+zV37lxJFx8wFxwc7OGK/NfUqVMVEBCgzz77TAcPHvR0OT5v7ty52rFjh+Lj472m93c5HjQHAF4uql07DZkzRz+OGKHTO3dW+7x6CQkaNGOGAm083RcAAAAAPCk7O1vnz5/Xvn379NRTT6m4uFghISFeF5z5m44dO+rzzz/X7t27dfDgQTVr1szTJfm00tJSPf/88xo4cGCFXtHegFAYAHyAwWjU2ezsGp1zNjtbhiugsT8AAACAK8/IkSOVkpJSYeyll15SkyZNPFQRyv3hD3/wdAlXjBEjRni6BLsIhQHABxxZu1Yl587V6JySc+d0dO1aNRkwwDVFAQAAADbcd9992rJlS4Wxa6+9VjNnzvRQRfBmderUUUJCgiZOnKj777/f0+UAfoNQGAB8wKGlS2t9HqEwAAAA3OXYsWOaM2eOzGZzhfFff/1V7777rmJjYz1UGbzNTz/95OkSAL/Gg+YAwMuVFRcre8WKWp2blZyssuJiJ1cEAAAA2PbNN99YBcKSVFZWpm+++cYDFQEAbCEUBgAvl5OWpqK8PJvHmt5wg25ZskRNBw60ebwoL085Gza4sjwAAADAYsGCBbU6BgBwL0JhAPBytlpHGE0mdXv2WfV95x1FNG+uvu++q67PPCOjyVSt8wEAAABny8/P17Jly+weX7ZsmfLz891YEQDAHkJhAPBiZaWlykpOrjAW2bq1hsyeravuu08Gg0GSZDAYlDB8uIbMnq3I1q0rzM9avlxlpaVuqxkAAAD+KSkpSUVFRXaPFxYW6vvvv3djRQAAewiFAcCLXcjJUcGJE5b3be69V4Nnz1a9hASb8+slJGjw7Nlqc889lrGCEyd0ISfH5bUCAADAv1WnPQQtJADAOwR6ugCgKiUFBTq5bZuir75agSEhni4HcKvQBg3U4tZbdWrHDnV67DHF33RTlecEhoaq+/PPq2GvXsr8178U1aGD6jRs6IZqAQAA4K8KCwu1ePHiKuctXrxYRUVFMtloewYAcB9CYXi9NZMmKXvFCjUdOFD93nvP0+UAbmUMCFDv116r1bnNBg1Ss0GDnFwRAAAAYC05Obla/YLz8vKUnJysIUOGuKEqAIA9tI+AVzt/9KiyV6yQJGUlJ+s8X4EHAAAAAK9Tk7YQtJAAAM8jFIZXO7R8ecX3lTzJFgAAAADgfqWlpVq0aJHVeFC9OgqqV8dqfNGiRSorK3NHaQAAOwiF4dUOLV1a6XsAAAAAgGelpqbq2LFjVuP1e7RWdI9WVuM5OTlKTU11R2kAADsIheG1Ck6c0PH09Apjx9PTVXDypIcqAgAAAABczl47iPq92qh+zzY1OgcA4B6EwvBaWcuXy3zZV4rMZWXKuqylBAAAAADAM8xms82AN6COSZGd4lXv2ngFhJqsji9YsEBms9kdJQIAbPC5UDg3N1evv/66+vTpo4YNGyo4OFiNGzdWjx49NHnyZK1bt87TJcJJDtppFUELCQAAAADwDpmZmdq7d6/VeHTXljIGBcgYFKiobi2tju/Zs0dbt251R4kAABsCPV1ATcydO1ePPvqoTpw4UWH8yJEjOnLkiNLS0rRr1y4tXLjQMwXCaQpPn1ZOWprNY0fXr1fRmTMyRUa6uSoAAAAAwKUqax1hed2ztXJX/mrz3I4dO7qsNgCAfT4TCn/xxRcaM2aMysrKFBcXp0cffVS/+93vFB0draNHj2rPnj369ttvFRQU5OlSUYW8AweU+d57Kjxzxu6cojNnZC4psXnMXFKi5HHjKg2FgyMj1XHCBEU0b+5wvQAAAAAA22yFwoagANW7voXlfVSXljIEBshcUmp17nPPPefqEgEANvhEKLxjxw49/PDDKisrU9++ffXtt98q0kYgOGHCBBUVFXmgQtTE9o8/1oGkJIfWOLltW5VzAoKD1fPllx26DgAAAABcabKzs3XXXXc5vI7ZbNbmzZutxutd20yBdX7rIxxYx6R6nZvp1MZ9FeZlZGSoZ8+eMhgMDteSmJioxo0bO7wOAPgLnwiFJ0yYoMLCQsXExGj+/Pk2A+FyJpN1A3t4l8b9+mnvokWSKx8qYDCocb9+rlsfAAAAAHxUYmKiUlNTXbb+pa0jLGM9W1uFwpK0fv16p1wzMTFREyZMcMparlZSUqLMzEylpaVpw4YNSktL0/bt21VaevFO6n379qlFixaeLRLAFc/rHzT3yy+/aPny5ZKkxx57TDExMR6uCI5qNniwBn7yiULj4lyyfmhcnG6YNk3NBg92yfoAAAAA4Mvmzp3rusWNBtXv0cpqOLpHa8no+B3B9rj0MznZyy+/rOuvv16PPPKIpk2bpszMTEsgDADu4vWh8KX/Yr/77rstr0+dOqVdu3ZZPXQOvqFhz54aOn++mgwY4NR1mwwYoKHz56tBjx5OXRcAAAAArgTZ2dlavXq1y9aPvKapgiLrWI2b6tVR5DVNXXbd1atX6/Dhwy5b35nMl3xrNiQkRD179lTr1q09WBEAf+T17SPKv9ISGRmp9u3b6+uvv9brr7+uLVu2WOa0bNlS999/v5544gmFh4d7qlSvkZub6+kSqq39888rvFMn7frwQ5UVF9d6HWNQkK569FHF33mn8ktKlH/8eLXOs7VXvrR/nsb+OYb9cwz75zhn7WFpYaHyfv1VEW3bKiA42Bml+QR+Bh3D/jmG/XMM++cY9sq3JSYmumzt+r3a6KrHb7J7vP3Tt2jXu0t1Yt1up1/bbDb7TAuJXr166aOPPlK3bt3UqVMnBQYG6oEHHtCePXs8XRoAP+L1ofD27dslSS1atNCECRP0r3/9y2rOvn379MILL2jevHn64YcfatxcPisrq9LjR44cqdF6ntahQwdPl1BjzYKD9VjTpmpSizAhu7BQ7+3Zo0OPPCI98ojDtfji/nkT9s8x7J9j2D/H1WYP/y8+Xl3q1tXGvDy9XcX/pl7p+Bl0DPvnGPbPMewf/EXz5s0VHh6us2fPVjrPFBOu4Pp1q71u3MD2aji0U6UPjQsMD1G7p2/R0aQtOpa8o9prF57IV1Fu5fWGh4erWbNm1V7TkwbT6hCAF/D6UPjkyZOSLvYW3rx5s+rVq6fXXntNw4YNU0REhDIzM/Xcc88pKSlJW7du1d13361Vq1bJaKx+Z4z4+HhXlY9qOlhYqGf27tULLVuqeUhItc87UFCgF/btU5ErH1oHALArOjBQXepe/IWxa0SEogIDdaqkxMNVAQAAe26//XZt3LhR99xzT4Vv4F6u9FyhGj/QV7H92zn1+gaDQY3+37Vq9P+urdb8Yz/9ot3/WlbpnE6dOmnu3LlKSEhwRol2FRcXKz4+Xjk5ORoyZIiSkpIqnb9161Z17NhR0sU+wlOmTHFpfQBQE17fU/jcuXOSpMLCQgUEBCgpKUnjx49XbGysgoOD1bVrV3333XcaOnSoJGnt2rWaP3++J0tGLZklxQUF1eicuKAglbmmHABANXStW7fS9wAAwPu0bdtWqampevjhh+3OKb1QrF/fTNLu95eptND9f/AtLSzRrveXauc/klRWYL/V4Pjx45WamuryQFiSgoKCNHr0aEnSjz/+qOzs7Ernf/rpp5KkgIAA3X///S6vDwBqwutD4ZBL7hq9++671bNnT6s5RqNRb7zxhuX9zJkza3SNQ4cOVfpPWlpa7T8Aqu2asDCFBgTU6JzQgAB1DAtzUUUAgKp0i4io8L77Ze8BAIB3Cg0N1b///W99/fXXlT6b5+gPmdo8aabOZ510W23ns05q86SZyvlhq9054eHhmjFjhj766COFhoa6rbaHHnpIklRWVqYvvvjC7rzi4mJ99dVXkqRBgwapSZMmbqkPAKrL69tH1K1b13K3cPndwLZcffXVatKkibKzs7Vhw4YaXaNpU9c9AdUTtm/frpiYGE+XUWNbX31VR374ocbnvfXww7r6qadqdc3c3Fyr/nG+un+ewP45hv1zDPvnOEf3sOjUKaX8z/9IZb99Z6ND3brK2rlTpnr1nFmqV+Jn0DHsn2PYP8ewf46xtX/wXSNGjFCXLl0qbSdxfn+uNv/fDLX53xud3k7icuXtIiq7O/jaa6/VnDlz3HJ38OUSEhLUr18/rVy5Up999pmefvppm/O+++47Hf/vA9DHjh3rzhIBoFq8PhSOj4/X0aNHJVUd3sbHxys7O1vHjh1zR2leKyYmRrGxsZ4uo0bKiot1Yt26Wp2bu3at6terJ2MNW0/Y44v7503YP8ewf45h/xxXkz3cvWJFhUBYklRWpgsZGWpy990uqM778TPoGPbPMeyfY9g/+LPydhITJ07Uxx9/bHNOeTuJM5lZajlugAKCnRsnlBaWaO9/VlR6d7B0sV3E22+/7da7gy/30EMPaeXKldq1a5fWrFmjPn36WM357LPPJF38d8utt97q7hIBoEpe3z7i6quvtrwuLS2tdG758cBAr8+6cZmctDQV5eXZPNb0hht0y5IlajpwoM3jRXl5yqnh3eEAAMcdXLrU5vghO+MAAMB7ebKdhDe3i7DlrrvuUr3/fiuqPPy9VE5OjuUhdH/4wx9kMpncWR4AVIvXh8L9+vWzvN6zZ0+lc/fu3StJ9OrxQbYCBKPJpG7PPqu+77yjiObN1ffdd9X1mWdktPE/qAQQAOBehadPK8dOz/2j69er6MwZN1cEAACcYcSIEdq4caM6depkd055O4ncNbscvl7ump3K+PMMnd+fa3fOtddeq/T0dA0fPtzh6zlDaGioRowYIUmaM2eOpeVluS+//FIlJRcfzvfggw+6vT4AqA6vv6X2tttuU1BQkIqLizV//nw98sgjNuelpKToxIkTkqS+ffu6s0Q4qKy0VFnJyRXGIlu3Vp8331S9S3pEGQwGJQwfrrguXbRm0iSdueSPBFnLl18MjGv4oDoAgLW8AweU+d57Kqwk2C06c0bmEttPIjeXlCh53DiZIiPtnh8cGamOEyYoonlzh+sFAADOVd12Ens/XqH6vdrIYDTU6jrmMrP2fvxTpf2DvaFdhC3jxo3TBx98oPz8fCUmJmr06NGWY+V3D3fr1k0dO3b0VIkAUCmvD4Xr16+vhx56SB9++KGWLl2qWbNm6b777qswJz8/XxMnTrS8Hz9+vJurhCMu5OSo4L+BviS1ufdeXT95sgLt/I9+vYQEDZ49Wz+//rp2z5kjSSo4cUIXcnIU1rixW2oGgCvZ9o8/1oH/fuWxtk5u21blnIDgYPV8+WWHrgMAAFyjvJ3EgAED9PDDD+vs2bNWc4pOnlP+zqOKaNeoVtfI33lERSfP2TwWHh6ujz/+2GvuDr5c586d1aVLF6Wnp+uzzz6zhMLr16/X9u3bJXGXMADv5vXtIyTpxRdfVLNmzSRJo0aN0oQJE7RixQqlp6fr888/V/fu3ZWRkSFJevTRR9WtWzcPVouaCm3QQC1uvVWRbdqo7z//qe7PPWc3EC4XGBqq7s8/r9+9/bYi27RRi9tuU52GDd1UMQBc2Rr36ycZanfHT7UZDBevAwAAvNrw4cOVnp5ut53EidTdtV77RKrtFpHe1i7CnoceekjSxW8ul7ezLL9LODQ01OvrB+DffCIUjo2N1ffff682bdqopKRE77//vgYOHKiuXbtqzJgx+uWXXyRd/CvcO++84+FqUVPGgAD1fu013bxokeJvuqlG5zYbNEg3L1qk3q++KoPRJ36cAcDrNRs8WAM/+UShcXEuWT80Lk43TJumZoMHu2R9AADgXAkJCZowYYLNY6aosFqva6pn+9zHHntMCZe0EvRWI0aMUJ06dWQ2mzV9+nRduHBBs2bNkiQNGzZMkZW00gIAT/OZFK19+/bKyMjQG2+8oR49eig6Olomk0lNmzbVvffeq+TkZE2bNk1BQUGeLhUAAJ/XsGdPDZ0/X00GDHDquk0GDNDQ+fPVoEcPp64LAABca8GCBTbH6/dsXes17Z27cOHCWq/pThEREbrnnnskSdOnT9e8efN05r/PZBg7dqwnSwOAKvlMKCxJYWFhmjRpklJTU3XixAkVFhbq0KFDmjVrln7/+997ujwAAK4oIVFR6vf+++oyZYqMJpNDaxlNJnWZMkX93n9fIVFRTqoQAAC4Q15enpYtW2Y1HtYqViENan83bEjDSIW1jLUaX7p0qfLz82u9rjuVt5A4cOCAnnzySUlSy5YtNcDJf1gHAGfz+gfNAQAAzzEYDGo7cqTiunTRmsmTlffffnk1EdGqlfq8+aai2rZ1QYUAAMDVkpKSVFRUZDVev2cbh9eu36u1zu07XmGsqKhISUlJlrtwvVmfPn3Uvn177dixQ0ePHpUkjRkzRoZKns9w9uxZzZs3r8LY7t2/9WaeN2+eYmJiLO87d+6szp07O7dwAH6PUBgAAFQpql07DZkzRz+OGKHTO3dW+7x6CQkaNGNGlQ8QBQAA3steO4f6veyHwnnbs1Vy/mKQHBgWrIj2jW2v0bONDs5ItXlNXwiFpYutIiZNmiRJMhqNeuCBByqdn5ubqzFjxtg9Pnny5Arvn3/+eUJhAE5HKAwAAKrFYDTqbHZ2jc45m50tQ0CAiyoCAACuVlhYqMWLF1uNhzSKVJ3m9a3Gi/MLtOfD5cpdVfGPyDH92qr1IwMVVDekwnidFjEKaRipgqNnKowvXrxYRUVFMjnYwsodRo0aZQmFb7rpJsXHx3u4IgComk/1FAYAAJ5zZO1alZw7V6NzSs6d09G1a11UEQAAcLXk5GSb/X3r92hj1SLh5MZ92vTYF1aBsCTlrvxVmx77QqfS91cYNxgMNttQ5OXlKTk52bHi3SQzM9Py+sEHH6xyfosWLWQ2m6v9zwsvvODC6gH4K0JhAABQLYeWLnXreQAAwPMWLFhgc7x+r9aW16UXirT7X8u0/cWFKjpp/w/IRSfPadsLC7T7g+UqvfBbj+Lonq1tzrd3bW/z6aefSpLq16+v22+/3cPVAED1EAoDAIAqlRUXK3vFilqdm5WcrLLiYidXBAAAXK20tFSLFi2yGg+qV0d1213sEZy3PVubHv9KR7/PtJpnz9GkLdr0p6+Ut+OwJCmiXSMF1atjNW/RokUqLS2tZfXusX//fs2dO1fSxQfMBQcHe7giAKgeQmEAAFClnLQ0FeXl2TzW9IYbdMuSJWo6cKDN40V5ecrZsMGV5QEAABdYt26djh07ZjVev0drmUtLtX/6am15eq5VP+DqKDhyRluemqP901fLXFam6B6trObk5OQoNdX6IXSelp2drV27dunHH3/UsGHDVFxcrJCQEE2cONHTpQFAtfGgOQAAUCVbLSCMJpO6/OUvanPvvTIYDOr77rvaNWuWfn79dZUVFVmd36h3b3eVCwAAnGDhwoU2x0MaRSrj/2bq/P5cxy5QZlbWvA06uXGf4vq3s1tDnz59HLuOk40cOVIpKSkVxl566SU1adLEQxUBQM1xpzAAAKhUWWmpsi570Etk69YaMnu2rrrvPstDZgwGgxKGD9eQ2bMV2bpib8Cs5ctV5uVf/wQAAL8xm812e/run77a8UD4Euf352r/F6ttHluwYIHMZrPTruVMderUUefOnfX5559r8uTJni4HAGqEUBgAAFTqQk6OCk6csLxvc++9Gjx7tuolJNicXy8hQYNnz1abe+6xjBWcOKELOTkurxUAADhHZmam9u7da/tgJRltVFRUrY7ZW3PPnj3aunWr/fM84KeffpLZbNa5c+e0adMm3X///Z4uCQBqjFAYAABUKrRBA7W49VZFtmmjvv/8p7o/95wCQ0MrPScwNFTdn39ev3v7bUW2aaMWt92mOg0buqliAADgKHt3CdtjMpn00ksv6dy5c3bnnD9/Xi+++KKCgoJcWgsAoGqEwgAAoFLGgAD1fu013bxokeJvuqlG5zYbNEg3L1qk3q++KoOR/+wAAMBX1CSI7dSpkzZs2KC2bduq6LLnClyqsLBQ7du318aNG9WpUyeX1AIAqB5+OwMAAAAAABb79u3T5s2bq5xnNBr19NNPKy0tTZ06dapWeLtgwQJ16tRJaWlpeuqpp2Ssxh+NMzIytH///uqUDgCoJkJhAAAAAABgsXDhwirntG7dWqtWrdIrr7yi4OBgFRYWavHixVWet3jxYhUVFSk4OFivvvqqVq5cqdaXPaC2tjUBAKqPUBgAAAAAAFhce+21io2NtXv80UcfVUZGhnr37m0ZS05OVn5+fpVr5+XlKTk52fK+T58+ysjI0COPPGL3nNjY2Bq1mwAAVI1QGAAAAAAAWAwcOFAZGRkaMGBAhfHGjRsrKSlJH3zwgcLDwyscq0nf38vnhoeH68MPP9SSJUvUqFGjCsd+//vfKyMjQwMHDqzZhwAAVIpQGAAAAAAAVNC4cWMtW7ZML774ooxGo4YPH67MzEwNGTLEam5paakWLVpkNd4gLFgNwoKtxhctWqSysjKr8aFDh2rr1q267777ZDQa9eKLL2rp0qVq3Lixcz4UAMCCUBgAAAAAAFgJCAjQc889p3379mnGjBmKjo62OS81NVXHjh2zGr+9bSPd1rah1XhOTo5SU1NtrhUdHa2ZM2dq3759eu655xQQEODYhwAA2EQoDAAAgCtWSUGBjqWnq6SgwNOlAIDPatasWaXH7bWOuLN9I93ZzvZdvlW1m6jqmgAAxxAKAwAA4Iq1ZtIkLRs9WmsnT/Z0KQBwRTKbzTYD3ojgQA1sGauBLWNU1xRodXzBggUym83uKBEAYAOhMAAAAK5I548eVfaKFZKkrORknc/J8XBFAHDlyczM1N69e63Gb76qoUwBRgUHBujmhAZWx/fs2aOtW7e6o0QAgA2EwgAAALgiHVq+vOL7Zcs8VAkAXLnsto5o1+iS17VrIQEAcB1CYQAAAFyRDi1dWul7AIDjbAW7wQFGDWkTZ3k/tE2cTAHW8QOhMAB4jnVjHwAAAMDHFZw4oePp6RXGjqenq+DkSYVER3uoKgDwDtnZ2brrrrscXsdsNmvz5s1W4ze2ilXd4CDL+7rBQbqxVayW7KrYxicjI0M9e/aUwWBwuJbExEQ1bmz7jmQAgDVCYQAAAFxxspYvl7msrMKYuaxMWcuXq83dd3uoKgDwDomJiUpNTXXZ+pe2jrh07PJQWJLWr1/vlGsmJiZqwoQJTlnLXbZs2aL3339fP/30k7KzsxUQEKD4+HjdfPPNeuyxx9SsWTNPlwjgCkb7CAAAAFxxDtppFUELCQCQ5s6d67K1jQbptrbWofBtbRvJ6PgNwXa58jO5wvPPP6/OnTvrP//5j3bt2qXz588rPz9f27dv1xtvvKGOHTvSXgOASxEKAwAA4IpSePq0ctLSbB47un69is6ccXNFAOA9srOztXr1apet3795jGLDgq3G48KC1b95jMuuu3r1ah0+fNhl6zvTa6+9ppdeeklms1mNGjXSW2+9pdTUVKWmpuqtt95Sw4YNlZeXp+HDh2vt2rWeLhfAFYr2EQAAAPAZeQcOKPO991RYSbBbdOaMzCUlNo+ZS0qUPG6cTJGRds8PjoxUxwkTFNG8ucP1AoC3SUxMdNnaw9o30ie3Xmf/2vd019hvNmnBL0ecfm2z2ewTLSSys7P1wgsvSJIaN26sDRs2VOiF3KNHD91zzz3q3r27Dh8+rD/+8Y/6+eefZTRyTx8A5yIUBgAAgM/Y/vHHOpCU5NAaJ7dtq3JOQHCwer78skPXAQBv1Lx5c4WHh+vs2bOVzmsaEaqmESHVXnd0p2Z6pGuLSh8aFxVqUuI93fXRxv36YsvBaq+dlVegrLwLlc4JDw/3iR68s2bNUmFhoSTpxRdftPlwvCZNmujFF1/UuHHjtHnzZiUlJenmm292d6kArnCEwgAAAPAZjfv1095FiySz2XUXMRjUuF8/160PAB50++23a+PGjbrnnnu0ZcsWu/NOFxTr9Ruv1vCOTZ16fYPBoEe7tdSj3VpWa/6MzEN6+NuMSud06tRJc+fOVUJCghMqtK+4uFjx8fHKycnRkCFDlFTFHym3bt2qjh07SpJefvllTZkyRRs2bLAcHzp0qN1zhwwZYnk9b948QmEATsf3DwAAAOAzmg0erIGffKLQuDiXrB8aF6cbpk1Ts8GDXbI+AHiDtm3bKjU1VQ8//LDdOWeLSjRi/kaN/zZDF4pL3VjdRReKS/Xwt5s0cn66zlVy/fHjxys1NdXlgbAkBQUFafTo0ZKkH3/8UdnZ2ZXO//TTTyVJAQEBuv/++yVJJ0+etBxv0KCB3XMvPZaSklLrmgHAHkJhAAAA+JSGPXtq6Pz5ajJggFPXbTJggIbOn68GPXo4dV0A8EahoaH697//ra+//lrh4eF253388371nJaiX3Pz3Vbbr7n56jktRf/5+YDdOeHh4ZoxY4Y++ugjhYaGuq22hx56SJJUVlamL774wu684uJiffXVV5KkQYMGqUmTJpKksLAwy5wzlfTHv/TY/v37df78eYfqBoDLEQoDAADA54RERanf+++ry5QpMppMDq1lNJnUZcoU9Xv/fYVERTmpQgDwDSNGjNDGjRvVqVMnu3O25OSp639SNDMzy+X1zMg8pC4f/6QtOXl251x77bVKT0/X8OHDXV7P5RISEtTvvy2GPvvsM7vzvvvuOx0/flySNHbsWMt4+/btLa8ruwN45cqVltdms1lZWa7fewD+hVAYAAAAPslgMKjtyJEaPHOmIlq1qtUaEa1aafCsWWo7cmSlD0cCgCuZN7STqEm7iHXr1rmlXYQ95XcL79q1S2vWrLE5pzwwjomJ0a233moZv/322y2vX3rpJRUUFFidW1BQoJdeeqnCWH6+++7UBuAfCIUBAADg06LatdOQOXNUr4YBQb2EBA2ZM0dRbdu6qDIA8B2ebCfxa26+enzine0ibLnrrrtUr149SbbvFs7JybE8hO4Pf/iDTJd8o6VHjx667bbbJEmbN29W//79tXz5cp0/f17nz5/X8uXL1b9/f23evLnCeRcuXHDhJwLgjwiFAQAA4PMMRqPOVvHAn8udzc6WISDARRUBgG+qSTuJxO01+/euLfO2Z6vLxz8p85h3touwJTQ0VCNGjJAkzZkzR+fOnatw/Msvv1RJSYkk6cEHH7Q6f/r06erZs6ckKS0tTTfeeKPCwsIUFhamG2+8UWlpaerWrZtGjhxpOadu3bqu+jgA/BShMAAAAHzekbVrVXLZL+VVKTl3TkfXrnVRRQDgu6rbTuLx7zNVZjbX+jplZrMeT8r0+nYRtowbN07SxbYOiYmJFY6V3z3crVs3dezY0ercevXqKSUlRW+//bY6dOhQ4VjDhg317LPPatWqVcrL+y0oj6LnPQAnIxQGAACAzzu0dKlbzwOAK115O4kZM2bYbSdxOL9Aadmnan2N9VmndOSsdU9dybvaRdjSuXNndenSRVLFFhLr16/X9u3bJdm+S7icyWTSxIkTtW3bNp0+fVo7d+7U4cOHdfjwYb300ksKDg7Wli1bJF28S7hp06Yu/DQA/BGhMAAAAHxaWXGxslesqNW5WcnJKisudnJFAHDlGD58uNLT0+22k1iw40it1174i+1zva1dhD3lD5xLSUnR3r17Jf0WEIeGhla7/sjISF111VVq1KiR5aGnOTk52r17t6SLdxwbjcQ3AJyLf6sAAADAp+Wkpakoz3YvyqY33KBblixR04EDbR4vystTzoYNriwPAHxeQkKCJkyYYPNYo7rBtV63Ybjtcx977DGvaxdhy4gRI1SnTh2ZzWZNnz5dFy5c0KxZsyRJw4YNU2RkZK3Xnjlzpsz/bc1xzz33OKVeALgUoTAAAAB8mq0WEEaTSd2efVZ933lHEc2bq++776rrM8/IeMmT3Cs7HwBQ0YIFC2yO39GuUa3XtHfuwoULa72mO0VERFgC2+nTp2vevHk6c+aMJGns2LG1XjcvL09Tp06VdLH/cPlD7QDAmQiFAQAA4LPKSkuVlZxcYSyydWsNmT1bV913n+VruAaDQQnDh2vI7NmKbN26wvys5ctVVmr/IUcA4O/y8vK0bNkyq/HODSPVol5YrddtGRWmaxtEWI0vXbpU+fn5tV7XncpbSBw4cEBPPvmkJKlly5YaMGCA3XOOHDmiYjuti/Lz8/U///M/Onr0qCTpzTffVN26dZ1bNACIUBgAAAA+7EJOjgpOnLC8b3PvvRo8e7bq2fnacb2EBA2ePVttLvkqbsGJE7qQk+PyWgHAVyUlJamoqMhq/E4H7hL+bY3GVmNFRUVKSkpyeG136NOnj9q3by9JliB3zJgxlj9K2vL1118rPj5ef/nLX7RkyRJt2rRJKSkpmjp1qq655hpLAD9mzBiH7jgGgMoEeroAAAAAoLZCGzRQi1tv1akdO9TpsccUf9NNVZ4TGBqq7s8/r4a9einzX/9SVIcOqtOwoRuqBQDfZK+dQ2Wh8JqDJ3Sm8OLdsPVCgtQ7vr7tNdo30gspv9i8pq/00h07dqwmTZokSTIajXrggQeqPCcnJ0evv/66Xn/9datjgYGBeuKJJ/TKK684u1QAsCAUBgAAgM8yBgSo92uv1ercZoMGqdmgQU6uCACuLIWFhVq8eLHVeOuoMF0TZ9364eSFIv1x8WbN3pZdYfy+a5roX//vWkWHVuzt3jEuQq2i6mjvqfMVxhcvXqyioiKZbPSC9zajRo2yhMI33XST4uPjK50/bNgwFRQUKDk5WXv27NGxY8cUHByspk2batCgQRo7dqyuvvpqd5QOwI8RCgMAAAAAAJuSk5Nt9ve9o10jqxYJSbtyNPabTTpytsBq/qyt2UrZf0Kf3n6dhrRpYBk3GAy6s11j/WPd7grz8/LylJycrCFDhjjpk7hOZmam5fWDDz5Y5fxWrVrpmWee0TPPPOPKsgCgUvQUBgAAAAAANi1YsMDm+KWtI84WleiR7zL0/2assxkIlztytkBDv16nR7/L0NmiEsv4HXbaUNi7trf59NNPJUn169fX7bff7uFqAKB6CIUBAAAAAICV0tJSLVq0yGq8QViwesVHS7rYO/jaj5L17/T91V73o/T96vzRCq09dPFBob2aRisuLNhq3qJFi1RaWlq74t1k//79mjt3rqSLD4YLDrb+HADgjQiFAQAAAACAlXXr1unYsWNW47e3baTi0jI9vWyb+n2+yqofcHXsOXVOfT9bpaeXbVNJWZlub2v9wM+cnBylpqbWqnZXys7O1q5du/Tjjz9q2LBhKi4uVkhIiCZOnOjp0gCg2ugpDAAAAAAArCxcuNDmeOvoMHX/JEVbcvIcWr/MLL22ZpeW7M7RiGua2q2hT58+Dl3H2UaOHKmUlJQKYy+99JKaNGnioYoAoOa4UxgAAAAAAFRgNpvt9vR9atk2hwPhS23JydPTy7fbPLZgwQKZzWanXcuZ6tSpo86dO+vzzz/X5MmTPV0OANQIdwoDAAAAAIAKMjMztXfvXpvHKotoo6KidOrUqRofs7fmnj17tHXrVnXs2LGSq7rXTz/95OkSAMBh3CkMAAAAAAAqsHeXsD0mk0kvvfSSzp07Z3fO+fPn9eKLLyooKMiltQAAqkYoDAAAAAAAKqhJENupUydt2LBBbdu2VVFRkd15hYWFat++vTZu3KhOnTq5pBYAQPUQCgMAAAAAAIt9+/Zp8+bNVc4zGo16+umnlZaWpk6dOlUrvF2wYIE6deqktLQ0PfXUUzIaq44lMjIytH///uqUDgCoJkJhAAAAAABgsXDhwirntG7dWqtWrdIrr7yi4OBgFRYWavHixVWet3jxYhUVFSk4OFivvvqqVq5cqdatWzulJgBA9REKAwAAAAAAi2uvvVaxsbF2jz/66KPKyMhQ7969LWPJycnKz8+vcu28vDwlJydb3vfp00cZGRl65JFH7J4TGxtbo3YTAICqEQoDAAAAAACLgQMHKiMjQwMGDKgw3rhxYyUlJemDDz5QeHh4hWM16ft7+dzw8HB9+OGHWrJkiRo1alTh2O9//3tlZGRo4MCBNfsQAIBKEQoDAAAAAIAKGjdurGXLlunFF1+U0WjU8OHDlZmZqSFDhljNLS0t1aJFi6zGow3hijaEW40vWrRIZWVlVuNDhw7V1q1bdd9998loNOrFF1/U0qVL1bhxY+d8KACABaEwAAAAAACwEhAQoOeee0779u3TjBkzFB0dbXNeamqqjh07ZjXeN7i9+ga3sxrPyclRamqqzbWio6M1c+ZM7du3T88995wCAgIc+xAAAJsIhQEAAAAAgF3NmjWr9Li91hH9gzuov6lDjc6p7jUBAI4hFAYAAAAAALViNpttBrxhhmB1DWqlLqbWqmMItjq+YMECmc1md5QIALCBUBgAAAAAANRKZmam9u7dazXe29RWQYZAmQyB6mNqa3V8z5492rp1qztKBADYQCgMAAAAAABqpbLWEeX61bKFBADAdQiFAQAAAABArdgKdk0KVM+gBMv7XqYEBcn6gXGEwgDgOYGeLgDOl5ub6+kSfIatvWL/qo/9cwz75xj2z3HsoWPYP8ewf45h/xzD/jmGvfJ92dnZuuuuuxxex2w2a/PmzVbjXU2tFWb8rY9wmDFY3UyttbZoZ4V5GRkZ6tmzpwwGg8O1JCYmqnHjxg6v4w4lJSXKzMxUWlqaNmzYoLS0NG3fvl2lpaWSpH379qlFixbVXu/EiRN69913tXDhQu3fv19ms1ktW7bUHXfcoccff1z169d30ScB4MsIha9AHTrY/moOqof9cwz75xj2zzHsn+PYQ8ewf45h/xzD/jmG/YM/SUxMVGpqqsvW72+jXUR/UwerUFiS1q9f75RrJiYmasKECU5Zy9VefvllvfDCC05Za8OGDbr99tt15MiRCuNbtmzRli1b9Mknn2jRokXq2rWrU64H4MpB+wgAAAAAAPzI3LlzXba2UQb1DW5vNf674PYyyvE7gu1x5WdyNrPZbHkdEhKinj17qnXr1jVeJzs7W7feequOHDmiwMBAPfnkk1q5cqVWrlypJ598UoGBgTp8+LBuueUWZWdnO/MjALgCEAoDAAAAAOAnsrOztXr1apetf11QS0UZw6zGo43hui6opcuuu3r1ah0+fNhl6ztTr1699NFHHyk9PV35+flat26dfve739V4nb/+9a/KycmRJM2YMUNTp05V37591bdvX02dOlUzZsyQJOXk5OjZZ5916mcA4PsIhQEAAAAA8BOJiYkuW3uA6Wq9EjHC7vFXIkbYbC3hDGaz2aWfzZkGDx6s8ePH6/rrr1dgYO26eubk5Oirr76yrHf33Xdbzbn77rs1ePBgSdIXX3xhCZABQKKn8BVp+/btiomJ8XQZPiE3N9eqfxz7V33sn2PYP8ewf45jDx3D/jmG/XMM++cY9s8xtvYPvqN58+YKDw/X2bNnK50XZ4xUnDGi2usODblOd4Z0r/ShcRHGUL0aMUILCtKUVLCp2msfK8vTsbIzlc4JDw9Xs2bNqr1mbRQXFys+Pl45OTkaMmSIkpKSKp2/detWdezYUdLFPsJTpkxxWi3ffPON5cF0Y8aMsTvvgQce0A8//KDS0lJ98803GjdunNNqAODbCIWvQDExMYqNjfV0GT6L/XMM++cY9s8x7J/j2EPHsH+OYf8cw/45hv2Dv7j99tu1ceNG3XPPPdqyZYvdeWfNF/S/oYM1KORap17fYDBoWGgPDQvtUa35PxRs1tT8hZXO6dSpk+bOnauEhAQnVGhfUFCQRo8erTfeeEM//vijsrOz1aRJE7vzP/30U0lSQECA7r//fqfWsmrVKsvr/v3725136bHVq1cTCgOwoH0EAAAAAAB+pG3btkpNTdXDDz9sd855c5Gez5+j1/IXqsBc7MbqLiowF+u1/AV6IX+OLqjI7rzx48crNTXV5YFwuYceekiSVFZWpi+++MLuvOLiYkt7h0GDBlUaHtfGjh07JEmRkZFq2LCh3XmNGjVSREREhXMAQCIUBgAAAADA74SGhurf//63vv76a4WHh9udt6hgg8ad+kgHSo67rbYDJcc17tRHWlSw0e6c8PBwzZgxQx999JFCQ0PdVltCQoL69esnSfrss8/szvvuu+90/PjFPRs7dqzT6zh06JAkqWnTplXOjY+Pr3AOAEiEwgAAAAAA+K0RI0Zo48aN6tSpk905u0uP6sHTH+jHgs0ur+eHgs0ac+oD7S49anfOtddeq/T0dA0fPtzl9dhSfrfwrl27tGbNGptzygPjmJgY3XrrrU6vIT8/X5IqDfTLhYWFSVKVfaQB+BdCYQAAAAAA/Jg3tJOoSbuIdevWua1dhC133XWX6tWrJ8n23cI5OTmWh9D94Q9/kMlkcnoNBQUFklSttYODgyVJFy5ccHodAHwXoTAAAAAAAH7Ok+0kDpQc10OnPvTKdhG2hIaGasSIEZKkOXPm6Ny5cxWOf/nllyopKZEkPfjggy6pISQkRJJUVGQ/QC9XWFgoSR7fNwDehVAYAAAAAABIqlk7iRWFWx2+XnLhVo059YH2lObYnePpdhG2jBs3TtLFNg6JiYkVjpXfPdytWzd17NjRJdevW7eupOq1hCgPravTagKA/yAUBgAAAAAAFtVtJ/HW2e9UZi6r9XXKzGV6++x3Xt8uwpbOnTurS5cukiq2kFi/fr22b98uyXV3CUu/PWAuKyuryrnlD5grf+AcAEiEwgAAAAAA4DLl7SRmzJhh9w7T3LJ8bS+pOpS0Z1tJlnLL8m0e86Z2EfaUP3AuJSVFe/fulfRbQBwaGurSO5s7dOggSTpz5oyOHrX/UL4jR44oLy9PktS+fXuX1QPA9xAKAwAAAAAAm4YPH6709HS77SRSCrfXeu2Vds71xnYRtowYMUJ16tSR2WzW9OnTdeHCBc2aNUuSNGzYMEVGRrrs2r/73e8sr1NSUuzOu/RYnz59XFYPAN9DKAwAAAAAAOxKSEjQhAkTbB6rb6xb63Wj7Zz72GOPeV27CFsiIiJ0zz33SJKmT5+uefPm6cyZM5KksWPHuvTat912m4zGi5HOpe0rLvf5559LkoxGo2677TaX1gTAtxAKAwAAAACASi1YsMDmeP/gDrVes3+w7XYGCxcurPWa7lbeQuLAgQN68sknJUktW7bUgAEDXHrdhg0bauTIkZKkH374QfPmzbOaM3fuXP3www+SpFGjRqlhw4YurQmAbwn0dAEAAAAAAMB75eXladmyZVbjVwU2UqOAqFqv2zggWlcFNNSu0oo9cZcuXar8/HzVrVv7u5DdpU+fPmrfvr127Nhh6e07ZswYGQwGu+ecPXvWKsTdvXu35fW8efMUExNjed+5c2d17tzZap2XX35Z33//vY4fP67hw4dr48aNuuWWWyRJ3333nf7xj39IkmJjY/X3v/+91p8RwJWJUBgAAAAAANiVlJSkoqIiq/H+ptrfJWxZI7iDdp2vGAoXFRUpKSnJ0prB240dO1aTJk2SdLFNwwMPPFDp/NzcXI0ZM8bu8cmTJ1d4//zzz9sMhePj4/Xtt9/qjjvu0NGjRzV16lRNnTq1wpyGDRtq4cKFatq0afU+DAC/QfsIAAAAAABgl712DpW1jthcfEBrC3/V2sJftaX4gN15/YOvrtE1vdGoUaMsr2+66SbFx8e77do9evRQZmamnnnmGV1zzTUKDw9XeHi4OnbsqGeeeUZbt25Vjx493FYPAN/BncIAAAAAAMCmwsJCLV682Gq8iTFarQMaWI2fKTuvN89+o2WFmRXGbwrupCfCb1WksU6F8dYBDdTEGK3sspMVxhcvXqyioiKZTCYnfArXysz87bM++OCDVc5v0aKFzGaz064fExOjv/3tb/rb3/7mtDUBXPm4UxgAAAAAANiUnJys/Px8q/F+wR2s+uauK/xVfzj1rlUgLElLC7foD6fe1bqinRXGDQaD+tm44zgvL0/JyckOVu8en376qSSpfv36uv322z1cDQBUD6EwAAAAAACwacGCBTbHL20dcd5cqKn5C/V/eV8ot8w6QC6XW5av/zszXa/nL9J5c+Ela7Wv0bW9yf79+zV37lxJFx8wFxwc7OGKAKB6CIUBAAAAAICV0tJSLVq0yGo82hCujoEX++ZuLj6g0Sff18KCDdVed0FBmkaffN/Sa/iawGaKMoRZzVu0aJFKS0trWb3rZGdna9euXfrxxx81bNgwFRcXKyQkRBMnTvR0aQBQbYTCAAAAAADAyrp163Ts2DGr8b7B7VWiMn1w9gf98fR/rPoBV0d22Uk9evo/+uDsDypVmfrZuFs4JydHqamptardlUaOHKmEhAQNHjxYmzZtkiS99NJLatKkiYcrA4Dq40FzAAAAAADAysKFC22ONw2I1thTH2p36dFKzx8yZIgk6fvvv7d5vExmfXlhpdYV7dSgkGvt1tCnT5/qF+1GderUUUJCgiZOnKj777/f0+UAQI0QCgMAAAAAgArMZrPdnr4fnPtRZpntnhsWFqa33npL48aNkyR9/PHH+r//+z+dP3/e5vzdpUe151yOzWMLFizQ66+/bvVQO0/66aefPF0CADiM9hEAAAAAAKCCzMxM7d271+axygLhPn36aPPmzXr44YdlMBhkMBg0fvx4bd68Wb1797Z7nr019+zZo61bt9aseABAlQiFAQAAAABABfbuErbHZDJp6tSpSklJUevWra2Ot2nTRitXrtRrr72moKAgl9YCAKgaoTAAAAAAAKigJkFsp06dtGHDBj355JMKCAiwOy8gIEB/+ctftHHjRnXq1MkltQAAqodQGAAAAAAAWOzbt0+bN2+ucp7RaNTTTz+ttLS0GoW8nTp1Ulpamp566ikZjVXHEhkZGdq/f3+11wcAVI1QGAAAAAAAWCxcuLDKOa1bt9aqVav0yiuvKDg4uMbXCA4O1quvvqqVK1fabDdRm5oAANVHKAwAAAAAACyuvfZaxcbG2j3+6KOPKiMjo9IHx1VXnz59lJGRoUceecTunNjY2BrdiQwAVxqz2f4DPmuLUBgAAAAAAB9W3se3tLRUZWVlDq83cOBAZWRkaMCAARXGGzdurKSkJH3wwQcKDw93+DrlwsPD9eGHH2rJkiVq1KhRhWO///3vlZGRoYEDBzrtegDgS0pLS1VaWipJlfZtrylCYQAAAAAAfFhISIiki3eSnT171ilrNm7cWMuWLdOLL74oo9Go4cOHKzMzU0OGDHHK+rYMHTpUW7du1X333Sej0agXX3xRS5cuVePGjV12TQDwdqdPn7a8rlOnjtPWDXTaSgAAAAAAwO0iIiJ05swZSdLRo0clXbz7tjoPcatMQECAnnvuOT3wwANq1qyZw3VWR3R0tGbOnKmpU6e67ZoA4G3MZrMKCwuVl5enEydOWMajoqKcdg1CYQAAAAAAfFhYWJhCQ0N14cIFlZaWKjs7WwaDwalfM961a5fT1vLmawKANygtLbXqIxwZGVmrB3vaQygMAAAAAIAPMxgMatasmQ4ePKgLFy5IuniXWUlJiYcrAwA4Q2xsrOrXr+/UNQmFAQAAAADwcUajUc2bN9e5c+eUn59vuWsYAOB7jEajTCaTwsLCFB4eLpPJ5PRrEAoDAAAAAHAFMBgMCg8PV3h4uKdLAQB4Oce6zgMAAAAAAAAAfAqhMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAIBblBQU6Fh6ukoKCjxdCgAAAAD4NUJhAADgFmsmTdKy0aO1dvJkT5cCAAAAAH6NUBgAALjc+aNHlb1ihSQpKzlZ53NyPFwRAAAAAPgvQmEAAOByh5Yvr/h+2TIPVQIAAAAAIBQGAAAud2jp0krfAwAAAADch1AYAAC4VMGJEzqenl5h7Hh6ugpOnvRQRQDcjQdNAgAAeBdCYQAA4FJZy5fLXFZWYcxcVqasy1pKALhy8aBJAAAA70IoDAAAXOqgnVYRtJAA/AMPmgQAAPA+hMIAAMBlCk+fVk5ams1jR9evV9GZM26uCIC78aBJAAAA7xPo6QIAAIBvyjtwQJnvvafCSoLdojNnZC4psXnMXFKi5HHjZIqMtHt+cGSkOk6YoIjmzR2uF4Bn2HrQZNuRIz1UDQAAACRCYQAAUEvbP/5YB5KSHFrj5LZtVc4JCA5Wz5dfdug6ADyjsgdNhkRHe6gqAAAA0D4CAADUSuN+/SSDwbUXMRguXgeAT+JBkwAAAN6JUBgAANRKs8GDNfCTTxQaF+eS9UPj4nTDtGlqNniwS9YH4Ho8aBIAAMA7+XQo/OSTT8pgMFj++emnnzxdEgAAfqVhz54aOn++mgwY4NR1mwwYoKHz56tBjx5OXReA+/CgSQAAAO/lsz2FN2/erLffftvTZQAA4PdCoqLU7/33tXPGDG16802VFRXVei2jyaTrJk1SwogRMri6NQWAWuNBkwAAAL7NJ0PhsrIyjRs3TiUlJYqLi9OxY8c8XRIAAH7NYDCo7ciRiuvSRWsmT1be3r01XiOiVSv1efNNRbVt64IKATgTD5oEAADwbT7ZPuLdd9/Vhg0b1K5dO40dO9bT5QAAgP+KatdOQ+bMUb2EhBqdVy8hQUPmzCEQBnwED5oEAADwbT4XCh86dEjPPvusJOnDDz+UyWTycEUAAOBSBqNRZ7Oza3TO2exsGQICXFQRAGfjQZMAAAC+zedC4T/+8Y86e/as7r//fg1w8kNtAACA446sXauSc+dqdE7JuXM6unatiyoC4Ao8aBIAAMB3+VQoPGfOHH333XeKjo7WG2+84elyAACADYeWLnXreQA8p/xBk12mTJHRwW/wGU0mdZkyRf3ef18hUVFOqhAAAAC2+MyD5k6fPq0//elPkqSpU6cqNjbWwxV5r9zcXE+X4DNs7RX7V33sn2PYP8ewf45zxR6WlZToUHJyrc49uHy5Wj72mIyBvvGfJ/wMOob9c4y37V/0oEHq3qqVMl96SecOHqzx+WHNm6vjc8+pbuvWbvkc3rZ/voa9AgDA9/nGb12SnnzySR09elS9e/d2+sPlsrKyKj1+5MgRp17P1Tp06ODpEnwa++cY9s8x7J9j2D/HObqHHcPC9FTz5jaPbcjL08xjxzQiLk5dIyKsjpfk5+vGq67S1hq2nvAm/Aw6hv1zjDfsn8lg0AstW6p5SEi1zzlQUKAXvv9eRUlJLqysat6wfwAAAO7iE6Hw6tWr9cknnygwMFAfffSRDE5+0nF8fLxT1wMAwF91sxH2FpWV6aucHC0/dUqS9HZWlm6MitLIBg1kMlbsZNW9bl2fDoUBf2eWFBcUVKNz4oKCVOaacgAAAGCH1/cULioq0sMPPyyz2aw///nP6tixo6dLAgAANhgkda1bt8JYVkGBntu3zxIIl1t26pSe27dPWQUFFca7RkTIuX/6BeBO14SFKTQgoEbnhAYEqGNYmIsqAgAAgC1ef6fwK6+8oh07dqhZs2Z6/vnnXXKNQ4cOVXr8yJEj6t69u0uuDQDAlaJ+UJAiL+kHvOzkSX2dk6Mis9nm/EOFhXp23z79oUED3RAdLUmKDAxU/aAg5RYXu6VmAM7V3ca3BaqjW0SENp096+RqAAAAYI9Xh8K//PKLXn31VUnSe++9pzAX3UHQtGlTl6zrKdu3b1dMTIyny/AJubm5Vv3j2L/qY/8cw/45hv1znLP30Fxaqm2vvaa8XbvU+sEHdVO/fppazXNzUlK057PPFJGQoG3JyTIYvf7LTPwMOoj9c4w37l9ZSYlS7rxTJfn5NT73hvh4vbRxo9seNOmN++dLbO0fAADwLV4dCr/99tsqKipSq1atdP78ec2aNctqztatWy2vk5OTdfToUUnSrbfe6rIQ2dvFxMQoNjbW02X4LPbPMeyfY9g/x7B/jnN0D+P++c9anRd711265q67an1db8HPoGPYP8d4ev+OrFljNxBuesMN6vzEE8p4801lJSdbHS/Jz1fZvn1q0Lu3q8u0y9P7BwAA4E5eHQoXFhZKkvbu3avhw4dXOf9vf/ub5fW+ffv8NhQGAAAA3O3Q0qVWY0aTSV3+8he1ufdeGQwG9X33Xe2aNUs/v/66yoqKrM5v5MFQGAAAwJ94/3czAQAAAHi1stJSqzuAI1u31pDZs3XVfffJYLj4CEmDwaCE4cM1ZPZsRbZuXWF+1vLlKistdVvNAAAA/syrQ+HPP/9cZrO50n8uffjcihUrLOMtWrTwXOEAAACAH7mQk6OCEycs79vce68Gz56tegkJNufXS0jQ4Nmz1eaeeyxjBSdO6EJOjstrBQAAgJe3jwAAAADg/UIbNFCLW2/VqR071OmxxxR/001VnhMYGqruzz+vhr16KfNf/1JUhw6q07ChG6oFAAAAoTAAAAAAhxgDAtT7tddqdW6zQYPUbNAgJ1cEAACAynh1+wgAAAAAAAAAgHMRCgMAAAAAAACAH/H5UPiFF16wPFxuwIABni4HAAAAAAAAALyaz4fCAAAAAAAAAIDqIxQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAC5UUlCgY+npKiko8HQpAAAAkgiFAQAAAMCl1kyapGWjR2vt5MmeLgUAAEASoTAAAAAAuMz5o0eVvWKFJCkrOVnnc3I8XBEAAAChMAAAAAC4zKHlyyu+X7bMQ5UAAAD8hlAYAAAAAFzk0NKllb4HAADwBEJhAAAAAHCBghMndDw9vcLY8fR0FZw86aGKAAAALiIUBgAAAAAXyFq+XOaysgpj5rIyZV3WUgIAAMDdCIUBAAAAwAUO2mkVQQsJAADgaYTCAAAAAOBkhadPKyctzeaxo+vXq+jMGTdXBAAA8JtATxcAAAAAAL4k78ABZb73ngorCXaLzpyRuaTE5jFzSYmSx42TKTLS7vnBkZHqOGGCIpo3d7heAACAyxEKAwAAAEANbP/4Yx1ISnJojZPbtlU5JyA4WD1fftmh6wAAANhC+wgAAAAAqIHG/fpJBoNrL2IwXLwOAACACxAKAwAAAEANNBs8WAM/+UShcXEuWT80Lk43TJumZoMHu2R9AAAAQmEAAAAAqKGGPXtq6Pz5ajJggFPXbTJggIbOn68GPXo4dV0AAIBLEQoDAAAAQC2EREWp3/vvq8uUKTKaTA6tZTSZ1GXKFPV7/32FREU5qUIAAADbCIUBAAAAoJYMBoPajhypwTNnKqJVq1qtEdGqlQbPmqW2I0fK4OpexQAAACIUBgAAAACHRbVrpyFz5qheQkKNzquXkKAhc+Yoqm1bF1UGAABgjVAYAAAAAJzAYDTqbHZ2jc45m50tQ0CAiyoCAACwjVAYAAAAAJzgyNq1Kjl3rkbnlJw7p6Nr17qoIgAAANsIhQEAAADACQ4tXerW8wAAAGqLUBgAAAAAHFRWXKzsFStqdW5WcrLKioudXBEAAIB9hMIAAAAA4KCctDQV5eXZPNb0hht0y5IlajpwoM3jRXl5ytmwwZXlAQAAVEAoDAAAAAAOstUCwmgyqduzz6rvO+8oonlz9X33XXV95hkZTaZqnQ8AAOAqgZ4uAM6Xm5vr6RJ8hq29Yv+qj/1zDPvnGPbPceyhY9g/x7B/jmH/HOPs/TOXlurgsmUVxsJatFDH555T3VatKqwddeON6t6qlTJfeknn9u+3jB9culQtxo+XISCg1nW4Cz9rAAD4PoPZbDZ7ughvl5WVpfj4eEnSoUOH1LRpUw9X9Jvjx48rLi7O02UAAAAAfismKEjvXHWV5f2ykyf1dU6Oiir5VctkMOgPDRrohuhoy9ifdu1Sro/2Fj527JhiY2M9XUYF3vx7HAAAnsadwgAAAADggBPFxVp9+rSah4Ro3vHj2pifX+U5RWazPj16VJnnzul/YmO1v6BAJ3w0EAYAAL6HUBgAAAAAHGCW9OHhw7U6d0N+vjZUI0QGAABwJh40BwAAAAAAAAB+hDuFr0Dbt29XTEyMp8vwCbm5uerQoUOFMfav+tg/x7B/jmH/HMceOob9cwz75xj2zzHsn2Ns7R8AAPAthMJXoJiYGK97yIMvYf8cw/45hv1zDPvnOPbQMeyfY9g/x7B/jmH/AACAP6F9BAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwIz4RCv/888965ZVXNHToUMXHxys4OFjh4eFKSEjQAw88oFWrVnm6RAAAAAAAAADwCYGeLqAq/fv318qVK63Gi4qKtGvXLu3atUvTp0/XqFGj9Mknn8hkMnmgSgAAAAAAAADwDV4fCmdnZ0uSGjdurLvvvlt9+/ZVs2bNVFpaqnXr1ukf//iHsrOz9eWXX6qkpEQzZszwcMUAAAAAAAAA4L28PhRu166dXnnlFf3P//yPAgICKhzr2bOnRo0apT59+mjnzp2aOXOmHn30UfXt29dD1QIAAAAAAACAd/P6nsLfffed7rnnHqtAuFxMTIz+8Y9/WN7PmzfPXaUBAAAAAAAAgM/x+lC4OgYMGGB5vWfPHs8VAgBwqZKCAh1LT1dJQYGnSwEAAAAAwGddEaFwUVGR5bXReEV8JACADWsmTdKy0aO1dvJkT5cCAAAAAIDP8vqewtWRkpJied2uXTsPVuIdcnNzPV2Cz7C1V+xf9bF/jmH/aqbg2DFlr1ghScpKTlbkvfdazWH/aoafQcewf45h/xzD/jmG/XMMewUAgO8zmM1ms6eLcERZWZl69eqltLQ0SdKGDRvUtWvXGq2RlZVV6fEjR46oe/fukqRDhw6padOmtSvWBY4fP664uDhPlwEALjcoKkr3N2pkef/5kSNaeuqUBysCAADljh07ptjYWE+XUUFWVpbi4+Mled/vcQAAeJrP3yn89ttvWwLhO++8s8aBsCTLfygAALxXt4iICu+7R0QQCgMAAAAAUAs+3YA3JSVFTz31lCQpLi5OH374oYcrAgC4QkRAgNrVqVNhrF2dOqobEOChigAAAAAA8F0+e6fwtm3bdOedd6qkpETBwcGaM2eOGjRoUKu1Dh06VOnxS9tHAADcr0vdujIaDBXGjAaDutatqxWnT3umKAAAAAAAfJRPhsL79u3ToEGDdOrUKQUEBGjmzJnq379/rde70npLbd++XTExMZ4uwyfk5uaqQ4cOFcbYv+pj/xzD/lXfz5Mn68SGDVbj3SIiKoTC7F/N8DPoGPbPMeyfY9g/x7B/jrG1fwAAwLf4XCh8+PBh3XjjjTp8+LAMBoM+/fRT3XnnnZ4uy6vExMR43UMefAn75xj2zzHsn7XC06d1ctMmm8euDgtTHaNR58vKJLF/zsAeOob9cwz75xj2zzHsHwAA8Cc+FQrn5ubqpptu0t69eyVJ7733nkaPHu3hqgAAtZV34IAy33tPhWfO2J1TdOaMzCUlNo8FGgx6unlznSstlSSlT5okk8lUYU5wZKQ6TpigiObNnVc4AAAAAAA+zGdC4TNnzmjw4MHavn27JOm1117T//7v/3q4KgCAI7Z//LEOJCU5tEar0FDL65MbN9qcExAcrJ4vv+zQdQAAAAAAuFIYPV1AdZw/f14333yzfv75Z0nSX//6V/3lL3/xcFUAAEc17tdPuuwBck5nMFy8DgAAAAAAkOQDoXBRUZHuvPNOrVmzRpL0pz/9SX//+989XBUAwBmaDR6sgZ98otC4OJesHxoXpxumTVOzwYNdsj4AAAAAAL7I69tHDB8+XD/++KMkaeDAgRo7dqy2bt1qd77JZFJCQoK7ygMAOKhhz54aOn++1j/zjLJ/+slp6zYZMEA9/v53hURFOW1NAAAAAACuBF4fCs+fP9/yOjk5WZ06dap0fvPmzbV//34XVwUAcKaQqCj1e/997ZwxQ5vefFNlRUW1XstoMum6SZOUMGKEDK5uTQEAAAAAgA/y+vYRAAD/YDAY1HbkSA2eOVMRrVrVao2w5s01eNYstR05kkAYAAAAAAA7vD4UNpvNNfqHu4QBwLdFtWunIXPmqF4NWwEdKChQj3//W1Ft27qoMgAAAAAArgxeHwoDAPyPwWjU2ezsGp0TFxQkg5H/WQMAAAAAoCr89gwA8DpH1q5VyblzNTonNCBAJzZudFFFAAAAAABcOQiFAQBe59DSpbU679jKlU6uBAAAAACAKw+hMADAq5QVFyt7xYpanXtszRqVFRc7uSIAAAAAAK4shMIAAK+Sk5amorw8m8ea3nCDblmyRE0HDrR5vCQ/XzkbNriyPAAAAAAAfB6hMADAq9hqHWE0mdTt2WfV9513FNG8ufq++67aTZyoorKyap0PAAAAAAB+QygMAPAaZaWlykpOrjAW2bq1hsyeravuu08Gg0GSZDAYFH/HHXpu3z5lFRRUmJ+1fLnKSkvdVjMAAAAAAL6GUBgA4DUu5OSo4MQJy/s2996rwbNnq15Cgs35hwoL9ey+fVp+8qRlrODECV3IyXF5rQAAAAAA+KpATxcAAEC50AYN1OLWW3Vqxw51euwxxd90U5XnFJnN+vToUWWeO6e/9u2r2E6dVKdhQzdUCwAAAACAbyIUBgB4DWNAgHq/9lqtzt2Qn6/en3+u2NhYJ1cFAAAAAMCVhfYRAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4kUBPFwDny83N9XQJPsPWXrF/1cf+OYb9cwz75zj20DHsn2PYP8ewf45h/xzDXgEA4PsMZrPZ7OkivF1WVpbi4+MlSYcOHVLTpk09XNFvjh8/rri4OE+XAQAAAMCPHTt2TLGxsZ4uowJv/j0OAABPo30EAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgR3jQ3BVo+/btiomJ8XQZPiE3N1cdOnSoMMb+VR/75xj2zzHsn+PYQ8ewf45h/xzD/jmG/XOMrf0DAAC+hVD4ChQTE+N1D3nwJeyfY9g/x7B/jmH/HMceOob9cwz75xj2zzHsHwAA8Ce0jwAAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAAAAAAH6EUBgAAAAAAAAA/AihMAAAAAAAAAD4EUJhAAAAAAAAAPAjhMIAAAAAAAAA4EcIhQEAAAAAAADAjxAKAwAAAAAAAIAfIRQGAAAAAAAAAD9CKAwAAAAAAAAAfoRQGAAAAAAAAAD8CKEwAAAAAAAAAPgRQmEAAAAAAAAA8COEwgAAAAAAAADgRwiFAQAAAAAAAMCPEAoDAAAAAAAAgB8hFAYAAAAAAAAAP0IoDAAAAAAAAAB+hFAYAAAAAAAAAPwIoTAAAAAAAAAA+BFCYQAAAAAAAADwI4TCAAAAAAAAAOBHCIUBAAAAAAAAwI8QCgMAAAAAAACAHyEUBgAAAAAAAAA/QigMAAAAwOUuXLigrKwsXbhwwdOlAAAA+D1CYQAAAAAutWTJErVq1Urx8fFq1aqVlixZ4umSAAAA/BqhMAAAAACXOXnypEaNGqWjR49Kko4eParRo0fr5MmTHq4MAADAfxEKAwAAAHCZefPmWQXAJ06cUGJioocqAgAAAKEwAAAAAJexF/4SCgMAAHgOoTAAAAAAlzh16pSSk5NtHlu+fLlOnTrl5ooAAAAgEQoDAAAAcJFvvvlGJSUlNo+VlJTo22+/dXNFAAAAkAiFAQAAALhIVS0iaCEBAADgGYTCAAAAAJwuLy9PP/zwQ6VzfvjhB+Xn57upIgAAAJQjFAYAAADgdIsXL1ZRUVGlcwoLC7V48WI3VQQAAIByhMIAAAAAnK66rSFoIQEAAOB+hMIAAAAAnOr8+fNKSkqq1twlS5bo/PnzLq4IAAAAlyIUBgAAAOBU33//vc2gN6COyWrs/PnzVfYeBgAAgHMRCgMAAABwqnnz5tkcbzmmb43mAwAAwDUIhQEAAAA4TWFhob777jur8eC4CDUY1FHBcRFWx7777jsVFha6ozwAAACIUBgAAACAEy1dulT5+flW4zG9r5LBaFD93m2sjuXl5WnZsmXuKA8AAAAiFAYAAADgRImJiTbH6/e5GAbH9L6qRucBAADA+QiFAQAAADhFcXGxFi1aZDVuig5T3YRGkqS6bRvJFB1mNWfRokUqLi52eY0AAAAgFAYAAADgJCtWrNCpU6esxuv/t3WEpIstJHpZt5A4efKkfvrpJ1eXCAAAABEKAwAAAHASey0gLm8ZUb8PLSQAAAA8iVAYAAAAgMNKS0u1cOFCq/GgenUU0aFxhbHIDk0UFBlqNXfBggUqLS11VYkAAAD4L0JhAAAAAA5bvXq1jh07ZjVev0drGQIq/tphCDAqumdrq7nHjh3TmjVrXFYjAAAALiIUBgAAAOAwe60f6ve23Sri8pYSVa0DAAAA5yEUBgAAAOCQsrIym2FuYHiwIjs1tXlOZMd4BYQFW40nJiaqrKzM6TUCAADgN4TCAAAAAByyfv16HT582Go8untrGQMDbJ5jDApQ/R6trMazs7OVlpbm9BoBAADwG0JhAAAAAA6x1/Ihpo/tFhHl6ts5TgsJAAAA1yIUBgAAAFBrZrPZZogbEGpSveuaVXpuVOfmCggNshpPTEyU2Wx2Wo0AAACoiFAYAAAAQK1t2rRJ+/fvtxqP7tZSxqDASs81mgIV1c26hcS+ffuUkZHhpAoBAABwOUJhAAAAALU2b948m+P1e1feOqJcTO82NVoXAAAAjiMUBgAAAFAr9lpHGE2BiurSolprRHVpKaPJ+o5iWkgAAAC4DqEwAAAAgFrZtm2bdu7caTUe1bWFAkKsewXbEhASZDNA/vXXX7V9+3ZHSwQAAIANlTf5AgAAAOATevbsqYCAALdeMy8vz+Z4TDVbR5Sr3/sqnVi322r8hhtuUERERK1qq0xpaanV2KX7FxUVpVtuuUVTpkxx+54CAAC4A6EwAAAAcAXYu3evp0uQJBkCAxTVrWWNzonu3lKGwACZSyqGtTk5OcrJyXFmeXZdvn9paWnKzc3VO++845brAwAAuJPPtY84ePCgJk2apPbt2yssLEzR0dHq3r273nzzTZ0/f97T5QEAAAB+rd51zRRYJ7hG5wTWCVa9zs1cVFHtTZ8+XWVlZZ4uAwAAwOl86k7hxYsXa+TIkTpz5oxl7Pz589qwYYM2bNigTz75REuWLFGrVq08WCUAAADgv2L61Kx1hOW8312lUxv3Obkax4SGhspo9Ln7aAAAAKrkM/+Fs3nzZt1zzz06c+aMwsPD9fLLL2vt2rVavny5xo0bJ+niwyhuvvlmnT171sPVAgAAAP6nTrP6iu3XrlbnxvZrpzrx0U6uyDF//vOfPV0CAACAS/jMncITJ07U+fPnFRgYqB9//FG9evWyHBs4cKCuuuoqPfnkk/rll1/01ltv6bnnnvNgtQAAAIB3CW0SpZBG9VyytsFoUFjLWDW543oZg2r3YDZjUIA6vX6vshf+rHP7jstcZnZylRddOHxKBYdPVzonMDBQf//73zV58mSX1AAAAOBpPhEKb9iwQT/99JMkaezYsRUC4XJPPPGEPvvsM+3YsUP//Oc/9fTTTysoKMjNlQIAAACe0axZMx08eNDu8cLjeWp8+3VqOKSTDAaDGyurvsDwEDX/Q2+XrG02m3U0aYv2TbO/R5LUsmVLzZw5Uz169HBJHQAAAN7AJ9pHLFy40PJ6zJgxNucYjUaNHj1aknTq1ClLiAwAAAD4g+TkZA0fPtzu8bKiUu35IFm/vPqdivML3FiZ5xXnF+iXV7/Tng+TVVZUanfe8OHDtWnTJgJhAABwxfOJUHjVqlWSpLCwMHXp0sXuvP79+1ter1692uV1AQAAAN4iIiJCX3/9tT777DOFhYXZnXdi3W5tevxLndma5cbqPOfM1ixtevxLnVi3u9J57777rr7++mtFRka6qTIAAADP8Yn2ETt27JAktWnTRoGB9ktu1+63h1qUn+OPcnNzPV2Cz7C1V+xf9bF/jmH/HMP+OY49dAz75xj2zzGV7d/NN9+stm3bavz48crMzLR5flHuWWX+dZ7i7+2hZvf2kCHAJ+4VqRFzaZkOzkrVoTlpUjX6E9944438DFYT+wQAgO/z+lC4oKDA8h8dTZs2rXRuVFSUwsLCdO7cOR06dKja18jKqvwuiSNHjlR7LW/QoUMHT5fg09g/x7B/jmH/HMP+OY49dAz75xj2zzE13r8ysw7NTNWZzQeV8MRQhcRFuKYwDyg4lqedbyYpb8fhap/Dzx8AAPAnXh8K5+fnW16Hh4dXOb88FD579my1rxEfH1+r2gAAAABfl7f9sDY9/pWumnCTYvpc5elyHJa7Zpd2vbdUpecKPV0KAACA1/L6ULig4LeHYJhMpirnBwcHS5IuXLjgspq8SWxsrMzmi1+H89anSAMAAMC7lZ4r1C+vfaeGQzqq5dj+CggJ8nRJNVZaUKx9n6To6A+2W2bANcp/FwEAAL7F60PhkJAQy+uioqIq5xcWXrwjIDQ0tNrXqKrVxJEjR9S9e/dqrwcAAAD4oqPfZypvW7baPnmzwlrEeLqcaju377h+fWOJzh866elSAAAAfILXh8J169a1vK5OS4hz585Jql6riXJV9Sr2FceOHfN0CQAAAPByP//8s8aPH68DBw7YPH7+0Ell/N8MtRrbXw3/Xyev/jaa2WzWkSWbtW/aSpmLS+3Oa9Gihf7973/ruuuuc2N1AAAA3svrQ+GQkBDFxMQoNze3ygfCnTp1yhIK+2Of4NjYWE+XAAAAAC83ePBgbdmyRY8++qhmzJhhc465uFR7PkrWqU0HdNXjNykoovrfwnOX4rwL2vXuUp1cv6fSeSNHjtQHH3ygiIgr50F6AAAAjjJ6uoDqaN++vSRp9+7dKikpsTvvl19+sToHAAAAQEURERH66quvNH36dIWFhdmdd3L9Hm16/Cudyaz85gx3O515SJse/6rSQDg8PFxffPGFvvrqKwJhAACAy/hEKPy73/1O0sXWEOnp6XbnpaSkWF736dPH5XUBAAAAvspgMGj06NHatGmTrr/+ervzik6cVeZf5+rAV2tlLi1zY4XWzKVlOvDVWm396zwVnbDfWq5Lly76+eefNWrUKDdWBwAA4Dt8IhS+4447LK8/++wzm3PKysr0xRdfSJLq1aun3//+9+4oDQAAAPBpV111ldatW6cnnnjC/iSzdGj2em15eo4KjuW5r7hLFBzL05an5+jQ7PWS2f68SZMmae3atbrqqqvcVxwAAICP8YlQuHv37urbt68kadq0aVq3bp3VnH/84x/asWOHJOlPf/qTgoKC3FojAAAA4KtMJpPefPNNff/994qLi7M7L3/HEW16/Cud3nLIjdVJp7dcbBeRv+OI3TlxcXH6/vvv9cYbb8hkMrmxOgAAAN/jE6GwJL3zzjsKDQ1VSUmJBg0apFdffVWpqalasWKFxo8fryeffFKSlJCQUPldDgAAAABsGjx4sDZv3qxBgwbZnVN6rlA7Xv5GJeeL3FJTyfki7fj7Nyo9V2h3TvnD8wYPHuyWmgAAAHydz4TC1113nWbPnq2IiAidPXtWU6ZMUa9evTRw4EB9/PHHki4GwosXL1bdunU9XC0AAADgmxo2bKikpCS98cYbdr99V3q+SGd32r9r15nO7jyi0gu2A+igoCC9+eabWrJkiRo0aOCWegAAAK4EPhMKS9Ktt96qLVu26M9//rMSEhJUp04d1atXT127dtXUqVO1adMmtWnTxtNlAgAAAD7NaDRaevPGxsbanBMUFeaWWuxdJy4uTmvXrtUTTzwho9Gnfq0BAADwuEBPF1BTzZs311tvvaW33nrL06UAAAAAV7SOHTuqsNC6bUNwXITqNKvvlhrqNKuv4LgIFV72gLuCggJ17NjRLTUAAABcafiTOgAAAACbli1bpry8PKvx+r3byGAwuKUGg8Gg+r2svw2Yl5en5cuXu6UGAACAKw2hMAAAAACbEhMTbY7H9L7KrXXE9LbdIs5efQAAAKgcoTAAAAAAK8XFxVq0aJHVuCk6THXbNnJrLXXbNZYp2rq38KJFi1RSUuLWWgAAAK4EhMIAAAAArKSkpOjkyZNW4/V7tZHB6J7WEeUMRoPq97S+W/jEiRNKSUlxay0AAABXAkJhAAAAAFbmzZtnc7x+H/e2jqjquvbqBAAAgH2EwgAAAAAqKC0t1YIFC6zGgyJDFdmhiQcqkiKvbqLAiFCr8QULFqi0tNQDFQEAAPguQmEAAAAAFaxZs0bHjh2zGo/u2VqGgJr/CmE2m3V680FlL/xZpzcflNlsrvEahgCj6vdsbTWek5OjtWvX1ng9AAAAfxbo6QIAAAAAeJfExESb4zG9a946ovjMee385486tXGfZSyqa0slTBykoMg6NVorpvdVyvlxq9V4YmKi+vbtW+PaAAAA/BV3CgMAAACwKCsr0/z5863GA8KCFdkxvkZrnd58UD9P+LJCICxJpzbu06bHv9LpzQdrtF5kp3gFhAVbjc+fP79Wdx8DAAD4K0JhAAAAABYbNmxQVlaW1Xj9Hq1kDAqo1hplJaXa//kqbX02UcWnztucU3TynLY+m6j901errKR6PYGNQQGK7t7KavzQoUPasGFDtdYAAAAAoTAAAACAS8ybN8/meP0+1WsdUXD0tLb8ZY6yEjdKVd28a5ay5m3Qlr/MUcHR09VaP8ZOHfbqBgAAgDVCYQAAAACSLj4QzlY/4YDQIEV1bl7l+cdTftGmx7/W2Z1Ha3TdszuPatPjX+t4yi9Vzo26rrkCQoOsxhMTE2khAQAAUE2EwgAAAAAkSRkZGdq3b5/VeFS3VjKa7D+juvRCkXb+8wf9+maSSi8U2Z3XtGnTStf49c0k7Xznx0rXMJoCFdW1pdX43r17tXnzZrvnAQAA4DeEwgAAAAAkyeZdwpIU07uN3XPO7s7Rpolf69jy7XbnmEwm/fOf/9SBAwf09ttvKyjI+k7fcseWbVPGn2fo7O4cu3NiettuIWGvfgAAAFREKAwAAABAZrPZZl9eoylQUV2s78w1l5mVvfBnbZ48SwWHT9tdNyEhQampqfrTn/4ko9GoiRMnKjU1VQkJCXbPuZB9Spsnz1L2wp9ttoSI6tJCRpP1Q+8IhQEAAKqHUBgAAACAtm/frl9//dVqPKpLCwWEVLyzt+j0eW1/aaH2TUuRuaTM7poPPvig0tPTdd1111UYv/7665Wenq4xY8bYPddcUqZ901K0/aVFKjp9vsKxgFCT6l3fwuqcHTt2aPt2+3csAwAA4CJCYQAAAAB277Ktf1mrhlObDmjThC91Kn2/3bUiIiI0c+ZMTZs2TeHh4TbnhIeH69NPP9WMGTMUERFhd61TG/dp0+Nf6nTGgQrjMX1oIQEAAFBbhMIAAAAAbIaphsAARXe/2DqirLhU+z5fpW3PzVfxZXfuXqpnz57KyMjQfffdV63rDh8+XJs2bVKPHj3szik+dV5bn5uv/Z+vUllJqSQpulsrGQKtf50hFAYAAKgaoTAAAADg53bv3q0tW7ZYjdfr3EyBdYJ14chpbfnLbGUnbrS7hsFg0JQpU7Ry5Uq1bGndg7gyrVq10qpVq/T000/LYDDYnmSWshI3astf5ujCkdMKDAtWvc7NraZt3rxZe/bsqdH1AQAA/A2hMAAAAODn7N1dG9PnKh37aYcy/vS1zu7KsXt+o0aNtGzZMr388ssKCgqyO68yQUFBeuWVV7R06VI1atTI7ryzO48q409f69hPv6h+7zY253C3MAAAQOUIhQEAAAA/N2/ePJvjuWt3aec/vlfphSK7595yyy3asmWLBg4c6JRabrjhBm3evFk333yz3TmlF4q08x9JOrFut83j9j4PAAAALiIUBgAAAPzYgQMHtHGj7bYQpzbss3ueyWTSu+++q2+++UYxMTFOrSk2Nlbffvut3nnnHZlMJrvz7NW3YcMGHTx40Kk1AQAAXEkIhQEAAAA/Nn/+/Bqf065dO6WlpWnChAn2ewA7yGAw6PHHH9f69evVtm3bGp9fm88FAADgLwiFAQAAAD9W0/67Dz30kDZu3Khrr73WRRVV1LlzZ6Wnp2vs2LE1Oo++wgAAAPYRCgMAAAB+6vDhw1q7dm215kZGRmr27Nn6z3/+o7CwMBdXVlFYWJg++eQTzZo1SxEREdU6Z82aNTpy5IiLKwMAAPBNhMIAAACAn1qwYIHMZnOV83r16qWMjAzdc889bqjKvnvvvVebN29Wz549q5xrNpu1YMECN1QFAADge/5/e3ceVFX5+HH8c/ECLmRK4EKQuISS0+KIJqkpppXjQlhaTiYWaVo6hiZlmzIuSUZYVjomZTal0+LYqNWUK2IyYZlLQSXquGWIkZmAeOX+/mA4P/jKat57vPe8XzPOHDzPpY/TGS7P5z7nOZTCAAAAgEXVtcWCzWbTiy++qIyMDIWHh7snVB3Cw8OVkZGhF154oc79jNlCAgAAoHqUwgAAAIAFOZ1OZWZm1ng+JCREmzZt0pw5c2S3292YrG6+vr6aO3euNm3apJCQkBrHZWZm1mslNAAAgNVQCgMAAAAW5HA4alxpO3z4cO3Zs0cxMTFuTtUwMTEx2rNnj4YNG1bjGIfD4cZEAAAAnoFSGAAAALAgX19fJSQkVPk7f39/vfXWW1q7dq2CgoJMStYwQUFB+uKLL7R48WL5+/tXOff444/L19fXpGQAAABXr6vrPjAAAAAAbvPmm2+qXbt22rJli8LCwpSYmKibbrrJ7FgNZrPZNHnyZA0YMEBpaWk6evSoYmJiNH36dLOjAQAAXJVsTjbZqtOxY8cUFhYmSTp69KhCQ0NNTgQAAAAAqA3zOAAAasZK4XqovA/ZH3/8YWISAAAAAEB9VJ67sbc0AABVUQrXw6lTp4zjnj17mpgEAAAAANBQp06dUnh4uNkxAAC4avCgOQAAAAAAAACwEPYUroeSkhLt27dPkhQcHCy7/epaYP3HH38YK5i///57tW3b1uREsBKuP5iJ6w9m4xqEmbj+YCZPuP4cDodx1+fNN9+sxo0bm5wIAICrx9XVbl6lGjdurB49epgdo17atm3LAxRgGq4/mInrD2bjGoSZuP5gpqv5+mPLCAAAqsf2EQAAAAAAAABgIZTCAAAAAAAAAGAhlMIAAAAAAAAAYCGUwgAAAAAAAABgIZTCAAAAAAAAAGAhlMIAAAAAAAAAYCGUwgAAAAAAAABgITan0+k0OwQAAAAAAAAAwD1YKQwAAAAAAAAAFkIpDAAAAAAAAAAWQikMAAAAAAAAABZCKQwAAAAAAAAAFkIpDAAAAAAAAAAWQikMAAAAAAAAABZCKQwAAAAAAAAAFkIpDAAAAAAAAAAWQikMAAAAAAAAABZCKezhjhw5omeeeUaRkZFq1qyZAgMD1bNnT7322msqKioyOx680I8//qj58+dr8ODBCgsLk7+/vwICAhQREaFx48Zp+/btZkeERSUlJclmsxl/tm7danYkeLmCggK9+uqr6t27t9q0aSN/f3+FhITo9ttv14wZM7Rz506zI8JLlZaWKj09Xffee6/atm1rvBd37txZjz32mLKyssyOCA+Un5+v9evX6+WXX9bgwYMVFBRkvKeOGzeuwd/v66+/1ogRIxQaGip/f3+FhoZqxIgR+vrrr698eAAA0GA2p9PpNDsELs+GDRv08MMP68yZM9We79y5s7788kt16NDBzcngrfr166eMjIw6xz3yyCNavny5/Pz83JAKkPbs2aOoqCg5HA7j77Zs2aL+/fubFwpe7dNPP9WkSZN0+vTpGsfExsZq7dq17gsFSzh69KiGDBmiffv21TouMTFRqampstlsbkoGT1fbtRIfH68VK1bU6/s4nU5NnDhRy5Ytq3HMhAkTtHTpUq5PAABMZDc7AC7Pnj17NGrUKBUVFSkgIEAzZ85UTEyMiouLtXr1ar377rv69ddfNWTIEGVnZysgIMDsyPACx/BBNbEAAA3CSURBVI8flySFhIRo5MiR6tu3r2644QZdvHhRO3fuVGpqqo4fP64PP/xQDodDH3/8scmJYQVlZWUaP368HA6HWrVqpfz8fLMjwcutXLlSjz76qMrKytSqVStNmjRJffr0UWBgoE6ePKm8vDytW7dOvr6+ZkeFl3E4HFUK4VtuuUXTpk1T586ddfbsWWVmZio1NVXnzp1TWlqa2rZtqxkzZpicGp4oLCxMkZGR+uabbxr82hdffNEohLt166akpCR17NhReXl5evXVV7V7924tW7ZMwcHBmjt37pWODgAA6omVwh4qJiZGW7duld1uV0ZGhqKjo6ucX7hwoZKSkiRJycnJevnll82ICS8zdOhQjR07Vvfff78aNWp0yfmCggL17t1bv/32myQpIyNDffv2dXdMWMyiRYuUmJioLl26KC4uTq+88ookVgrDNXJyctStWzedP39effv21bp163TttddWO7a0tJQ7JnBFff7553rggQckSdHR0dq+ffsl78c//PCDoqOjdeHCBbVs2VL5+fmy21kHgrrNmjVLPXr0UI8ePdS6dWsdPnxY7du3l1T/lcIHDhxQZGSkHA6HoqKilJGRoSZNmhjni4qK1K9fP+3atUt2u125ubnq2LGjq/5JAACgFuwp7IGys7ONvTITEhIuKYQlafr06YqMjJRUXphcuHDBnRHhpdavX69Ro0ZVWwhLUlBQkFJTU42vP/vsM3dFg0UdPXpUL730kiRpyZIlFHBwuSlTpuj8+fMKCgrSmjVraiyEJXE94orbsWOHcTxz5sxq34+7d++uoUOHSpIKCwuVm5vrtnzwbMnJyRo6dKhat2592d8jLS3N2Mpp8eLFVQphSWratKkWL14sqXzl+6JFiy77vwUAAP4bSmEPVHl/wkcffbTaMT4+Pho7dqyk8gkBD1yCu1RemZmXl2deEFjCk08+qX///Vfx8fGsCobL5ebmatOmTZKkyZMnKygoyOREsJrS0lLjuLZnRlReeXn+/HmXZgIqOJ1OffHFF5KkLl26qFevXtWO69Wrlzp37iypfF7DjasAAJiDUtgDbd++XZLUrFkzde/evcZx/fr1M44zMzNdnguQqk5YfXz4EQPX+eSTT7R+/XoFBgZq4cKFZseBBXz66afG8ciRI43jwsJC/f7777U+dA64EiIiIozjgwcP1jiu4kNZm82mG2+80eW5AEk6dOiQ8fyJyvOQ6lScP3bsmA4fPuzqaAAAoBo0Nh4oJydHktSpU6da94jr0qXLJa8BXG3btm3GceVrELiS/v77b02dOlWSlJKSouDgYJMTwQqysrIkSddee60iIyP10Ucf6dZbb1VgYKAiIiIUFBSkDh06KDk5Wf/++6/JaeGNRo8erebNm0sq/9l38eLFS8bs3r1bGzZskCQ99NBDxnjA1SrPN+r6HZB5CgAA5qMU9jAlJSUqKCiQJIWGhtY6tmXLlmrWrJmk8n03AVcrKyvTggULjK9HjRplYhp4s6SkJJ08eVJ33HGHEhISzI4Di/jll18kSeHh4ZoyZYrGjBmjvXv3Vhlz6NAhzZ49W9HR0Tpx4oQZMeHFgoODtWLFCjVp0kQ7duxQjx49tHLlSmVlZWnjxo1KTk5Wv379VFpaqttuu02vv/662ZFhIZXnG3XNU8LCwqp9HQAAcB9KYQ9z9uxZ4zggIKDO8RWlMCuW4A5paWn6/vvvJUlxcXGKiooyORG8UWZmppYvXy673a6lS5fKZrOZHQkW8ddff0kq31v47bffVosWLbR06VLl5+erpKRE2dnZGjx4sCRp//79GjlypMrKysyMDC8UFxenXbt2KSEhQT/99JPi4+MVHR2tQYMGafbs2WratKlef/11ZWZmqk2bNmbHhYU0ZJ5SMUeRmKcAAGAWSmEPU1JSYhzX56nm/v7+kqTi4mKXZQKk8m0jnnvuOUlSq1attGTJEpMTwRuVlpZqwoQJcjqdSkxM1M0332x2JFjIuXPnJJU/uKtRo0b66quv9MQTTyg4OFj+/v6KiorS+vXrjWL4u+++05o1a8yMDC904cIFffzxx1q3bl21D+j6888/tWrVKh4yDLdryDylYo4iMU8BAMAslMIepnHjxsZx5Qd61aTiidNNmjRxWSbg559/VlxcnBwOh/z9/fXJJ5+odevWZseCF5o/f75ycnJ0ww03aNasWWbHgcVUfg8eOXKkevXqdckYHx+fKg8+XLVqlVuywRrOnTungQMHat68eTp9+rSSkpKUk5Oj8+fP68yZM/rmm2/Up08fZWdna9iwYXrjjTfMjgwLacg8pWKOIjFPAQDALJTCHuaaa64xjutzq1XFqqb6bDUBXI5Dhw7p7rvvVmFhoRo1aqRVq1bV+cRp4HLk5ubqlVdekSQtXry4yq2ngDtUfg+uWA1cna5du+r666+XJGVnZ7s8F6xj1qxZysjIkCSlp6crJSVFXbp0kZ+fn5o3b65BgwZpy5YtiomJkdPp1LRp0y7Z9xpwlYbMUyrmKBLzFAAAzGI3OwAapnHjxgoKClJBQYGOHTtW69jCwkLjF67KD3MArpQTJ05o4MCBOnHihGw2m9577z3FxcWZHQteKi0tTaWlperQoYOKioq0evXqS8bs37/fON68ebNOnjwpSRo2bBglMv6zsLAw45qqz0OUjh8/rvz8fHdEgwU4nU69//77kqSIiAjFx8dXO85ut2vOnDnq06ePysrK9P777ystLc2dUWFRlX8u1jVPqfxwOeYpAACYg1LYA0VGRmr79u06cOCAHA6H7Pbq/zfm5uZWeQ1wJRUUFGjQoEE6ePCgpPKVm2PHjjU5FbxZxa2mBw8e1OjRo+scP2fOHOP40KFDlML4z7p27Wqs/L148WKtYyvO1/QeDTTUn3/+aTzssFu3brWO7d69u3Fc+fdBwJVuuukm47iu6455CgAA5mP7CA/Up08fSeW3Xf3www81jtu2bZtx3Lt3b5fngnWcOXNG99xzj3755RdJ0oIFC/TUU0+ZnAoAXOvOO+80jvPy8modW/GBWcU2EsB/VfkDBofDUevYCxcuVPs6wJXat2+vkJAQSVXnIdWp2Abl+uuvV3h4uKujAQCAalAKe6D77rvPOK64jfB/lZWVaeXKlZKkFi1aKCYmxh3RYAFFRUUaMmSIfvzxR0nSCy+8oGeffdbkVLCCFStWyOl01vqn8sPntmzZYvw9E05cCcOHD5evr68kac2aNTWO27Ztm06fPi1J6tu3r1uywfsFBgaqefPmkqSdO3fWWgxXLuTat2/v8myAJNlsNsXGxkoqXwmclZVV7bisrCxjpXBsbKxsNpvbMgIAgP9HKeyBevbsaUwy09PTtXPnzkvGpKamKicnR5I0depUYxIL/BelpaWKi4vTjh07JJVfW3PnzjU5FQC4x3XXXafHH39ckvTtt99Wu6/12bNn9fTTTxtfP/HEE+6KBy/n4+OjIUOGSCrf03/evHnVjissLKzyYe3QoUPdkg+QpKefftpYnT5lyhQVFxdXOV9cXKwpU6ZIKl/FXvnnJQAAcC+b0+l0mh0CDbd792717t1bxcXFCggI0PPPP6+YmBgVFxdr9erVWrZsmaTyB5Hs2rWrytOAgct1//33G6vjBgwYoEWLFtW6usPPz08RERHuigdo9uzZSk5OllS+Urh///7mBoLXOXXqlKKionTkyBHZ7XZNnDhRI0aMUPPmzbVv3z6lpKQYK+AmTZqkd955x+TE8Ca5ubnq3r27ioqKJJU/RDM+Pl4dOnRQSUmJsrKytGjRIh05ckSSdNddd2njxo1mRoYHyczM1IEDB4yvCwoKNGPGDEnlW9FVfChWYdy4cdV+n5kzZ2rBggWSyve/fvbZZ9WxY0fl5eUpJSVFu3fvNsbNnz/fBf8SAABQH5TCHmzdunUaM2aM/vnnn2rPR0REaMOGDerUqZObk8FbNfT2vnbt2unw4cOuCQNUg1IY7pCTk6Phw4dXKU/+12OPPaalS5dypw6uuI0bN2r06NEqKCioddyAAQP02WefqWXLlm5KBk83btw4ffDBB/UeX9M0sqysTOPHj9d7771X42sTEhK0bNky+fhw4yoAAGbhXdiDDRs2THv37lViYqIiIiLUtGlTtWjRQlFRUcan8BTCAABcWZGRkfrpp5+0cOFC3X777QoMDJSfn59CQ0P14IMPavPmzUpPT6cQhksMHDhQubm5SklJUf/+/RUcHCxfX181adJE7du316hRo7R27Vpt3LiRQhim8PHxUXp6ujZs2KDY2FiFhITIz89PISEhio2N1Zdffqnly5dTCAMAYDJWCgMAAAAAAACAhfDxLAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYCKUwAAAAAAAAAFgIpTAAAAAAAAAAWAilMAAAAAAAAABYyP8BW91FfrnPy4sAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 529, "width": 706 } }, "output_type": "display_data" } ], "source": [ "plot_results(pdispersion_from_gdf, P_FACILITIES, facility_points)" ] }, { "cell_type": "markdown", "id": "da6e7401", "metadata": {}, "source": [ "### P-Dispersion with preselected facilities (euclidean distance)" ] }, { "cell_type": "code", "execution_count": 27, "id": "1a5e68dd", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:36.142414Z", "start_time": "2023-01-10T18:23:35.683575Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.392750Z", "iopub.status.busy": "2025-04-07T19:07:16.392677Z", "iopub.status.idle": "2025-04-07T19:07:16.526008Z", "shell.execute_reply": "2025-04-07T19:07:16.525759Z", "shell.execute_reply.started": "2025-04-07T19:07:16.392742Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYUAAAQjCAYAAAA/h0GeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Xd4FNX+x/HPpocSAiShJHQMIIIgIL0rkaKAIkUU7B2v99orYLsqv+u1oV4bWGkKKigIUhTpIL13CIFUIIX0zO8PLnuzyWazm93NJtn363nywMyec+Y7Z2dnZ7979ozJMAxDAAAAAAAAAACv4OPpAAAAAAAAAAAA5YekMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAp7mdtvv10mk8n8d+zYsRLLrlq1yqLslClTyi1OeEbh57tfv36eDgdVUNOmTc3HWNOmTW2WnTlzpsUxOXPmzAoRFyoXR85rjrxHAqhcKsN17YkTJ/T888+rd+/eqlevngICAkp8H5wyZYrFY6tWrfJY3JUN17sAAFzk5+kAAAAAAMCbffLJJ5o0aZKys7M9HQoAAPASjBQGAACoIMpzhDyAiuGXX37RfffdR0IYAACUK0YKAwAAAICHPPPMMzIMw7x8yy236K677lKjRo3k7+9vXh8WFuaJ8AAAQBVFUhgAAAAAPGD//v3asWOHeXnIkCH65ptvPBgRAADwFiSFUaJ+/fpZjFpA1cfzjYrk9ttv1+233+7pMOBFZs6cyXQNAMrV5s2bLZZHjRplV70pU6ZUyJvlAQCAyoM5hQEAAADAA+Lj4y2Wo6KiPBQJAADwNiSFAQAAAMAD0tPTLZYLzyEMAADgTkwf4aCCggKtX79eR44cUVxcnIKCghQZGak+ffooPDzcY3GdOnVKa9asUVxcnPLy8hQZGalWrVrpqquu8kg8eXl52rVrl3bt2qWkpCSlp6fL399fNWrUUGRkpFq0aKHLL79cvr6+Tm9r69at2r9/v06dOiUfHx81bNhQPXr0UKNGjVywJ1JWVpbWrVunEydOKDExUYZhKDw8XC1btlS3bt3k5+fal9Hx48e1detWnT59WikpKQoNDdXIkSPVsGFDq+XLs6/tsXv3bu3YsUOJiYnKyMhQ3bp11aBBA/Xs2VN16tRx+fZ27Nih3bt369SpUzKZTIqIiFD37t3VsmVLl2/LUSkpKVq7dq3OnDmjpKQkBQUFKTw8XB06dFDbtm09HZ7D0tLStG7dOsXFxSkpKUm5ubkKCQlRs2bN1K5dO5e95lxpx44d2r59u06fPq3g4GBFRkaqY8eOatasmcu35e5zxcmTJ7V3714dOXJEqampys/PV+3atRUREaGuXbsqMjLSRXvyP/n5+VqzZo2OHDmiM2fOqFq1ahXiPc8wDG3cuFF79+5VfHy8atasqcjISHXt2lX169f3SExnz57Vtm3bdPDgQZ0/f17Z2dkKDg5WaGiomjRpojZt2rjlObLH4cOHtW/fPh0/flypqakymUyqXbu2GjZsqK5du7rluczKytKff/6p48ePKyEhQSEhIWrSpIn69OmjkJAQl2zjyJEj2rp1qxITE5WSkqKAgADVqVNHrVq1UocOHVS9evUytWsYhvna4tJ7WVhYmKKiotSrVy/VrFnTJfG7wpkzZ7Rx40adOnVK58+fV7169dS6dWt169ZNJpPJpdvatm2b9u/frzNnzigjI0P16tXThAkTSk1inj59Whs2bFBCQoKSk5NVo0YNRUREqEuXLmrevLnTcWVnZ+v333/X0aNHlZKSooiICEVFRal3796qVq2a0+0X5er9KSgocHmMZXHgwAFt375dsbGxysvLU3h4uDp16qR27dq5pP309HTzZ5XExET5+voqIiJCbdq00VVXXSUfH+fGKlXE9wUAACo8AxZWrlxpSDL/TZ482TAMw8jMzDReeuklo1GjRhaPX/rz9fU1Bg8ebOzevbtc4920aZPRr18/w2QyWY2rVatWxnvvvWfk5eUZhmEYEydOtHj86NGjJbZdUl/YcubMGWPSpElG3bp1rcZT+K9atWrGoEGDjBkzZpTY3tGjRy3qTJw40TAMw8jLyzPee+89o1WrVlbbNplMRs+ePY01a9Y40JuW1q9fb1x//fVGcHBwifsQEhJi3HfffcapU6fsbrdw/b59+5rXL1iwwOjevbvV53LBggXF2nF1X9uKrTRpaWnG1KlTS3x9SDJ8fHyMXr16GYsXL7a7XVvH4MyZM40rrriixO1deeWVDm3LVQoKCoxZs2YZXbt2NXx8fEqMLzIy0nj99deNCxcu2NXu5MmTLeqvXLnS7phKeh3ZIz8/35g7d67Ro0cPw8/Pz+ZxdtlllxlPPfWUcfjw4RLba9Kkibl8kyZNbG57xowZFu2XdvwW9u233xrR0dElnh/69OljcXw4EldR7jpXZGdnGz/99JMxceJEm6+tS3/R0dHG9OnTjczMTLu3UdJxlZmZaTz//PNG/fr1S+zDG264wdi7d69DfeWs/Px847333rP5XjxkyBBj/fr15jqOnNcceY+8ZMWKFcagQYMMX1/fUp+jyMhI4+677za2bdtm0UbR16gjf9ZiTE9PN2bPnm2MHj3aiIiIKLWNq666yvj666/N1wr2KKmvzp49azz88MNGaGio1W35+fkZEyZMMGJjY+3eVmFJSUnGc889Z/GatfYXEBBg9OvXz/jss8/sPs+eOHHCuP/++42wsLAS2/X39zcGDx5sbNq0qUzxO6pv374W279k/fr1xtChQ0s87ho2bGj83//9n5Gbm2vXdkp6v83LyzPefPNNo2XLlla3c/bsWavt5eTkGB9++KHRrl27Ut83/vOf/9gdZ2Hnzp0zHnnkESMkJMRq2zVr1jTuvvtu83m3LNe17tifsr7ei74HOnJdYOs6YOHChUa3bt1K3G7z5s2Nr7/+2u6+KmrJkiVG//79DX9//xK3ERYWZjz11FNGSkqKw+27+30BAICqjKRwEdYuGE+fPm106NDBrgs2f39/48MPPyyXWF9//XWbSafCf9dcc42Rlpbm1qTw8uXLjVq1ajl8kRsZGVlim9YuYtPS0oxrrrnGrrZNJpPx/PPPO9SvGRkZxrhx4xzah2rVqhnz5s2zq/2iF6K5ubnGXXfdZbP9oklhd/S1tdjssWbNGqNevXoOxXHDDTcYaWlppbZt7RhMT083Ro0aZfe23njjDbv2wxUOHz5sdOzY0aG+aNq0qbFr165S2/ZEUnj//v3GlVde6fBxZqt9dyeFs7OzjZEjR9od61NPPeVwXJe4+1wxadIkh/teuviFiK3EfGHWjqsDBw4Y7du3t2tbNWvWNJYvX27Xtpx19uxZo2fPnnbF5ePjY7z//vuGYbgvKVxQUGA88sgjZXqOnnvuOYu2XJ0Uvv7668vU1oABA4yEhAS7ng9rfbVhw4ZSk7WX/ho0aGBs377drm1d8umnnxo1atRweL/sOV++/vrrRmBgoN1tmkwm44knnjAKCgoc2gdHWUsKT58+3e7rv06dOtn1nFp7v42LizO6d+9us31rSeHNmzcbzZs3d+g56tChg0NfFGzbts1o2LChXW3XqVPH+PPPP8ucFHb1/lSUpHBeXp7x8MMP2739hx56yKHjPTEx0e7r9Ut/devWNX7//Xe7t1Ee7wsAAFRlTB9RiuzsbA0dOlTbtm2TJPn4+KhTp05q2rSpcnJytHfvXh04cMBcPjc3Vw888IBMJpPuu+8+t8X1xhtv6Omnny62/sorr1SLFi0kSYcOHdKOHTskSb/99pvGjRununXruiWegwcPatiwYcrMzLRYf+kns7Vr15Ykpaam6ujRozp48KByc3PLtK1x48bpt99+My+3b9/ePFVA4X2WJMMw9Morryg/P1+vvfZaqW0nJibquuuu019//WWxPjg4WB07dlTDhg3l6+urkydPatOmTeZ9uHDhgkaPHq1PP/1Ud955p0P78/jjj+uzzz4zL7dq1UrR0dGqXr26Tp8+rU2bNlmUL8++Ls2SJUs0cuRIZWVlWayPjIzUlVdeqZCQEJ0+fVrr169Xdna2+fGffvpJffv21cqVKx36GXFBQYFuueUW/fTTT5IkX19fderUSY0aNZKvr68OHTqkrVu3yjAMc52nnnpK7dq10+DBg53cW9s2btyooUOHKikpyWJ93bp11bFjR4WFhSk7O1sHDx7Url27zI8fO3ZMPXv21KpVq9ShQwe3xuiIVatWacSIETp//rzFej8/P3Xs2FGRkZGqVq2azp07p/379+vIkSMW/e4JBQUFuvHGG/Xzzz9brPf39zdPr5Cenq4dO3bo5MmTki6eS8PCwhzeVnmcK4r+pLhatWpq06aNGjRooJCQEOXk5OjMmTPavn270tLSzOW2b9+u/v37a+vWrQ5P2ZKYmKg777xTR48elSRVr15dV199terVq6fs7Gxt375dR44cMZdPS0vTqFGjtGvXrhKnuHGFjIwMXXvttdq8ebPF+mrVqpl/Gnz27Fn99ddfSkhIUEFBgR5++GFFRES4LabXXntN7777rsU6Pz8/tW/fXk2aNFH16tWVmZmps2fPat++fYqLi3NbLEUVPXZCQkJ0+eWXKyIiQjVr1lRWVpZiY2O1Y8cOi/eSFStW6LrrrtPatWsVGBjo0DYPHDigcePGKSUlRZJUu3Ztde7cWWFhYcrIyNDmzZst+uD06dMaOXKkduzYYdc0D48++qjeeeedYuvr1KmjDh06KDw8XPn5+UpMTNSOHTt09uxZu+IuKCjQnXfeqS+++MJivY+Pj9q1a6emTZuqevXqSkxM1MaNG83nRMMwNG3aNCUkJGjmzJl2bcsV5s2bp4cffth8vo2IiNBVV12l0NBQxcfHa/369RbP6ZYtW9S/f3+tXr3afH1gj+zsbI0cOVIbNmyQZPl+K0knTpzQli1bitVbtGiRxowZowsXLlisb9Cgga688krVqVNHGRkZ2rNnjw4ePGh+fNu2beratavWr19f6o3W9uzZo4EDByo5Odlifb169dSxY8difZGSkqJhw4Zp2rRpdu9/ee6Pp/ztb3/T9OnTJUkmk0nt27dX8+bNFRgYqOPHj2vTpk3Ky8szl58+fbratm2rBx54oNS2Dx06pJiYGIv3C0mqWbOmOnXqpHr16ik/P1/Hjh3TX3/9ZT5nJScn69prr9VPP/2kmJgYm9uoiO8LAABUOh5NSVdARUcR1K5d2/z/cePGWf3Wf+PGjUanTp0s6gUEBNg1+q8s1q9fX+zngjExMcaBAweKld27d68xYMAAq/sjuW6k8NixYy3KDhgwoNjPYwvLysoyfv31V+P+++83WrduXWK5oiMbCsd/zTXXGPv27StWZ9++fVZHJixdurTE7RjGxZ+fDRw40KJOw4YNjc8//9zIysoqVv7s2bPGM888YzFaJygoyOZ+G4bl6ISaNWua/z906FBjz549xcqnpqYaiYmJ5mV39XXR2EobOXHy5EmjTp06FnWaNWtm/Pzzz8VGkpw/f9547rnnik0/cMstt9jcRtFj8NJPen19fY2nn37aSEpKKlZn3759xtVXX21Rr2XLlm4dzXX69GmjQYMGFtvs2rWrsXTpUqvbPXjwoDFixAiL8pdddpmRmppa4jbKc6Tw4cOHi50r6tata7z11lvG+fPnrdZJTEw0Pv74Y6Nbt24eGyn85ptvWpQ3mUzGo48+WuznqAUFBcaSJUvMI78CAgKM6tWr2x1XeZ0rHnroIaNFixbG1KlTjc2bNxv5+flWy+Xk5Bhz584tNpJtzJgxNts3jOLH1aXXWN26dY2PP/7YyM7OLlZnyZIlRnh4uEW9O++8s9RtOePBBx+02F5gYKDx6quvGunp6Rbl8vLyjFmzZpmnTCh6jnLVSOFz584ZQUFB5nK+vr7GlClTSvwpvWEYRlxcnPH5558b/fr1K/YLltzcXOPo0aPG0aNHjWnTplnEMG3aNPNj1v6s/Ux96NChxpVXXmlMmzbN5rRWGRkZxieffFJsiolLI+gd6atLx06TJk2MefPmFZuKoqCgwPj666+NatWqWdR76aWXSt3WW2+9Vew9vXv37sby5ctLfF1s27bNePbZZ43w8HCb58spU6YUO7YmT55sdXRtbm6u8fnnnxc7P3700Uel7kNZFR0pfGnb9erVM+bMmVOsn9PT042XXnrJCAgIsKg3fvx4m9sp+n576frEx8fHeOyxx6y+3544ccLi+Nu9e7fFuVSScd111xkbNmywus2//vrL6N27t0X5Xr162ZzGJCcnp9iv9xo0aGDMnTu32LGQlpZmTJkyxTxtQdHnrbSRwu7an8Kv96NHjxp/+9vfLOrMmjXL6mu96C+snBkpXHiKlLvvvts4efJksTqxsbHGkCFDLOqFhIQUO+8WlZGRUWx6r1atWhnfffed1ec2Li7OuOeee4rFV9rI8fJ6XwAAoCojKVxE0YviS3+PPfaYzXoZGRlWLwTdoejPeseNG1fihyLDuHgxdOONN1rdL1ckhQsKCiwumqOjo60mRkpia66/kn5iN3r06FL3+eabb7ao07RpU5tzvBVNKF111VVWPwQVNW/ePIt5gPv372+zvLX9ue++++xKWrqzr4vGVtpFctGf6Ldu3dqIj4+3WWf27NnFfvK6aNGiEstbez36+voaCxcutLmd8+fPF5tb7rfffrNZxxlFPzTdddddds3NWfSn51OnTi2xbHkmhXv06FHsuT127Jjd2zt9+nSJj7krKRwbG2uRpJNU6lQ+8fHxVucdLi2u8jpXHD9+3OZ5rqiUlBSLZImPj0+p00gUPa6kiwmWQ4cO2ay3adMmiy8nq1WrZvNLDWds2rTJot/8/PxKPQfs27fP6ly6rkoKz5kzx673x5LYOhc7M5f2JfbMhVzY8ePHLc6ZISEhJX4BdEnRvpJktG3bttSpChYsWGBRp3Hjxjbf/3bv3l3sC8WHHnrI7tfGhQsXjHPnzll9bP369RbvSbVr1zb++uuvUtvcv3+/xXz+tWrVctvxXzQpLMmoX7++cfDgQZv1FixYUGwAga33wZKuf7/55hu74szPzy+WCJwyZUqp9XJzc4tdo37xxRcllv/Xv/5V7HxV2nnuu+++szrdhq3XbXntj2GU/f3dmaTwpb8PPvig1P0pOvDl008/tVmnaLJ28ODBds3rXfS5veOOO0osW57vCwAAVGUkhYuwdlHcqVMnuz58nDx5sthcd1u2bHFpfMuXLy/2YSojI6PUeqmpqVbnXnNFUjghIcGiXGkJdEdYu4iNioqyaz7atLQ0IzIy0qLu999/b7XshQsXLEa+1apVy4iLi7M7zqIXwLae96L706ZNG6uj8axxZ18Xjc3WRfKhQ4csPmD5+voaW7dutWsbReevs5UYs/Z6fPbZZ+3azvvvv1+meo7atGmTxXa6d+9ud7IiLy/P4kue8PDwEpP85ZUUXrp0qUXZGjVqlJp8cIS7ksIvvPCCRdmbbrrJrng2btxYLFlgK67yPFeUxebNmy3af+WVV2yWt5YULu1XFZcUndvb3nqOuu2228p03vvuu+8c/vBvb1K46BcDO3fudHCvSuaKpHBZFO2v0m4sVbSv/Pz8rP7axZrOnTtb1LX2S6dLbrnlFouygwcPdtkvP4YOHWrR9i+//GJ33blz51rU/de//uWSmIqylhT+4Ycf7Kpb9IvH66+/vsSy1t5vHfkFwLx58yzqjh492u66aWlpFsm6du3aWS2Xn59vNG3a1GI7pSUCL7E2d66tpHB57M8lnkoKl/ZrrUsWLVpkd71Tp05ZjFJv2rSpXZ9TLin8JXtAQECJXzKX5/sCAABVmY9QqilTpsjHp/SuioqK0r333muxztXzzH355ZcWy0899ZSqVatWar2aNWvqySefdGksJUlISHBr+0899ZRq1KhRarkaNWroqaeeslhX0vMxa9YsJSYmmpcfffRRNWjQwO6YHnvsMYvlS3Pe2uMf//iHAgIC7C5fmLv7uiRfffWVxZyVo0ePtns+3KlTp1rMVbly5UodP37crrrBwcHF+rokw4YNs1jeunWrXfUcVXRO0ddee82u84V0cY7Gv/3tb+blxMRErVu3zqXxOerDDz+0WH7sscfMc3ZXZEXPjVOnTrWrXpcuXXTDDTfYvR1Pnivs0alTJzVp0sS8vHbtWofqd+3aVddee61dZcvjNZaVlaV58+aZlwMDA/Xss8/aVfemm24qt3m6PXUudqXrr7/e4r3I0WPnpptuUps2bewqa++xk5KSojlz5piXfXx89N5778lkMjkUmzWHDx+2mH+8b9++Ds09P2rUKIvXmqtfyyXp1KmThg8fblfZF1980eI5/fnnny3OX6Wxdu+KkhR+LzSZTHr99dftrlujRg2L+3Ds3LlTx44dK1bujz/+sFjfpUuXYsdSSV588UX5+/vbHVN57I+nvfDCC3aVGzRokMVxZOtc/9FHHyknJ8e8PHnyZLs+p1xS+D0yJydHS5YsKVamsrwvAABQGZAULkXt2rV13XXX2V3+lltusVj+888/XRpP4fZMJpPGjBljd91bbrnFJR+kigoLC7O4UdN3332n1atXu3w70sV9Hjt2rN3lx40bZ7HPa9assXozrGXLllksO9KvktS8eXM1btzYvOzI/tv74U4q3762pehxfeutt9pdt06dOho6dKjFujVr1thVt3v37nbfOKtJkyYWH0TclbQpfNPD+vXrq2/fvg7V79+/v8WyJ57PSwoKCrRq1SqLde68YaarxMbGWnyx0L59e7Vt29bu+uPHj7e7rCfPFZcYhqH09HSdPn1ax44dK/YXHh5uLrt3716H2i762rSlaALQHa+xzZs3W9zIMiYmxqGb5zny3DqidevWFsvPPfec0tPT3bItVyooKFBaWpri4uKKHTdxcXEWfVsRjp3ff/9d+fn55uVrr73WfDNdZxU+d0uOv5ZNJpPF+X7Dhg0WyTB3KXqdaUvdunU1aNAg83JBQYHdXzy2bdtWl112mV1lMzIytH79evNyly5d1KxZM7vjlOx7Lyx67TFu3Di72w8PD7foC1vKa388qXnz5sXOYyXx9/e3eN3ZOtcXfo/09fXVqFGjHIqrV69e8vP7333QrfVbRX1fAACgMvIrvYh369Spk8XFSWmuvPJKBQUFmS9WduzYoZycHPM37OfOndO5c+fsais0NFShoaHm5XPnzunw4cPm5ZYtW6pu3bp2xxYeHq5mzZoVuxOwsy4lat9//31JUmZmpvr3769Ro0Zp7Nixuuaaa+wa2WuPFi1aWCRFSxMWFqbmzZub+y0lJUVHjhwp9qGy8AeNgIAABQYGOjyqo06dOjpx4oQkWTxPtkRFRVkkcEpTnn1tS9E7PXfv3t2h+j169ND8+fPNy5s2bbLrg+7ll1/u0HZCQ0PNdwy/dMf4opKSkuxO5oSFhVn07+HDh3X69GnzcsuWLe0e9XxJ0SSCvceOO+zdu1dnz541L7dq1cqhUbCeUvR47Nq1q0P1HSnviXNFTk6Oli5dqvnz5+uvv/7Svn37lJ2dbde2Cj+f9nDkNVa7dm2L5ZJeY7GxsRZ3sLclKirK4j23PJ9bRwwcOFARERHm5Mj69et12WWX6a677tLIkSPVsWNHu38x4E4ZGRlatGiRfvzxR23btk0HDx60+7moCMdO0dHK/fr1cygmW4omGCMiIhx+LRf+4jErK0txcXFq2rSpeZ0z13wlKctrYNGiReblTZs22fXriI4dO9q9jfXr1ys3N9e83Lx5c4f7svCvjyTr50ZXnA8Kjw4vSXntjyc5ej1V+DVb0us1KytLW7ZsMS83atRISUlJSkpKcmhboaGh5jruOg4AAMBFJIVLER0d7VB5Pz8/NW3aVPv27ZMk5efnKzk52ZxYefvtt+3+WfPkyZM1ZcoU83J8fLzF4/aO4CgsOjra5Ulh6eIUG4sXLzZfvOXn52vOnDmaM2eOfH191aFDB3Xv3l29evVSnz59ypxocvT5kC72U+GLyoSEBIukcEFBgeLi4szLOTk5To9ESklJsatcRESEw22XV1+XJCcnx+IDQXh4eLEP+KUpOjrF3hGGjm6n8E9FC3/AK+zxxx/XF198YVd7M2bM0O23325ePnnypMXjf/75p8OjiYqy99hxh8IJbkkOjbb1JGfPjY0aNbL4Mq8knjhX/Pjjj/r73/+uo0ePlqn9kj68l8SR11jRn2KX9Brr1auX3V+WHD161CKp5uxzW5b3DHtUq1ZNH330kUaNGmVO/pw5c0avvvqqXn31VYWGhqp79+7q3r27evfurW7duikoKMgtsZTk008/1bPPPuvQdAGFVYRjx53npKLnb0dHNFqTkpJicfw6c81XEkeP6aKvGXvfbx25Pinal7Nnz9bs2bPtrm+NtXNjeZ0Pymt/PMmZ66mSvlg6c+aMxWv52LFjbrkmqqjvCwAAVEaeH8ZSwYWEhDhcp1atWhbLrroQLDpqxxWxuUrdunW1bt063XTTTcUey8/P15YtW/T+++9r7NixioyMVI8ePfTZZ5+V+EGwJO54Ps6ePVtsRIez0tLS7CpXs2ZNh9sur74uSdHjsCzHVFlfIxVh5F1hycnJLm/T3mPHHYruj6MfGj2lvM6N5X2uePvttzVixIgyJ4QlWZ0ux5aK9hpz9rl113ueJI0cOVJLliyxOuf2uXPntHjxYr344ovq37+/wsPDNX78eG3atMlt8RT297//Xffcc0+ZE8JS8ZGOpXHHsePOc1JlPX87+xqw9/3WkeuT8urL8jofVNZjwxHl8Xp1BU8eBwAAeIOK9emvAnLFHLzumMfXne2WVXh4uL777jvt3LlTTz75pNq1a2c1RsMwtG7dOt19991q166dtm/fbvc23PF8lMccgK5WHn1dkqJJpor8GnE3dxw7jibx3KmyPi/uirs8zxUbNmwodlO6pk2b6tlnn9WiRYu0Z88epaSkKDMzUwUFBTIMw/zn6LzWlYmjz627j+Frr71We/fu1fz58zV27FjVq1fParn09HR9++23uvrqq3XnnXcqMzPTbTHNmzdPb7/9tsW6tm3b6uWXX9avv/6q/fv369y5c8rKyrI4bgzDsLhxWkXkyuezqp+/S+KO10RV68uqtj/lxVP9VtHeFwAAqEyYPqIUjv580lqdwiNbpkyZYtfPA62xdw4+R2JzhyuuuEJvvPGG3njjDZ07d04bNmzQmjVrtGrVKq1bt87iZ2f79+/XwIEDtWnTJrt+Yubq50NSsXmZo6OjtX//foe34wnu7OuSFL2Zhzuek/I0c+ZMzZw5s0x1i85vfe+99+o///mPC6JyrcI3arKl6P5UtJ+7lqS8zo3lea6YOnWqxUjNe++9V9OnT7drjvvU1FS3xFRWjs7FWZizz62987k6w8/PTyNHjtTIkSMlSYcOHdK6deu0Zs0aLVu2rNiUTTNmzNC5c+cs5lV3pcmTJ1ssv/zyy3ruuefsSoRUtGPHneeksLAwHThwwLwcFxfn8umWnLnmK0lqaqpD9yIoj/fbos/Ta6+9pmeeecbl2ykau7N9UZLy2p+qpmi/DRo0SL/++qvLt1MZ3hcAAKgsGClcisIfGOyRl5dn8QHY19fXoTvi2lJ0freDBw863Iaj++Os0NBQxcTE6KWXXtIff/yh+Ph4TZs2zeKnW8nJyXrhhRfsaq8s8Rftp6L9GBAQYHGBefToUZdNtVCeXN3XJQkICLBoMyEhweEL7KKJtLLMrVwRFB0V6M7XV9FkoL03i5Lsv2FU0YTInj177N6GJxV9Hhw9N548ebLU+YSl8jtXZGRkaPny5ebl5s2b250QlorPw1qZOfvclvd7nnTxhpO33XabPvroIx0+fFhbt27VuHHjLMosWLBAv/32m8u3ffDgQe3du9e83KdPHz3//PN2JYQzMzMrXLLEneek8jx/u5KjcZZ2DeQK5dWX5XU+qKzHhqdVteMAAABvQFK4FFu2bHEo+bJ9+3aL5EL79u0VGBjoklhq165tcVOjQ4cOOTR/V2JiolNzU7pCnTp19Pjjj+vXX3+1+JD6008/2TV/4eHDhx26i3FSUpLFKK06deqoefPmxcr16NHD/P/c3FytWrXK7m1UVM72tS2dO3e2WF63bp1D9YveUb5Lly5OxeMpbdu2tUiQr1u3zm3zBhadM8+R5M3u3bvtKtemTRuLL7H279+vM2fO2L0dTyl6PK5fv96h+hs2bLC7bHmcK44fP27xM9zrrrvO7oTwkSNHKsVzZq/yfG7dpUOHDvr222/14IMPWqxfsGCB1fLO/LS5aHJk2LBhdtddt25dhfuJe8+ePS2WXfl6K/xalqSlS5e6rG13cvY14I732+7du1sct8uWLXPLsVRe54Py2p+qJiQkxOJmkMeOHSvTAJbSVIX3BQAAKgqSwqU4e/aslixZYnf5b7/91mK5V69eLo2ncHuGYTh0N+Rvv/22wlzUdu3aVVdccYV5OS0tza5kr6P7PGvWLIt97tmzp9UP3DExMRbLn3zyid3bqOjK2te2FD2uv/nmG7vrnj17VosWLbJYV/SDf2Xh6+urgQMHmpezs7P11VdfuWVbRUd3OTJi7ueff7arnMlk0oABA8zLhmHo448/tns7nhIVFWUxF+rOnTvtToRLjh2/5XGuKJrwd+SmOGWdCqWi6ty5s4KCgszLv/76q0NTCDjy3LrbXXfdZbFc0pe0Rb9Izs7OtnsbVe3Y6du3r8UXIkuXLnXZl9tFX8tfffWVXb8Y8LRZs2bZXTY5Odki2e3j46Pu3bu7PKbw8HB17NjRvHzq1CktXrzY5dspeu3hSF8kJibanfgvr/2pisrjPbIqvS8AAOBpJIXtMGXKFLtGVsbGxhZLoEycONGlsUyYMMFi+c0339SFCxdKrZeWlqY333zTpbE4q+jIN3tHVL/xxhtKT08vtVx6enqxfS7p+bjtttsUGhpqXp43b57Fz7cru7L2dUluvfVWiztXz5kzRzt37rSr7pQpUyySHP369avwNzeyZdKkSRbLU6dOdcvP96+66iqL5YULF9pVb/fu3Q7NXfrQQw9ZLP/rX/8qNidqRVT03Fh0XtWSbNq0ST/99JPd2ymPc0XR+RL37dtnV73jx4/r3XffdWksnhYUFKSbb77ZvJyTk6PXXnvNrrrff/+9tm3b5qbIHGfvebjw8SU5Nh1IWY+dzZs3O/SFa3kJDQ3V+PHjzcsFBQV65JFHXNJ2u3btLG7KePLkSbuPLU/asmWLfvzxR7vKvvTSSxa/OhgyZIhDc/A64uGHH7ZYfvzxx+26VnNEnz591LRpU/Py5s2bi33JXJKXXnrJoel+ymN/qqIHHnjA4lz33nvvOfQlrT2q0vsCAACeRlLYDlu2bNFTTz1ls0xmZqZuueUWiwvGnj17qlOnTi6NZcCAAWrXrp15+cSJE7rnnntsJq3z8/N1xx13KC4uzqWxXLJt2zYtWLDA7ptZSdKOHTu0fft283KDBg3sHtEUGxuru+66y+Y+FxQU6K677lJsbKx5XdOmTTV8+HCr5UNDQ/XEE09YrBs1apT+/PNPu2K6JD8/X/Pnz3fbDbrKu69L0rJlS91www3m5by8PI0dO7bUEcjfffed3n//fYt1jz32mFOxeFq/fv107bXXmpcTEhI0ZMgQi2PPHmlpacV+aVDYZZddpkaNGpmXN2/erB9++MFmm/Hx8br55psdOl769eunPn36mJdTU1N1ww036OTJk3a34YnpC+677z6LkUPff/99qTf9S0hI0K233urQdCrlca5o0aKFatSoYV5etGiRdu3aZbO9pKQk3XjjjeVyM9Hy9sgjj1j8wuOdd94pNRF04MCBYtM1uNI333xjMXevPb788kuL5TZt2lgtV3S9I9MaXHnllRbLX3zxRamvxyNHjujmm2+usHPpP/PMM/L39zcvL1q0SI8++qjdr9vMzMwSXxevvvqqxbH18ssvF3uPsseGDRu0detWh+uV1f3336/Dhw/bLPPDDz9o+vTpFuv+9re/uS2mCRMmqHXr1ublvXv3auTIkXbPaX9JYmJiiV9k+vj4FEvW3nfffaWOHp8/f74++OADh+Ioj/2pilq2bKk77rjDvJyVlaUhQ4Y4PB94dna2zV8vVMT3BQAAKiUDFlauXGlIMv/Vrl3b/P9bbrnFiI2NLVZn48aNRqdOnSzqBQQEGDt37nRLjOvWrTN8fHwstnfdddcZBw4cKFZ27969xsCBA63ujyTj6NGjJW6naF9MnjzZarkFCxYYkowmTZoYTzzxhLFmzRojJyfHatnc3Fxj3rx5Rv369S3afvrpp62WP3r0aInPx6BBg4z9+/cXq7N//37j2muvtagnyfj1119L3NdLsQ0aNMiijq+vr/Hggw8a+/btK7FeTk6OsWbNGuPJJ580mjRpUmq/Fm6/b9++NmMqyp197WhsJ06cKHY8tWzZ0liyZIlRUFBgUTY1NdV48cUXDX9/f4vyY8aMsbkNe4/Bklx6Pi71mbvExcUZUVFRxY7VN954w0hMTCyxXmpqqvHjjz8ad955p1GzZs1SY5w6darFNqpXr258++23xcrl5eUZc+fONRo3bmz1dT9x4kSb2zl27JhRt25dizrh4eHGO++8Y6Smplqtk5iYaHzyySdGt27dbLbvyHMyY8YMixhmzJhhs/ybb75pUd7Hx8f4xz/+YaSkpBQr++uvvxotWrQwn6+rV69ud1zlca649dZbLdpv2LChsXjx4mLl8vLyjO+++85o2rSpIckwmUzFnjtbJk+ebFF25cqVNssXVvT8XNpx5YwHH3zQYluBgYHGa6+9ZmRkZFiUy8vLM2bPnm1ERERYPfZLO69NnDjRrvfI4cOHGyaTyejXr5/x/vvv2zznJyQkGI899phhMpksjs3du3eXWKd58+YWcdxyyy3G4sWLjX379hlHjx61+MvNzbWo26tXL4u6rVu3NtatW1dsG1lZWcYnn3xihIeHG5KMoKAgo0aNGna/DuztK2scPbe/9957xd7Te/XqZaxYscLIz8+3Wmfbtm3Gs88+a4SHh9s8roueVy9dU61cubLEtgsKCoy9e/cab775ptGlSxe7zk9l1bdvX6vXQfXr1zfmzJlTLMb09HTj5ZdfNgICAoodQ7Y4+35rGIaxa9cuIyQkxKKdqKgo44MPPijxvcMwDCM5OdmYPXu2MXbsWCMwMNDm6zQnJ8e48sorLbbRoEEDY968eVb7YurUqeZrj6Lng9L2sTz2xzDKfh52pJ6z5+uix6EtaWlpRvv27S3KBwcHG88++6xx4sSJEutduHDBWLZsmTFp0iTzecmW8npfAACgKiMpXETRi+Knn37a6NChg8UHua5duxqjR482RowYYbRq1arYhwlJxkcffeTWOF9//XWr2+3QoYMxatQo46abbip20TxkyBBjwoQJdn+IczQpXPgvICDA6NChgzF06FBj/PjxxtixY41+/foZtWrVKla2devWRnp6utW2i17ETpgwwRgyZIjd+3zp75lnnrGrX8+dO2f06NHDahuRkZFGTEyMMW7cOGPMmDHG4MGDjXbt2hVLdJbWr85ciLqzr8sS26JFi4zAwMBi24mKijKGDRtmjBs3zujXr58RFBRk9Vg9d+6czfYrS1LYMC4mIBo2bFhsP00mk3H55Zcbw4YNM8aPH2+MGjXKuOaaa4xmzZpZJInsiTEtLc1o1qyZ1WNz+PDhxi233GIMGjTI4gNPjRo1jO+//97hD4O///67ERoaWmxbfn5+xtVXX22MHDnSuOWWW4whQ4YYLVu2tNgXTyWF8/LyjKFDhxaL2d/f3+jdu7cxduxY4/rrrzcnyy/9vfHGGw4fK+4+Vxw6dMgiQVc4thEjRlh9riUZzz33nEMf3itLUjg9Pb3Yl6+SjGrVqhkDBgwwxo0bZwwZMsT8of/S3+zZsx06rzmSFC4aS926dY0+ffoYI0eONG699VbjxhtvNDp06GD4+voWK/v888/bjMNaErSkv6IxrlmzxvDz8ytWrlWrVsZNN91kjBs3zhgwYECx4+uTTz5x6HVQnklhwzCMv//971b3v27dusY111xjjB071rj55puNfv36GXXq1HHouH744Yettl2rVi2jX79+xs0332zccsstxrBhw4yrr77a6muzvJLCRY/pevXqGUOGDDE/r9WqVSsWW9u2bY3k5GSb23FFUtgwDGPZsmVWrz98fX2NDh06GDfccIP59TFgwIBiX6ja8zrdtWtXsS+/rPVFcHCwxXP58ccfO7yP5bE/VS0pbBgXBw60bt3a6uuqefPmxpAhQ4xbbrnFGD16tBETE2O0atXK6rnSlvJ6XwAAoCojKVyEtYviuLg4o127dnZ9OPP39zc+/PDDcon1tddeKzZiuKS/fv36GampqQ59iHMmKWzvX8+ePY34+PgSY7B2EZuammr079/frvZNJpPx3HPPOdSvOTk5xj/+8Q+rF6f2/FWrVs2Ii4srsX1nLkTd2ddlje2PP/4odsFd2t/QoUNtjrK5pDIlhQ3DMOLj44uNIHXkr0OHDqVuY/v27cVGf5f0FxYWZqxevbrMHwb37dtntG3b1uH98FRS2DAujn4cMWKE3bE+9thjDsd1ibvPFUuWLLGafCrp74knnjAMw7EP75UlKWwYhnH27NkSE/FF/3x8fIy3337bMAzHzmvOJIXt+fPz8zOmTp1a6r4WFBQY999/v11tWotxxowZVr+EsPbn6+trvPPOO4ZhOPY6KO+ksGEYxn/+8x+rSc/S/uw5rr/44otio0Lt/fPx8THmz59v9/47wtrr+d1337X7+u+qq64yEhISSt2Oq5LChmEYBw8eNDp37lymvpRkjBgxotRtbN261WjQoIFd7YWGhhp//PFHmffR3ftTFZPChnHxi+zx48eXud9CQ0NL3UZ5vC8AAFCVMaewHRo0aKD169frxRdfVGRkpNUyvr6+uu6667Rt2zbdf//95RLXM888o/Xr16tv374W82oV1rJlS7311ltatmyZatas6ZY4Bg0apPnz5+vuu+9Wy5YtSy1vMpnUu3dvffPNN1q9erUiIiIc2l7NmjW1dOlSvfXWWyVuz2QyqUePHvrzzz/1yiuvONS+v7+//vWvf+nAgQN64IEHVK9evVLr1K1bVzfeeKNmzpyp+Ph4NWjQwKFt2qu8+9oevXv31qFDhzR58uQSXx/SxbkAe/TooUWLFmnRokVuOx49KSIiQr/++qv++OMPjRgxQtWrVy+1TrNmzXT33Xdr8eLF2rx5c6nl27dvr82bN2vixInFblx1SUhIiO677z7t3Lmz2N3aHdGqVStt375dX375pTp37lzieeaSNm3a6IUXXtBLL71U5m06KzAwUAsWLNA333yj6OjoEsv16NFDCxcu1P/93/+VeVvuPlfExMRo8+bNGj58eIl97+fnp5iYGC1fvrzC3UzU1UJDQ7V69Wq9++67ioqKslrG19dXgwYN0urVq906f+o777yjd999V0OGDCl2czdrQkJCNHHiRO3YsUMvvvhiqeVNJpM+/PBDbdiwQX/729/UvXt3RUREWMybbcvtt9+u1atXq1+/fiWWCQoK0k033aSNGze67OZt7nbvvffq6NGjeuyxx0p9nw0MDNS1116rr776St27dy+17QkTJujEiRN67bXX1KpVq1LLBwUFacCAAZo2bZpOnDihkSNH2r0fzpo0aZL++OMPDRo0SL6+vlbLNGzYUNOmTdOGDRvcdnO5krRs2VIbN27UwoULdc0119h1c9s2bdpo0qRJWr16tV1z8Hbo0EF79+7VpEmTSryeqFGjhm6//Xbt2LFDvXv3dng/LimP/amKatSooa+//lrbt2/Xrbfeate5smHDhho/frzmzZtn1/0JKtL7AgAAlZHJMAzD00FUJKtWrVL//v3Ny5MnT9aUKVPMywUFBVq3bp2OHDmiuLg4BQUFKTIyUn369HFLws1esbGxWrNmjU6dOqWCggI1bNhQ0dHR6ty5c7nHkpycrN27d+vo0aNKTk7WhQsXFBgYqJCQELVs2VIdOnRQ3bp17Wrr2LFjatasmXl54sSJxW48sWXLFu3fv19xcXHy8fFRw4YN1aNHDzVu3Nhl+7R3717t2LFDycnJOnfunPz8/BQSEqJGjRqpdevWat68eakJM3dwZV+7yq5du7R9+3YlJSUpIyNDdevWVYMGDdSzZ89yj8XT8vLytHnzZh06dEjJyclKS0tTtWrVVKtWLTVv3lxt2rRR/fr1y9x+amqq/vjjDx07dkypqakKDw9X48aN1adPHwUHB7twTy5KSkrSunXrdPr0aSUnJ8tkMqlWrVpq1qyZrrzySrd9GeKM7du3a9u2bTpz5oyCg4PVsGFDXXXVVWrevLlbtueuc0V8fLz+/PNPnThxQpmZmQoPD1eDBg3UrVs3hYWFuWFPKjbDMLRhwwbt2bNHCQkJqlmzpho2bKhu3bqV+3FoGIYOHTqkgwcP6sSJEzp//rxyc3NVo0YN1a1bV23bttUVV1yhgICAco3rkhMnTmjNmjWKi4tTbm6uIiIi1LBhQ/Xs2bPSfzm3a9cu7dq1S4mJiTp//ryCg4MVFham6OhodejQwanz4OnTp7Vx40YlJCQoJSVFBQUFqlmzpurXr69WrVqpVatW5fKc9uvXT7///rt5uehl++nTp7VhwwadOnVKaWlpioiIUOvWrdWtWzf5+FSMsR9ZWVnasGGDjh8/ruTkZGVkZKh69eqqXbu2WrZsqTZt2jh1fZCdna1Vq1bp6NGjOnv2rMLDwxUVFaXevXvb9eWso9y9P1VVQUGBduzYoT179iglJUXnzp1TUFCQQkJC1LRpU7Vp08bihrqOqkjvCwAAVBYkhYsoLSmM8mVPUhgAAKAqKi0pDAAAAJRVxRhCAAAAAAAAAAAoFySFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9iMgzD8HQQAAAAAAAAAIDywUhhAAAAAAAAAPAiJIUBAAAAAAAAwIuQFAYAAAAAAAAAL0JSGAAAAAAAAAC8CElhAAAAAAAAAPAifp4OoDLIysrSzp07JUnh4eHy86PbAAAAAKAiy8vLU2JioiSpXbt2CgoK8nBEAABUHGQ37bBz505dffXVng4DAAAAAFAGGzduVJcuXTwdBgAAFQbTRwAAAAAAAACAF2GksB3Cw8PN/9+4caMaNGjgwWgAAAAAAKU5ffq0+RefhT/TAQAAksJ2KTyHcIMGDRQVFeXBaAAAAAAAjuC+MAAAWGL6CAAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAA4JXysrKUsGWL8rKyPB0KAAAAUK5ICgMAAMArrXn8cf02YYLWPvGEp0MBAAAAyhVJYQAAAHidC2fO6NTKlZKk2BUrdCE+3sMRAQAAAOWHpDAAAIAX89YpFE4uX265/NtvHooEAAAAKH8khQEAALyYt06hcHLZMpvLAAAAQFVGUhgAAMBLeesUClnJyUrcssViXeKWLcpKSfFQRAAAAED5IikMAADgpbx1CoXY5ctlFBRYrDMKChRbpD8AAACAqoqkMAAAgJfy1ikUTpSwn96y/wAAAABJYQAAAC/krVMoZJ87p/iNG60+dmbDBuWcP1/OEQEAAADlz8/TAQAAAKD82ZpCoeXNN3soKuekHj+une+9p2wbid2c8+dl5OVZfczIy9OKe+5RQK1aJdYPrFVL7SZNUkiTJk7HCwAAAHgKSWEAAAAvZGsKhcqaFN7z8cc6vnixU22k7N5dahnfwEB1e/VVp7YDAAAAeBLTRwAAAHiZqjqFQsM+fSSTyb0bMZkubgcAAACoxBgpDAAAUIV48xQKjWNiNKBWLa175hllJiS4vP3giAj1eP111eva1eVtAwAAAOWJpDAAAEAV4u1TKNTv1k2D58/Xhuef16lVq1zWbmS/fur6yisKql3bZW0CAAAAnsL0EQAAAFUIUyhIQbVrq8/776vTs8/KJyDAqbZ8AgLU6dln1ef990kIAwAAoMogKQwAAFCFNI6J0YBPP1VwRIRb2g+OiNDAzz5T45gYt7TvKiaTSa3Gj1fMrFkKad68TG2ENG+umNmz1Wr8eJncnWgHAAAAyhFJYQAAgCrm0hQKkf36ubTdyH79NHj+/Eo1p27t1q113dy5Co2OdqheaHS0rps7V7VbtXJTZAAAAIDnkBQGAACogphC4X9MPj5KP3XKoTrpp07J5OvrpogAAAAAzyIpDAAAUEUxhcJFp9euVV5GhkN18jIydGbtWjdFBAAAAHgWSWEAAIAqztunUDi5bFm51gMAAAAqOpLCAAAAXsBbp1AoyM3VqZUry1Q3dsUKFeTmujgiAAAAwPNICgMAAHgBb51CIX7jRuWkplp9LGrgQA375RdFDRhg9fGc1FTFb9rkzvAAAAAAjyApDAAA4AW8dQoFa/H7BASoywsvqPc77yikSRP1fvdddX7+eas35Kvs+w8AAABYQ1IYAACgivPWKRQK8vMVu2KFxbpaLVroujlzdNnYseYb55lMJkWPG6fr5sxRrRYtLMrHLl+ugvz8cosZAAAAKA8khQEAAKo4b51CITM+XlnJyebllmPGKGbOnBJvuBcaHa2YOXPUcvRo87qs5GRlxse7PVYAAACgPPl5OgAAAAC4V0lTKHR66im1HDNGJpNJvd99Vwdnz9Zfb76pgpycYvUb9OhRXuG6THC9emp6/fU6u3ev2j/8sBpde22pdfyCg3X15Mmq3727dk6frtqXX65q9euXQ7QAAABA+TEZhmF4OoiKLjY2Vo0aNZIknTx5UlFRUR6OCAAAwD4F+fn6oX9/ixGztVq0UM//+z+rI2bPHTigNY8/rvOHD5vXBdWtqxErV8rH17dcYgYAV+BzHAAAJWP6CAAAgCqMKRQAAAAAFMX0EQAAAFUYUygAAAAAKIqkMAAAQBXm4+urHq+/Xqa6jQcNUuNBg1wcEQAAAABPY/oIAAAAAAAAAPAiJIUBAAAAAAAAwIuQFEaVlpeVpYQtW5SXleXpUAAAAAAAAIAKgaQwqrQ1jz+u3yZM0NonnvB0KAAAAAAAAECFQFIYVdaFM2d0auVKSVLsihW6EB/v4YgAAAAAAAAAzyMpjCrr5PLllsu//eahSAAAAAAAAICKg6QwqqyTy5bZXAYAAAAAAAC8EUlhVElZyclK3LLFYl3ili3KSknxUEQAAAAAAABAxUBSGFVS7PLlMgoKLNYZBQWKLTKlBAAAAAAAAOBt3JoUTkhI0KJFi/Tiiy9q8ODBCgsLk8lkkslk0u233+5we0uWLNGNN96oqKgoBQYGKioqSjfeeKOWLFni+uBRqZ0oYaoIppAAAAAAAACAt/NzZ+P16tVzSTuGYej+++/Xxx9/bLH+1KlTWrBggRYsWKB7771XH330kUwmk0u2icor+9w5xW/caPWxMxs2KOf8eQXUqlXOUQEAAAAAAAAVg1uTwoU1atRIbdq00dKlSx2u+/zzz5sTwh07dtSTTz6pFi1a6PDhw3rzzTe1detWffzxxwoPD9crr7zi6tBRgaQeP66d772n7PPnSyyTc/68jLw8q48ZeXlacc89NpPCgbVqqd2kSQpp0sTpeAEAAAAAAICKxq1J4RdffFFdunRRly5dVK9ePR07dkzNmjVzqI1Dhw7pzTfflCR17txZf/zxh4KDgyVJXbp00Q033KC+fftq8+bNeuONN3THHXeoRYsWLt8XVAx7Pv5YxxcvdqqNlN27Sy3jGxiobq++6tR2AAAAAAAAgIrIrXMKT506VcOGDXNqGol///vfyvvvqM/33nvPnBC+pFq1anrvvfckSXl5eXr77bfLvC1UfA379JHcPUWIyXRxOwAAAAAAAEAV5NaksLMMw9CPP/4oSWrdurW6detmtVy3bt3UqlUrSdIPP/wgwzDKLUaUr8YxMRrw6acKjohwS/vBEREa+NlnahwT45b2AQAAAAAAAE+r0Enho0eP6tSpU5Kkvn372ix76fHY2FgdO3bM3aHBg+p366bB8+crsl8/l7Yb2a+fBs+fr3pdu7q0XQAAAAAAAKAiKbcbzZXF3r17zf9v3bq1zbKFH9+7d6/DcxdXBYmJiZ4OoVy1mTxZNdq318EPP1RBbm6Z2/Hx99dlDzygRiNHKi0vT2le1o8AAABAWYWHh3s6BAAAUAYVOil88uRJ8/+joqJslm3UqJHVevaIjY21+fjp06cdas9TItw0pUJF1zgwUA9HRSkyMNDhuqeys/Xe4cM6ef/90v33uyE6AAAAoOpi6j4AACqnCp0UTktLM/+/Ro0aNstWr17d/P/09HSHtlM4oYzK50R2tp4/ckRTmjVTk6Agu+sdz8rSlKNHlcOFLAAAAAAAALxIhZ5TOCsry/z/gIAAm2UDC40SzczMdFtMFU1iYqJMJpNMJpOnQ/EoQ1KEv79DdSL8/VXgnnAAAAAAr3Dps4i3TWUHAEBlV6FHCgcVGvWZk5Njs2x2drb5/8HBwQ5tp7TpJk6fPq2rr77aoTZRvq6oXl3Bvr4O1Qn29VW76tW11cGR5QAAAAAAAEBlVqGTwjVr1jT/v7QpITIyMsz/L22qiaJKm6+4stmzZ4/CwsI8HUa52vXPf+r0r786XO+1iRM1ePp0i3Xe2H9llZSUpMsvv9xiHf1nP/rPOfSf8+hD59B/zqH/nEP/OYf+c461/gMAAJVLhU4KF07WlnYzuMKjfb19juCwsDCvugtwQW6uktetK1Pd1M2b5Sspv9A6b+s/V6P/nEP/OYf+cx596Bz6zzn0n3PoP+fQfwAAwJtU6DmFC3/7vG/fPptlCz/epk0bt8WEiid+40blpKZafSxq4EAN++UXRQ0YYPXxvLQ0tSl0k0IAAAAAAACgqqvQSeFmzZqpYcOGkqTff//dZtk//vhDkhQZGammTZu6OzRUICeXLSu2zicgQF1eeEG933lHIU2aqPe776rz88/Lx8oNC68uNE0JAAAAAAAAUNVV6KSwyWTS8OHDJV0cCbx+/Xqr5davX28eKTx8+HCZTKZyixGeVZCfr9gVKyzW1WrRQtfNmaPLxo41Hwsmk0nR48bpujlzVKtFC4vynUNCxBEDAAAAAAAAb1Ghk8KS9Oijj8rP7+LUx5MmTVJmZqbF45mZmZo0aZIkyc/PT48++mh5hwgPyoyPV1Zysnm55ZgxipkzR6HR0VbLh0ZHK2bOHLUcPdq8rpafn+r6+7s9VgAAAAAAAKAicOuN5v78808dOnTIvJyUlGT+/6FDhzRz5kyL8rfffnuxNqKjo/X444/r9ddf1+bNm9WzZ0899dRTatGihQ4fPqw33nhDW7dulSQ98cQTuuyyy9yyL6iYguvVU9Prr9fZvXvV/uGH1ejaa0ut4xccrKsnT1b97t219Z13tGTbNiXn5pZDtAAAAAAAAIDnuTUp/Omnn+qLL76w+tiaNWu0Zs0ai3XWksKS9OqrryohIUGff/65tm7dqrFjxxYrc9ddd+mVV15xOmZULj6+vurx+utlqtt40CAFd+yoERERLo4KAAAAAAAAqLgq/PQRkuTj46PPPvtMP//8s4YPH66GDRsqICBADRs21PDhw/XLL7/o008/lY9PpdgdAAAAAAAAAPAYt44UnjlzZrEpIpwxZMgQDRkyxGXtAQAAAAAAAIC3YWgtAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRP08HANdLSkrydAiVhrW+ov/sR/85h/5zDv3nPPrQOfSfc+g/59B/zqH/nENfAQBQ+ZkMwzA8HURFFxsbq0aNGkmSTp48qaioKA9H9D+JiYmKiIjwdBgAAAAAvFhCQoLCw8M9HYaFivw5DgAAT2P6CAAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC/CjeaqoD179igsLMzTYVQKSUlJuvzyyy3W0X/2o/+cQ/85h/5zHn3oHPrPOfSfc+g/59B/zrHWfwAAoHIhKVwFhYWFVbibPFQm9J9z6D/n0H/Oof+cRx86h/5zDv3nHPrPOfQfAADwJkwfAQAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAJQiLytLCVu2KC8ry9OhAAAAOI2kMAAAAACUYs3jj+u3CRO09oknPB0KAACA00gKAwAAAIANF86c0amVKyVJsStW6EJ8vIcjAgAAcA5JYQAAAACw4eTy5ZbLv/3moUgAAABcg6QwAAAAANhwctkym8sAAACVDUlhAAAAAChBVnKyErdssViXuGWLslJSPBQRAACA80gKAwAAAEAJYpcvl1FQYLHOKChQbJEpJQAAACoTksIAAAAAUIITJUwVwRQSAACgMiMpDAAAAABWZJ87p/iNG60+dmbDBuWcP1/OEQEAALiGn6cDAAAAAIDyVi8gQKPCw1XT11eStOXxxxUQEGBRJuf8eRl5eVbrG3l5WnHPPQqoVavEbQTWqqV2kyYppEkT1wUOAADgAiSFAQAAAHid4WFh6lEooZuyebPDbaTs3l1qGd/AQHV79VWH2wYAAHAnpo8AAAAA4HW2paWpwDDcuxGTSQ379HHvNgAAAMqApDAAAAAAr7MxLU3/PH5cKbm5bmk/OCJCAz/7TI1jYtzSPgAAgDNICgMAAADwSnsuXNAzR45oS1qaS9uN7NdPg+fPV72uXV3aLgAAgKuQFAYAAADgtdLz8/XWyZNq9cgj8ilyozlH+QQEqNOzz6rP++8rqHZtF0UIAADgeiSFAQAAAHi9xjfeqJhZsxTSvHmZ6oc0b66Y2bPVavx4mUwmF0cHAADgWiSFAQAAAEBS7datdd3cuQqNjnaoXmh0tK6bO1e1W7VyU2QAAACuRVIYAAAAAP7L5OOj9FOnHKqTfuqUTL6+booIAADA9UgKAwAAAMB/nV67VnkZGQ7VycvI0Jm1a90UEQAAgOuRFAYAAACA/zq5bFm51gMAAPAEksIAAAAAIKkgN1enVq4sU93YFStUkJvr4ogAAADcg6QwAAAAAEiK37hROampVh+LGjhQw375RVEDBlh9PCc1VfGbNrkzPAAAAJchKQwAAAAAsj4FhE9AgLq88IJ6v/OOQpo0Ue9331Xn55+XT0CAXfUBAAAqIpLCAAAAALyekZ+v2BUrLNbVatFC182Zo8vGjpXJZJIkmUwmRY8bp+vmzFGtFi0syscuX66C/PxyixkAAKCsSAoDAAAA8HpZiYnKSk42L7ccM0Yxc+YoNDraavnQ6GjFzJmjlqNH/6+N5GRlxse7PVYAAABn+Xk6AAAAAADwtKDwcDW9/nqd3btX7R9+WI2uvbbUOn7Bwbp68mTV795dO6dPV+3LL1e1+vXLIVoAAADnkBQGAAAA4PVMvr7q8frrZarbeNAgNR40yMURAQAAuA/TRwAAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EVICgMAAAAAAACAFyEpDAAAAAAAAABehKQwAAAAAAAAAHgRksIAAAAAAAAA4EX8PB0AAAAAgAosIUH65Rdp716pTRtpyBApIsLTUQEAAMAJJIUBAAAAWLdsmTR+vJSY+L914eHSt99K11zjubgAAADgFKaPAAAAAFBcUpI0erRlQli6uDx6tJSc7Jm4AAAA4DSSwgAAAACK+/e/pXPnrD929qz01lvlGg4AAABch6QwAAAAAEuGIc2da7vM3LkXywEAAKDSISkMAAAAwNKOHdKhQ7bLHDok7dxZPvEAAADApSpVUjgnJ0efffaZrrvuOjVo0ECBgYGqUaOGWrVqpTvvvFPr16/3dIgAAABA5ff9964tBwAAgAql0iSFT548qc6dO+vuu+/Wr7/+qjNnzignJ0cZGRk6cOCAZsyYoe7du+sf//iHDH7GBgAAAJQdSWEAAIAqrVIkhfPy8jR06FDt/O/P09q3b6+ZM2dq3bp1Wrp0qV588UVVr15dkvTvf/9b//d//+fJcAEAAIDKa98+ac8e+8ru3i3t3+/eeAAAAOBylSIp/OOPP5oTwt27d9dff/2liRMnqlu3brr22ms1depU/f777/L395ck/fOf/1ReXp4nQwYAAAAqJ0dH/zJaGAAAoNKpFEnhNWvWmP//zDPPyNfXt1iZTp06adiwYZKks2fPat++feUWHwAAAFBlkBQGAACo8ipFUjgnJ8f8/+bNm5dYrkWLFub/Z2dnuzUmAAAAoMo5ckTautWxOn/9dbEeAAAAKo1KkRSOjo42//+IjQvOw4cPS5JMJpMuu+wyt8cFAAAAVCllHfU7f75r4wAAAIBb+Xk6AHuMGzdOL7zwglJTU/XGG29oyJAhxaaQ2Lp1q37++WdJ0tixYxUSEuKJUCuEpKQkT4dQaVjrK/rPfvSfc+g/59B/zqMPnUP/OYf+c467+i90zhz5l6Fe7uzZOjdxotPbLy8cf86hrwAAqPxMhmEYng7CHgsWLND48eOVmZmpjh076tFHH1V0dLTS09O1Zs0a/etf/1JaWpo6dOigxYsXq379+na3HRsba/Px06dP6+qrr5YknTx5UlFRUU7tiyslJiYqIiLC02EAAACgkouUZPuq2LYoSadcFAsqn4SEBIWHh3s6DAuxsbFq1KiRpIr3OQ4AAE+rFCOFJWnkyJHavHmz3nrrLX3++eeaWGQkQr169TR16lTde++9ql69ukNtX7pQAAAAALzVjU7WHynpfVcEAgAAALerFHMKS1Jubq6+/fZbLVy4UNYGN8fHx2vWrFlatWpV+QcHAAAAVHKjPFwfAAAA5adSJIUzMjJ0zTXX6NVXX1VycrKefPJJ7d27V9nZ2Tp//ryWLl2qXr16adOmTbr++uv1zjvvONT+yZMnbf5t3LjRTXsGAAAAeF49Sb2cbKO3JCY1AwAAqBwqxfQRkydP1h9//CFJ+uyzzyymjggICNC1116r/v37a9CgQVq5cqX+8Y9/qH///mrfvr1d7Ve1uaX27NmjsLAwT4dRKSQlJenyyy+3WEf/2Y/+cw795xz6z3n0oXPoP+fQf85xdf8FzZwpnyeftFnmaI2+apb+e4mP+0g6NG2asirBDec4/pxjrf8AAEDlUuGTwoZhaMaMGZKk6OjoYnMJX+Ln56eXX35ZvXr1UkFBgWbMmKF///vf5RlqhREWFlbhbvJQmdB/zqH/nEP/OYf+cx596Bz6zzn0n3Oc6r+lS20+nG/y19IG/9Tdh/rK18gtsVzNpUtV8/HHyxaDh3H8AQAAb1Lhp4+Ij49XSkqKJKljx442y3bq1Mn8/3379rk1LgAAAKBKSE6WVq60WeRY9d5KDYjS8eqlTDKxcqX032t3AAAAVFwVPins5/e/wcx5eXk2y+bm/m/UQuF6AAAAAErw009Sfr7NIgdCBlv8W6K8vIvtAQAAoEKr8EnhOnXqKCQkRJK0bt06m4nh33//3xxnzZo1c3tsAAAAQKX33Xc2Hy6Qrw7VHCRJOlRzkArk61R7AAAA8LwKnxT28fHR0KFDJUlxcXF69dVXrZY7e/asnnrqKfPysGHDyiU+AAAAoNI6f15atsxmkZPVuynLr7YkKdOvjk5W72q7zWXLpNRUV0UIAAAAN6jwSWFJevHFF1WtWjVJ0pQpU3TDDTfo+++/19atW7Vu3Tr9+9//VocOHbRnzx5J0sCBAzVo0CBPhgwAAABUfIsWSbkl3zhOkvaHDLFYPhAy1HabOTkX2wUAAECFVSkm3m3durV+/PFHjRs3TklJSVq4cKEWLlxoteyAAQM0b968co4QAAAAqIS+/97mw4ZMOlQzxmLdwZoxuub08zLJsN3uLbe4IkIAAAC4QaUYKSxJ11xzjfbt26c33nhD/fr1U3h4uPz9/RUcHKxmzZpp9OjR+uGHH/Tbb7+pdu3ang4XAAAAqNjS06XFi20Wia3WRRn+ERbrMvwjdKpaZ9ttL14sZWQ4GyEAAADcpFKMFL6kbt26evLJJ/Xkk096OhQAAACgclu8WMrKslnkQMjgEtdHXdhUcsXMzIvtjxrlTIQAAABwk0ozUhgAAACAC5UydYQkHSwpKVzT+npH2wcAAIBnkBQGAAAAvE1WlvTzzzaLxAV3VJp/Q6uPpQVEKi64g+1tLFpU6khkAAAAeEalmj4CAAAAqFJyc6U9e6TUVIeq+Z87p15F161fL4WG2tfA5s0X5xS2oaSpIy45GDJYDTO3lVwgPV368EOpcynzD7taSIh0+eWSv3/5bhcAAKASISkMAAAAlLf8fOnVV6XXX784/66DQiWtLrryhhtcENj/lJYUPhAyWH3j/2m7kX/8w4UROSA4WHr6aem55yRfX8/EAAAAUIExfQQAAABQ3v7+d2ny5DIlhMtDfFBbnQ9oYrPMuYCmSgi6vJwiclBm5sX+/fvfPR0JAABAhURSGAAAAChPhw5J06d7OgqbShslbC5nzw3nPOmDDy72NwAAACyQFAYAwA55WVlK2LJFedw0CYCztm2TCgo8HYVNdieF7SznMfn50vbtno4CAACgwiEpDACAHdY8/rh+mzBBa594wtOhAKjs8vI8HYFNSYGXKSXwMrvKJgdFKymwpZsjclJurqcjAAAAqHBICgMAUIoLZ87o1MqVkqTYFSt0IT7ewxEBqNQGDZL8Ku79nrfXHu/W8uXKz0+KifF0FAAAABUOSWEAAEpxcvlyy+XffvNQJACqhDp1pDff9HQUVsUHtdW2Orc5VGdbnQmKD2rrpoicNG2aVLu2p6MAAACocEgKAwBQipPLltlcBgCH/f3v0r/+VWFGDGf4hmlr7ds0q9n3KjD5O1S3wOSvWc2+19batynDt66bInSQn5/01lvSo496OhIAAIAKqWJchQIAUEFlJScrccsWi3WJW7YoKyVFQXXqeCgqAFXCP/4h9e4tjRsnHT7sUNVM31pa2uCfOlXtaqfDKDD5KtO3jmQylbmNXJ9q+q3hq/qtwSsKzk+Rj5HvdFyRFzZq0OlnFJx/3rGKLVpIs2ZJXbo4HQMAAEBVRVIYAAAbYpcvl1FQYLHOKChQ7PLlannzzR6KCkCV0aWL9Ndf0kMPSV9/bXe14Pzzuj72Ya0Nf1TrwyfJMPm6MUgHmEzK9HNutLDJyFP3xPfUPfEd+aig9AqF3XabNH26VLOmUzEAAABUdUwfAQCADSdKmCqCKSQAuExIiPTVV9KXX0o1athdzUcF6pX4lsYcG6uauXFuDLD81MyN05hjY9Uz8d+OJYRr1LjYf19+SUIYAADADiSFAQAoQfa5c4rfuNHqY2c2bFDOeQd/0gwAttx228VRw506OVSt0YUNmng4RpelLnFTYOXjstTFmng4Ro0uWD/vlqhzZ2nr1ov9BwAAALswfQQAwCulHj+une+9p2wbid2c8+dl5OVZfczIy9OKe+5RQK1aJdYPrFVL7SZNUkiTJk7HC8BLXHaZtHat9Nxz0v/9n93VgvPPa8TJe7W19m1aVf8F5fkEuTFI1/IryFL/My+pw1n7p88we+IJ6ZVXpIAA1wcGAABQhZEUBgB4pT0ff6zjixc71UbK7t2llvENDFS3V191ajsAvExAgDRtmnTNNdKECVJCgt1VO579SlEXNmhR1HQlBbVyY5CuEZa1X8NiH1J49gHHKtard3GqiEGD3BMYAABAFcf0EQAAr9SwTx/JZHLvRkymi9sBgLKIiZF27Lj4rwPCsw/o1iPDdGXKV5JhuCk4JxmGOqR8pVuPDHM8IRwTI23fTkIYAADACSSFAQBeqXFMjAZ8+qmCIyLc0n5wRIQGfvaZGjuYzAEAC/XqSb/8cnEqCX9/u6v5G9kadPo5DT95n4LyzrkvvjIIyjunESfv1bWnn5O/kW1/RX//i/3wyy8X+wUAAABlRlIYAOC16nfrpsHz5yuyXz+XthvZr58Gz5+vel27urRdAF7Kx0d67LGLcw23bOlQ1ei0JZp4OEZRGRvcFJxjojL+e1O8tF8dq9iypbRu3cV+8OEjDAAAgLO4ogIAeLWg2rXV5/331enZZ+Xj5I2KfAIC1OnZZ9Xn/fcVVLu2iyIEgP/q3Fn666+L8ww7ICTvtMYcG6MeCW/JZFi/eaa7mYw89Uz4l8YcG6OQvNOOVZ448eJ+d+rknuAAAAC8EElhAIDXM5lMajV+vGJmzVJI8+ZlaiOkeXPFzJ6tVuPHy+TuuYoBeK+aNaUvvlDq9OlKc6CajwrUM/FtjTk2VjVzTrktPGtq5pzS2GNj1CPxHfmowP6KNWpIX38tzZx5cb8BAADgMiSFvUReVpYStmxRXlaWp0MBgAqrduvWum7uXIVGRztULzQ6WtfNnavarVq5KTIAsJR9883qKGmjg/UaXdio2w/HqP6FbW6Iqrj6F7bp9sMxirqwybGKXbpI27ZJ48e7JS4AAABvR1LYS6x5/HH9NmGC1j7xhKdDAYAKzeTjo/RTjo2iSz91SiZfXzdFBADWHZbUS9IbDtYLKkjVTSduV/XcM26I6n+q557RTSduV1BBqmMVn3pK+vNPqUUL9wQGAAAAksLe4MKZMzq1cqUkKXbFCl2Ij/dwRABQcZ1eu1Z5GRkO1cnLyNCZtWvdFBEAlCxX0tOSBkkqCA+3u161/BS1Ob/QXWFJktqc/0nV8lPsr1CvnrR0qfT665KTc7wDAADANpLCXuDk8uWWy7/95qFIAKDiO7lsWbnWAwBXWCYpZdUq6brr7K5TL2uH2+K52P5O+wsPHizt2CFde637AgIAAIAZSWEvUDRRQeICAKwryM01/7LCUbErVqggN9fFEQGA/YzwcOnnn6W33pL8/Ustf8E3zK3x2NW+v7/0739LixZJERFujQcAAAD/Q1K4istKTlbili0W6xK3bFFWigM/5QMALxG/caNyUq3PfRk1cKCG/fKLogYMsPp4Tmqq4jc5eCMlAHA1Hx/p73+Xnn++1KJx1a5yayhx1TqWXuj556VHH70YNwAAAMoNV19VXOzy5TIKCizWGQUFii0ypQQAwPovKXwCAtTlhRfU+513FNKkiXq/+646P/+8fKzMd8kvMQBUGKVc6+WaAnWkhvUvuVzlSI0ByjMF2i60YoVbYwAAAIB1JIWruBMlJChIXACApYL8fMUWSU7UatFC182Zo8vGjpXJZJIkmUwmRY8bp+vmzFGtFi0syscuX66C/PxyixkArIqPl1avtlnkWI2+yvWt7tYwcn1r6GiNPrYLrV4tJSS4NQ4AAAAUR1K4Css+d07xGzdafezMhg3KOX++nCMCgIorMz5eWcnJ5uWWY8YoZs4chUZHWy0fGh2tmDlz1HL0aPO6rORkZcbHuz1WALDphx8kw7BZ5EDIkHIJpdTtFBRcjBcAAADlys/TAaBsUo8f18733lNaYqKebtzY4rEtjz+ugIAA5Zw/LyMvz2p9Iy9PK+65RwG1apW4jcBatdRu0iSFNGni0tgBoCIKrldPTa+/Xmf37lX7hx9Wo2uvLbWOX3Cwrp48WfW7d9fO6dNV+/LLVa1+/XKIFgBs+P57mw/nm/x1uObAcgnlcM1rlG/yl69h40ac338v3XtvucQDAACAi0gKV1J7Pv5YxxcvliS1q1HD4rGUzZvtaiNl9+5Sy/gGBqrbq686HiAAVDI+vr7q8frrZarbeNAgNR40yMURAUAZJCeXOk/v8eq9lO1b8sAAV8r2raXj1XuqefqqkgutWCGlpEh16pRLTAAAAGD6iEqrYZ8+0n/nt3Qbk+nidgAAAFA5/PSTVMrc5gdCBtvfnmGoedpvuun4BN12eIhuOj5BzdN+K3V6Coe2l5d3MW4AAACUG5LClVTjmBgN+PRTBYaFuaX94IgIDfzsMzWOiXFL+wAAAHCDUqaOKJCvDtW075cNwXkpGnnyLt104k41T1+l+lm71Dx9lW46cadGnrxLwXkpdrVzqOYgFZT2saOUuAEAAOBaJIUrsfrduqnbp59qS1qaS9uN7NdPg+fPV72uXV3aLgAAANzHlJYmLVtms8zJ6l2V6Vf6NA2NMtZq4uEYtUz7zerjLdN+08TDMWqUsbbUtjL96upk9W62Cy1dKqWmltoWAAAAXIOkcCUXEBqqt06e1MzTp5VTUOBUWz4BAer07LPq8/77Cqpd20URAgAAoDwELF0q5eTYLHMgZKjNx32MXPWKf1Njjo1Tzbx4m2Vr5sVrzLFx6hU/TT62biQn6UDIEJuPKydH+vln22UAAADgMiSFq4hlZ89q8tGjOpWdXab6Ic2bK2b2bLUaP14md89VDAAAAJcLXLTI5uOGTDpYs+SpwWrlnNC4ozere9L7Msm+OYNNMtQ96T2NPTpaITknSyx3sGaMDJVyjckUEgAAAOWGpHAVciI7W88fOaIaLVo4VC80OlrXzZ2r2q1auSkyAAAAuFM1SQErVtgsc6paZ2X4R1h9rNX5nzTx8GA1zPyrTNuPzNyiiYcHq9X5hVYfz/Cvp1PVOtluZPFiKSOjTNsHAACAY0gKVzGGpMzTpx2qk37qlEy+vu4JCAAAAG43WJIpM9NmmQMhg4ut8y+4oJhTT+iG2IcVWODcfSqCClJ1Q+xDijn1pPwLLhTffs1SppC4cEFassSpGAAAAGAfksJVzBXVqyv/QvGLcFvyMjJ0Zm3pNwkBAABAxXSTHWUO1LRMCkdk7tZth4eq/bk5Lo2l/bnZuu3wUEVk7rZYfzDkutIrM4UEAABAufDzdABwratDQspU7+SyZYrs18+1wQAAAMDtAiUNK6VMXHAHpQVEXlwwDF2VMkN941+Tn2H7xnRlVTfnsMYfHa7f6z2rv+rcIZlMSg2I0ungK9Ugc3vJFRctkrKzpcBAt8QFVHWGYSgjI0OpqanKyspSfn6+p0MCAJSBj4+PAgICVL16ddWoUUMBAQEu3wZJ4SrEV9JVNWuWqW7sihUqyM2Vj7+/a4MCAACAW10rqbQrwIP/nToiOC9Zg089phbptucfLiYwULr1Vumrr6Qc+xLJfkaOBp6Zoibpq7Uk8v+U6VdXB2oOtp0UTkuTli2ThpWW5gZQVEFBgU6cOKHMUqaSAQBUDjk5OUpPT1d8fLzCw8NVt25dmUyl3LjXASSFq5DLq1dXjRLmBo4aOFAdHntM2/7v/xRr5SYkOampit+0SQ169HB3mAAAAHAhu6aOCBmsxul/auipR1UjL8GxDbRuLc2eLV15pTRpkjR2rLRvn93VW6Yv1+2HY/Rz5Ds6EDJEfRNet13h++9JCgMOMgyjWELYZDLJl3vHAECllJ+fL8MwzMuJiYnKyclRw4YNXbYNksJVSBcrU0f4BASo01NPqeWYMTKZTOr97rs6OHu2/nrzTRUUGeVxctkyksIAAACViL+k4aWUSQyMVruzc9Q16QOZZJRSuoh77pH+/W+pevWLy1deKW3eLD36qPTpp3Y3UyMvQaOP36INYQ8qKfAyhWUfLLnwjz9KubkSv2AD7JaRkWFOCPv6+qp+/fqqUaOGfHy4jRAAVEaGYSg7O1upqalKTk6WJJ0/f15169ZVoIum2eIdooowSepcZOqIWi1a6Lo5c3TZ2LHm4eUmk0nR48bpujlzVKtFC4vyscuXq4A5pwAAACqN/pJql1ImLPuguiVNdywhXKuWNHeu9PHH/0sIX1K9uvTJJ9KcORfL2ckkQ92Spqtu9iHbBc+elVautD9WAEpNTTX/v379+goJCSEhDACVmMlkUlBQkCIiIhQREWFef/bsWZdtg3eJKqKuv79q+f1v4HfLMWMUM2eOQqOjrZYPjY5WzJw5ajl6tHldVnKyMuPj3R4rAAAAXMOeqSMcHh3co4e0fbt08822y40eLW3bJnXv7lDzdsXz/fcOtQl4u6ysLEkXkwg1atTwcDQAAFcKDQ01///ChQsua5ekcBWRnJurP8+d08msLLV/6SVd/eKL8gsOtlnHLzhYV0+erF7//rdqtWyppjfcoGr165dTxAAAAHCGj6QRrmzQZJJeeEH6/XepSRP76jRtKv3xh/T88xfru8oPP0j8gg2wW/5/Xy++vr6MEAaAKsbX19c8R3y+C6+PmFO4ijAkfRgXJ0m6s08fh+o2HjRIjQcNckNUAAAAcJfekiJKLWWnyEjp66+lfv0cr+vnJ738sjRwoDR+vPTfa1KnJCRIf/4p9e3rfFsAAACVnMmVX77/F18hAgAAAJXQKFc1NHz4xekiypIQLqxfv4vt3HCDK6KSvvvONe0AAACgGJLCAAAAQGVTUKAbnW0jMFCaPl1asECqW9cVUUlhYRenfnj//YvtO2P+fKmgwCVhAQAAwBJJYQAAAKCS8du8WQ2daeDyy6VNm6QHH3TtXMDSxfYeekjauFFq06bs7cTFSRs2uC4uAAAAmJEUBgAAACqZwEWLyl75vvsuJoTbtXNdQNa0by9t3izde2/Z2/j+e9fFAwAAADOSwgAAAEBlYhgK/Plnx+uFhl6cp/ejj6Rq1VwellXVqkn/+Y80b97F7Tvq++8lw3B5WAAAAN6OpDAAAABQmWzbJt+TJx2r06vXxZvA3XSTe2IqzahR0rZtUs+ejtU7duxiPQAAALgUSWEAAACgMtm92/6yPj7S5MnSypVS48bui8keTZpIq1ZJL754MS577dnjtpAAoDw1bdpUJpNJt99+u6dDcYuqvn9AVUNSGAAAAKhM0tPtKxcVdTEZPGWK5Ofn1pDs5ucnTZ0qrVhxMT572Lu/AAAAsBtJYQAAAKAyiYkpvczIkReni+jTx/3xlEXfvhenhRgxovSygwa5OxoAAACvQ1IYAAAAqEyaNVPmnXdafywoSPrww4s3aKtTp3zjclTdutL8+dIHH1yM25qHHpKaNSvfuAAAALwASWEAAACgkkl/9VVNlZTy3+UCSdmDB0ubNkn33y+ZTB6MzgEmk/TAAxfjHjHif3HXrn1x7uF33vFoeABQkri4OD399NO66qqrVKtWLQUEBKh+/fpq166dxo0bp5kzZyo1NVWS1K9fP5lMJh0/flyS9MUXX8hkMln89evXz9z2sWPHzOtnzpwpSZo/f76GDBmihg0bys/Pz6L8JbGxsXrmmWd01VVXqXbt2goKClLjxo01ZswYrVy50q79Onv2rF555RV1795dYWFhCgwMVMOGDTV8+HDNnz/fah1H90+S8vPzNXPmTMXExKh+/foKCAhQaGioLrvsMg0cOFCvvfaa9jCnPOBWFWRyMQAAAAB28/XVFEmvS6orKVPSvi++UHh4uEfDKrMrrpAWLJCSk6XMzIujiIODPR0VAFi1evVqDRs2zJz0vSQ+Pl7x8fHatWuXZs+erbCwMA0bNsypbRmGoQkTJuirr76yWe6zzz7TpEmTlJmZabH+5MmTOnnypObOnau77rpLH330kfxKmGf+l19+0fjx43Xu3DmL9adPn9ZPP/2kn376SUOHDtXs2bNVo0aNMu9Tenq6hgwZotWrV1usP3/+vM6fP69Dhw5pxYoV+uuvv/Tdd9+VeTsAbCMpDAAAAFRSWZJOeToIV6pb19MRAIBN2dnZGjt2rFJTU1WzZk098MAD6t+/vyIiIpSbm6vjx49r3bp1+v777811ZsyYoYyMDMXExCguLk7Dhw/XK6+8YtFu9erVrW7v7bff1o4dO9S7d2898MADio6O1rlz53Ts2DFzmc8//1x33323JOmKK67Qfffdp44dO6patWo6evSoPvvsM/3yyy/67LPPVKtWLf3rX/8qtp1ly5bphhtuUH5+vpo2baoHHnhAXbt2VUhIiE6dOqU5c+bo66+/1s8//6yJEyc6tX9TpkwxJ4SHDRum8ePHq3HjxgoKClJiYqK2b9+uRYsWyVRZfvUCVFIkhQEAAAAAqOIKCgqUnJzs6TDKTd26deXj4/oZM9esWaO4uDhJ0rfffltsJHDXrl01evRoTZs2TRcuXJAkNfvv3Oj+/v6SpNDQUF1xxRV2bW/Hjh2aMGGCZs6caTVJevLkSU2aNEmSNHHiRH366acWI4E7duyoG2+8Uc8995xee+01vf3227rvvvsUHR1tLpORkaHbbrtN+fn5GjRokBYsWKBq1apZtDFs2DD16dNH9957r+bPn6/ly5dr4MCBZdq/uXPnSpJGjRqlefPmFXs8JiZGTz75pFJSUoo9BsB1SAoDAAAAAFDFJScnKyIiwtNhlJuEhAS3TKlz5swZ8//79OlTYjk/Pz+FhIQ4vb3Q0FC9//77JY6afeedd3ThwgU1bNjQ5tQQU6dO1RdffKFTp07pyy+/tBjJO2PGDMXHxysoKEhfffWVRUK4sHvuuUeffvqpNm7cqBkzZpiTwo661Ie9e/e2Wa5ORb9hKlDJcaM5AAAAAAAAOzRo0MD8/xkzZrh9e9dff71q1qxZ4uM//vijuVxQUFCJ5fz8/NS9e3dJ0rp166y20bdv31K/OLiUCC/ahiMu9eGcOXPMo6kBlD9GCldBSUlJng6h0rDWV/Sf/eg/59B/zqH/nEcfOof+cw795xz6zzn0n3PoK3izXr16qXnz5jpy5IgeffRRffPNNxo5cqT69u2rzp07KyAgwKXba9++fYmPXbopmyT95z//0X/+8x+72iw82lmSNm/eLEn69ddf7Z7Ht2gbjpg4caJefvllrV27Vs2aNdPNN9+sgQMHqlevXpX3hqlAJURSuAq6/PLLPR1CpUb/OYf+cw795xz6z3n0oXPoP+fQf86h/5xD/wGwh7+/vxYuXKhRo0Zp79692rRpkzZt2iRJCg4OVt++fXXbbbdpzJgx8vX1dXp7tWvXLvGxhISEMrVZeHRubm6uzp0751QbjnrhhRd06tQpzZgxQwkJCZo+fbqmT58uk8mktm3b6sYbb9SDDz6oevXqlXkbAEpHUhgAAAAAgCqubt26ZU4iVkZ169Z1W9uXX365du7cqYULF2rhwoX6/fffdfjwYWVmZmrJkiVasmSJ3nrrLf3yyy9Oz+NsK7Gcn59v/v+jjz6qu+66y642C49mLtzG6NGj9cILL5QhSsf4+/vrs88+02OPPaZZs2ZpxYoV2rx5s3JycrRr1y7t2rVLb731lr7++msNHz7c7fEA3oqkMAAAAAAAVZyPjw8/zXchX19fjRgxQiNGjJAknT59WosXL9YHH3ygLVu2aMuWLbrvvvu0YMECt8VQOPF94cIFXXHFFQ63ERQUpGrVqunChQs6d+5cmdooq8svv1wvv/yyXn75ZWVmZmrNmjX69ttv9eWXXyo9PV3jxo3T4cOHLeZxBuA63GgOAAAAAADACQ0aNNCdd96pdevW6aqrrpIkLVq0SJmZmeYy9s7Xa6/w8HBFRkZKkn777TcZhlGmdjp27ChJWrNmjVPTQjizf8HBwbrmmmv0+eefa9q0aZKkzMxMLVq0qMxtArCNkcJV0J49exQWFubpMCqFpKSkYvPH0X/2o/+cQ/85h/5zHn3oHPrPOfSfc+g/59B/zrHWfwAu8vf3V9++ffXXX38pLy9P586dU3BwsKSLo3IlKTs722Xbu+GGG/Thhx/qyJEj+u6773TzzTeXqY01a9YoIyND06dP1xNPPFGmWFy1fwMHDjT/nxtbAu5DUrgKCgsL42dBTqD/nEP/OYf+cw795zz60Dn0n3PoP+fQf86h/wDYY/Xq1WrQoIFatmxp9fGcnBz9/vvvkqQaNWpYnFcaNGigffv26fDhwy6L54knntDnn3+u7Oxs3X///WrWrJk6d+5cYvlffvlFUVFRat++vXnd/fffr2nTpikpKUkvvPCCrrjiCg0ePLjENtasWaP8/Hz16dPHYr09+5eSkqI///xT119/fYkji5cuXWr+f7NmzUpsC4BzSAoDAAAAAADYYfny5Xr55ZfVu3dvDR06VO3bt1d4eLgyMzN14MABffTRR/rrr78kSXfffbf8/P6XdunRo4dWrlypTZs26fXXX9fgwYNVvXp1SRenT7g0FYQjmjVrpo8++kh33HGHUlJS1LNnT912220aNmyYGjdurLy8PMXGxmrjxo367rvvdPjwYS1cuNAiKRwSEqJZs2Zp8ODBys7O1rBhw3TTTTfppptuUosWLSRdnDN5y5YtWrBggXbs2KH33nuvWFLYnv1LTU3V8OHD1bRpU914443q2rWrmjRpIj8/P50+fVoLFy7Up59+KkmKiorS9ddf73CfALAPSWEAAAAAAAA7FRQU6PfffzePCLbmxhtv1D//+U+LdQ888IA+/PBDpaSk6JlnntEzzzxjfqxv375atWpVmeK5/fbbFRwcrHvvvVepqan67LPP9Nlnn1kt6+PjY07UFnbNNdfo119/1fjx43XmzBnNmzdP8+bNK3GbISEhxdY5sn/Hjh3TW2+9VWL7kZGR+umnn6zGCsA1SAoDAAAAAADY4cknn1TXrl21bNkyrVu3TnFxcUpISJAk1a9fX127dtWECRM0ZMiQYnUjIyO1ceNG/fOf/9Tvv/+u2NhYZWVluSSuMWPGaNCgQfr444+1ZMkS7dmzR2fPnpW/v7/q16+vtm3bqn///ho1apQaNWpktY0BAwbo8OHDmjFjhhYtWqTt27crOTlZPj4+Cg8PV5s2bdS3b1/ddNNNatWqVZn2r0mTJtq2bZuWLVumFStW6MiRI4qPj1d6erpCQ0PVtm1bXX/99br33ntVs2ZNl/QNAOtICgMAAAAAANihWrVqGjx4sM05d21p0aKFeXqEkjRt2lSGYTjcdu3atfXUU0/pqaeeKlNs0sX9e+ihh/TQQw+VqX5p+2cymXTllVfqyiuv1OOPP17WMAG4gI+nAwAAAAAAAAAAlB+SwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAF5i5syZMplMMplMOnbsmN2P2fN4VeJN+1pYbm6uWrVqJZPJpDlz5ng6nErvwQcflMlk0sSJEz0dSjEkhQEAAAAAAOy0atUqc7LQnr+ZM2d6OmTAbu+9954OHDigNm3a6Oabb/Z0OGWSkJCgRYsW6cUXX9TgwYMVFhZmfj3efvvtZWozKSlJb775pnr27Kn69esrMDBQDRs2VNeuXfXEE09o3bp1Vus988wzCggI0FdffaVNmzY5sVeu5+fpAAAAAAAAQNVSkJenX0aOVG5GhvyrV9eQBQvk40cKoqqbOXOm7rjjDknS0aNH1bRpU88G5CZVdT/T09P1z3/+U5L04osvysenco4lrVevnkvbmzdvnh544AElJydbrD99+rROnz6tjRs36uDBg/rhhx+K1W3UqJEmTpyoTz75RM8//7x+/fVXl8bmDM7IAAAAAADApZK2b1fqkSOSpExJyTt2KPyqqzwblBs88MADevDBB22WiYqKKqdo7HP77beXebSkM3UrG2/a10s+/PBDJSUlqVGjRho9erSnw3GJRo0aqU2bNlq6dGmZ6n/55Ze64447VFBQoIiICD3wwAPq1auX6tSpozNnzujw4cNauHCh/P39S2zjscce0yeffKKlS5dq06ZN6tKlS1l3x6VICgMAAAAAAJc6/eefFstxq1dXyaRwRESErrjiCk+HATgtPz9f77//viRp3LhxlXaUsHRxlHOXLl3UpUsX1atXT8eOHVOzZs0cbmfv3r269957VVBQoN69e2vhwoWqVatWsXKTJk1STk5Oie20atVKV111lf766y+98847+vrrrx2OxR0q7zMMAAAAAAAqpLjVqy2XiySJAVQsy5Yt04kTJyRJt956q4ejcc7UqVM1bNgwp6eRmDRpkrKzsxUWFqb58+dbTQhfEhAQYLOt8ePHS5K+//57nT9/3qm4XIWkMAAAAAAAcJnMxESd3bvXYt3ZPXuUmZjooYgqll27dumVV15RTEyMoqKiFBgYqBo1auiyyy7TxIkTtX79ervbWrNmje6++261atVKISEhqlGjhlq3bq0RI0boyy+/VGpqarE6M2fONN9069ixYw7FXlLdSzffuzTPriQ1a9as2E33Vq1apdzcXNWvX18mk0mDBw8udZu7du0y13/ttdccileS4uLi9PTTT+uqq65SrVq1FBAQoPr166tdu3YaN26cZs6caXc/ObKf1mzcuFH33HOPoqOjVaNGDVWvXl2tW7fWQw89pIMHD7plP+w1d+5cSdJll12mdu3alViu8PPx3XffSbqYUB47dqwaN26swMBARUZG6t5771ViJX7N79u3T8uXL5ckPfzwwwoLC3OqvZtuukmSlJWVpR9//NHp+FyB6SMAAAAAAIDLFJ06wrx+zRo1HzGifIOpYFatWqX+/fsXW5+Tk6NDhw7p0KFD+vLLL/X000+bb/hlTWZmpu666y7NmjWr2GP79+/X/v379eOPP2ry5MmaMmWKK3fBaf7+/powYYKmTZumpUuX6tSpU4qMjCyx/Oeffy5J8vX11cSJEx3a1urVqzVs2LBiydL4+HjFx8dr165dmj17tsLCwjRs2DDHd8ZOeXl5euSRR/Thhx8We+zS8/XJJ59o+vTpuueeezyyHytXrpQkdevWzWa57du3m//frFkzjRo1St9//71Fmbi4OH3yySf6448/tGXLFlWvXr1MMXnSvHnzzP+/+eabzf8/e/askpKSVKdOHdWtW9fu9po0aaIGDRro9OnTWrVqlSZMmODSeMuCpDAAAAAAAHDYppdeUqyVEZG5aWlWy29+9VVtf/fdYuuj+vVTlxdfdHV4FVJeXp6qV6+uoUOHasCAAWrdurVCQkKUkJCg3bt3691339Xx48f1+uuvKzo62mJE6iUFBQUaPny4li1bJuniyM4HH3xQnTt3VrVq1XT69GmtXbvWPPKzPHTp0kU7d+7Ujz/+qOeff16S9Ouvv6phw4YW5S7N63r33Xdr2rRpKigo0JdffqlnnnnGaru5ubnm+VcHDRpkM3lcVHZ2tsaOHavU1FTVrFlTDzzwgPr376+IiAjl5ubq+PHjWrduXbGEpiv385K77rpLX375pSRp8ODBGj9+vKKjo2UymbRt2za9/fbb2r17t+69917Vr19f119/vVv3o6jY2FjzaOjSboJ2KSns6+urRx55RJs2bdI999yjESNGqF69ejp48KBefvll7dmzR/v379fnn3+uSZMmlTk2T7k0Yr9WrVpq06aNvvnmG7355pvasWOHuUyzZs00ceJEPfbYY6pRo0apbXbp0kU//fSTVheZXsdTSAoDQCWWl5WllN27VadtW/kFBXk6HAAAAHiJvMxMHfnxR+VnZdlf58IF5V24UGz90Z9+UscnnpBfcLArQywXCQkJ2rVrV4mPR0REKCIiwrzcoUMHxcbGKjQ0tFjZmJgYPfzwwxo2bJiWLVumqVOnasKECfL19bUo995775kTwiNHjtSsWbMUGBhoUWbo0KF6+eWXdebMGSf2zn7Vq1fXFVdcoc2bN5vXRUdHq2nTplbLR0dHq0+fPvrjjz80Y8aMEpPCixYtMk9BcNdddzkU05o1axQXFydJ+vbbb4uNoO3atatGjx6tadOm6YKV49IaR/dTujiH7KWE8CeffKK7777b4vHOnTvr1ltv1dChQ7VixQo98sgjGjx4sPz8/Ny2H0WtXbvW/P+OHTvaLHspKZyfn69du3Zp9erV6tq1q/nxTp06qXfv3mrRooWys7O1du1aq0lhk8lUplgLmzFjhm6//Xan27Fmz549kqSmTZtq0qRJmj59erEyR48e1ZQpU/Tdd99Z/XKgqE6dOumnn37SoUOHlJCQYHFu8ATmFAaASmzN44/rtwkTtPaJJzwdCgAAALzIuYMHlZ+d7ZK28rKydK6U+VQrqg8//FDt2rUr8e+DDz6wKB8WFmY1IXxJQECApk2bJkk6fvy4tm3bZvF4QUGB+fHIyEh9+eWXxRLCl/j4+JSapPKkS8nRgwcPas2aNVbLzJgxQ9LFfis8etYehRPiffr0KbGcn5+fQkJCHGrbEZemARk5cmSxhPAlQUFBev/99yVJx44ds5iTuDz2IzY21vz/0hKVhaeP+Pjjjy0SwpdERkbqsssukySlp6eXKSZPS0lJkXRxbuHp06crNDRUH330kRISEpSVlaVNmzaZ58TetWuXbr75ZhUUFNhss3Dfnjp1yn3B24mRwgBQSV04c0an/jvvU+yKFboQH69qTt5dFQAAALBHWPv26jt9utY+9VSJ00XYw79mTfV4802FtW/vwugqj+zsbMXHxys9Pd2cUDIMw/z49u3b1alTJ/Pytm3bzMmke+65x66frFdUo0aN0iOPPKJz585pxowZ6tmzp8Xj8fHxWrx4sSTp1ltvVUBAgEPtN2jQwPz/GTNm6G9/+5vzQTvo1KlT2rJliyRp9OjRNsu2adNGYWFhSkpK0rp163TNNddIKp/9KHxDuNq1a5dYLiEhQfHx8ZKkAQMGaMyYMSWWzczMlKQS593duXNnWUK1EBUV5XQbJcnIyJB08TXq6+urxYsXW8y33LlzZy1atEjDhg3T4sWLtXbtWs2fP1+jRo0qsc06deqY/18RbsJHUhgAKqmT/70Tqnn5t9/Uavx4D0UDAAAAbxPZt69i5szR6kmTdP7wYYfr12rRQr3fe08hTZq4IbryUZYbuWVkZOjdd9/V7NmztXv3buXn55dYNikpyWJ569at5v/bGjVaGQQHB+uWW27RBx98oLlz5+qdd96xuCHZV199pby8PEnSnXfe6XD7vXr1UvPmzXXkyBE9+uij+uabbzRy5Ej17dtXnTt3djjJXBaFp5kYN26cxo0bZ1e9wqODy2M/Lo2KlWwnhQuPXLeV5M7OzjbPUdyqVSurZa644grHgixnQUFB5sTwzTffbPUGfD4+Ppo2bZr5y4tZs2bZTAoX7tvk5GQXR+w4po8AgErq5H/nEStpGQAAAHC3kCZNNGjWLEX9d1SjvRpdc40GzZpVqRPCZXHs2DG1a9dOzz77rHbs2GEzISz9b7TlJYWTxIVHkFZW99xzjyQpLS2t2I3SLk0d0aVLF7Vr187htv39/bVw4UK1adNGkrRp0yY9++yz6tmzp0JDQzV48GB9++23pT4HzkhISChTvcJzA5fHfgQVuj9N0WOusMJTRxSd27iwXbt2meNpX0l/BVCzZk3z/y9NE2FN27ZtzTdA3LRpk802C/dtcAWYQ52RwgBQCWUlJyvxvz9DuiRxyxZlpaQoqNBPUgAAAAB3869eXa0nTFDsb7/ZXaf1xInyLzQq1FvcdtttOnr0qEwmk+644//Zu+/4pqv9j+PvdNFCW1YLMgoIWIaAIPtyGReVcRW9oKKAoMgSxHv1CiqIAl657utPRRBlOthLUdmjIEOgApahILsFCmUVSnfz+yM0dqRp0iRNSl7Px6MPk+/3jE8OsdBPTz5noB5//HE1aNBA4eHh5trAWVlZ5sPlcpaSyMsZB3W5W9OmTdW8eXNFR0dr1qxZGjBggCTp559/Nh/0VZRdwtkaNmyomJgYrVixQitWrFBUVJSOHj2q5ORkrVq1SqtWrdL//vc//fjjjy459Ctnovabb76xOUGad7euq19HeHi4+fGlS5dyJURzyk4KV65c2ZwItSTnjuKmTZtabGPtgEZbVa9e3WqNbkdERESYd2wXVqYiIiJCcXFxhf4SIOeO7Jxr7i4khQGgBIpdv17GPEXsjVlZil2/XnUffdRNUQEAAMBbnf3pJ7van9myReF33+2iaDzTb7/9pp9urtOYMWM0adIki+0uX75c4BhhYWHmx2fOnCnwo/klyeDBgxUdHa2oqCgdO3ZMtWvXNu8SDgoKsrnkQkF8fX31j3/8Q//4xz8kSWfPntXKlSs1ZcoURUdHKzo6WsOGDdOyZcscfSn55KynazAYHCqZ4MrXkTNBefnyZdUsYAd/dlK4WbNmVsfLLnMSFhZWYPK4KLu/85o1a5aeeuoph8ex5M477zTv/C1sF3b2fT8/62nWnP9ve0JSmPIRAFACnSqgVAQlJAAAAOAOZ7Zssa+9nUnkW8GBAwfMjx9//PEC2+WsQ5vX3TkS6Zs3b3ZOYE5UlN3Lffv2VenSpWU0GjVnzhwlJydr/vz5kqRevXqpbNmyTo2xSpUqevrpp7V9+3bzen7//fdWyybkZevrzJk8XbNmjX2BFsIZryNbzgTt4cOHLbZJS0vTb7/9Jsn2pHBBu4RLgpw1u48WUjP92LFjkmR197T059qWKVNGtWvXdjBCx5EUBoASJvXKFcXv3Gnx3rmff1ba1avFHBEAAAC8WfKFC7p86JBdfS4fPKjkCxdcFJFnyj40TcpdMzavzz77rMB7d911lyIiIiRJ06dP1/Xr150XoBPkrE2bmppqU5/Q0FDzoWVz5szR4sWLdfXmzzSDBg1yfpA3+fv7q2PHjpJMfzZXrlyxua+tr7Nu3bpq2LChJGn+/Pk6depU0YK1wpHXka1FixbmGrcF1cU9cOCA+T18t5Vd/kajUb/++qsk60lho9Ho8JerdglL0oMPPih/f39J0tKlSwtsFxUVZT40rn379lbHzF7bNm3aFLqruDi4PwIAgFlSbKwOv/OOUq0kdtOuXpUxxz8oczJmZGjDkCEKsPLb9FJly6rxc8953aEeAAAAcI2Cdv2Wq1dPdw4dqgPTpumKhd2HZ3/6SbV79nR1eB7jjjvuMD+eM2eOWrduna/N1KlTtXz58gLH8PHx0ejRo/XPf/5TsbGxGjBggObPn6+AgIB8bbOysnTu3DlVrVrVKfHbIufhd0ePHrW5vMXgwYM1e/ZsnTx5Ui+99JIk6fbbb1enTp2KHMuWLVtUpUoV1a1b1+L9tLQ0RUVFSZKCg4Pt+ji/Pa9z3Lhx6tu3r1JSUtSrVy+tXLmywLlSU1M1Y8YMPf300+bEsytfR7aAgAC1atVKUVFR2lnABqSch8xZ2yl85MgR8y8rSvJO4YoVK2rw4MGaOnWq1q5dq/nz5+fb4X/t2jU9//zz5ufDhg0rcLzU1FRzsryw5HFxISkMAB7kxNdf68yqVQ6NcSnHx9IK4luqlNoUUMMMAAAAsMfZPKUjDH5+unPoUN05ZIh8AwJUvXNnHfj8cx344otcmxvOeFlSuFmzZmrUqJH279+vqVOn6sqVK+rXr5+qVKmi06dP6+uvv9bixYvVrl07bd26tcBxnn32Wa1YsUJr167VsmXL1LhxY40YMUItWrRQ6dKlde7cOe3YsUPz5s1T3759NWHChGJ9jYGBgUpJSdFrr70mPz8/1apVSz4+pg+qV6tWzbwjNad27dqpQYMGOnTokPlwr4EDBzp0mN769ev1n//8R+3bt9f999+vJk2aKDw8XMnJyTp8+LA+++wz/fLLL5JMSWl7dm7a8zr79Omj1atXa86cOYqOjlbDhg01bNgwdezYUeHh4UpKStLRo0e1ZcsWLV26VJcuXTIfuOfq15HT/fffb04KX7t2Ld9hc9lJ4dDQUKulD7JLR0juSwr/9NNP+uOPP8zPExISzI//+OMPzZ49O1f7gnYcT5w4UT/88INOnTql/v37a+vWrerVq5dCQ0MVExOjd955x1xSY/jw4WrZsmWBMW3evFnp6emSTGvtCUgKA4AHCWvTRmdWr5asnDLsMINBVXPURwIAAAAcUb1zZ8VFRSkzJUXl6tVT20mTVL5BA/N934AANRk5UtXvuUc7xo7VlcOH5RsUpOp/+5sboy5+BoNBX331lTp37qzLly9r3rx5mjdvXq42jRs31qJFi6zu7vXx8dHy5cv15JNPavHixTp8+HCu3YruFBISon/+859699139csvv6hr16657m/cuLHA3b+DBg3SqFGjJJleozNKA2RlZSkqKsq8k9aSXr166a233rJrXHtf54wZM1S5cmV98MEHSkhI0KRJkwo8aLBMmTLy9fUtlteRU9++fTVmzBilpKRo2bJluRLT0p9J4aZNm1pN1u/du1eSqcRG/fr1ixyPI6ZPn645c+ZYvLd169Z8v3Qp6L0WHh6uVatW6cEHH9Qff/yhyZMna/LkyfnaPf300/roo4+sxjR37lxJUr169dSiRQsbXoXrUVMYADxI5U6d1Hn6dAVVquSS8YMqVdI9M2aoRp5/tAAAAABFVeuBB9R96VI1GzVKXefPz5UQzqlCgwbqumCBmo0ape5LlqjWAw8Uc6Tu17RpU+3du1fPPPOMatasKX9/f1WoUEGtWrXS+++/r507d+YqTVCQ0qVLa9GiRdqwYYP69++v22+/XUFBQQoJCVH9+vXVq1cvzZ07V6NHjy6GV5Xb22+/rS+++ELt27dXhQoV8iU4C9K/f3/z4/vuu89cO7moXnrpJf3444964YUX1KZNG9WoUUOBgYEKDAxUrVq19Nhjj+mHH37QkiVLctUItpU9r9PX11fvvPOODh48qBdffFHNmjVT+fLl5evrq5CQEN15553q16+f5syZo7Nnz+baTe3q15GtWrVqeuihhyRJ33zzTb772aUPbD1krlGjRjb/2XuyBg0aaO/evXrvvffUunVrVahQQQEBAapevboee+wxbdiwQTNmzDDXH7YkO9EuSSNGjCiu0AtlMBpduR3t1hAbG2v+ZnT69GlVr17dzRH96cKFC6qUJ3l0/vz5ItWQ8Uasn2NYP8dYW7+Uy5f187hxitu0yWnzVevUSa3ffFOB5cs7bUx34v3nONbQMayfY1g/x7B+jmH9HFNS1s+Tf45ztiNHjigjI0N+fn656tYCJcn69et17733SpIWLFhgPnwOxWfHjh1q27atfH199ccff6hWrVruDumW8PXXX6t///6qUKGCTpw4ka80hy1c8X2encIA4IECy5dXh8mT1XzsWPlYODTCHj4BAWo+dqw6TJ58yySEAQAAANxaZs6cKcl0wFf2jlUUrzZt2qh79+7KzMx0qBQF/pSVlaX//ve/kqRRo0YVKSHsKiSFAcBDGQwG1evXT13nzVOolUL+1oTWrq2u8+erXr9+Dh3SAAAAAACucuLECS1atEiS6YC5UqVKuTki7/XOO+/I19dXs2bN0qlTp9wdTom3aNEiHTp0SBERER5T+zsbB80BgIcrX7++ui1cqDV9++rK4cM29ysXGakuc+fKz8LpvgAAAADgTnFxcbpx44aOHz+uV155Renp6QoMDPS4xJm3ady4sWbPnq0//vhDp06dUo0aNdwdUomWmZmp8ePHq3PnzrlqRXsCksIAUAIYfHx0PS7Orj7X4+JkuAUK+wMAAAC49fTr109RUVG5rr3xxhuqVq2amyJCtieeeMLdIdwy+vbt6+4QCkRSGABKgLPbtikjKcmuPhlJSTq3bZuqderkmqAAAAAACx5//HH9+uuvua7dddddmjdvnpsigicrXbq0IiMj9fzzz+vJJ590dziA1yApDAAlwOm1a4vcj6QwAAAAisv58+e1cOFCGY3GXNd///13ffzxxwoPD3dTZPA0mzZtcncIgFfjoDkA8HBZ6emK27ixSH1jN2xQVnq6kyMCAAAALPvuu+/yJYQlKSsrS999950bIgIAWEJSGAA8XPzOnUpLTLR4r/o99+iBH39U9c6dLd5PS0xU/K5drgwPAAAAMFu2bFmR7gEAihdJYQDwcJZKR/gEBKjla6+p/UcfKbRmTbX/+GO1GDdOPgEBNvUHAAAAnO3atWtat25dgffXrVuna9euFWNEAICCkBQGAA+WlZmp2A0bcl0rW6eOui1YoDsef1wGg0GSZDAYFNmnj7otWKCyderkah+7fr2yMjOLLWYAAAB4p5UrVyotLa3A+6mpqVq1alUxRgQAKAhJYQDwYMnx8Uq5eNH8vO5jj6nrggUqFxlpsX25yEh1XbBAdXv3Nl9LuXhRyfHxLo8VAAAA3s2W8hCUkAAAz+Dn7gCAwmSkpOjSgQOqcOed8gsMdHc4QLEKqlxZtXr00OVDh9Rk5EhF3HdfoX38goLUavx43da2rWI+/VTlGzZU6dtuK4ZoAQAA4K1SU1P1ww8/FNruhx9+UFpamgIslD0DABQfksLweFtHjVLcxo2q3rmzOnzyibvDAYqVj6+v/vL220XqW6NLF9Xo0sXJEQEAAAD5bdiwwaZ6wYmJidqwYYO6detWDFEBAApC+Qh4tBvnzilu40ZJUuyGDbrBR+ABAAAAwOPYUxaCEhIA4H4kheHRTq9fn/u5lZNsAQAAAADFLzMzU99++22+6/7lSsu/XOl817/99ltlZWUVR2gAgAKQFIZHO712rdXnAAAAAAD32rFjh86fP5/vesXWdVShde181+Pj47Vjx47iCA0AUACSwvBYKRcv6kJ0dK5rF6KjlXLpkpsiAgAAAADkVVA5iIpt66pim7p29QEAFA+SwvBYsevXy5jnI0XGrCzF5ikpAQAAAABwD6PRaDHB61s6QGWbRKjcXRHyDQrId3/ZsmUyGo3FESIAwIISlxROSEjQu+++q3bt2um2225TqVKlVLVqVbVu3VqjR4/W9u3b3R0inORUAaUiKCEBAAAAAJ4hJiZGx44dy3e9Qovb5ePvKx9/P5VveXu++0ePHtX+/fuLI0QAgAV+7g7AHosWLdLw4cN18eLFXNfPnj2rs2fPaufOnTpy5IiWL1/ungDhNKlXrih+506L9879/LPSrl5VQNmyxRwVAAAAACAna6UjzI/b1FHC5t8t9m3cuLHLYgMAFKzEJIW//PJLDRw4UFlZWapUqZKGDx+uv/71r6pQoYLOnTuno0ePasWKFfL393d3qChE4smTivnkE6VevVpgm7SrV2XMyLB4z5iRoQ1DhlhNCpcqW1aNn3tOoTVrOhwvAAAAAMAyS0lhg7+vyt1dy/y8fPPbZfDzlTEjM1/f119/3dUhAgAsKBFJ4UOHDmno0KHKyspS+/bttWLFCpW1kBB87rnnlJaW5oYIYY+Dn3+ukytXOjTGpQMHCm3jW6qU2kya5NA8AAAAAHCriYuL0yOPPOLwOEajUfv27ct3vdxdNeRX+s86wn6lA1SuaQ1d3n08V7u9e/eqTZs2MhgMDseyZMkSVa1a1eFxAMBblIik8HPPPafU1FSFhYVp6dKlFhPC2QIC8hewh2ep2qGDjn37reTKQwUMBlXt0MF14wMAAABACbVkyRLt2LHDZePnLB1hvtamTr6ksCT9/PPPTplzyZIleu6555wylqtlZGQoJiZGO3fu1K5du7Rz504dPHhQmZmmndTHjx9XrVq13BskgFuexx8099tvv2n9+vWSpJEjRyosLMzNEcFRNbp2Vefp0xVUqZJLxg+qVEn3zJihGl27umR8AAAAACjJFi1a5LrBfQyq2Lp2vssVWteRfBzfEVwQl74mJ5s0aZLuvvtuPfPMM5oxY4ZiYmLMCWEAKC4enxTO+Y390UcfNT++fPmyjhw5ku/QOZQMt7Vpo+5Ll6pap05OHbdap07qvnSpKrdu7dRxAQBACXT+vDR7tvTyy6b/nj/v7ogAwO3i4uL0008/uWz8so2qy79s6XzXA8qVVtlG1V02708//aQzZ864bHxnMub41GxgYKDatGmjOnXquDEiAN7I48tHZH+kpWzZsmrQoIG++eYbvfvuu/r111/NbW6//XY9+eSTevHFFxUcHOyuUD1GQkKCu0OwWYPx4xXcpImOTJ2qrPT0Io/j4++vO4YPV0TPnrqWkaFrFy7Y1M/SWpWk9XM31s8xrJ9jWD/HOWsNM1NTlfj77wqtV0++pUo5I7QSgfegY1y9fv6bNil0xAj55BgzKyxMiVOnKr1jR6fN4y68/xzD+jmGtSrZlixZ4rKxK7atqzv+eV+B9xuMeUBHPl6ri9v/cPrcRqOxxJSQaNu2rT777DO1bNlSTZo0kZ+fn5566ikdPXrU3aEB8CIenxQ+ePCgJKlWrVp67rnn9Omnn+Zrc/z4cU2YMEGLFy/W6tWr7S4uHxsba/X+2bNn7RrP3Ro2bOjuEOxWo1QpjaxeXdWKkEyIS03VJ0eP6vQzz0jPPONwLCVx/TwJ6+cY1s8xrJ/jirKG/46IUPOQEO1OTNSHhfydeqvjPegYZ61fRUlHlP8jcT4JCcp69FHVl3TJKTN5Ft5/jmH94C1q1qyp4OBgXb9+3Wq7gLBglaoYYvO4lTo30G3dm1g9NM4vOFD1xzygcyt/1fkNh2weO/XiNaUlWI83ODhYNWrUsHlMd+pKqUMAHsDjk8KXLpn+yf7bb79p3759KleunN5++2316tVLoaGhiomJ0euvv66VK1dq//79evTRR7Vlyxb5+NheGSMiIsJV4cNGp1JTNe7YMU24/XbVDAy0ud/JlBRNOH5caa48tA4AUKAKfn5qHmL6gbFFaKjK+/npckaGm6OCt3tBUvkC7lWQ9G9J44ovHADwKA899JB2796t3r175/oEbl6ZSamq+lR7hXes79T5DQaDqvz9LlX5+102tT+/6Tf98ek6q22aNGmiRYsWKTIy0hkhFig9PV0RERGKj49Xt27dtHLlSqvt9+/fr8aNG0sy1REeO3asS+MDAHt4fE3hpKQkSVJqaqp8fX21cuVKDRs2TOHh4SpVqpRatGih77//Xt27d5ckbdu2TUuXLnVnyCgio6RK/v529ank768s14QDALBBi5AQq88Bd+jt4H0AuNXVq1dPO3bs0NChQwtsk5mcrt/fX6k/Jq9TZmrx/8I3MzVDRyav1eEPViorpeBSg8OGDdOOHTtcnhCWJH9/fw0YMECStGbNGsXFxVltP3PmTEmSr6+vnnzySZfHBwD28PikcGCOXaOPPvqo2rRpk6+Nj4+P3nvvPfPzefPm2TXH6dOnrX7t3Lmz6C8ANmtUpoyCfH3t6hPk66vGZcq4KCIAQGFahobmet4qz3OguDWRdEchbe6Q1LgYYgEATxYUFKRp06bpm2++sXo2z7nVMdo3ap5uxBZf4Z0bsZe0b9Q8xa/eX2Cb4OBgzZ07V5999pmCgoKKLbbBgwdLkrKysvTll18W2C49PV1ff/21JKlLly6qVq1ascQHALby+PIRISEh5t3C2buBLbnzzjtVrVo1xcXFadeuXXbNUb26605AdYeDBw8qLCzM3WHYbf9bb+ns6tV29/vf0KG685VXijRnQkJCvvpxJXX93IH1cwzr5xjWz3GOrmHa5cuKevhhKevPz2w0DAlR7OHDCihXzpmheiTeg45x1fqVfvtt6X//K7Td9hdf1I2XX3ZoLnfi/ecY1s8xltYPJVffvn3VvHlzq+UkbpxI0L5/z1XdZ+91ejmJvLLLRVjbHXzXXXdp4cKFxbI7OK/IyEh16NBBmzdv1qxZszRmzBiL7b7//ntduHkA+qBBg4ozRACwiccnhSMiInTu3DlJhSdvIyIiFBcXp/PnzxdHaB4rLCxM4eHh7g7DLlnp6bq4fXuR+iZs26aK5crJx87SEwUpievnSVg/x7B+jmH9HGfPGv6xcWOuhLAkKStLyXv3qtqjj7ogOs/He9AxTlm/VatsalZm1SqVef99x+byMLz/HMP6wZtll5N4/vnn9fnnn1tsk11O4mpMrG4f0km+pZybTshMzdCxLzZa3R0smcpFfPjhh8W6OzivwYMHa/PmzTpy5Ii2bt2qdu3a5Wsza9YsSabvLT169CjuEAGgUB5fPuLOO+80P87MzLTaNvu+n5/H57qRR/zOnUpLTLR4r/o99+iBH39U9c6dLd5PS0xUvJ27wwEAjju1dq3F66cLuA643G+/SQcP2tb2wAHp999dGw8AlCDuLCfhyeUiLHnkkUdU7uanorKTvznFx8ebD6F74oknFBAQUJzhAYBNPD4p3KFDB/Pjo0ePWm177NgxSaJWTwlkKYHgExCglq+9pvYffaTQmjXV/uOP1WLcOPlY+AuVBAQAFK/UK1cUX0DN/XM//6y0q1eLOSJA0pIlrm0PAF6gb9++2r17t5o0aVJgm+xyEglbjzg8X8LWw9r7wlzdOJFQYJu77rpL0dHR6tOnj8PzOUNQUJD69u0rSVq4cKG55GW2r776ShkZpsP5nn766WKPDwBs4fFbah988EH5+/srPT1dS5cu1TPPPGOxXVRUlC5evChJat++fXGGCAdlZWYqdsOGXNfK1qmjdu+/r3I5akQZDAZF9umjSs2ba+uoUbqa45cEsevXmxLGdh5UBwDIL/HkScV88olSrSR2065elTHD8knkxowMbRgyRAFlyxbYv1TZsmr83HMKrVnT4XgBs6IkhceOdU0sAFCC2VpO4tjnG1WxbV0ZfAxFmseYZdSxzzdZrR/sCeUiLBkyZIimTJmia9euacmSJRowYID5Xvbu4ZYtW6pxY442BeCZPD4pXLFiRQ0ePFhTp07V2rVrNX/+fD3++OO52ly7dk3PP/+8+fmwYcOKOUo4Ijk+Xik3E/qSVPexx3T36NHyK+Av/XKRkeq6YIF+efdd/bFwoSQp5eJFJcfHq0zVqsUSMwDcyg5+/rlO3vzIY1FdOnCg0Da+pUqpzaRJDs0DmB07Ju3ZY1+fX34x9atd2zUxAUAJll1OolOnTho6dKiuX7+er03apSRdO3xOofWrFGmOa4fPKu1SksV7wcHB+vzzzz1md3BeTZs2VfPmzRUdHa1Zs2aZk8I///yzDt4sZcQuYQCezOPLR0jSxIkTVaNGDUlS//799dxzz2njxo2Kjo7W7Nmz1apVK+3du1eSNHz4cLVs2dKN0cJeQZUrq1aPHipbt67a/9//qdXrrxeYEM7mFxSkVuPH668ffqiydeuq1oMPqvRttxVTxABwa6vaoYNkKNqOH5sZDKZ5AGcpaimIpUudGwcA3GL69Omj6OjoAstJXNzxR5HHvrjDcolITysXUZDBgwdLMn1yObucZfYu4aCgII+PH4B3KxFJ4fDwcK1atUp169ZVRkaGJk+erM6dO6tFixYaOHCgfvvtN0mm38J99NFHbo4W9vLx9dVf3n5b93/7rSLuu8+uvjW6dNH9336rv7z1lgw+JeLtDAAer0bXruo8fbqCKlVyyfhBlSrpnhkzVKNrV5eMDy9V1KQwdYUBoFCRkZF67rnnLN4LKF+myOMGlLPcd+TIkYrMUUrQU/Xt21elS5eW0WjUnDlzlJycrPnz50uSevXqpbJWSmkBgLuVmCxagwYNtHfvXr333ntq3bq1KlSooICAAFWvXl2PPfaYNmzYoBkzZsjf39/doQIAUOLd1qaNui9dqmqdOjl13GqdOqn70qWq3Lq1U8eFl4uNlX7+uWh9d+ww9QcAWLVs2TKL1yu2qVPkMQvqu3z58iKPWZxCQ0PVu3dvSdKcOXO0ePFiXb15JsOgQYPcGRoAFKrEJIUlqUyZMho1apR27NihixcvKjU1VadPn9b8+fP1t7/9zd3hAQBwSwksX14dJk9W87Fj5RMQ4NBYPgEBaj52rDpMnqzA8uWdFCFwk6MlIApIdAAATBITE7Vu3bp818vUDldg5aLvhg28razK3B6e7/ratWt17dq1Io9bnLJLSJw8eVIvvfSSJOn2229XJyf/Yh0AnM3jD5oDAADuYzAYVK9fP1Vq3lxbR49W4s16efYIrV1b7d5/X+Xr1XNBhICkxYsd71/Ax6IBANLKlSuVlpaW73rFNnUdHrti2zpKOn4h17W0tDStXLnSvAvXk7Vr104NGjTQoUOHdO7cOUnSwIEDZbByPsP169e1OM/fXX/88Wdt5sWLFyssLMz8vGnTpmratKlzAwfg9UgKAwCAQpWvX1/dFi7Umr59deXwYZv7lYuMVJe5cws9QBQosnPnpJ9+cmyMLVuk+HipcmXnxAQAt5iCyjlUbFtwUjjxYJwybpgSyX5lSim0QVXLY7Spq1Nzd1icsyQkhSVTqYhRo0ZJknx8fPTUU09ZbZ+QkKCBAwcWeH/06NG5no8fP56kMACnIykMAABsYvDx0fW4OLv6XI+Lk8HX10URAZKWL5eMxkIadZW0uuDbRqNpnGHDnBcXANwiUlNT9cMPP+S7HlilrErXrJjvevq1FB2dul4JW3L/EjmsQz3Veaaz/EMCc10vXStMgbeVVcq5q7mu//DDD0pLS1OAgyWsikP//v3NSeH77rtPERERbo4IAApXomoKAwAA9zm7bZsykpLs6pORlKRz27a5KCJA0pIlhTTwlzTt5n8dGQcAvNOGDRss1vet2LpuvhIJl3Yf156RX+ZLCEtSwubftWfkl7ocfSLXdYPBYLEMRWJiojZs2OBY8MUkJibG/Pjpp58utH2tWrVkNBpt/powYYILowfgrUgKAwAAm5xeu7ZY+wGFunhR2rixkEb3Saop6V7rzTZulC5dclJgAHDrWFbAYZwV29YxP85MTtMfn67TwYnLlXap4F8gp11K0oEJy/THlPXKTP6zRnGFNnUsti9obk8zc+ZMSVLFihX10EMPuTkaALANSWEAAFCorPR0xRWafLMsdsMGZaWnOzkiQNJ330mZmYU0ejjPfwuQkWEaDwBglpmZqW+//Tbfdf9ypRVS31QjOPFgnPb882udWxUjg6ROhXwZJJ1b+av2/OtrJR46I0kKrV9F/uVK55vn22+/VWah3+fd68SJE1q0aJEk0wFzpUqVcnNEAGAbksIAAKBQ8Tt3Ki0x0eK96vfcowd+/FHVO3e2eD8tMVHxu3a5Mjx4qzwnt+fnKyl7x9ZDN587Mh4AeJft27fr/Pnz+a5XbF1HxsxMnZjzk34ds8hcD7ilpI2FfLW4OUbK2av69ZWFOjHnJxmzslShde1888THx2vHjvyH0LlbXFycjhw5ojVr1qhXr15KT09XYGCgnn/+eXeHBgA2IykMAAAKZakEhE9AgFq+9praf/SRQmvWVPuPP1aLcePkY+FAGEpIwOmuXpUKfV91kpR9CFKYpI7Wm69dKxXwyw8A8EbLly+3eD2wSlnt/fc8xS7eJWX9edhnTxvGzNUmy6jYxbu099/zFHRbObticKd+/fopMjJSXbt21Z49eyRJb7zxhqpVq+bmyADAdiSFAQCAVVmZmYrNc9BL2Tp11G3BAt3x+OPmQ2YMBoMi+/RRtwULVLZO7tqAsevXK8vDP/6JEub776VCy5I8UsjzPNLSTOMCAGQ0Ggus6Xtizk+6cSIh33W7k8I33TiRoBNf/mSx/bJly2Q0Gi3ec7fSpUuradOmmj17tkaPHu3ucADALiSFAQCAVcnx8Uq5eNH8vO5jj6nrggUqFxlpsX25yEh1XbBAdXv3Nl9LuXhRyfHxLo8VXmTJkkIaGCT9I8+1njevOzIuAHiHmJgYHTt2zPJNCznaBpLq2TBu/ZtftowpSUePHtX+/fttGLn4bNq0SUajUUlJSdqzZ4+efPJJd4cEAHYjKQwAAKwKqlxZtXr0UNm6ddX+//5PrV5/XX5BQVb7+AUFqdX48frrhx+qbN26qvXggyp9223FFDFuedevSytXFtLor5Lyvuduk9TOereVK6WkpKLHBgC3iIJ2CRfkYd9C6rbnbOtjXyrC3lgAAIXzc3cAAADAs/n4+uovb79dpL41unRRjS5dnBwRvN7KlVJKSiGNHrZy3fJHlCVJycmm8R8ppNQEANzi7EnENmnSRGMyM6UDB2xqP7ZBA63w9dWvv/5qcyyvv/66zfEAAArHTmEAAACULDaVeOhl53V7xweAW9fx48e1b9++Qtv5+PhozJgx2rlkiUrbmBCWpNIHDmjn0qV65ZVX5GPDruG9e/fqxIkTNo8PACgcSWEAAACUHCkp0g8/FNKotaSIAu7VkNTKevfvv7dhJzIA3LqWL19eaJs6depoy5Yt+u9//6tShZb0ya/UypV66623tHnzZtXJc0BtUWMCANiO8hEAAACwX3q6dPCglJhYpO7+V67or3mv7dghlStnvePu3aaawlYVVDoi5/2dBd++fl2aOlVq0aKQcZwsNFRq2FDy9y/eeQEgj7vuukvh4eG6cOGCxfvDhw/Xu+++q+DgYNOFotT8XbZMGjlS7dq10969ezV69Gh99tlnFpuGh4erSZMm9s8BACgQSWEAAADYLjNTmjRJevttU/3dIionaUveiw8+6EBgOdmSFH7ZepN//9tJsdgpKEh65RXp1VclOw5tAgBn6ty5s/bu3at+/fpp06ZN5utVq1bVjBkz1K1btz8bX7wobd5s/yRRUaa+FSsqODhYU6dO1YMPPqhBgwbp7Nmz5mZ/+9vf9PXXX6tq1aoOvCIAQF6UjwAAAIDtXnhBGj/eoYSwazWVVLuQNnUk3eX6UIoiOdm0vi+84O5IAHi5qlWrat26dZo4caJ8fHzUp08fxcTE5E4IS9KKFaZfGNorM9NUrieH7t27a//+/Xr88cfl4+OjiRMnau3atSSEAcAFSAoDAADANn/8IX36qbujKERhu4TtbecmU6aY1hsA3MjX11evv/66jh8/rrlz56pChQr5GxWldISVvhUqVNC8efN0/Phxvf766/LlUxMA4BIkhQEAAGCbvXulrCx3R1GIWyQpnJkp7dvn7igAQJJUo0YNyzeSkqQ1a4o+8Jo10o0b9s0JAHAKksIAAACwTUaGuyMoRENJDVzQ1k3S090dAQBYt3q1lJJS9P7JyaYxAADFjqQwAAAAbNOli+TnyecUD3Nx+2Lk5yd17eruKADAOkdKRzhzDACA3Tz5X/UAAADwJBUqSO++K/373+6OxIKmkobb2WeEpNmS9jo5Fid47z2pfHl3RwHgVpWVJR065PgYeQ6Ky+ts0F2S0agqKb8W3GjFCikmRvJxcM9agwaOjwEAXoSkMAAAAGz3wguS0Si9/LKHlJOoJFN94Pck+dvZ11/ST5JGS1os6YJzQysKPz9T4v35590dCYBb2Y4dUrt2Lp/mSIjpEw9Wk8JXrkhNmjg+2bZtUtu2jo8DAF6CX6MBAADAPv/+t+mH7zp1itC5vKSFks464eu8pHOSpkgqU8QXU+Zm//ib4zkjroU3X6ed6tQxresLLxTxtQCAjRYtKpZpjoR205HQYiqFU0yvydtFRUXJYDAoPDxc169fd3c4xWrTpk0yGAwyGAzatGmTS+fav3+/nnjiCUVERCggIMA87969eyVJnTp1ksFgUKdOnVwaR3GxtrZGo1GNGzeWwWDQrFmz3BPgLYqkMAAAAOzXsqX0yy/SE0/Y2fGypMclfS4pXNJtDnyFSzI4/FJMDE6IJ0zStJuv77J90/fvL+3ZY1pXAHClrCxp8WKXT3MxoI4ulaqrSwF1dSmgtsvn06JFptdWAmRkZGjPnj2aNm2aBg8erCZNmsjPz8+cFDtx4oRN41y5ckVr167VpEmT9I9//ENVq1Y1j+GKZGFWVpb+9a9/SZJefPFFBQcHO30OSNHR0WrVqpW++eYbxcbGKt3LD541GAx69dVXJUljx471ul9GuBLlIwAAAFA0oaHSV1+ZDqAbMUKy+R/pWZLGS1ov6WtJES4LsficltRP0hb7ugUHS1OmmJLCAFAcduyQYmNdPo15h7DBoCOhXdU6YaprJ4yNlX7+uUSUkJg0aZImTJjg8DjNmjWzOYHsDAsWLNC+fftUsWJFjRw5stjm9TZjxoxRcnKyQkND9fbbb6tFixYKCgqSJNWtW9fN0blH7969NXHiRP3222/65JNPNGbMGHeHdEtgpzAAAAAc07+/addw8+Z2dtws6S5JJf3k+aUyvQ47E8ItWph2B5MQBlCciqt0REg3i49dqoSUkDAajebHgYGBatOmjeoUoSRTznEqV66sBx54wCnxFWTSpEmSpGHDhrFL2EXS09MVFRUlSRo6dKiGDx+uli1bqlGjRmrUqJECAwMlmcotGI1Gl5ex8BQ+Pj56/uZ5Cx988IGSk5PdG9AtgqQwAAAAHHfHHaZ6uKNG2dnxsqRekkZIKmn/wE+WNFymg+7sLBcxerS0davkpTt+ALhJMZWO2Fe+j84F/Xl43Nmgu7SvfB+Xz1tSSki0bdtWn332maKjo3Xt2jVt375df/3rX+0eZ+TIkVq8eLFOnjypc+fOacWKFS6I1mTt2rU6cOCAJOkJu0tHwVYJCQlKS0uTJEVGRro5Gs/y6KOPyt/fXxcvXtQ333zj7nBuCSSFAQAA4BwBAdJ770mrVkmVKtnZeaqklpL2uyAwV9gvU7yf2detcmVp9Wrp3XdN6wUAxcnFpSNSfUL0bfUpWlP1HcmQI91g8NGaqu/ou+qfKtUnxGXzm0tIeLiuXbtq2LBhuvvuu+XnV/SqnqNGjdLDDz+sGjVqODE6y2bMmCFJuvvuu9WgQQOXz+etUlNTzY/9/f3dGInnqVChgrp1M33qIPv9CMeQFAYAAIBzde0q/fqr6b92OaA/E63GQtq6i1F/JrAP2Ne1a1dp3z5TDWYAcIeMDCnENUnZM0HNNKfOSh0uW3AJg9/L9tCcOit1JqipS2JQSIjkokO50tPTddttt8lgMKh79+6Ftt+/f7/50Lf//ve/LompuKSkpOi7776TJD388MNW22a/5uyayevWrdODDz6oKlWqKDAwULVr19bIkSMVa+WXE7Nnz8516F5qaqr+7//+T23atFFYWFiu8XPauXOnhgwZosjISAUHB6tMmTKqX7++nn32WR05cqTQ15mcnKxJkybprrvuUpkyZVSxYkW1a9dOX3zxhbLs2IFuNBq1ePFiPfzww4qIiFBgYKDKly+vVq1a6T//+Y+uXLmSr8+ECRNkMBh0++23m68NHDjQvA55X3OnTp0KPFDwxIkT5j6zZ8+WZNrp3aNHD912220qVaqUbr/9dg0fPtzqn0NOnrK22e+/HTt26OTJkzb3g2UcNAcAAADnq1xZ+vFH6cMPpTFj7PghPUWmkgxrJE2XVMFlIdrvkqRBkpbb183fX3rrLemFFyQf9mQAcKMOHUw14Hv3NtU0t0OSX7jWVHlLlwNqWrx/uVRtZRkK39l4NaCG5t2+ROVTj1m8Xz7tpLqcHaMyGRfsik/NmkkLF7qsLI+/v78GDBig9957T2vWrFFcXJyqVatWYPuZM2dKknx9ffXkk0+6JKbi8vPPP5truLZp08bmfhMnTsyXvD1+/Lg+/fRTffXVV1qxYoU6dOhgdYyEhAT17NlTe/fuLbBNRkaG/vnPf2rq1PyHGf7+++/6/fff9cUXX+jTTz/VkCFDLI5x5swZ3XPPPfrtt9/M127cuKFt27Zp27ZtWrp0qV544QWrsUrShQsX1LNnT23dujXX9dTUVO3atUu7du3Sp59+qm+//VatW7cudDxneOWVV/TOO+/kunbixAl99tlnWrJkiaKiogrc/e1Jayvlfv9FRUVpwIABNvWDZfyrFAAAAK7h4yO9+KKp1rDdP6Qvk+nwts0uCKwosg/FW25ft7p1pe3bTetAQhiAJ6hb1/R9ecQIu7qVybigv8c9r7DUw7oYWC/fly0J4WxZBn+LY4Sl/q6/xz1vf0L42WeL+HeNfQYPHixJysrK0pdffllgu/T0dH399deSpC5dulhNHpcEW7aYDlI1GAxqbuOhsj/88IMmTJigevXqacaMGdq1a5fWrVunYcOGycfHR4mJiXrggQcK3e05aNAg7du3TwMGDNAPP/yg6OhoLVu2LFdCddCgQeakZffu3fX1119r586d2rVrl7744gvdeeedSk9P19ChQy3WXc7IyNADDzxgTlp26dJFy5Yt0+7du7V06VLde++9WrVqlcaNG2c11qSkJHXs2FFbt25VQECAhg0bpm+//Va//PKLtmzZokmTJqlixYqKj49X9+7dc732ESNGKCYmRqtXrzZfe/PNNxUTE2P+GmHn/7OS9MUXX+idd95Rx44dNXfuXO3evVvr1q0zJ1MvXLigp59+usD+nrK22SIjI1WuXDlJf74vUXTsFAYAAIBrtWhh2pk2cqRk5Yfo/GIl/U3Sa5LGyT3/dM2Q9B9Jb0qy8/CiJ5+UPvnEZR/VBoAiCwyUPv1U6thRGjxYunbNpm6lsq7rwdhntSfpZ228bZwyfQKdEo5vVor+du4/anb5K/s6hoRIM2ZIjz7qlDgKExkZqQ4dOmjz5s2aNWuWxowZY7Hd999/rwsXTIntQYMGFUtsrrRt2zZJUu3atVW2bFmb+uzevVt33323oqKiFBwcbL5+zz33qF27dhowYICuXbumUaNGadGiRQWO8+uvv2rGjBm5Epd33323+fGSJUvMCfovvvjCnLjP1qJFCz3xxBO6//77tWHDBv3zn/9U9+7dc9Vynjp1qvbc3Dk/dOhQTZs2zXyvefPm6tmzpwYNGmTe/V2QV155RYcOHVLZsmW1bt06tWjRItf9v/71r+rXr5/atm2rs2fPaty4cfrqK9N7vlKlSqpUqVKutapWrZoaNWpkdc7CbNu2TUOGDNG0adNkMBjM1++55x4FBARo+vTp2rFjh/bs2aNmzZrl6utJa5vNYDCoWbNm2rhxo/l9iaJjuwIAAABcLyREmjNH+uorKccPPIXLkjRRUmdJp1wTW4FOyZSUfkN2JYSDg6Wvv5ZmzyYhDMCz9e5t+qVd06Z2dWt2+Uv1O95L5VJPOBxCudQT6ne8p/0J4WbNTLEXU0I4W3Zi7MiRI/lKBGSbNWuWJCksLEw9evQotthcJbvubCU7D5H9/PPPcyU5s/Xv399cl3n58uU6e/ZsgWN07tzZ6k7Wt956S5LUs2fPfEnLbIGBgZo8ebIkU9mETZs25bqfvRO2cuXK+vDDDy2O8dFHHyk8PLzAOBISEjR9+nRJ0htvvJEvIZytZs2aeu211yRJCxYs0I0bNwoc0xmqVKmiTz75JFdCONuoUaPMjy3tuvWUtc0r+31oaz1kFIykMAAAAIrPE09Ie/YoPc9ulMJtkal8w04XBGXJzpvz/WRft5Ytpb17pX79XBATALhAdpkbOz+aXjllvwYc+7tqXY8q8tS1rm3SgGN/V+UUOw/uHDGiWMpFWPLII4+YP76enfzNKT4+XitXrpQkPfHEEwoICCjO8Fwie9dz+fLlbe7TuHFjq6UmshO9GRkZ+RKJOfWz8vdpXFycoqOjJUm9e/e2Gk+DBg0UFhYmSdq+fbv5+pkzZ3To0CHzGKVLl7bYPzg42Oocq1evVkpKik2xZNdRTk9PN8fvKo888ohKlSpl8V69evXMSftjx3LX+Paktc2rQgXTeROJiYlKS0uzuR/yIykMAACA4lW3rq6sWKF3Cm+ZxxVJ90s64+yI8jhzc54r9nV7+WXpp5+kOnVcEBMAuFB2OYkFC+z6hEOprOtqe+GjIk/7lwsfqVTWdds7hISYDpP79FNTzG4QFBSkvn37SpIWLlyopKSkXPe/+uorZWRkSJLVHa4lyaVLlyTZlxRu2bKl1futWrUyP96/f3+B7Zo0aVLgvd27d5sf9+nTRwaDwepXQkKCJOncuXPmfjExMUWK2VosVapUsRpHzpIQOWNxhfr161u9n/1nei1PCRlPWtuCYpakixcv2twP+ZEUBgAAQPELCNArkrpIsu/HoQRJ810RUQ7zbs5jo8qVpTVrpLfflm6BHWEAvFgRyklUuxGtMunxdk9VJj1e1ZLt2CXppnIRlgwZMkSSKZG2ZMmSXPeydw+3bNlSjRs3LvbYXCHwZgI+OTnZ5j6FlZqoXLmy+XF20tkSa4no8+fP2xxPTjlLNly+fNn82J6YXRGLKxS0Ozebz81DcDMzM3Nd96S1zSvn+zAoKMiO6JAXB80BAADAbdZKaiJpjqTuNvfaXXgTh9iRpOje3VQ72M46iwDgsbLLSfz739LNeqDWGGRU3WtrtK9Cf7umuePaGtsbjxghffCB23YH59W0aVM1b95c0dHRmjVrlgYMGCBJ+vnnn3Xw4EFJt84uYUkKDw9XYmKi1eRtXpZq2BaFr69vgfdyJjK/+eYbq7uKc8qZaDYajebHhcWcs21BsQQEBNhVEqJ69eo2ty1OnrS2eWW/D/39/c2lXFA0JIUBAADgVhdkKtaQ+MYbCv7Pf6T09EJ62L6bpGhsGN/fX3r3Xemf/5R8+PAdgFtMYKA0ZYrUqZM0eLCU56PleUUmrrQ7KRyZ+GPhjUJCpOnTTTuYPczgwYMVHR2tqKgoHTt2TLVr1zbvEg4KClKfPn3cHKHzhIeH6+jRo7l2fhYmPt767vGc97NrxNqrYsWK5sd5yzLYKufchcVsbfdsdixpaWmqWLGiqlSpYncsnsST1jav7Pdhdh1jFB3/ggUAAIDbGSUlP/OMNG6cDa3bujiaNoU3GTdOev55EsIAbm3Z5SQK2aFbPu2E3UOXK6xPYKBpbg9MCEtS3759Vbp0aRmNRs2ZM0fJycmaP99U3qhXr14qW7asmyN0nuwyGEePHlVWVpZNfXbt2mXz/aIkHCWpWY5Da9essWPneQ45S3zYE7MrYvEknrS2eR0+fDjf+Cga/hULAAAAz7F+fSENAiX93cVB/F2S5ZO6zTZscHEMAOAh0tKklBSrTY6G3GP3sMeCC+mTkmLDJ0fcJzQ0VL1vJqznzJmjxYsX6+rVq5KkQYMGuTM0p2vfvr0k6fr16zp06JBNfWJiYrRnz54C78+cOVOSqTxEp06dihRX3bp11bBhQ0nS/PnzderUKbvHqFq1qho0aCBJWrRoUYF1k5OSkrRw4cICx+nevbv8/f0lSR9++KH5sMGSypPWNqfExET9/vvvkv58X6LoSAoDAADAIxjOn5e2bCmkVVdJwS6OJOTmPFZs2SIV8RAWAChRli0rtMmRkEK+Z1rqE2pDHxvmdqfBgwdLkk6ePKmXXnpJknT77bcXOcnpqXIm33bu3Glzv6FDhyopKSnf9blz5+rHH03lQ/7xj384VGph3M1PGKWkpKhXr166cOFCgW1TU1M1ZcoUpeT5Jcfw4cMlSefOndOLL75ose8LL7xgtcRBtWrVNHDgQEnSvn37NGzYMKuJ4fPnz2v69OkF3vcEnrK2Oe3evdtcf5iksOOoKQwAAACPUGrlSqnQg0YeKZZYTPN8V/DtrCxp+XJp6NBiigcA3GT5cqu3k33LKrZM61zXal9bp3JpJ3NduxJQS8dy7Cg+XaaNUnxCFZiVaH3usWPtjbjYtGvXTg0aNNChQ4d07tw5SdLAgQMLPVTr+vXrWrx4ca5rf/zxh/nx4sWLc9VLbdq0qZo2bZpvnL1792rv3r0W5zh37pxmz56d69ojjzyi4GD7f7Faq1YtNWzYUAcPHtT69evNyU9rWrRood27d6tFixZ6+eWX1bhxY129elWLFy/WtGnTJEkhISF6//337Y4npz59+mj16tWaM2eOoqOj1bBhQw0bNkwdO3ZUeHi4kpKSdPToUW3ZskVLly7VpUuXzAcDZhs+fLhmzZqlPXv2aOrUqTp+/LieeeYZRURE6PTp05oyZYrWrFmjli1bWi1z8MEHH2jbtm3av3+/Zs6cqR07dmjo0KFq3ry5goODdeXKFR04cEDr1q3Tjz/+qMaNG5t/seCJPGlts62/+Ymy8uXLq21bV5cTu/WRFAYAAIBHKPX994W08Jf0QHGEIqnHzfmsfHR5yRKSwgBubadPS7t3W21yLPgeZRlMH5sPzLiie8+OU4NEy79UOxT6oNZVeVMpfuWUZfDX0ZB7dOdVK7uBd+2SYmOl6tWL/BJcbdCgQRo1apQkycfHR0899VShfRISEqwmVkePHp3r+fjx4y0mhZcvX66JEydaHOP333/PN0enTp2KlBSWpP79+2vMmDH69ttvdePGDZUuXdpq+/vvv1/333+/Jk6caPG1hoaG6rvvvlOtWrWKFE9OM2bMUOXKlfXBBx8oISFBkyZN0qRJkyy2LVOmjHx9fXNd8/Pz0/fff6/OnTvr999/16pVq7Rq1apcbbp06aIXX3xRXbsWvMM9ODhYUVFR6tevn1atWqWDBw/q+eefL7B9aGio7S/STTxlbbPNmzdPktS7d28FBAQU8VUhG+UjAAAA4HYVJPn/9FMhre6VVM71wUg35ymk3uWGDdKlS8URDAC4RyG7hCXpSGg3SVKta5s08Oi9BSaEJalB4ncaePRe1bq2KVdfR2Nwp/79+5sf33fffYqIiHBjNK4zaNAgBQYG6vr16/r2229t6jNhwgStWrVK999/vypXrqyAgADVqlVLI0aM0IEDB9SxY0enxObr66t33nlHBw8e1IsvvqhmzZqpfPny8vX1VUhIiO68807169dPc+bM0dmzZxUUFJRvjKpVq2rPnj1688031ahRIwUFBalcuXJq06aNpkyZopUrV9qUhKxQoYJWrlxp3lF9xx13KDg4WH5+fqpQoYJatmypZ599Vj/++KPWrl3rlNfvSp60ttu3b9fx48clSSNGjHD6a/VG7BQGAACA2z0oyZCZWUirh+0Y0SjpB0mfSjovqZKkZyXdL8n6x3pzz7eq4NsZGdJ330k27AoDgBKpkJq+6YZAxZVuofvOjFHTy9/YNGRwxnk9emqA9pZ/Qlsr/VvphlLyN6Zaj2HkSHuiLlYxMTHmx08//bRNfWrVqmWui+qICRMmaMKECQ6PY4vw8HA9+eSTmjZtmmbMmKE+ffrY1K9r16427QDN6amnnrJpx3VekZGRDpWjCAoK0quvvqpXX33V4v1OnTrZ/OfWuXNnde7c2e4YbH1vbNq0yeExJOnEiRM2tfOEtZ0xY4Yk0y9fmjRpUuRY8Cd2CgMAAMDtCk/3+kp6yMbREm627SFTUveXm//tcfN6go3jPKRC/7m8ZImNYwFACXPxorR5s9UmSX6V1Pd4T5sTwjk1vfy1+h7vqSS/ytYbRkWZYvFQM2fOlCRVrFhRDz1k699TJdOrr76qgIAArV+/Xtu3b3d3OPAip06d0pdffilJBZZMgf1ICgMAAMCtQiTdV2irjpLCCm0lbZR0l6QVBdxfcfP+RhvGCr85rxVr1kiJVg5JAoCS6vvvpUI+wVEu/ZTK5zlQzh7l006qXPop640yM6UffijyHK504sQJLVq0SJLpgLlSpUq5OSLXioiIMNfIJTGH4vTWW28pPT1dDz/8MAfMORHlIwAAAOBWD0gq/MfoRwq5ny5pgqS3ZCodYc0ZmeoFj5U0XqYD5azNayWBnJZmSlbY+DFaACgxCikdUayWLZMGDHB3FJKkuLg43bhxQ8ePH9crr7yi9PR0BQYGWj1Q7FYybtw48yFz169fL/LBdYCtjEajatasqfHjx9tcogW2ISkMAAAAtyq8dIRBUk8r949L6itphx2zGiVNkrRB0lxJtQpo11PSSFlNNC9ZQlIYwK0lKUlavdrdUfxp9Wrpxg3pZjLSnfr166eoqKhc19544w1Vq1bNTREVr5CQEI0fP97dYcCLGAwGvfLKK+4O45ZE+QgAAAC4TWlJ3Qtt1U7SbQXcWyCpqexLCOe0/Wb/hQXcryLpL9aHWLnSlEABgFvF6tVSSoq7o/hTcrJnJakllS5dWk2bNtXs2bM1evRod4cDAHZjpzAAAADcprtMiWHrLO0lTpL0T0kznRDFVUmPSVoj6SNJZSzMv7Xg7jduSKtWSQ8XvucZAEoETyodkW3ZMqmntU+NFI9Nmza5OwSPZjQWVsIJgKdgpzAAAADcxrY0aq88z/dKai7nJIRzmnFz3L2FzG/BkiVOjgUA3CQ93XTInKdZscIUGwDAKUgKAwAAwC1KyXTInHWtJNW4+dgo6WNJrSX97qKofr85/sf6s45wTUktrXf7/nspNdVFMQFAMYqKkq5ccXcU+V25Im3e7O4oAOCWQVIYAAAAbnGfpJBCW2XvJb4gqYekf0lKs32SUqWkQYOkgAA7Iku7Oc+DN+fNGUcBrl2T1q61Yw4A8FCeWDoimyfHBgAlDElhAAAAuIVtpSMelrRe0l2SfrBvgvr1pZ9/lqZPl3buND23y/c3590gm6KlhASAW8H69fa19/GR7rvP/nnuu8/U1x7r1tk/DwDAIpLCAAAAKH5paXqo0EZ3ylTn9z5JZ+0bf8gQafdu6a67TM/vusv0fPBgOwM9K+lemeoXN7Te9NtvqXcJoOT77jupaVPb2tatK/30k5SRYf88mZnSli1SnTq2tW/a1BQbAMApSAoDAACg2Pn/9JPKF9rqoKS39GdtXxuULSstXCh9/rlUpkzue2XKSF98IS1YYGpnM+PNOA5Zb3b5srRxox3jAoAHioyUtm+Xnn3Wervhw6W9e03ti1LrNypKqlfPNMbw4dbbjhxpiiky0v55AAAWkRQGAABAsSv1gy2lIOxIBkvSX/4i7dsnPfqo9Xa9e5uSEG3b2je+LfFQQgLArSAwUJo82fQ9Le8v0apWlVatkqZMMf2ybcUK065fe2Vmmg7pDA42jbVypWnsnMqVM8XwySemmAAATkNSGAAAAMUrM1OlVq503ngGg/Taa6ZdZzVr2tanVi3TzrZx40z9nWX58qIlRwDAE/XqZfolWuvWpud9+0r790tdu/7ZxpHD33L27dZNiomR+vQxPW/TRtqzxxQDAMDpSAoDAACgeG3ZIp+EBOeMVa2atGGD9MYbkp+ffX39/KT//MfUP+/utKI6f95UXxMAbhW1aplq/27aJH3zjVQ+R/GfpCRpzZqij71mjXTjxp/PK1SQ5s41zbV5s2luAIBLkBQGAABA8Vq82DnjPPSQqVxEp06OjdOpk2mcBx90RlTOe30A4Cn8/aWOHfNfX71aSkkp+rjJyaYx8urY0TQnAMBlSAoDAACg+GRlSUuXOjZGqVLSp5+aPnZcsaJz4goLM5V+mDzZNL4jli41vU4AuNU5UjrCmWMAAOxm52fsAAAAAAfs2CGdPVv0/g0bSvPnS40bOy+mbAaD9OyzUvv20uOPS4cOFW2cM2ekn38uwkF2AFBMsrKK/j0u5xjff19Io5YyHdK5u+AmK1aYagn7OLhnrUEDx8cAAC9CUhgAAADFZ8mSovcdNkz63/+k0qWdF48lTZpIu3dLL7wgff550cZYsoSkMADPtWOH1K5dMUzUU4Umha9cMX3fddS2bXzfLQZRUVHq1KmTwsLCdPz4cQUHB7s7pGKzadMm/e1vf5Mkbdy4UZ0cLV9lxf79+/X2228rKipK8fHxSk9PlyTt2bNHTZs2VadOnRQVFaWOHTtq06ZNLoujuFhbW6PRqCZNmmj//v2aOXOmBg4c6KYobz0khW9BCc46uMULWFor1s92rJ9jWD/HsH6OYw0dw/oVgdGoCosWydfObllly+ra//6ntB49TIcaJSW5JLx83nxTAa1bK+Tf/5bP1at2dc1ctEiXXnrJtPvYBXj/OYb1cwxrdQtYtKiYJspOCr/q+qkWLSoxSeGMjAzFxMRo586d2rVrl3bu3KmDBw8qMzNTknT8+HHVsuGQvd9//10//vijoqKitG/fPp07d04Gg0GVK1dWq1atNGDAAP3973+XwUl/F2VlZelf//qXJOnFF1/0qoRwcYqOjlb79u2VnJzs7lA8gsFg0Kuvvqo+ffpo7NixevTRR3nvOQlJ4VtQw4YN3R1Cicb6OYb1cwzr5xjWz3GsoWNYP+uaStpjZ58tkvpdvarTgwY5PyAb1ZD0jaS/2tHH99QpdalcWXtdE5JFvP8cw/rBa2RlFdOBmPUk1ZcpKRwp6bBrp1u0SHr//RJRQmLSpEmaMGGCQ2M8+eST+vLLLy3eO3HihE6cOKGFCxeqa9eumj9/vsqVK+fQfJK0YMEC7du3TxUrVtTIkSMdHg+WjRkzRsnJyQoNDdXbb7+tFi1aKCgoSJJUt25dN0fnHr1799bEiRP122+/6ZNPPtGYMWPcHdItwfO/WwIAAOCWcKcdbTMlTZD0N0mnXRKN7U5J6iRpokxx2YoUIwCPtGOHFBtbDBP1vPlfQ47HLhQba6rnXgIYjUbz48DAQLVp00Z16tSxa4y4uDhJUoUKFTR06FDNnTtX27Zt086dOzVt2jTVq1dPkrR69Wr16NFDWU44AHXSpEmSpGHDhrFT00XS09MVFRUlSRo6dKiGDx+uli1bqlGjRmrUqJECAwMlmcotGI3GW6J0hC18fHz0/PPPS5I++OADdlE7CUlhAAAAFAtbf3w8LVMy2N4krCtlJ6k7y/YkNT8uA/BIxVo6wtJjFyq21+aYtm3b6rPPPlN0dLSuXbum7du3669/tefzKFL16tU1bdo0nTlzRtOmTVOfPn3Utm1btWzZUkOHDtUvv/xiHvOnn37SN99841DMa9eu1YEDByRJTzzxhENjoWAJCQlKS0uTJEVGRro5Gs/y6KOPyt/fXxcvXnT4/QwTksIAAAAoFqttaLNU0l0ylY3wRJtlKoOxzIa2a1wbCgDYr9hKRwyR1CLH85Y3r7nYokWm1+jhunbtqmHDhunuu++Wn1/RqnrOnj1bQ4cOValSpSzeL126tKZOnWp+vtjBP/cZM2ZIku6++241aNDAobFQsNTUVPNjf39/N0bieSpUqKBu3bpJ+vP9CMdQU/gWdPDgQYWFhbk7jBIhISEhX/041s92rJ9jWD/HsH6OYw0dw/oVTfIrryho5sz81yVdef11tX/2Wf3uosPZnMpo1LXZsxU8frwMKSn5bic//bR2vv22y6bn/ecY1s8xltYPJYTLS0eESpou6dE8130kfS7pXpmSw4mumT67hIQLDpxLT09XRESE4uPj1a1bN61cudJq+/3796tx48aSTGUXxo4d6/SYCtOoUSOFhYUpISFBR48eLfI4KSkp+u677yRJDz/8sNW22YfajR8/XhMmTNC6dev08ccfa9euXbp8+bKqVq2qv//973rllVdUvXp1i2PMnj1bAwcOlGQ6dK9KlSqaOnWq5s+frz/++EMXL140j5/Tzp079cUXXygqKkpnzpyR0WhURESE7rnnHj3//PO64447rMaenJys//3vf1q4cKH++OMPBQYGqn79+nrqqac0yI6zDYxGo5YsWaJ58+Zp586dunDhgoKCgnTHHXeoR48eeu655/LVeJ4wYYImTpyY69rAgQPN6yAp12vu1KmToqKi1LFjx3wlJE6cOKHbb79dkjRr1iw99dRTWrt2bb4/h27duunVV18t8M8hJ09Z24cfflgrVqzQjh07dPLkSdWsWdPmvrDAiEKdPn3aKFN1fOPp06fdHU4u58+fN8eW/XX+/Hl3h1VisH6OYf0cw/o5hvVzHGvoGNaviDIyjMbXXzdmlitnNErGTMm4VDLeWVLXLybGaPzHP4xGg8FolIzG8uWNxtdfN71OF+L95xjWzzElZf08+ec4Zzt8+LDx4MGDxsOHD1tvGBVlNIaEmL5fOf2rtdGoY0ajjIV8HTMa1co1MYSEmF6ji4wePdooyejj42OMjY212vaFF14wSjL6+voW2tZoNBqffPJJ8/v1+PHjTorYaAwNDTVKMjZu3LjIY2zatMkc2/r16622zW43fvx444QJE/J9r8j+Cg0NNUYV8Gc1a9Ysc7tdu3YZmzZtmq//+PHjze3T09ONw4cPL3AuSUZ/f3/j559/XmDccXFxxvr16xfYv1u3bsbVq1ebn2/cuNHiOOfPnze2a9fOaiyVK1c27tixI1e/8ePHW+2T9zV37NjRKMnYsWPHfDEcP37c3GfWrFnGl19+ucAxw8PDjQcPHixwXTxpbY1Go/G3334zt5szZ06B7W5FNn+ftwM7hQEAAFB8fH2liRN1cdAgNatZU8mSLrk7Jkc0aiQtWyZdvCglJ0sVK0o3TwgHAI/ToYP0yy9S797Snj12dq4saZqkugXcj5Rky8fdb5f0k6TDBdz/Q9IwSfH2hdesmbRwoVS3oPgcN3jwYL333nvKysrSl19+qTFjxlhsl56erq+//lqS1KVLF1WrVs1lMVmzZ88eJSaadmXXr1+/yONs2WIq6mQwGNS8eXOb+vzwww/avXu36tWrp5deeklNmjTR1atXtWjRIn3xxRdKTEzUAw88oJiYGKu7PQcNGqSYmBgNGDBAjz32mG677TadOnUqV9mMQYMG6csvv5Qkde/eXf369VNkZKQMBoP27t2r//u//9OBAwc0dOhQ3XbbberRo0euOTIyMvTAAw/ot99+k2T6Mxs+fLgiIiJ06tQpTZkyRatWrdLFixetvuakpCR17NhRhw4dUkBAgAYOHKi///3vioiIUFJSkjZv3qz//e9/io+PV/fu3bVnzx7zax8xYoQeeeQRnTlzRl27dpUkvfnmm3rooYfM41eqVMmmtc/piy++0LZt29SxY0cNGzZMkZGRunLlir788kt9+eWXunDhgp5++mlt377dYn9PWdtskZGRKleunK5cuaItW7ZowIABdq8JcnBaevkW5sm/YS4pv6X3VKyfY1g/x7B+jmH9HMcaOob1cwzr5xjWzzGsn2NKyvp58s9xzmb3DrLkZKNxxIgi7MYNMRq1wIbdwEX9mn9zDjvjevZZ02sqBh06dDBKMt5xxx0Ftlm6dKn5vbd48WKbxnXFTuFHHnnEPOaiRYuKPE737t2Nkox16tQptG3O7wt333238dq1a/nafPnll+Y2jzzySL77OXcKSzLOmDGjwPkWL15sbvfFF19YbJOcnGzs3LmzUZKxVq1axvT09Fz3P/74Y/MYQ4cOtTjG008/nSsmS7tZR44caZRkLFu2rHHXrl0Wxzlx4oSxSpUqRknGJ554It/9vLt8C2LrTmFJxiFDhhizsrLytRs8eLC5zS+//JLvvietbU5/+9vfjJKMDRs2tNruVuOKncIcNAcAAAAAgDcJDJQ+/VRasEAKCbGj4zVJj0l6VlL+eupFlyJphKTHb85ho5AQ0+7gyZNNr6kYDB48WJJ05MgRbd261WKbWbNmSZLCwsLy7ZwsLkuWLDEfLte8efNCawFbE3uzDrW9O1U///xzBQcH57vev39/de/eXZK0fPlynT17tsAxOnfurKeffrrA+2+99ZYkqWfPnuY/m7wCAwM1efJkSaZ6u3lr8GYfyFe5cmV9+OGHFsf46KOPFB4eXmAcCQkJmj59uiTpjTfeUIsWLSy2q1mzpl577TVJ0oIFC3Tjxo0Cx3SGKlWq6JNPPjHXes5p1KhR5sfZu8Fz8pS1zSv7fRjr0vro3oGkMAAAAAAA3qh3b1M5iaZN7ew4RdJfZCr14Kg/JLWVNNW+bs2amWJ/NO+hdq71yCOPmA8Jy07+5hQfH28+hO6JJ55QQEBAcYYnSfrtt9/MB5QFBQXpyy+/tJgUtNWFCxckSeXLl7e5T+PGja2WmshO9GZkZORLJObUr1+/Au/FxcUpOjpaktS7d2+r8TRo0MB8mGjOUglnzpzRoUOHzGOULl3aYv/g4GCrc6xevVopNw+eLSyWDh06SDKVGcmO31UeeeSRXKU2cqpXr545aX/s2LFc9zxpbfOqUKGCJCkxMVFpaWk290N+JIUBAAAAAPBWdetK27dLI0bY2XGPpLslrXZg8lU3x9hrX7cRI6Rt21xaP7ggQUFB6tu3ryRp4cKFSkpKynX/q6++UkZGhiRZ3eHqKmfOnFH37t117do1GQwGzZgxQw0bNnRozEuXTNX/7UkKt2zZ0ur9Vq1amR/v37+/wHZNmjQp8N7u3bvNj/v06SODwWD1KyEhQZJ07tw5c7+YmJgixWwtlipVqliNo1GjRua2OWNxhcJqSWf/mV67lnuHvietbUExS7K5FjEsIykMAAAAAIA3c6icxH8cmPg/KlK5iE8/LbZyEZYMGTJEkimRtmTJklz3sncPt2zZUo0bNy7WuC5duqQuXbroxIkTkkwfy+/Tp4/D4wbeXOvk5GSb+xRWaqJy5crmx9lJZ0usJaLPnz9vczw55SzZcPnyZfNje2J2RSyuUNDu3Gw+Pqa0YGZmZq7rnrS2eeV8HwZxuK9D/NwdAAAAAAAA8AC9e0t3320qybB3r42dtkk6K6mKnZOdvdnXRs2amRLCbtgdnFfTpk3VvHlzRUdHa9asWRowYIAk6eeff9bBgwclFf8u4WvXrqlbt246cOCAJOk///mPnnvuOaeMHR4ersTERKvJ27wcKVeRk6+vb4H3ciYyv/nmG6u7inPKmWg2Go3mx4XFnLNtQbEEBATYVRKievXqNrctTp60tnllvw/9/f3NpVxQNCSFAQAAAACASXY5iX//W5pqS51fo6RvJT1j50TLbW86YoT0wQdu3R2c1+DBgxUdHa2oqCgdO3ZMtWvXNu8SDgoKcsoOXVslJyerR48e2rVrlyRp9OjRGjdunNPGDw8P19GjR3Pt/CxMfHy8zfeza8Taq2LFiubHecsy2Crn3IXFbG33bHYsaWlpqlixoqpUsfeXJJ7Fk9Y2r+z3YXYdYxQd5SMAAAAAAMCfAgOlKVPsKCexpPAmRekTEmKKwc3lIizp27evSpcuLaPRqDlz5ig5OVnz58+XJPXq1Utly5YtljjS09P18MMPKyoqSpL0zDPP6N1333XqHNllMI4ePaqsrCyb+mQnqG25X5SEoyQ1a9bM/HjNmjVFGiNniQ97YnZFLJ7Ek9Y2r8OHD+cbH0VDUhgAAAAAAOTXu7f0yy82JGSPFGHwQvoEBprm7t27CGO7XmhoqHrfjG3OnDlavHixrl69KkkaNGhQscSQmZmpvn37auXKlZKk/v37a8qUKU6fp3379pKk69ev69ChQzb1iYmJ0Z49ewq8P3PmTEmm8hCdOnUqUlx169Y1H6I3f/58nTp1yu4xqlatqgYNGkiSFi1aVGDd5KSkJC1cuLDAcbp37y5/f39J0ocffmg+bLCk8qS1zSkxMVG///67pD/flyg6ksIAAAAAAMCytDQpJaWQRg8UYeBC+qSkSOnpRRi3+AwePFiSdPLkSb300kuSpNtvv73ISU57GI1GDRkyRIsXL5YkPfzww5o1a5bTavnmlDP5tnPnTpv7DR06VElJSfmuz507Vz/++KMk6R//+IdDpRayy2SkpKSoV69eunDhQoFtU1NTNWXKFKXkeT8PHz5cknTu3Dm9+OKLFvu+8MILVkscVKtWTQMHDpQk7du3T8OGDbOaGD5//rymT59e4H1P4Clrm9Pu3bvN9YdJCjuOmsIAAAAAAMCyZctsaNSzCAP3lFTIrtZly6SbOw09Ubt27dSgQQMdOnRI586dkyQNHDiw0MTs9evXzcncbH/88Yf58eLFi3PVS23atKmaNm2aq/2oUaPMNYwbNWqksWPHFrqLt6hlGmrVqqWGDRvq4MGDWr9+vTn5aU2LFi20e/dutWjRQi+//LIaN26sq1evavHixZo2bZokKSQkRO+//36RYsrWp08frV69WnPmzFF0dLQaNmyoYcOGqWPHjgoPD1dSUpKOHj2qLVu2aOnSpbp06ZL5YMBsw4cP16xZs7Rnzx5NnTpVx48f1zPPPKOIiAidPn1aU6ZM0Zo1a9SyZUurZQ4++OADbdu2Tfv379fMmTO1Y8cODR06VM2bN1dwcLCuXLmiAwcOaN26dfrxxx/VuHFj8y8WPJEnrW229evXSzIdaNe2bVuXvG5vQlIYAAAAAABYtnx5IQ3KS+qQ59r3ko7muVZX0v05nneUVE7SFetzjx1baIjuNGjQII0aNUqS5OPjo6eeeqrQPgkJCVYTq6NHj871fPz48fmSwkuW/FmTef/+/WrevHmh82bvsCyK/v37a8yYMfr2229148YNlS5d2mr7+++/X/fff78mTpxo8bWGhobqu+++U61atYocU7YZM2aocuXK+uCDD5SQkKBJkyZp0qRJFtuWKVNGvr6+ua75+fnp+++/V+fOnfX7779r1apVWrVqVa42Xbp00YsvvqiuXbsWGEdwcLCioqLUr18/rVq1SgcPHtTzzz9fYPvQ0FDbX6SbeMraZps3b54kqXfv3goICCjiq0I2ykcAAAAAAID8Tp+Wdu8upNEDkvxvPr4kqY+kHpKez/P1wM17l2629VehJSR27ZJiY+2Nulj179/f/Pi+++5TRESEG6NxnUGDBikwMFDXr1/Xt99+a1OfCRMmaNWqVbr//vtVuXJlBQQEqFatWhoxYoQOHDigjh07OiU2X19fvfPOOzp48KBefPFFNWvWTOXLl5evr69CQkJ05513ql+/fpozZ47Onj2roKCgfGNUrVpVe/bs0ZtvvqlGjRopKChI5cqVU5s2bTRlyhStXLnSpiRkhQoVtHLlSvOO6jvuuEPBwcHy8/NThQoV1LJlSz377LP68ccftXbtWqe8flfypLXdvn27jh8/LkkaMWKE01+rN2KnMAAAAAAAyK/QXcLSn6UjVkl6WtJZK23nS4qSNFNSt5t9vy48hpEjbYjDPWJiYsyPn376aZv61KpVy6Fdu5J04sQJh/rbKzw8XE8++aSmTZumGTNmqE+fPjb169q1q007QHN66qmnbNpxnVdkZKRD5SiCgoL06quv6tVXX7V4v1OnTjb/uXXu3FmdO3e2OwZb3xubNm1yeAzJ9veRJ6ztjBkzJJl++dKkSZMix4I/sVMYAAAAAADkV2g94SBJ7SQ9I6m7rCeEs5292Xa4pL9KCnQwBveaOXOmJKlixYp66KGH3ByNa7366qsKCAjQ+vXrtX37dneHAy9y6tQpffnll5KkiRMnujmaWwdJYQAAAAAAkNvFi9LmzYU0qiLpL5KmFWGCz272rWq9WVSUKRYPdOLECS1atEiS6YC5UqVKuTki14qIiDDXyCUxh+L01ltvKT09XQ8//DAHzDkR5SMAAAAAAEBu338vZWYW0uiYg5PkPYzOgsxM6YcfpAEDHJzLOeLi4nTjxg0dP35cr7zyitLT0xUYGGj1QLFbybhx48yHzF2/fl3BwcFujgi3OqPRqJo1a2r8+PE2l2iBbUgKAwAAAACA3DypbMOyZR6TFO7Xr5+ioqJyXXvjjTdUrVo1N0VUvEJCQjR+/Hh3hwEvYjAY9Morr7g7jFsSSWEAAAAAAPCnpCRp9Wp3R/Gn1aulGzekmztUPUHp0qUVGRmp559/Xk8++aS7wwEAu5EUBgAAAAAAf1q9WkpJcXcUf0pONsXUs6e7I9GmTZvcHYJHMxqN7g4BgI04aA4AAAAAAPzJGaUjypSRpk0zfZUp4xkxAQDMSAoDAAAAAACT9HTTIXOO+OtfpX37pKFDTV/79knt2jk25ooVptgAAE5BUhgAAAAAAJhERUlXrhStb0CA9O670qZNUp06f16vU8c07jvvmNoUxZUr0ubNResLAMiHpDAAAAAAADApapmGu+6Sdu+WRo+WfH3z3/f1lV56Sdq1S2rSpHhjAwDkQ1IYAAAAAACYrF9vX3sfH2nsWGnnTqlx48LbN2liajtmjKmvPdats689AKBAJIUBAAAAAIDJd99JTZva1rZuXemnn6RJk+wrC1GqlPTf/0pbtuQuM2FN06am2ADACxmNRqePSVIYAAAAAIASzPdmuYbMzExlZWU5NlhkpLR9u/Tss9bbDR8u7d0rtW1b9Ln+8hfTGMOHW283cqQppsjIos8FACVUZmamMjMzJf35/d4ZSAoDAAAAAFCCBQYGSjLtJLt+/bozBpQmT5aWLJHKls19r2pVadUqacoUqUwZx+cKDjaNtXKlaeycypUzxfDJJ6aYAMALXclx+Gfp0qWdNi5JYQAAAAAASrDQ0FDz43PnzikxMdHxHcOS1KuXaSdv69am5337Svv3S127Oj52Xt26STExUp8+pudt2kh79phiAAAvYzQalZKSovPnz+v8+fPm6+XLl3faHH5OGwkAAAAAABS7MmXKKCgoSMnJycrMzFRcXJwMBoPzPmY8c6aC9uxRcqtWUkKC6ctVJk5U0P33K7lZMyk9XTpyxHVzAYCHyszMzFdHuGzZsipVqpTT5iApDAAAAABACWYwGFSjRg2dOnVKycnJkky7zDIyMpw1ga7dfbfkrPEKce3uu00Pimk+APB04eHhqlixolPHJCkMAAAAAEAJ5+Pjo5o1ayopKUnXrl0z7xoGAJQ8Pj4+CggIUJkyZRQcHKyAgACnz0FSGAAAAACAW4DBYFBwcLCCg4PdHQoAwMNx0BwAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRUgKAwAAAAAAAIAXISkMAAAAAAAAAF6EpDAAACgWGSkpOh8drYyUFHeHAgAAAABejaQwAAAoFltHjdK6AQO0bfRod4cCAAAAAF6NpDAAAHC5G+fOKW7jRklS7IYNuhEf7+aIAAAAAMB7kRQGAAAud3r9+tzP161zUyQAAAAAAJLCAADA5U6vXWv1OQAAAACg+JAUBgAALpVy8aIuREfnunYhOloply65KSIAxY2DJgEAADwLSWEAAOBSsevXy5iVleuaMStLsXlKSgC4dXHQJAAAgGchKQwAAFzqVAGlIighAXgHDpoEAADwPCSFAQCAy6ReuaL4nTst3jv3889Ku3q1mCMCUNw4aBIAAMDz+Lk7AAAAUDIlnjypmE8+UaqVxG7a1asyZmRYvGfMyNCGIUMUULZsgf1LlS2rxs89p9CaNR2OF4B7WDposl6/fm6KBgAAABJJYQAAUEQHP/9cJ1eudGiMSwcOFNrGt1QptZk0yaF5ALiHtYMmAytUcFNUAAAAoHwEAAAokqodOkgGg2snMRhM8wAokThoEgAAwDORFAYAAEVSo2tXdZ4+XUGVKrlk/KBKlXTPjBmq0bWrS8YH4HocNAkAAOCZSnRS+KWXXpLBYDB/bdq0yd0hAQDgVW5r00bdly5VtU6dnDputU6d1H3pUlVu3dqp4wIoPhw0CQAA4LlKbE3hffv26cMPP3R3GAAAeL3A8uXVYfJkHZ47V3vef19ZaWlFHssnIEDNRo1SZN++Mri6NAWAIuOgSQAAgJKtRCaFs7KyNGTIEGVkZKhSpUo6f/68u0MCAMCrGQwG1evXT5WaN9fW0aOVeOyY3WOE1q6tdu+/r/L16rkgQgDOxEGTAAAAJVuJLB/x8ccfa9euXapfv74GDRrk7nAAAMBN5evXV7eFC1UuMtKufuUiI9Vt4UISwkAJwUGTAAAAJVuJSwqfPn1ar732miRp6tSpCggIcHNEAAAgJ4OPj67HxdnV53pcnAy+vi6KCICzcdAkAABAyVbiksIjRozQ9evX9eSTT6qTkw+1AQAAjju7bZsykpLs6pORlKRz27a5KCIArsBBkwAAACVXiUoKL1y4UN9//70qVKig9957z93hAAAAC06vXVus/QC4T/ZBk83HjpWPg5/g8wkIUPOxY9Vh8mQFli/vpAgBAABgSYk5aO7KlSv617/+JUl65513FB4e7uaIPFdCQoK7QygxLK0V62c71s8xrJ9jWD/HuWINszIydHrDhiL1PbV+vW4fOVI+fiXjnye8Bx3D+jnG09avQpcualW7tmLeeENJp07Z3b9MzZpq/PrrCqlTp1heh6etX0nDWgEAUPKVjJ+6JL300ks6d+6c/vKXvzj9cLnY2Fir98+ePevU+VytYcOG7g6hRGP9HMP6OYb1cwzr5zhH17BxmTJ6pWZNi/d2JSZq3vnz6lupklqEhua7n3Htmu694w7tt7P0hCfhPegY1s8xnrB+AQaDJtx+u2oGBtrc52RKiiasWqW0lStdGFnhPGH9AAAAikuJSAr/9NNPmj59uvz8/PTZZ5/J4OSTjiMiIpw6HgAA3qqlhWRvWlaWvo6P1/rLlyVJH8bG6t7y5dWvcmUF+OSuZNUqJKREJ4UBb2eUVMnf364+lfz9leWacAAAAFAAj68pnJaWpqFDh8poNOqFF15Q48aN3R0SAACwwCCpRUhIrmuxKSl6/fhxc0I427rLl/X68eOKTUnJdb1FaKic+6tfAMWpUZkyCvL1tatPkK+vGpcp46KIAAAAYInH7xT+73//q0OHDqlGjRoaP368S+Y4ffq01ftnz55Vq1atXDI3AAC3ior+/iqbox7wukuX9E18vNKMRovtT6em6rXjx/VE5cq6p0IFSVJZPz9V9PdXQnp6scQMwLlaWfi0gC1ahoZqz/XrTo4GAAAABfHopPBvv/2mt956S5L0ySefqIyLdhBUr17dJeO6y8GDBxUWFubuMEqEhISEfPXjWD/bsX6OYf0cw/o5ztlraMzM1IG331bikSOq8/TTuq9DB71jY9/4qCgdnTVLoZGROrBhgww+Hv9hJt6DDmL9HOOJ65eVkaGonj2Vce2a3X3viYjQG7t3F9tBk564fiWJpfUDAAAli0cnhT/88EOlpaWpdu3aunHjhubPn5+vzf79+82PN2zYoHPnzkmSevTo4bIksqcLCwtTeHi4u8MosVg/x7B+jmH9HMP6Oc7RNaz0f/9XpH7hjzyiRo88UuR5PQXvQcewfo5x9/qd3bq1wIRw9XvuUdMXX9Te999X7IYN+e5nXLumrOPHVfkvf3F1mAVy9/oBAAAUJ49OCqempkqSjh07pj59+hTa/j//+Y/58fHjx702KQwAAAAUt9Nr1+a75hMQoOYvv6y6jz0mg8Gg9h9/rCPz5+uXd99VVlpavv5V3JgUBgAA8Cae/9lMAAAAAB4tKzMz3w7gsnXqqNuCBbrj8cdlMJiOkDQYDIrs00fdFixQ2Tp1crWPXb9eWZmZxRYzAACAN/PopPDs2bNlNBqtfuU8fG7jxo3m67Vq1XJf4AAAAIAXSY6PV8rFi+bndR97TF0XLFC5yEiL7ctFRqrrggWq27u3+VrKxYtKjo93eawAAADw8PIRAAAAADxfUOXKqtWjhy4fOqQmI0cq4r77Cu3jFxSkVuPH67a2bRXz6acq37ChSt92WzFECwAAAJLCAAAAABzi4+urv7z9dpH61ujSRTW6dHFyRAAAALDGo8tHAAAAAAAAAACci6QwAAAAAAAAAHiREp8UnjBhgvlwuU6dOrk7HAAAAAAAAADwaCU+KQwAAAAAAAAAsB1JYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAMCFMlJSdD46WhkpKe4OBQAAQBJJYQAAAABwqa2jRmndgAHaNnq0u0MBAACQRFIYAAAAAFzmxrlzitu4UZIUu2GDbsTHuzkiAAAAksIAAAAA4DKn16/P/XzdOjdFAgAA8CeSwgAAAADgIqfXrrX6HAAAwB1ICgMAAACAC6RcvKgL0dG5rl2IjlbKpUtuiggAAMCEpDAAAAAAuEDs+vUyZmXlumbMylJsnpISAAAAxY2kMAAAAAC4wKkCSkVQQgIAALgbSWEAAAAAcLLUK1cUv3OnxXvnfv5ZaVevFnNEAAAAf/JzdwAAAAAAUJIknjypmE8+UaqVxG7a1asyZmRYvGfMyNCGIUMUULZsgf1LlS2rxs89p9CaNR2OFwAAIC+SwgAAAABgh4Off66TK1c6NMalAwcKbeNbqpTaTJrk0DwAAACWUD4CAAAAAOxQtUMHyWBw7SQGg2keAAAAFyApDAAAAAB2qNG1qzpPn66gSpVcMn5QpUq6Z8YM1eja1SXjAwAAkBQGAAAAADvd1qaNui9dqmqdOjl13GqdOqn70qWq3Lq1U8cFAADIiaQwAAAAABRBYPny6jB5spqPHSufgACHxvIJCFDzsWPVYfJkBZYv76QIAQAALCMpDAAAAABFZDAYVK9fP3WdN0+htWsXaYzQ2rXVdf581evXTwZX1yoGAAAQSWEAAAAAcFj5+vXVbeFClYuMtKtfuchIdVu4UOXr1XNRZAAAAPmRFAYAAAAAJzD4+Oh6XJxdfa7Hxcng6+uiiAAAACwjKQwAAAAATnB22zZlJCXZ1ScjKUnntm1zUUQAAACWkRQGAAAAACc4vXZtsfYDAAAoKpLCAAAAAOCgrPR0xW3cWKS+sRs2KCs93ckRAQAAFIykMAAAAAA4KH7nTqUlJlq8V/2ee/TAjz+qeufOFu+nJSYqftcuV4YHAACQC0lhAAAAAHCQpRIQPgEBavnaa2r/0UcKrVlT7T/+WC3GjZNPQIBN/QEAAFzFz90BwPkSEhLcHUKJYWmtWD/bsX6OYf0cw/o5jjV0DOvnGNbPMayfY5y9fsbMTJ1aty7XtTK1aqnx668rpHbtXGOXv/detapdWzFvvKGkEyfM10+tXataw4bJ4Otb5DiKC+81AABKPoPRaDS6OwhPFxsbq4iICEnS6dOnVb16dTdH9KcLFy6oUqVK7g4DAAAA8Fph/v766I47zM/XXbqkb+LjlWblR60Ag0FPVK6seypUMF/715EjSiihtYXPnz+v8PBwd4eRiyf/HAcAgLuxUxgAAAAAHHAxPV0/XbmimoGBWnzhgnZfu1ZonzSjUTPPnVNMUpIeDg/XiZQUXSyhCWEAAFDykBQGAAAAAAcYJU09c6ZIfXddu6ZdNiSRAQAAnImD5gAAAAAAAADAi7BT+BZ08OBBhYWFuTuMEiEhIUENGzbMdY31sx3r5xjWzzGsn+NYQ8ewfo5h/RzD+jmG9XOMpfUDAAAlC0nhW1BYWJjHHfJQkrB+jmH9HMP6OYb1cxxr6BjWzzGsn2NYP8ewfgAAwJtQPgIAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiUiKfzLL7/ov//9r7p3766IiAiVKlVKwcHBioyM1FNPPaUtW7a4O0QAAAAAAAAAKBH83B1AYTp27KjNmzfnu56WlqYjR47oyJEjmjNnjvr376/p06crICDADVECAAAAAAAAQMng8UnhuLg4SVLVqlX16KOPqn379qpRo4YyMzO1fft2ffDBB4qLi9NXX32ljIwMzZ07180RAwAAAAAAAIDn8vikcP369fXf//5XDz/8sHx9fXPda9Omjfr376927drp8OHDmjdvnoYPH6727du7KVoAAAAAAAAA8GweX1P4+++/V+/evfMlhLOFhYXpgw8+MD9fvHhxcYUGAAAAAAAAACWOxyeFbdGpUyfz46NHj7ovEACAS2WkpOh8dLQyUlLcHQoAAAAAACXWLZEUTktLMz/28bklXhIAwIKto0Zp3YAB2jZ6tLtDAQAAAACgxPL4msK2iIqKMj+uX7++GyPxDAkJCe4OocSwtFasn+1YP8ewfvZJOX9ecRs3SpJiN2xQ2ccey9eG9bMP70HHsH6OYf0cw/o5hvVzDGsFAEDJZzAajUZ3B+GIrKwstW3bVjt37pQk7dq1Sy1atLBrjNjYWKv3z549q1atWkmSTp8+rerVqxctWBe4cOGCKlWq5O4wAMDlupQvryerVDE/n332rNZevuzGiAAAQLbz588rPDzc3WHkEhsbq4iICEme93McAADuVuJ3Cn/44YfmhHDPnj3tTghLMv9DAQDguVqGhuZ63io0lKQwAAAAAABFUKIL8EZFRemVV16RJFWqVElTp051c0QAAFcI9fVV/dKlc12rX7q0Qnx93RQRAAAAAAAlV4ndKXzgwAH17NlTGRkZKlWqlBYuXKjKlSsXaazTp09bvZ+zfAQAoPg1DwmRj8GQ65qPwaAWISHaeOWKe4ICAAAAAKCEKpFJ4ePHj6tLly66fPmyfH19NW/ePHXs2LHI491qtaUOHjyosLAwd4dRIiQkJKhhw4a5rrF+tmP9HMP62e6X0aN1cdeufNdbhobmSgqzfvbhPegY1s8xrJ9jWD/HsH6OsbR+AACgZClxSeEzZ87o3nvv1ZkzZ2QwGDRz5kz17NnT3WF5lLCwMI875KEkYf0cw/o5hvXLL/XKFV3as8fivTvLlFFpHx/dyMqSxPo5A2voGNbPMayfY1g/x7B+AADAm5SopHBCQoLuu+8+HTt2TJL0ySefaMCAAW6OCgBQVIknTyrmk0+UevVqgW3Srl6VMSPD4j0/g0FjatZUUmamJCl61CgFBATkalOqbFk1fu45hdas6bzAAQAAAAAowUpMUvjq1avq2rWrDh48KEl6++239eyzz7o5KgCAIw5+/rlOrlzp0Bi1g4LMjy/t3m2xjW+pUmozaZJD8wAAAAAAcKvwcXcAtrhx44buv/9+/fLLL5KkV199VS+//LKbowIAOKpqhw5SngPknM5gMM0DAAAAAAAklYCkcFpamnr27KmtW7dKkv71r3/pzTffdHNUAABnqNG1qzpPn66gSpVcMn5QpUq6Z8YM1eja1SXjAwAAAABQEnl8+Yg+ffpozZo1kqTOnTtr0KBB2r9/f4HtAwICFBkZWVzhAQAcdFubNuq+dKl+HjdOcZs2OW3cap06qfWbbyqwfHmnjQkAAAAAwK3A45PCS5cuNT/esGGDmjRpYrV9zZo1deLECRdHBQBwpsDy5dVh8mQdnjtXe95/X1lpaUUeyycgQM1GjVJk374yuLo0BQAAAAAAJZDHl48AAHgHg8Ggev36qeu8eQqtXbtIY5SpWVNd589XvX79SAgDAAAAAFAAj08KG41Gu77YJQwAJVv5+vXVbeFClbOzFNDJlBS1njZN5evVc1FkAAAAAADcGjw+KQwA8D4GHx9dj4uzq08lf38ZfPhrDQAAAACAwvDTMwDA45zdtk0ZSUl29Qny9dXF3btdFBEAAAAAALcOksIAAI9zeu3aIvU7v3mzkyMBAAAAAODWQ1IYAOBRstLTFbdxY5H6nt+6VVnp6U6OCAAAAACAWwtJYQCAR4nfuVNpiYkW71W/5x498OOPqt65s8X7GdeuKX7XLleGBwAAAABAiUdSGADgUSyVjvAJCFDL115T+48+UmjNmmr/8ceq//zzSsvKsqk/AAAAAAD4E0lhAIDHyMrMVOyGDbmula1TR90WLNAdjz8ug8EgSTIYDIr4xz/0+vHjik1JydU+dv16ZWVmFlvMAAAAAACUNCSFAQAeIzk+XikXL5qf133sMXVdsEDlIiMttj+dmqrXjh/X+kuXzNdSLl5Ucny8y2MFAAAAAKCk8nN3AAAAZAuqXFm1evTQ5UOH1GTkSEXcd1+hfdKMRs08d04xSUl6tX17hTdpotK33VYM0QIAAAAAUDKRFAYAeAwfX1/95e23i9R317Vr+svs2QoPD3dyVAAAAAAA3FooHwEAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBFSAoDAAAAAAAAgBchKQwAAAAAAAAAXoSkMAAAAAAAAAB4EZLCAAAAAAAAAOBF/NwdAJwvISHB3SGUGJbWivWzHevnGNbPMayf41hDx7B+jmH9HMP6OYb1cwxrBQBAyWcwGo1Gdwfh6WJjYxURESFJOn36tKpXr+7miP504cIFVapUyd1hAAAAAPBi58+fV3h4uHh6bJUAACkASURBVLvDyMWTf44DAMDdKB8BAAAAAAAAAF6EpDAAAAAAAAAAeBGSwgAAAAAAAADgRTho7hZ08OBBhYWFuTuMEiEhIUENGzbMdY31sx3r5xjWzzGsn+NYQ8ewfo5h/RzD+jmG9XOMpfUDAAAlC0nhW1BYWJjHHfJQkrB+jmH9HMP6OYb1cxxr6BjWzzGsn2NYP8ewfgAAwJtQPgIAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAAAADwIiSFAQAAAAAAAMCLkBQGAAAAAAAAAC9CUhgAAAAAAAAAvAhJYQAAAAAul5ycrNjYWCUnJ7s7FAAAgP9v786joyjz/Y9/OishMZCQoCBhCRCIHhyRNSyDwW38ASLOFYejgooO48ywieBFZ1SuK7Kq9yqXAVFkUxMWWVV2AkQChAQlEYGwLyEQ1qyd9O+P3PQQuzsLSXel0+/XOZ5Teeqp6g9lnyT1zdPf8ngUhQEAAAA41Zo1axQZGamIiAhFRkZqzZo1RkcCAADwaBSFAQAAADjNxYsX9fTTT+vs2bOSpLNnz2ro0KG6ePGiwckAAAA8F0VhAAAAAE4TFxdnUwC+cOGC4uPjDUoEAAAAisIAAAAAnMZR8ZeiMAAAgHEoCgMAAABwiuzsbG3cuNHuvg0bNig7O9vFiQAAACBRFAYAAADgJN9++63MZrPdfWazWStXrnRxIgAAAEgUhQEAAAA4SUUtImghAQAAYAyKwgAAAABq3JUrV/Tdd9+VO+e7777T1atXXZQIAAAApSgKAwAAAKhxq1evVkFBQblz8vPztXr1ahclAgAAQCmKwgAAAABqXGVbQ9BCAgAAwPUoCgMAAACoUTk5OVq7dm2l5q5Zs0Y5OTlOTgQAAIAbURQGAAAAUKPWrVtnt9DrXd/PZiwnJ6fC3sMAAACoWRSFAQAAANSouLg4u+Otnu1dpfkAAABwDorCAAAAAGpMfn6+Vq1aZTPu3zhYtz7YQf6Ng232rVq1Svn5+a6IBwAAAFEUBgAAAFCDfvjhB129etVmPKxHW5m8TGrUo43NvitXrmj9+vWuiAcAAABRFAYAAABQg+Lj4+2ON+pZUgwO69G2SscBAACg5lEUBgAAAFAjCgsLtWLFCptxv9BA3RLVRJJ0S7sm8gsNtJmzYsUKFRYWOj0jAAAAKAoDAAAAqCGbNm1Sdna2zXij/2sdIamkhUSMbQuJixcvavPmzc6OCAAAAFEUBgAAAFBDHLWA+G3LiEY9aSEBAABgJIrCAAAAAKqtqKhIy5cvtxn3bVhfwXc0LTPW4I7b5dsgwGbusmXLVFRU5KyIAAAA+D8UhQEAAABUW0JCgjIzM23GG3VrLZN32dsOk7eXQru3tpmbmZmp7du3Oy0jAAAASlAUBgAAAFBtjlo/NOphv1XEb1tKVHQeAAAA1ByKwgAAAACqpbi42G4x1yfIXw3uamb3mAYdIuQd6G8zHh8fr+Li4hrPCAAAgH+jKAwAAACgWn788UedPn3aZjy0a2t5+XjbPcbL11uNukXajJ86dUq7du2q8YwAAAD4N4rCAAAAAKrFUcuHsJ72W0SUauRgPy0kAAAAnIuiMAAAAICbZrFY7BZxvQP81LBj83KPDbm7hbwDfG3G4+PjZbFYaiwjAAAAyqIoDAAAAOCmJScn6+jRozbjoV1aycvXp9xjvfx8FNLFtoVERkaG9u3bV0MJAQAA8FsUhQEAAADctLi4OLvjjXqU3zqiVFiPNlU6LwAAAKqPojAAAACAm+KodYSXn49COrWs1DlCOrWSl5/timJaSAAAADgPRWEAAAAAN+Xnn3/WwYMHbcZDOreUdz3bXsH2eNfztVtA/uWXX3TgwIHqRgQAAIAd5Tf5AgAAAOAWunfvLm9vb5e+5pUrV+yOh1WydUSpRj3a6sLOQzbj9913n4KDg28qW3mKiopsxm68fiEhIerfv79effVVl19TAAAAV6AoDAAAANQBR44cMTqCJMnk462QLq2qdExo11Yy+XjLYi5brD137pzOnTtXk/Ec+u3127Vrl7KysvThhx+65PUBAABcye3aRxw/flwvv/yyoqOjFRgYqNDQUHXt2lVTp05VTk6O0fEAAAAAj9awY3P51Pev0jE+9f3V8O7mTkp087744gsVFxcbHQMAAKDGudVK4dWrV+vJJ5/U5cuXrWM5OTlKSkpSUlKS5syZozVr1igyMtLAlAAAAIDnCutZtdYR1uN6tVX27owaTlM9AQEB8vJyu3U0AAAAFXKb33BSUlI0ePBgXb58WUFBQXrnnXe0Y8cObdiwQS+88IKkkodR9OvXT9euXTM4LQAAAOB56jdvpPDft7+pY8N/3171I0JrOFH1jB071ugIAAAATuE2K4XHjBmjnJwc+fj46Pvvv1dMTIx1X9++fdW2bVtNmDBB6enpmj59ul5//XUD0wIAAAC1S8DtIarXpKFTzm3yMimwVbhuf/Qeefne3IPZvHy9ddcHT+jU8r26nnFelmJLDacskXs6W3mnL5U7x8fHR2+//bbGjx/vlAwAAABGc4uicFJSkjZv3ixJGj58eJmCcKlx48Zp3rx5SktL08yZMzVx4kT5+vq6OCkAAABgjObNm+v48eMO9+efv6KmAzvqtj/cJZPJ5MJklecTVE8tnurhlHNbLBadXZuqjLmOr5EktWrVSosXL1a3bt2ckgMAAKA2cIv2EcuXL7duP/vss3bneHl5aejQoZKk7OxsaxEZAAAA8AQbN27UkCFDHO4vLijS4U82Kv29VSq8mufCZMYrvJqn9PdW6fCnG1VcUORw3pAhQ5ScnExBGAAA1HluURTetm2bJCkwMFCdOnVyOK9Pnz7W7YSEBKfnAgAAAGqL4OBgLVy4UPPmzVNgYKDDeRd2HlLyqC91+aeTLkxnnMs/nVTyqC91Yeehcud99NFHWrhwoRo0aOCiZAAAAMZxi/YRaWlpkqQ2bdrIx8dx5Pbt//1Qi9JjPFFWVpbREdyGvWvF9as8rl/1cP2qh+tXfVzD6uH6VQ/Xr3rKu379+vVTu3btNGLECO3fv9/u8QVZ17T/tThFPNFNzZ/oJpO3W6wVqRJLUbGOL0nUia93SZXoT3z//ffzHqwkrhMAAO6v1heF8/LyrL90NGvWrNy5ISEhCgwM1PXr13XixIlKv8bJk+Wvkjhz5kylz1Ub3HHHHUZHcGtcv+rh+lUP1696uH7VxzWsHq5f9XD9qqfK16/YohOLE3U55biixj2seo2DnRPMAHmZV3Rw6lpdSTtd6WN4/wEAAE9S64vCV69etW4HBQVVOL+0KHzt2rVKv0ZERMRNZQMAAADc3ZUDp5U8aoHajnxAYT3bGh2n2rK2/6pfP/5BRdfzjY4CAABQa9X6onBe3r8fguHn51fhfH9/f0lSbm6u0zLVJuHh4bJYSj4OV1ufIg0AAIDareh6vtLfX6Xb/tBBrYb3kXc9X6MjVVlRXqEy5mzR2e/st8yAc5TeiwAAAPdS64vC9erVs24XFBRUOD8/v2RFQEBAQKVfo6JWE2fOnFHXrl0rfT4AAADAHZ1dt19Xfj6ldhP6KbBlmNFxKu16xnn9MmWNck5cNDoKAACAW6j1ReFbbrnFul2ZlhDXr1+XVLlWE6Uq6lXsLjIzM42OAAAAgFpu7969GjFihI4dO2Z3f86Ji9r30iJFDu+j2/7fXbX602gWi0Vn1qQoY+5WWQqLHM5r2bKl/vd//1cdO3Z0YToAAIDaq9YXhevVq6ewsDBlZWVV+EC47Oxsa1HYE/sEh4eHGx0BAAAAtdxDDz2k1NRUvfjii1q0aJHdOZbCIh2etVHZycfUdtQD8g2u/KfwXKXwSq5+/egHXfzxcLnznnzySX3yyScKDq47D9IDAACoLi+jA1RGdHS0JOnQoUMym80O56Wnp9scAwAAAKCs4OBgLViwQF988YUCAwMdzrv442Elj1qgy/vLX5zhapf2n1DyqAXlFoSDgoI0f/58LViwgIIwAADAb7hFUbhXr16SSlpD7Nmzx+G8LVu2WLd79uzp9FwAAACAuzKZTBo6dKiSk5N1zz33OJxXcOGa9r/2jY4t2CFLUbELE9qyFBXr2IId+um1OBVccNxarlOnTtq7d6+efvppF6YDAABwH25RFH700Uet2/PmzbM7p7i4WPPnz5ckNWzYULGxsa6IBgAAALi1tm3baufOnRo3bpzjSRbpxFc/KnXi18rLvOK6cDfIy7yi1Ilf68RXP0oWx/Nefvll7dixQ23btnVdOAAAADfjFkXhrl27qnfv3pKkuXPnaufOnTZzpk2bprS0NEnS6NGj5evr69KMAAAAgLvy8/PT1KlTtW7dOjVu3NjhvKtpZ5Q8aoEupZ5wYTrpUmpJu4iraWcczmncuLHWrVunKVOmyM/Pz4XpAAAA3I9bFIUl6cMPP1RAQIDMZrMefPBBvffee0pMTNSmTZs0YsQITZgwQZIUFRVV/ioHAAAAAHY99NBDSklJ0YMPPuhwTtH1fKW9863MOQUuyWTOKVDa29+q6Hq+wzmlD8976KGHXJIJAADA3blNUbhjx4766quvFBwcrGvXrunVV19VTEyM+vbtq9mzZ0sqKQivXr1at9xyi8FpAQAAAPd02223ae3atZoyZYrDT98V5RTo2kHHq3Zr0rWDZ1SUa78A7evrq6lTp2rNmjW69dZbXZIHAACgLnCborAkDRgwQKmpqRo7dqyioqJUv359NWzYUJ07d9bkyZOVnJysNm3aGB0TAAAAcGteXl7W3rzh4eF25/iGBLoki6PXady4sXbs2KFx48bJy8utbmsAAAAM52N0gKpq0aKFpk+frunTpxsdBQAAAKjTOnTooPx827YN/o2DVb95I5dkqN+8kfwbByv/Nw+4y8vLU4cOHVySAQAAoK7hT+oAAAAA7Fq/fr2uXLliM96oRxuZTCaXZDCZTGoUY/tpwCtXrmjDhg0uyQAAAFDXUBQGAAAAYFd8fLzd8bAebV2aI6yH/RZxjvIBAACgfBSFAQAAANgoLCzUihUrbMb9QgN1S7smLs1yS/um8gu17S28YsUKmc1ml2YBAACoCygKAwAAALCxZcsWXbx40Wa8UUwbmbxc0zqilMnLpEbdbVcLX7hwQVu2bHFpFgAAgLqAojAAAAAAG3FxcXbHG/V0beuIil7XUU4AAAA4RlEYAAAAQBlFRUVatmyZzbhvgwA1uON2AxJJDe68XT7BATbjy5YtU1FRkQGJAAAA3BdFYQAAAABlbN++XZmZmTbjod1by+Rd9VsIi8WiSynHdWr5Xl1KOS6LxVLlc5i8vdSoe2ub8XPnzmnHjh1VPh8AAIAn8zE6AAAAAIDaJT4+3u54WI+qt44ovJyjgzO/V/buDOtYSOdWihrzoHwb1K/SucJ6tNW573+yGY+Pj1fv3r2rnA0AAMBTsVIYAAAAgFVxcbGWLl1qM+4d6K8GHSKqdK5LKce1d+SXZQrCkpS9O0PJoxboUsrxKp2vwV0R8g70txlfunTpTa0+BgAA8FQUhQEAAABYJSUl6eTJkzbjjbpFysvXu1LnKDYX6ejn2/TTP+NVmJ1jd07Bxev66Z/xOvpFgorNlesJ7OXrrdCukTbjJ06cUFJSUqXOAQAAAIrCAAAAAG4QFxdnd7xRz8q1jsg7e0mpr3ytk/G7pYoW71qkk3FJSn3la+WdvVSp84c5yOEoNwAAAGxRFAYAAAAgqeSBcPb6CXsH+Crk7hYVHn9+S7qSRy3UtYNnq/S61w6eVfKohTq/Jb3CuSEdW8g7wNdmPD4+nhYSAAAAlURRGAAAAIAkad++fcrIyLAZD+kSKS8/x8+oLsot0MGZ3+mXqWtVlFvgcF6zZs3KPccvU9fq4Iffl3sOLz8fhXRuZTN+5MgRpaSkODwOAAAA/0ZRGAAAAIAk2V0lLElhPdo4PObaoXNKHrNQmRsOOJzj5+enmTNn6tixY5oxY4Z8fW1X+pbKXP+z9o1dpGuHzjmcE9bDfgsJR/kBAABQFkVhAAAAALJYLHb78nr5+Sikk+3KXEuxRaeW71XK+CXKO33J4XmjoqKUmJio0aNHy8vLS2PGjFFiYqKioqIcHpN7Klsp45fo1PK9dltChHRqKS8/24feURQGAACoHIrCAAAAAHTgwAH98ssvNuMhnVrKu17Zlb0Fl3J04L+WK2PuFlnMxQ7P+dxzz2nPnj3q2LFjmfF77rlHe/bs0bPPPuvwWIu5WBlzt+jAf61QwaWcMvu8A/zU8J6WNsekpaXpwAHHK5YBAABQgqIwAAAAAIerbBv9plVDdvIxJY/8Utl7jjo8V3BwsBYvXqy5c+cqKCjI7pygoCB99tlnWrRokYKDgx2eK3t3hpJHfalL+46VGQ/rSQsJAACAm0VRGAAAAIDdYqrJx1uhXUtaRxQXFinj8236+fWlKvzNyt0bde/eXfv27dOf/vSnSr3ukCFDlJycrG7dujmcU5ido59eX6qjn29TsblIkhTaJVImH9vbGYrCAAAAFaMoDAAAAHi4Q4cOKTU11Wa84d3N5VPfX7lnLin1la90Kn63w3OYTCa9+uqr2rp1q1q1su1BXJ7IyEht27ZNEydOlMlksj/JIp2M363UV75W7plL8gn0V8O7W9hMS0lJ0eHDh6v0+gAAAJ6GojAAAADg4Rytrg3r2VaZm9O0b/RCXfv1nMPjmzRpovXr1+udd96Rr6+vw3nl8fX11bvvvqsffvhBTZo0cTjv2sGz2jd6oTI3p6tRjzZ257BaGAAAoHwUhQEAAAAPFxcXZ3c8a8evOjhtnYpyCxwe279/f6Wmpqpv3741kuW+++5TSkqK+vXr53BOUW6BDk5bqws7D9nd7+jfAwAAgBIUhQEAAAAPduzYMe3ebb8tRHZShsPj/Pz89NFHH+nbb79VWFhYjWYKDw/XypUr9eGHH8rPz8/hPEf5kpKSdPz48RrNBAAAUJdQFAYAAAA82NKlS6t8TPv27bVr1y6NHDnScQ/gajKZTBo1apR+/PFHtWvXrsrH38y/CwAAwFNQFAYAAAA8WFX77z7//PPavXu3fve73zkpUVl333239uzZo+HDh1fpOPoKAwAAOEZRGAAAAPBQp0+f1o4dOyo1t0GDBvrqq6/0r3/9S4GBgU5OVlZgYKDmzJmjJUuWKDg4uFLHbN++XWfOnHFyMgAAAPdEURgAAADwUMuWLZPFYqlwXkxMjPbt26fBgwe7IJVjTzzxhFJSUtS9e/cK51osFi1btswFqQAAANwPRWEAAADAQ1XUYsFkMukf//iHtm7dqpYtW7omVAVatmyprVu36rXXXquwnzEtJAAAAOyjKAwAAAB4IIvFooSEBIf7mzZtqg0bNuitt96Sj4+PC5NVzNfXV2+//bY2bNigpk2bOpyXkJBQqZXQAAAAnoaiMAAAAOCBzGazw5W2jzzyiFJSUhQbG+viVFUTGxurlJQUDRgwwOEcs9nswkQAAADugaIwAAAA4IF8fX01fPjwMmP+/v767//+by1fvlxhYWEGJauasLAwrVixQh9//LH8/f3L7Hv++efl6+trUDIAAIDaq3Z9DgwAAACAy3z00Udq0aKFNm3apIiICI0dO1Z33HGH0bGqzGQy6e9//7v69u2rGTNm6MSJE4qNjdW4ceOMjgYAAFArmSw02arQyZMnFRERIUk6ceKEmjVrZnAiAAAAAEB5uI8DAMAxVgpXwo19yM6cOWNgEgAAAABAZdx470ZvaQAAyqIoXAnnz5+3bnft2tXAJAAAAACAqjp//rxatmxpdAwAAGoNHjQHAAAAAAAAAB6EnsKVkJeXp/3790uSwsPD5eNTuxZYnzlzxrqCedeuXWrSpInBieBJeP/BSLz/YDTegzAS7z8YyR3ef2az2fqpzw4dOqhevXoGJwIAoPaoXdXNWqpevXrq0qWL0TEqpUmTJjxAAYbh/Qcj8f6D0XgPwki8/2Ck2vz+o2UEAAD20T4CAAAAAAAAADwIRWEAAAAAAAAA8CAUhQEAAAAAAADAg1AUBgAAAAAAAAAPQlEYAAAAAAAAADwIRWEAAAAAAAAA8CAUhQEAAAAAAADAg5gsFovF6BAAAAAAAAAAANdgpTAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwm7u+PHjevnllxUdHa3AwECFhoaqa9eumjp1qnJycoyOhzpo7969evfdd/Xwww8rIiJC/v7+CgoKUlRUlJ555hlt27bN6IjwUBMmTJDJZLL+t3nzZqMjoY7LysrSBx98oJ49e+q2226Tv7+/mjZtqm7dumn8+PHauXOn0RFRRxUUFGju3Ln6wx/+oCZNmlh/Frdr107PPfecEhMTjY4IN5SZmalVq1bp9ddf18MPP6ywsDDrz9Rnnnmmyudbt26dHnvsMTVr1kz+/v5q1qyZHnvsMa1bt67mwwMAgCozWSwWi9EhcHNWr16tJ598UpcvX7a7v127dlqzZo0iIyNdnAx1VZ8+fbR169YK5z399NOaM2eO/Pz8XJAKkFJSUtS5c2eZzWbr2KZNm3TvvfcaFwp12jfffKMXX3xRFy5ccDhn4MCBWr58uetCwSOcOHFC/fr10/79+8udN3bsWE2bNk0mk8lFyeDuynuvDBs2TJ9//nmlzmOxWPSXv/xFs2fPdjjnz3/+s2bNmsX7EwAAA/kYHQA3JyUlRYMHD1ZOTo6CgoI0ceJExcbGKjc3V0uWLNG//vUv/fLLL+rXr5+SkpIUFBRkdGTUAadOnZIkNW3aVI8//rh69+6t5s2bq6ioSDt37tS0adN06tQpffnllzKbzVq0aJHBieEJiouL9cILL8hsNqtx48bKzMw0OhLquPnz5+vZZ59VcXGxGjdurBdffFG9evVSaGiozp49q8OHD2vlypXy9fU1OirqGLPZXKYgfNddd+mll15Su3btdPXqVSUkJGjatGm6fv26ZsyYoSZNmmj8+PEGp4Y7ioiIUHR0tL7//vsqH/uPf/zDWhDu2LGjJkyYoNatW+vw4cP64IMPlJycrNmzZys8PFxvv/12TUcHAACVxEphNxUbG6vNmzfLx8dHW7duVUxMTJn9U6ZM0YQJEyRJkyZN0uuvv25ETNQx/fv319ChQ/XHP/5R3t7eNvuzsrLUs2dPHTx4UJK0detW9e7d29Ux4WFmzpypsWPHqn379ho0aJDee+89SawUhnOkpaWpY8eOys/PV+/evbVy5Uo1aNDA7tyCggI+MYEaFR8fr//4j/+QJMXExGjbtm02P4/37NmjmJgYFRYWKiQkRJmZmfLxYR0IKvbGG2+oS5cu6tKli2699VYdPXpUrVq1klT5lcKHDh1SdHS0zGazOnfurK1btyogIMC6PycnR3369NHu3bvl4+Oj9PR0tW7d2ln/JAAAUA56CruhpKQka6/M4cOH2xSEJWncuHGKjo6WVFIwKSwsdGVE1FGrVq3S4MGD7RaEJSksLEzTpk2zfh0XF+eqaPBQJ06c0D//+U9J0qeffkoBDk43cuRI5efnKywsTEuXLnVYEJbE+xE1bvv27dbtiRMn2v153KlTJ/Xv31+SlJ2drfT0dJflg3ubNGmS+vfvr1tvvfWmzzFjxgxrK6ePP/64TEFYkurXr6+PP/5YUsnK95kzZ970awEAgOqhKOyGbuxP+Oyzz9qd4+XlpaFDh0oquSHggUtwlRtXZh4+fNi4IPAIf/3rX3Xt2jUNGzaMVcFwuvT0dG3YsEGS9Pe//11hYWEGJ4KnKSgosG6X98yIG1de5ufnOzUTUMpisWjFihWSpPbt26t79+5253Xv3l3t2rWTVHJfwwdXAQAwBkVhN7Rt2zZJUmBgoDp16uRwXp8+fazbCQkJTs8FSGVvWL28+BYD5/n666+1atUqhYaGasqUKUbHgQf45ptvrNuPP/64dTs7O1u//vpruQ+dA2pCVFSUdfvIkSMO55X+UdZkMqlt27ZOzwVIUkZGhvX5Ezfeh9hTuv/kyZM6evSos6MBAAA7qNi4obS0NElSmzZtyu0R1759e5tjAGfbsmWLdfvG9yBQky5duqTRo0dLkiZPnqzw8HCDE8ETJCYmSpIaNGig6OhoLVy4UL/73e8UGhqqqKgohYWFKTIyUpMmTdK1a9cMTou6aMiQIQoODpZU8r2vqKjIZk5ycrJWr14tSfrTn/5knQ842433GxX9Dsh9CgAAxqMo7Gby8vKUlZUlSWrWrFm5c0NCQhQYGCippO8m4GzFxcV6//33rV8PHjzYwDSoyyZMmKCzZ8+qR48eGj58uNFx4CEOHDggSWrZsqVGjhypp556SqmpqWXmZGRk6M0331RMTIxOnz5tREzUYeHh4fr8888VEBCg7du3q0uXLpo/f74SExO1fv16TZo0SX369FFBQYHuvvtuTZ8+3ejI8CA33m9UdJ8SERFh9zgAAOA6FIXdzNWrV63bQUFBFc4vLQqzYgmuMGPGDO3atUuSNGjQIHXu3NngRKiLEhISNGfOHPn4+GjWrFkymUxGR4KHuHjxoqSS3sL/8z//o4YNG2rWrFnKzMxUXl6ekpKS9PDDD0uSfvrpJz3++OMqLi42MjLqoEGDBmn37t0aPny49u3bp2HDhikmJkYPPPCA3nzzTdWvX1/Tp09XQkKCbrvtNqPjwoNU5T6l9B5F4j4FAACjUBR2M3l5edbtyjzV3N/fX5KUm5vrtEyAVNI24j//8z8lSY0bN9ann35qcCLURQUFBfrzn/8si8WisWPHqkOHDkZHgge5fv26pJIHd3l7e2vt2rUaMWKEwsPD5e/vr86dO2vVqlXWwvCOHTu0dOlSIyOjDiosLNSiRYu0cuVKuw/oOnfunBYvXsxDhuFyVblPKb1HkbhPAQDAKBSF3Uy9evWs2zc+0MuR0idOBwQEOC0T8PPPP2vQoEEym83y9/fX119/rVtvvdXoWKiD3n33XaWlpal58+Z64403jI4DD3Pjz+DHH39c3bt3t5nj5eVV5sGHixcvdkk2eIbr16/r/vvv1zvvvKMLFy5owoQJSktLU35+vi5fvqzvv/9evXr1UlJSkgYMGKAPP/zQ6MjwIFW5Tym9R5G4TwEAwCgUhd3MLbfcYt2uzEetSlc1VabVBHAzMjIy9OCDDyo7O1ve3t5avHhxhU+cBm5Genq63nvvPUnSxx9/XOajp4Ar3PgzuHQ1sD133nmnbr/9dklSUlKS03PBc7zxxhvaunWrJGnu3LmaPHmy2rdvLz8/PwUHB+uBBx7Qpk2bFBsbK4vFopdeesmm7zXgLFW5Tym9R5G4TwEAwCg+RgdA1dSrV09hYWHKysrSyZMny52bnZ1t/YXrxoc5ADXl9OnTuv/++3X69GmZTCZ99tlnGjRokNGxUEfNmDFDBQUFioyMVE5OjpYsWWIz56effrJub9y4UWfPnpUkDRgwgCIyqi0iIsL6nqrMQ5ROnTqlzMxMV0SDB7BYLJo3b54kKSoqSsOGDbM7z8fHR2+99ZZ69eql4uJizZs3TzNmzHBlVHioG78vVnSfcuPD5bhPAQDAGBSF3VB0dLS2bdumQ4cOyWw2y8fH/v/G9PT0MscANSkrK0sPPPCAjhw5Iqlk5ebQoUMNToW6rPSjpkeOHNGQIUMqnP/WW29ZtzMyMigKo9ruvPNO68rfoqKicueW7nf0MxqoqnPnzlkfdtixY8dy53bq1Mm6fePvg4Az3XHHHdbtit533KcAAGA82ke4oV69ekkq+djVnj17HM7bsmWLdbtnz55OzwXPcfnyZT300EM6cOCAJOn999/X3/72N4NTAYBz/f73v7duHz58uNy5pX8wK20jAVTXjX9gMJvN5c4tLCy0exzgTK1atVLTpk0llb0Psae0Dcrtt9+uli1bOjsaAACwg6KwG3r00Uet26UfI/yt4uJizZ8/X5LUsGFDxcbGuiIaPEBOTo769eunvXv3SpJee+01vfLKKwangif4/PPPZbFYyv3vxofPbdq0yTrODSdqwiOPPCJfX19J0tKlSx3O27Jliy5cuCBJ6t27t0uyoe4LDQ1VcHCwJGnnzp3lFoZvLMi1atXK6dkASTKZTBo4cKCkkpXAiYmJduclJiZaVwoPHDhQJpPJZRkBAMC/URR2Q127drXeZM6dO1c7d+60mTNt2jSlpaVJkkaPHm29iQWqo6CgQIMGDdL27dsllby33n77bYNTAYBrNGrUSM8//7wk6YcffrDb1/rq1asaM2aM9esRI0a4Kh7qOC8vL/Xr109SSU//d955x+687OzsMn+s7d+/v0vyAZI0ZswY6+r0kSNHKjc3t8z+3NxcjRw5UlLJKvYbv18CAADXMlksFovRIVB1ycnJ6tmzp3JzcxUUFKRXX31VsbGxys3N1ZIlSzR79mxJJQ8i2b17d5mnAQM3649//KN1dVzfvn01c+bMcld3+Pn5KSoqylXxAL355puaNGmSpJKVwvfee6+xgVDnnD9/Xp07d9bx48fl4+Ojv/zlL3rssccUHBys/fv3a/LkydYVcC+++KI++eQTgxOjLklPT1enTp2Uk5MjqeQhmsOGDVNkZKTy8vKUmJiomTNn6vjx45Kk++67T+vXrzcyMtxIQkKCDh06ZP06KytL48ePl1TSiq70j2KlnnnmGbvnmThxot5//31JJf2vX3nlFbVu3VqHDx/W5MmTlZycbJ337rvvOuFfAgAAKoOisBtbuXKlnnrqKV25csXu/qioKK1evVpt2rRxcTLUVVX9eF+LFi109OhR54QB7KAoDFdIS0vTI488UqZ48lvPPfecZs2axSd1UOPWr1+vIUOGKCsrq9x5ffv2VVxcnEJCQlyUDO7umWee0RdffFHp+Y5uI4uLi/XCCy/os88+c3js8OHDNXv2bHl58cFVAACMwk9hNzZgwAClpqZq7NixioqKUv369dWwYUN17tzZ+ld4CsIAANSs6Oho7du3T1OmTFG3bt0UGhoqPz8/NWvWTE888YQ2btyouXPnUhCGU9x///1KT0/X5MmTde+99yo8PFy+vr4KCAhQq1atNHjwYC1fvlzr16+nIAxDeHl5ae7cuVq9erUGDhyopk2bys/PT02bNtXAgQO1Zs0azZkzh4IwAAAGY6UwAAAAAAAAAHgQ/jwLAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB6EojAAAAAAAAAAeBCKwgAAAAAAAADgQSgKAwAAAAAAAIAHoSgMAAAAAAAAAB7k/wMNvxmq8Hf8fwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 529, "width": 706 } }, "output_type": "display_data" } ], "source": [ "plot_results(pdispersion_from_gdf_pre, P_FACILITIES, facility_points)" ] }, { "cell_type": "markdown", "id": "d82bea6b", "metadata": {}, "source": [ "-----------------------------------\n", "\n", "## Comparing solution from varied metrics" ] }, { "cell_type": "code", "execution_count": 28, "id": "47c49823", "metadata": { "ExecuteTime": { "end_time": "2023-01-10T18:23:37.136128Z", "start_time": "2023-01-10T18:23:36.148889Z" }, "execution": { "iopub.execute_input": "2025-04-07T19:07:16.526471Z", "iopub.status.busy": "2025-04-07T19:07:16.526383Z", "iopub.status.idle": "2025-04-07T19:07:16.896917Z", "shell.execute_reply": "2025-04-07T19:07:16.896687Z", "shell.execute_reply.started": "2025-04-07T19:07:16.526462Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADEMAAASZCAYAAACKOjHuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3XmYXfP9OPD3zGSy78kkspCISIQi1ghCrLG1pRShRavfapW2Sqt0QRe/qm62VhdFF0sJpXYitshKFoQIImSRPbIvM3N+f3gycme9d2bu3JnM6/U893nmnPmcc973c88957w/977vyUuSJAkAAAAAAAAAAAAAAIAmIj/XAQAAAAAAAAAAAAAAAGRCMQQAAAAAAAAAAAAAANCkKIYAAAAAAAAAAAAAAACaFMUQAAAAAAAAAAAAAABAk6IYAgAAAAAAAAAAAAAAaFIUQwAAAAAAAAAAAAAAAE2KYggAAAAAAAAAAAAAAKBJUQwBAAAAAAAAAAAAAAA0KYohAAAAAAAAAAAAAACAJkUxBAAAAAAAAAAAAAAA0KQohgAAAAAAAAAAAAAAAJoUxRAAAAAAAAAAAAAAAECTohgCAAAAAAAAAAAAAABoUhRDAAAAAAAAAAAAAAAATYpiCAAAAAAAAAAAAAAAoElRDAEAAAAAAAAAAAAAADQpiiEAAAAAAAAAAAAAAIAmRTEEAAAAAAAAAAAAAADQpCiGAAAAAAAAAAAAAAAAmhTFEECDOe+88yIvL6/s8f7771fZ9rnnnktpe/XVVzdYnOTGtq/3yJEjcx0ONBv9+/cve+/1798/1+HUG+ccAID65xqL6sjrybZM8tc77rgjZZ+84447GkVcNC2ZHNcyOUcCwPZM3kh15I1km7yRhiZvBCKaxnXtBx98ED/+8Y9jxIgR0bNnz2jZsmWV58Grr7465X/PPfdczuJualzv5k6LXAcAAAAAAAAAAAAAAED9+etf/xoXX3xxbNq0KdehQNa4MwQA0GiMHDkypUoWmhMV4gAAAEBtNeQv2wIAAND0yBuh+XnsscfiggsuUAjBds+dIQAAAAAAAAAAAAAAthNXXHFFJElSNn3WWWfF+eefHzvuuGMUFhaWze/evXsuwoN6oxgCAAAAAAAAAAAAAGA7MHv27Jg5c2bZ9AknnBD//ve/cxgRZI9iCKBRGjlyZEpVIts/rzeQK845AAD1zzVW8+P1pjE577zz4rzzzst1GDQjd9xxR9xxxx25DgMAmhR5Y/Pj9aYxkTfS0OSNQEObOnVqyvRpp52W1nJXX311XH311VmICLInP9cBAAAAAAAAAAAAAABQd4sXL06Z7tu3b44igexTDAEAAAAAAAAAAAAAsB1Yu3ZtynRhYWGOIoHsa5HrAID0lZaWxsSJE+O9996LhQsXRuvWraNPnz5x2GGHRVFRUc7iWrBgQYwfPz4WLlwYxcXF0adPnxg8eHDsu+++OYmnuLg4Xn/99Xj99ddj2bJlsXbt2igsLIz27dtHnz59Ypdddondd989CgoK6rytadOmxezZs2PBggWRn58fvXv3joMPPjh23HHHengmERs3bowJEybEBx98EEuXLo0kSaKoqCgGDhwYBx10ULRoUb+H8Xnz5sW0adNi0aJFsWLFiujcuXOccsop0bt370rbN2Rfp+ONN96ImTNnxtKlS2PdunXRrVu36NWrVxxyyCHRtWvXet/ezJkz44033ogFCxZEXl5e9OjRI4YPHx4DBw6s923V1rJly+Lll1+O+fPnx8cffxzdunWL3XbbLYYPH14vF7nFxcUxefLkeO+992Lp0qWxadOmKCoqiv79+8chhxwSrVu3rodnsf1YuHBhTJw4MRYvXhwrV66MTp06RVFRURxwwAGx88471/v2Mn1PNwXN+ZyTqRUrVsSsWbNizpw5sWLFiti4cWN07NgxunXrFkOHDo0hQ4ZEXl5evW8328fGNWvWxIQJE2LhwoWxbNmy2LJlS3Ts2DF23nnn2HPPPet0Dl60aFFMmjQplixZEsuXL4/27dtHjx494oADDogBAwbUS/wANG/y+vTI62tPXp+ZxpzXr1ixIl5++eX46KOPYtmyZdG6desoKiqKoUOHxh577JHr8DKWzev4bJk5c2bMmDEjFi1aFG3atIk+ffrEPvvsk5X8PdvHig8//DDefPPNeO+992L16tVRUlISXbp0iR49esSwYcOiT58+9fRMPlVSUhLjx4+P9957Lz766KNo27ZtozjnJUkSkydPjjfffDMWL14cHTp0iD59+sSwYcNihx12yElMK1eujOnTp8ecOXPi448/jk2bNkWbNm2ic+fO0a9fvxgyZEhWXqN0vPvuu/HWW2/FvHnzYvXq1ZGXlxddunSJ3r17x7Bhw7LyWm7cuDFeeumlmDdvXixZsiQ6duwY/fr1i8MOOyw6duxYL9t47733Ytq0abF06dJYsWJFtGzZMrp27RqDBw+OoUOHRrt27Wq13iRJyq4ttp7LunfvHn379o1DDz00OnToUC/xA9s3eWN65I21J2/MjLyx4cgbqydvbDjyxszIGzPTlPLGjz76KCZPnhwLFiyIjz/+OHr27Bm77bZbHHTQQfX+PYPp06fH7Nmz46OPPop169ZFz54945xzzqnxe03Z/nx/06ZN8fzzz8fcuXNjxYoV0aNHj+jbt2+MGDEi2rZtW+f1l1ffz6e0tLTeY6yNt99+O2bMmBHz58+P4uLiKCoqiv322y/23HPPeln/2rVry3KVpUuXRkFBQfTo0SOGDBkS++67b+Tn1+2eAY3xvEAlEqDRGDduXBIRZY+rrroqSZIk2bBhQ/Kzn/0s2XHHHVP+v/VRUFCQHH/88ckbb7zRoPFOmTIlGTlyZJKXl1dpXIMHD05uuummpLi4OEmSJDn33HNT/j937twq111VX1Tno48+Si6++OKkW7dulcaz7aNt27bJsccem9x+++1Vrm/u3Lkpy5x77rlJkiRJcXFxctNNNyWDBw+udN15eXnJIYcckowfPz6D3kw1ceLE5LOf/WzSpk2bKp9Dx44dkwsuuCBZsGBB2uvddvnDDz+8bP6DDz6YDB8+vNLX8sEHH6ywnvru6+piq8maNWuSa665psr3R0Qk+fn5yaGHHpo8/vjjaa+3un3wjjvuSD7zmc9Uub299947o23VRb9+/cq2269fv7L5s2bNSk4++eSksLCwyv3nmmuuSdavX1+r7c6aNSs566yzko4dO1bZD23atEnOOOOMZPbs2dWu66qrrqpxP6rsse1+cuedd6b877bbbqvxOXz3u9+tsM533323xuWGDh1a1r5Lly5JSUlJte1LSkqSf/3rX8nee+9d7fMZNGhQcvPNNyebN2+uMYat6uM9XdU+VJ3S0tLk8ssvT1lvhw4dkkcffTTt2DO1vZ5zDj/88Frt/1XFOHHixOR73/tesueee1bZV1sf3bp1Sy6//PJk0aJFabwCNfdVNo+NJSUlyX/+85/k4IMPTlq0aFHt89p1112Tyy+/PK33c5IkyebNm5M//elPyZ577lnjev/85z8nW7ZsqdVzAKB5kNd/Sl4vr09Xc8/rt1VaWprcfffdybBhw5L8/Pwq4+vTp0/yq1/9Ku2cvnzePW7cuLRjqup9lI76vo7PJH+9/fbbU9Zf0/67rbvuuisZNGhQlceHww47LGX/qE1evVW2jhWbNm1KHn744eTcc8+t9r219TFo0KDklltuSTZs2JD2NqrarzZs2JD8+Mc/TnbYYYcq+/Bzn/tc8uabb2bUV3VVUlKS3HTTTdWei0844YRk4sSJZctkclzL5By51bPPPpsce+yxSUFBQY2vUZ8+fZKvfe1ryfTp01PWUf49msmjshjXrl2b3HPPPcnpp5+e9OjRo8Z17Lvvvsm//vWvsmuFdFTVVytXrkwuuuiipHPnzpVuq0WLFsk555yTzJ8/P+1tbWvZsmXJj370o5T3bGWPli1bJiNHjkxuu+22tI+zH3zwQfKNb3wj6d69e5XrLSwsTI4//vhkypQptYof2H7IGz8lb5Q3pkve+Cl5o7yxvo4V8saK5I0VH/LGyh/bS95Y/rsKW02cODE58cQTq9zvevfunfzmN79J+3Pzqs63xcXFya9//etk4MCBlW5n5cqVla6vIT7fX7VqVfLtb3+7yu9EdejQIfna175WdtytzXVtNp5Pbd/v5c+BmVwXVHcd8L///S856KCDqtzugAEDkn/9619p91V5TzzxRHLEEUdU+d24iEi6d++eXH755cmKFSsyXn+2zwvUL8UQ0IhUdmJctGhRyhdvq3sUFhYmf/rTnxok1l/96lfVJtfbPo4++uhkzZo1WR38Gjt2bNKpU6eMT+Z9+vSpcp2VnazXrFmTHH300WmtOy8vL/nxj3+cUb+uW7cuGT16dEbPoW3btsl9992X1vrLn3C3bNmSnH/++dWuv/zgVzb6urLY0jF+/PikZ8+eGcXxuc99LlmzZk2N665sH1y7dm1y2mmnpb2t6667Lq3nUReVDZz8/e9/T9q2bZtWjIccckiVCURliouLk+9+97tpv/8jPkk4//CHP1S5zvoohli0aFHK/84444wan8see+xRYZ01HUOXLFmSMkh82mmnVdt+4cKFyYEHHpjR8xo8eHDy9ttv1xh/ktTPezrTwbd169Ylp5xySso6d9xxx2TGjBlpxVwb2/M5pz6LIcaMGVOrdXXr1i156qmn0notcnFsnD17do3FRJU90hlsnzp1ajJgwICM1jt06NBaD6ABsP2T11ffF9WR18vr031sb3n9Vu+++26yzz77ZNQX/fv3T15//fUa152LL7Vk4zo+219q2bRpU4V8t7rH5ZdfnnFcW2X7WHHxxRdn3PcRn3yhK93C8sr2q7fffjvZa6+90tpWhw4dkrFjx6a1rbpauXJlcsghh6QVV35+fnLzzTcnSZK9L7WUlpYm3/72t2v1Gv3oRz9KWVd9f6nls5/9bK3WdeSRRyZLlixJ6/WorK8mTZpU45dNtj569eqV8TjU3/72t6R9+/YZP690jpe/+tWvklatWqW9zry8vOT73/9+UlpamtFzALYf8sbq+6I68kZ5Y7oPeeOnD3lj1eSN8sZtyRsrf8gba3405byxsmKIW265Je3rv/322y+t17Sy8+3ChQuT4cOHV7v+yr7L1BCf70+fPj3p3bt3Wuvu2rVr8tJLL9W6GKK+n09jKYYoLi5OLrroorS3/61vfSuj/X3p0qVpX69vfXTr1i15/vnn095GQ5wXqF/1ez89oF5t2rQpTjzxxJg+fXpEROTn58d+++0X/fv3j82bN8ebb74Zb7/9dln7LVu2xDe/+c3Iy8uLCy64IGtxXXfddfHDH/6wwvy99947dtlll4iIeOedd2LmzJkREfHMM8/E6NGjo1u3blmJZ86cOXHSSSfFhg0bUuZvvRVcly5dIiJi9erVMXfu3JgzZ05s2bKlVtsaPXp0PPPMM2XTe+21V9ktMLd9zhERSZLEL37xiygpKYlrr722xnUvXbo0jjvuuHj11VdT5rdp0yb22Wef6N27dxQUFMSHH34YU6ZMKXsO69evj9NPPz3+9re/xVe/+tWMns9ll10Wt912W9n04MGDY9CgQdGuXbtYtGhRTJkyJaV9Q/Z1TZ544ok45ZRTYuPGjSnz+/TpE3vvvXd07NgxFi1aFBMnToxNmzaV/f/hhx+Oww8/PMaNG5fR7fFKS0vjrLPOiocffjgiIgoKCmK//faLHXfcMQoKCuKdd96JadOmRZIkZctcfvnlseeee8bxxx9fx2ebvvvuuy/OP//8sjj69esXn/nMZ6JTp06xdOnSmDhxYqxZs6as/fjx4+OCCy6Ie++9t8Z1b9iwIU4++eR46qmnUuYXFhbG0KFDo2/fvtGqVauyW+WtX78+Ij65fe53v/vdWLlyZVx99dX192S3scMOO8RnPvOZeP311yMiYuzYsZEkSZW35lu4cGG88cYbFeY//fTT8Y1vfKPK7Tz99NMpr/ExxxxTZdt58+bF4YcfHvPmzUuZ36FDhzjwwAOjR48esWLFipg6dWosX7687P+zZ8+Ogw8+OJ555pnYe++9q1x/ZTJ9T2dq0aJF8dnPfjZeeeWVsnn7779/PPzww9GrV686rbsqzfmck6nytzgsKCiIXXfdNXbeeefo2LFj5OXlxfLly+O1116Ljz76qKzd8uXL48QTT4znn38+hg8fnvE2s3lsfO655+Lkk0+Ojz/+OGV+ixYtYp999ok+ffpE27ZtY9WqVTF79ux47733UrZVnUceeSTOOOOMsmPVVr169Yq99947unbtGuvWrYtZs2bFnDlzyv4/ffr0GDZsWEycODH69u2b1rYAaL7k9emR18vrt9Uc8/rJkyfHiSeeGMuWLUuZ361bt9hnn32ie/fusWnTppgzZ05Z3hsR8f7778chhxwSzz33XAwdOjSrMWYim9fx2VJaWhpf+MIX4tFHH02ZX1hYGMOGDYs+ffrE2rVrY+bMmfHhhx9GxCfH0u7du2e8rYY4VpTPD9u2bRtDhgyJXr16RceOHWPz5s3x0UcfxYwZM1LGiWbMmBFHHHFETJs2Lbp27Zrx8/rqV78ac+fOjYiIdu3axYEHHhg9e/aMTZs2xYwZM+K9994ra79mzZo47bTT4vXXX4/evXtntK1MrFu3Lo455piYOnVqyvy2bduW3cp+5cqV8eqrr8aSJUuitLQ0LrrooujRo0fWYrr22mvjxhtvTJnXokWL2GuvvaJfv37Rrl272LBhQ6xcuTLeeuutWLhwYdZiKa/8vtOxY8fYfffdo0ePHtGhQ4fYuHFjzJ8/P2bOnJlyLnn22WfjuOOOi5dffjlatWqV0TbffvvtGD16dKxYsSIiIrp06RL7779/dO/ePdatWxdTp05N6YNFixbFKaecEjNnzox27drVuP7vfve7ccMNN1SY37Vr1xg6dGgUFRVFSUlJLF26NGbOnBkrV65MK+7S0tL46le/GnfeeWfK/Pz8/Nhzzz2jf//+0a5du1i6dGlMnjy57JiYJElcf/31sWTJkrjjjjvS2hawfZM3pkfeKG/clrzxU/LGhiNv/IS8Ud4ob9x+88b77rsvLrroorLjbY8ePWLfffeNzp07x+LFi2PixIkpr+krr7wSRxxxRLz44otl1wfp2LRpU5xyyikxadKkiEg930ZEfPDBBynfSdmqIT7fnzVrVhx11FEp3+GJiOjZs2fss88+FfpixYoVcdJJJ8X111+f9vNvyOeTK9/5znfilltuiYiIvLy82GuvvWLAgAHRqlWrmDdvXkyZMiWKi4vL2t9yyy2xxx57xDe/+c0a1/3OO+/EqFGjUs4XEZ98F2u//faLnj17RklJSbz//vvx6quvlh2zli9fHsccc0w8/PDDMWrUqGq30RjPC6Sh4esvgKqUrxLs0qVL2d+jR4+utKpv8uTJyX777ZeyXMuWLdOq7q+NiRMnVrgN1qhRoyr9FfM333wzOfLIIyt9PhH190sgZ555ZkrbI488ssJt37a1cePG5Mknn0y+8Y1vJLvttluV7cpXLm4b/9FHH5289dZbFZZ56623Kq08rOkXt0tKSpKjjjoqZZnevXsnf//735ONGzdWaL9y5crkiiuuSKnGbd26dbXPO0lSqw87dOhQ9veJJ56YzJo1q0L71atXJ0uXLi2bzlZfl4+tpsrIDz/8MOnatWvKMjvvvHPy6KOPVqgU/fjjj5Mf/ehHFW6redZZZ1W7jfL74NZb1RUUFCQ//OEPk2XLllVY5q233qpwF4CBAwdmtVp728r3du3ald0e87DDDksmT55cof369euTH/7whxX20RdeeKHGbX3lK19JWaZTp07J73//+2T16tWVbuc3v/lN0rp167L2eXl5yWOPPVah7cqVK5O5c+cmc+fOTYYNG1bhOFHVY9GiRSnr+d73vpey7NSpU6t8LnfccUel1bqdO3eu9vaM5513Xkr79957r9J2W7ZsqVDF3r59++SGG26ocOvQLVu2JP/85z8r3A5x0KBBNf5qTV3f00mS/i+RTJs2Lenbt2/KNr/whS8k69atqzbGumgO55xFixaV7dPbrnfYsGHV7v+V/QrCfffdl3Tu3Dm56KKLkieffLLa29S+/PLLyRFHHJGyzZ122inZtGlTlctU1lfZPDa+++67FV7Hbt26Jb/73e+Sjz/+uNJlli5dmvzlL39JDjrooGp/GeiNN95I2rVrl7Lu4447Lpk0aVKl7V999dVkxIgRKe0PPfTQjG7nCkDzIK//lLxeXl8def2nFi1alPTq1atCPvDUU09Vut05c+YkJ598ckr7XXfdtdLcfKuG/IXPbF7HZ/MXPn/961+ntM/Ly0u++93vVrh9emlpafLEE0+U/WJby5YtU3KLmuJqqGPFt771rWSXXXZJrrnmmmTq1KlJSUlJpe02b96c/Oc//6nwC3Tp3HGz/H619T3WrVu35C9/+Uul+eUTTzyRFBUVpSz31a9+tcZt1cWFF16Ysr1WrVolv/zlL5O1a9emtCsuLk7uvvvupEePHklEVDhG1dcvfK5atSplvKygoCC5+uqrq71z68KFC5O///3vyciRIyv88vSWLVvKxgquv/76lBiuv/76ascWtmzZUmFbJ554YrL33nsn119/ffLGG29UGdO6deuSv/71r2X9tfWx9ZdvM+mrrftOv379kvvuu69Crl1aWpr861//qnAn3J/97Gc1but3v/tdhXP68OHDk7Fjx1b5vpg+fXpy5ZVXJkVFRdUeL6+++uoK+9ZVV11V6a9ibtmyJfn73/9e4fh466231vgcgO2PvPFT8kZ5Y3XkjZ+SN8ob5Y3yRnmjvDEbyt8ZYuu2e/bsmdx7770V+nnt2rXJz372s6Rly5Ypy5199tnVbqf8+Xbr9Ul+fn5y6aWXVnq+/eCDD1L2v4b4fH/z5s0V7tbWq1ev5D//+U+FfWHNmjXJ1VdfnRQWFqb03dZHTXeGyNbz2fb9Pnfu3OQ73/lOyjJ33313pe/18t9NqsudIbb97tPXvva15MMPP6ywzPz585MTTjghZbmOHTtWOO6Wt27duuQzn/lMynKDBw9O7r///kpf24ULFyb/93//VyG+mu4U0lDnBeqXYghoRMqf/Lc+Lr300mqXW7duXaUnvGwof7u60aNHV3nxlySfHPS/8IUvVPq86mPwq7S0NOXiYNCgQZUmgFVZv359lf+r6tZRp59+eo3P+Ytf/GLKMv379680SdiqfOK87777VnqxV959992X5OXllS13xBFHVNu+sudzwQUXpDU4k82+Lh9bTRcD5W89udtuuyWLFy+udpl77rmnwq3cHnnkkSrbV/Z+LCgoSP73v/9Vu52PP/442XHHHVOWe+aZZ6pdpi4quw3gWWedVe3+liRJhQveL33pS9W2/89//pPSvl+/ftW+h7caP358SqI+cODAat8/ld2GL12PP/54yrLXXnttlW3POuuslIRi233j5ZdfrnK5Pn36pDyXqtxwww0psbRr167a9SZJksyaNatCQcRll11W7TJ1eU9vlc6g4MMPP1zhlpANcVvG5nTOSZK63y5vyZIlGRWnlJaWVihyqmmgtyGPjQcffHCFY/3777+f9vMrXzC1VUlJSYUE+eqrr65xfVu2bKmwf915551pxwNA8yCv/1RjuMaS16dqTNez8vpPlf/Q5/zzz0+r6Pbb3/52ynLXXHNNlW0b8kst2bqOT5Lsfall/vz5KWMXEZH86U9/qnb9ixcvTgYNGlRhH6sproY6VsybN6/a41x5K1asSPmwNz8/P3n33XerXab8fhXxyQfE77zzTrXLTZkyJeXLlW3btq32S1l1MWXKlJR+a9GiRY3HgLfeeqvCFzXSOa6l+6WWe++9N63zY1WqOxZn+mWuyqQz3retefPmpRwzO3bsWOUX2LYq31cRkeyxxx6VfhlkWw8++GDKMjvttFO157833nijwhciv/Wtb6X93li/fn2yatWqSv83ceLElHNSly5dkldffbXGdc6ePTvp1q1b2XKdOnXK2v4PNF7yxk/JG+WN1ZE3fkremEreWDl5Y+3IG2/PaN1JIm/cVlPPG8t/Pycikh122CGZM2dOtcs9+OCDFQpnqzsPVnX9++9//zutOBvq8/3f/va3FY5XNR3n7r///grXHjW9bxvy+wq1Pb/XpRhi6+OPf/xjjc+nfMH33/72t2qXKV+kcPzxx9d4/ZkkFV/br3zlK1W2bcjzAvVLMQQ0IpWd/Pfbb7+0LrI+/PDDCl9UfeWVV+o1vrFjx1a4aEznS5erV69OevfuXeG51cfg15IlS1La1TRQmInKTtZ9+/at8Zfak+STCtBtvzQdEcmYMWMqbbt+/fqUyvZOnTolCxcuTDvO8if66l738s9nyJAhNf4K+FbZ7OvysVV3MfDOO++kXEgWFBQk06ZNS2sbF110Ucp2qhsAqOz9eOWVV6a1nZtvvrlWy9VG+WKIgQMHpnWht3z58pRq7d69e1fZtrS0NOVCvEWLFsmMGTPSjrH8gE1V74UkqVsxxPr165NWrVrV+PqWlpamXITefvvtyQEHHFA2XdVA4BtvvJES2ze/+c1K25WUlCQ777xzStubbropredw//33pyzXsWPHahPburynt6ppUPD3v/99ynuusLCwxgSkPjS3c06S1L0YojbWrVuX8n44+uijq23fUMfGp556KqVt+/btaxx0Sdd9992Xsu7TTz897WXXrFmT0l977rlnvcQEwPZDXv+pxnCNJa9P1ViuZ+X1n5oyZUrKdoYPH572h63FxcUpX1IrKiqq8ktKDfWllmxexydJ9r7U8pOf/CSl7amnnppWPJMnT67wYWd1cTXksaI2pk6dmrL+X/ziF9W2r+xLLTX9GvJWp512Wq2Wy9SXv/zlWh33yo/PpJOnp/ullvLjZK+99lqGz6pq9fGlltoo31//+te/qm1fvq9atGhR6a9UV2b//fdPWbayXyjfatsfQ4n45APy+vphjxNPPDFl3ZXdDbcq5X905re//W29xAQ0HfLGT8kb5Y1VkTd+St6YGXmjvDFT8sbb623d1ZE3Ns68sbJiiP/+979pLVu+4O6zn/1slW0rO99mcseXhvh8v6SkJOnfv3/Kdmr6AvxW5a89IqovhmjI7yvkqhiiprtzbfXII4+kvdyCBQtSvufWv3//jH4sdNvi0pYtW1ZZXNmQ5wXqV34AjdrVV18d+fk1v1X79u0bX//611Pm3XHHHfUayz/+8Y+U6csvvzzatm1b43IdOnSIH/zgB/UaS1WWLFmS1fVffvnl0b59+xrbtW/fPi6//PKUeVW9HnfffXcsXbq0bPq73/1u9OrVK+2YLr300pTphx9+OO1lv/e970XLli3Tbr+tbPd1Vf75z39GaWlp2fTpp58eQ4cOTWvZa665Jlq1alU2PW7cuJg3b15ay7Zp06ZCX1flpJNOSpmeNm1aWsvVh0svvTTatGlTY7uuXbvGwQcfXDa9cOHCKl/TcePGxeuvv142ffbZZ8dee+2Vdkzf+ta3onXr1mXTmeyjmWjTpk0ccsghZdPjx4+PdevWVWg3c+bMlOd6zDHHxLHHHls2/dRTT1W6/qeffjpl+phjjqm03QsvvBBz584tm+7bt29ceOGFaT2HU089Nfbff/+y6dWrV8eDDz6Y1rIRdXtPl1dcXBzf/OY345JLLil7z3Xu3DmeeOKJOP/88+tlG9VxzmkYbdu2jeOPP75setKkSSnH2Jpk69j4pz/9KWX60ksvjYEDB6YdV3VuvPHGsr/z8vLiV7/6VdrLtm/fPi644IKy6ddeey3ef//9eokLgO2XvD4z8np5fXW2t7x+22vTiIhrr702reNFRERBQUF85zvfKZteunRpTJgwoV7jy1Q2r+Ozqfyx8ZprrklruQMOOCA+97nPpb2dXB4r0rHffvtFv379yqZffvnljJYfNmxYlWMl5TXEe2zjxo1x3333lU23atUqrrzyyrSWPfXUU9M+LtXV9jC28NnPfjblXJTpvnPqqafGkCFD0mqb7r6zYsWKuPfee8um8/Pz46abboq8vLyMYqvMu+++G48++mjZ9OGHH54ytlKT0047LeW9lq2xUqBpkTdmRt4ob6yOvPFT8sb6I2/8hLzxU/LGzMgbm0beuN9++8XnP//5tNr+9Kc/TXlNH3300ZTjV01++MMfpt22IT7ff+GFF1LmH3DAARX2par89Kc/jcLCwrRjag7fV/jJT36SVrtjjz02ZT+q7lh/6623xubNm8umr7rqqrTylK22PUdu3rw5nnjiiQptmsp5gcophoBGrEuXLnHcccel3f6ss85KmX7ppZfqNZ5t15eXlxdnnHFG2sueddZZ9XLBWF737t2je/fuZdP3339/vPjii/W+nYhPnvOZZ56ZdvvRo0enPOfx48dHkiQV2pX/gnUm/RoRMWDAgNhpp53KpjN5/ulexEY0bF9Xp/x+/aUvfSntZbt27Ronnnhiyrzx48entezw4cOja9euabXt169fygVXQyan5Z9fdconi1XFWdd9tG3btnHggQeWTWdzv9m2qGHz5s3x/PPPV2izbbHD7rvvHn369ElZbtKkSbF69epqlysoKIgjjjii0hjK76OjR49Oe1AyIuKcc86pdn3VyeQ9XZ2PP/44TjzxxLj11lvL5u2yyy4xYcKEOPLII+tlGzVp7uec+rZx48ZYunRpzJs3L95///2UR4cOHcrarVmzJubPn5/2erNxbCwtLY3nnnsuZd62CX1drFu3LiZOnFg2fcABB8TOO++c0TrKv/ebyj4AQG7I62smr5fXN+e8/plnnin7e4cddojDDz88o+Ub07VpNq/js2n+/PkpX4zaa6+9Yo899kh7+bPPPjvttrk8VmyVJEmsXbs2Fi1aVCE3fP/996OoqKis7ZtvvpnRurMxJlUXU6dOjY0bN5ZNjxo1Ku1jQERmr20mdtttt5TpH/3oR7F27dqsbKs+lZaWxpo1a2LhwoUV9puFCxem9G1j2Heef/75KCkpKZs+5phjYpdddskorqpse+yOyPy9nJeXl3K8nzRpUsqH+UDzI2+smbxR3ihv/IS8MTfkjfLGqsgbU8kbP9VU88by15nV6datW8r3bEpLS9MuuNtjjz1i1113TattQ32+X9n3fNJVVFSU0hfVaQ7fVxgwYECF41hVCgsLU9531R3rtz1HFhQUxGmnnZZRXIceemi0aNGibLqyfmus5wXS06LmJkCu7LfffikH4Zrsvffe0bp167KD8syZM2Pz5s1lFXSrVq2KVatWpbWuzp07R+fOncumV61aFe+++27Z9MCBA6Nbt25px1ZUVBQ777xzvPfee2kvk46tA1I333xzRERs2LAhjjjiiDjttNPizDPPjKOPPjqtX+5Ixy677JIy+FOT7t27x4ABA8r6bcWKFfHee+9VuHje9oKqZcuW0apVq4yrNrt27RoffPBBRETK61Sdvn37piSqNWnIvq7O1KlTU6aHDx+e0fIHH3xwPPDAA2XTU6ZMSeuCfvfdd89oO507d47169dHxCdfLK/MsmXL0k5au3fvXmP/tm/fPnbccce0Y+zSpUvKdFVxlr/o79q1a8b7aMeOHcv+fv/996O0tDSjAoF0HXPMMSkV5E8//XSccMIJKW22vUDempAMHz482rdvH2vXro3i4uIYN25cyuDwli1bUgorDjzwwJRj5LbK76Pb3oEjHeXbT5kyJa3lMn1PV2Xu3Llx0kknxaxZs8rmHXroofHggw9mdAx0zsmtSZMmxX333RcTJkyIN954o8r3d2VWrlyZMlBanWwcG998881YuXJl2fTgwYMz+tWb6kycODG2bNlSNj1gwICMj2fl75yR7nkXgOZJXl8zef0n5PXp217y+nfffTcWLVpUNj1w4MC0f610q/Ifguby2jSb1/HZVH5/HDZsWEbLZ9I+F8eKzZs3x1NPPRUPPPBAvPrqq/HWW2/Fpk2b0trWtq9nOjJ5j6U7JjV//vwoLi5Oa519+/ZNOec25GubiaOOOip69OhR9uHuxIkTY9ddd43zzz8/TjnllNhnn32yMmaWqXXr1sUjjzwSDz30UEyfPj3mzJmT9mvRGPad8r8yOnLkyIxiqk75sdIePXpk/F7e9ouTGzdujIULF0b//v3rITqgKZI31kze+Al5Y/rkjZ+SN9advLFqjeHaX96YO/LGqjVE3liXa76q1OY98Mgjj5RNT5kyJa274eyzzz5pb6OhPt+vj+PBtncDqUpz+L5CptdT275nq3q/bty4MV555ZWy6R133DGWLVsWy5Yty2hbnTt3LlsmW/sBuaMYAhqxQYMGZdS+RYsW0b9//3jrrbciIqKkpCSWL19elkD+4Q9/SPt2fVdddVVcffXVZdOLFy9O+X+6FZrbGjRoUL0PfkV8cuvYxx9/vOwkVVJSEvfee2/ce++9UVBQEEOHDo3hw4fHoYceGocddlitE+pMX4+IT/pp25PnkiVLUga/SktLY+HChWXTmzdvrnOl8YoVK9Jq16NHj4zX3VB9XZXNmzenXPgUFRVVSGRqUr76NN1fEMh0O9veAm3bC9ltXXbZZXHnnXemtb7bb789zjvvvGrb1CXGiKrj/PDDD1OmDzrooIy2U15paWmsWrUqo+rZdO2zzz5RVFRUdvu9be/mEPHJBfK21b1biyEKCwtj5MiRZYnaU089lVIMMX78+Fi3bl3ZdHW37yy/T2V67KjtPlqb93R5K1asiGHDhqXcvvDss8+O2267LeWWwulwzsnOcbAmr7/+enzrW9+KF154odbryKRwIhvHxm0H9iMio1/XqUn549k999wT99xzT53Wme55F4DmSV6fHnl9Knl99baXvL78telLL72U8a+AlZfLa9NsXsdnU12PjTvuuGPKlxGrkotjxUMPPRSXXHJJzJ07t1brzyQ3jMjsPZbumNShhx6a9pe95s6dm/KlgLq+trU5Z6Sjbdu2ceutt8Zpp51W9uH1Rx99FL/85S/jl7/8ZXTu3DmGDx8ew4cPjxEjRsRBBx0UrVu3zkosVfnb3/4WV155Zcr4UCYaw77TkGMLmf4SYWVWrFihGAKaMXljeuSNqeSN1ZM3Vk3emDl5Y9Uaw7W/vFHeWF5zyRvrcs1XlUz36fLvmWx8t6WhPt9vqONBc/i+Ql2up6oqqProo49S3svvv/9+Vq6JGut5gfTkvkwQqNK2v6Serk6dOqVM19cJr3xVbn3EVl+6desWEyZMiFNPPbXC/0pKSuKVV16Jm2++Oc4888zo06dPHHzwwXHbbbdVecFblWy8HitXrqxQsVlXa9asSatdhw4dMl53Q/V1Vcrvh7XZp2r7HmkMlfU1yVaMy5cvr/d1prufZiovLy+OOuqosulZs2bFggULyqZffPHFsoGmVq1apdxacNvb1pUvoih/S9LqiiHqup+2a9cu5Rcp0t1Ha/OeLm/NmjUpAxadO3eO//f//l/GhRB15ZxTOy+99FIcfPDBdSqEiKj4SwLVycZxp/wxJ9NkOZN114dsHc8A2D7I69Mjr08lr6/e9pLXb2/Xptm8js+mhjo2NvSx4g9/+EOcfPLJtf5CS0REkiQZtW9s77G6vrbZOudFRJxyyinxxBNPxMCBAyv8b9WqVfH444/HT3/60zjiiCOiqKgozj777LTvHFpXl1xySfzf//1frb/QEpHZuEKEsYUIYwvQ3Mkb0yNvTCVvrJ68sWryxszJG6smb5Q31pa8MXMNcfyu63sgG99taai+bKjjQVPdNzLREO/X+pDL/YDsaFxXGUCKvLy8RrGOhlxvbRUVFcX9998fr732WvzgBz+IPffcs9IYkySJCRMmxNe+9rXYc889Y8aMGWlvIxuvR/nbUjYFDdHXVSmfTDfm98j2JBv7aaYDI5koX6iwbSHDtn8fcsghKbcW3Ha5d955J+VWdNsu16FDh2rvjlHf+2lD7qM9evRIuW3bqlWrYsSIETFnzpwGi6Eyje19msvjYFVWr14dp59+ekrC1qlTp7jgggvi7rvvjmnTpsXixYtj3bp1UVJSEkmSlD2uuuqqrMVVH+rz9W9qxzMAmr7GnLM0x2ssef0n5PWNw/Z+bdpUX5dsxd2Qx4pJkybFpZdemjKvf//+ceWVV8YjjzwSs2bNihUrVsSGDRuitLQ0JT/c9kcjtjeZvrbZ3oePOeaYePPNN+OBBx6IM888M3r27Flpu7Vr18Zdd90VBx54YHz1q1+NDRs2ZC2m++67L/7whz+kzNtjjz3i5z//eTz55JMxe/bsWLVqVWzcuDFlv0mSJPr165e1uOqDsQWgMWvM18SN7ZpO3thw5I2Nw/Z+3dFUXxd5o7yxtu0zJW9sWPLGusvGe2J768vt7fk0lFz1W2M7L1A9xRDQiGV6W7DKltm2cvXqq6+ucLFZ1aP87bHKV8DWR2zZ8JnPfCauu+66mDlzZqxYsSKeeOKJ+MlPfhIjRoxI+aX1iIjZs2fHUUcdlXale32/HhGf/LLGtgYNGpT2a1TdoyFks6+r0rVr15TpbLwmDemOO+5I+zXd9paoDa179+5lf7du3brCgEdtHtm87fu2d3iISL3Lw7Z/l2+32267xU477VSh7YoVK+KVV14pm3/EEUdU2Me3Vdf9dN26dSm3fmvIfbRNmzbxzDPPxNFHH102b968eXHooYfGtGnTMlqXc052joNVufXWW1Nu5Tls2LCYM2dO3HrrrXHmmWfG0KFDo0ePHtG2bdsKlfirV6/OSky1te0xJ6J+b+tYft3XXnttnY9nd9xxR73FB8D2R16fOXm9vL4m20teX/7a9Otf/3qd95vnnnuu3p9jSUlJWu2yeR2fTQ11bGzIY8U111yT8guLX//612POnDnxy1/+Mk488cQYMmRIdOnSJVq3bl3hA7rGlh++//77tR5rqutru2rVqjpGX7MWLVrEKaecEnfffXd89NFHMWfOnPjHP/4RF1xwQQwYMKBC+9tvvz3OPvvsrMVT/scSfv7zn8drr70WP/7xj+PYY4+NQYMGRadOnSq9g2hj23cacmxh4cKFdX4vjxw5st7iA5oeeWPm5I3yxprIG+WN9UneKG+sirxR3pjuurORN9blmq8qmb5GDXG+bajP98vHXte+yPXz2d6U77djjz22zv227Q/kbtUUzgtUTTEENGJvv/12Ru2Li4tTDtQFBQUVBgtqq0ePHinTtfmV8EyfT1117tw5Ro0aFT/72c/ihRdeiMWLF8f111+fckui5cuXx09+8pO01leb+Mv3U/l+bNmyZcqJdO7cufV2C9GGVN99XZWWLVumrHPJkiUZX0jMnj07Zbr8a0JF2/7CwMaNG+ODDz7IYTQ169u3b+y2225l088880wkSRJLliyJmTNnls0vXwwRkXp3iK3FEGPHjk0ZDCp/54nyyu9TmR47cr2Ptm/fPh555JH4whe+UDZvyZIlccQRR8SLL77YIDE452TuoYceKvs7Ly8v7rrrrigqKkpr2YULF2Ylptrq1atXyvSsWbPqbd3lfzGlofcTAJofeX3dyOsbjry+4TXktWn5LyltW4Bfk/K3Bq9KNq/js6n865DpsfHDDz+MjRs31tiuoY4V69ati7Fjx5ZNDxgwIG655ZZqf9RhW9sW2Td1dX1tc5EvDhw4ML785S/HrbfeGu+++25MmzYtRo8endLmwQcfjGeeeabetz1nzpx48803y6YPO+yw+PGPf5zWL9pt2LCh0X3Ya2wBaErkjXUjb2w48saGJ29sHOSNqeSNn5I3yhur0lTzxkzjrOkaqD40VF821PGgqe4buba97Qdkh2IIaMReeeWVjJLMGTNmpCRRe+21V6XVtrXRpUuX2GWXXcqm33nnnVi+fHnayy9dujRrv4adrq5du8Zll10WTz75ZMrF+MMPP5zyReeqvPvuu7Fs2bK0t7ds2bJ47733UrZfWWX2wQcfXPb3li1bsvJrDA2trn1dnf333z9lesKECRkt//LLL6dMH3DAAXWKpznYdh+NSL27Qn2rr1uGbVvosHTp0pg+fXo8/fTTZb9+UVRUFEOHDq2w3LaFDs8++2yUlpZWeL41FUOU30fL73M1aQz7aKtWreI///lPfPWrXy2b9/HHH8eoUaPisccey/r2nXMyt20SNmTIkErPN1XJ9DiabUOGDEn58G727Nnx0Ucf1cu6hw8fnvJ6bHtcAIBskNfXL3l9w5HXZ98ee+yR8gWfCRMmxJo1a7KyrY4dO6ZMZ/Lh8xtvvJFWu2xex2dT+f1x4sSJGS0/adKktNs2xLFi3rx5KbeNP+6449L+Qst7773XJF6zdDXka5stQ4cOjbvuuisuvPDClPkPPvhgpe3rMq5W/sPdk046Ke1lJ0yY0Ohy60MOOSRluj7fbw05Vgo0D/LG+iVvbDjyxuyTNzYO8sZPyRtTyRvljVVpqnljXd8D2TjfNtTn+w11PPB9hdrp2LFj7LHHHmXT77//fq0Kt2uyPZwXmjPFENCIrVy5Mp544om02991110p04ceemi9xrPt+pIkiXvuuSftZe+6665Gc/IeNmxYfOYznymbXrNmTVqDWpk+57vvvjvlOR9yyCGVJhajRo1Kmf7rX/+a9jYau9r2dXXK79f//ve/01525cqV8cgjj6TMK5/gUFH5ffRvf/tb1rZVfsB+06ZNtVpP+YKFp556Kp5++umy6aOPPrrS9+PRRx8d+fmfXB6tXLkypkyZkrLcTjvtFIMHD6522+X30bvvvjujQd9//vOf1a6voRQUFMRtt90Wl112Wdm8DRs2xMknn1zhfJMNzfGcs+3+n+m+v+2g9LYD4zV59tlnG93dXvLy8uLII48sm06SJP7yl7/Uy7qLiopin332KZtesGBBPP744/WybgCojLw+O+T1DUdenz0FBQVx1FFHlU1v2rSpQj5YX8r/Klsmv3T36KOPptUum9fx2dS3b9/o169f2fRrr72W9hd5IjLbfxviWFH+C0uZ5Id33HFH/QaTY/vvv3+0bt26bPrJJ5+MFStWpL18Jq9ttp1//vkp01V9ybQu42rb275z+OGHp3yh66mnnqq3L+eWfy//85//TOuXfgGqIm/MDnljw5E3Zo+8sXGQN36qMV7714W8Ud4ob0x19913p912+fLlKUUe+fn5MXz48HqPqaE+36/sez7pWrp0adoFL76vUHsNcY7cns4LzZFiCGjkrr766rS+RDt//vwKieK5555br7Gcc845KdO//vWvY/369TUut2bNmvj1r39dr7HUVfnK9nR/MeW6666LtWvX1thu7dq1FZ5zVa/Hl7/85ejcuXPZ9H333ZdyW8KmrrZ9XZUvfelLZV9Wj4i4995747XXXktr2auvvjolmRs5cmTKwAWVO/7441N+CWjy5Mnx97//PSvb2va9EFH722yOHDkyCgsLy6afeuqplFtBbnvniG1169Yt9t1337Lpm2++OebNm1c2XdNdISI+uR3kzjvvXDb94Ycfxp///Oe04n7wwQdj8uTJZdMdO3aMk08+Oa1ls+X666+Pa6+9tmx6y5Yt8aUvfSn++Mc/ZnW7zfGcs+3+n+m+v+1tc+fMmZPWtcOWLVviiiuuyGg7DeVb3/pWyvRvf/vblF/XqouLLrooZfqyyy5L69wOALUlr88OeX3Dkddnz8UXX5wyfc0119Q6D67OtnluRMT//ve/tJZ744034oEHHkh7O9m8js+m8sfGq666Kq3lpkyZEg8//HDa22mIY8W2uWFExFtvvZXWcvPmzYsbb7yxXmPJtdatW8cXv/jFsunNmzenjG9UZ8yYMTF9+vQsRZa52owrRGQ2tlDbfWfq1KkZfWG0oXTu3DnOPvvssunS0tL49re/XS/r3nPPPePwww8vm/7www/T3rcAqiJvzA55Y8ORN2aPvLFxkDfKG8uTN8obq9NU88ZXXnklHnroobTa/uxnP0u5y8wJJ5wQRUVFWYmrIT7fP+yww6J///5l01OnTq1QXFmVn/3sZ7Fly5a0t+X7CrXzzW9+M+VYd9NNN2VUnJiO7em80BwphoBG7pVXXonLL7+82jYbNmyIs846K+XEeMghh8R+++1Xr7EceeSRseeee5ZNf/DBB/F///d/1Q7OlZSUxFe+8pVYuHBhvcay1fTp0+PBBx+MkpKStJeZOXNmzJgxo2y6V69eaVcsz58/P84///xqn3NpaWmcf/75MX/+/LJ5/fv3j89//vOVtu/cuXN8//vfT5l32mmnxUsvvZRWTFuVlJTEAw88kFFFYiYauq+rMnDgwPjc5z5XNl1cXBxnnnlmjb8wcv/998fNN9+cMu/SSy+tUyzNRYsWLeJnP/tZyrxvfvObGQ1sbfXMM89UO6A1ZMiQlOna3i6wffv2KVXn48aNiwULFpRNV1UMEZFa8FC+ajedYoj8/Pz4zne+kzLv8ssvTylyqMzs2bPjG9/4Rsq8//u//6twW9pcuOKKK+LWW28tG3hOkiS+9a1vxS9+8YusbbM5nnO23f/nzZsXs2fPTns7e++9d9nfy5Ytq/EOLiUlJXHBBRfUuF/mysiRI+Owww4rm169enV87nOfiw8//DDtdVR1m95zzjkndtttt7LpN998M0455ZRYuXJlRjEuXbq0VsdBAJofeX315PWfktc3v7x+5MiRKXnmkiVL4oQTTkjZ99KxZs2aau/gt+uuu8aOO+5YNj116tT473//W+06Fy9eHF/84hcz2l+yeR2fTRdccEHKL36NGTOmxh81WLJkSXzpS1/K6E6QDXGs2GWXXaJ9+/Zl04888ki8/vrr1a5v2bJl8YUvfCE+/vjjjOJoCr797W+n/DLzDTfcUOMH2W+//XZceOGFWYvp3//+d7z55psZLfOPf/wjZbr8+FlV8zMZV9t2XCEi4s4776zx/fjee+/FF7/4xYw+8G9IV1xxRcqPpTzyyCPx3e9+N+337YYNG6p8X/zyl79M2bd+/vOfVzhHpWPSpEkxbdq0jJcDtj/yxurJGz8lb5Q3yhvljemQN6ZP3ihvlDem+sY3vhHvvvtutW3++9//xi233JIyr/x3ZOpTQ3y+n5+fX6FI4YILLqjxbiEPPPBAxj8k6vsKtTNw4MD4yle+Uja9cePGOOGEEzK6m1XEJ3fEqe5uNY3xvECaEqDRGDduXBIRZY8uXbqU/X3WWWcl8+fPr7DM5MmTk/322y9luZYtWyavvfZaVmKcMGFCkp+fn7K94447Lnn77bcrtH3zzTeTo446qtLnExHJ3Llzq9xO+b646qqrKm334IMPJhGR9OvXL/n+97+fjB8/Ptm8eXOlbbds2ZLcd999yQ477JCy7h/+8IeVtp87d26Vr8exxx6bzJ49u8Iys2fPTo455piU5SIiefLJJ6t8rltjO/bYY1OWKSgoSC688MLkrbfeqnK5zZs3J+PHj09+8IMfJP369auxX7dd/+GHH15tTOVls68zje2DDz6osD8NHDgweeKJJ5LS0tKUtqtXr05++tOfJoWFhSntzzjjjGq3ke4+WJWtr8fWPsuWumznqquuSnmO48aNq7b9V7/61Qr79llnnZVMnTq1ymWKi4uTV199Nbn66quTIUOG1Lid559/PmX9HTt2TK677rpkwoQJyZw5c5K5c+eWPRYtWlRtvL/4xS8qxBsRyR577FHtcuVf+62PvLy8ZOnSpdUuu9WWLVuSYcOGVXgut9xyS7Jx48YKbf/1r38lRUVFFfbp1atXV7udurynt8pkH7rnnnsqvJcuueSSCu+7+tKczjlJkiTXXHNNStvBgwcnt99+ezJt2rTkvffeS9n/V65cmbLs3/72t5RlCwsLkxtuuCHZtGlThe1Mnjw5Oeyww8ralt/3qnuPNuSx8f3330+6deuWsr2ioqLkhhtuqPK9sXTp0uSvf/1rctBBByXnnntulet+/fXXk44dO6asu2/fvskf//jHat93y5cvT+65557kzDPPTFq1alXr9x0A2y95/acawzWWvD6VvP6qatuX11B5/cKFC5O+fftW2Fevu+66anPQ1atXJw899FDy1a9+NenQoUONMZbPN9q1a5fcddddFdoVFxcn//nPf5Kddtqp0vd9ddfZSZLd6/hMXpPbb789JYbbb7+92va//vWvU9rn5+cn3/ve95IVK1ZUaPvkk08mu+yyS9nxul27dmnH1RDHii996Usp6+/du3fy+OOPV2hXXFyc3H///Un//v2TiE/GPcq/dtXJdFxpW+WPzzXtV3Vx4YUXpmyrVatWybXXXpusW7cupV1xcXFyzz33JD169Kh036/puHbuueemdY78/Oc/n+Tl5SUjR45Mbr755mqP+UuWLEkuvfTSJC8vL2XffOONN6pcZsCAASlxnHXWWcnjjz+evPXWWynjCnPnzk22bNmSsuyhhx6asuxuu+2WTJgwocI2Nm7cmPz1r38tG09o3bp10r59+7TfB+n2VWUyPbbfdNNNFc7phx56aPLss88mJSUllS4zffr05Morr0yKioqq3a/LH1e3XlONGzeuynWXlpYmb775ZvLrX/86OeCAA9I6PgHbH3njp+SN8sbqyBs/JW+UN8ob5Y1VkTdWJG9M3+GHH17pddAOO+yQ3HvvvRViXLt2bfLzn/88admyZYV9qDp1Pd8mScN8vr958+Zk7733TtlGr169kvvuu6/SvrjmmmvKrj3KHw9qeo4N9X2F2h6HM1mursfr8vthddasWZPstddeKe3btGmTXHnllckHH3xQ5XLr169Pnn766eTiiy8uOy5Vp6HOC9QvxRDQiJQ/+f/whz9Mhg4dmnLBOmzYsOT0009PTj755GTw4MEVLpoiIrn11luzGuevfvWrSrc7dOjQ5LTTTktOPfXUChcHJ5xwQnLOOeekfbGa6eDXto+WLVsmQ4cOTU488cTk7LPPTs4888xk5MiRSadOnSq03W233ZK1a9dWuu7yJ+tzzjknOeGEE9J+zlsfV1xxRVr9umrVquTggw+udB19+vRJRo0alYwePTo544wzkuOPPz7Zc889Kwzo1NSvdTnhZrOvaxPbI488krRq1arCdvr27ZucdNJJyejRo5ORI0cmrVu3rnRfXbVqVbXrbyqDXw1ZDLF58+bklFNOqXQfLSoqSo4++ujkjDPOSEaPHp2ceOKJyT777FNp/9e0nf3337/SbZR/1LSfTJo0qdLlLrnkkmqX27RpU8qA1NbHfvvtV+1y5b333nvJjjvuWGE9HTt2TI455phk9OjRyXHHHZd07969QpuuXbsmr776ao3bqI+L6Ez3occffzxp27Ztyra/8pWvJMXFxbXafk2ayzknSZJkwYIFSYcOHdLa/8vHuGXLlgpJX8QnydZxxx2XnH322clJJ51UNli57X7zox/9KO33aEMfG59//vmkc+fOFZ5XixYtkgMPPDA55ZRTkrPOOis54YQTkoEDB6YM9NWUZD/99NOVvk4FBQXJ0KFDk8997nPJl770peQLX/hCcuSRR1b4oKEu7zsAtl/y+qr7Ql4vry9PXv+p6dOnJ717967wPPPy8pLdd989Oemkk5Kzzz47Oe2005Kjjz462XnnnVOufdOJcc2aNcnOO+9c6b75+c9/PjnrrLOSY489NuUDm/bt2ydjxoxJaZ/Oh1nZuo7P5pdaiouLkxNPPLFCzIWFhcmIESOSM888M/nsZz9b9mWfrY/rrrsu430l28eKd955J+ULBtvGdvLJJ1f6WkdE8qMf/SijDx+bypda1q5dW+HLoxGRtG3bNjnyyCOT0aNHJyeccELZh5ZbH/fcc09Gx7VMvtRSPpZu3bolhx12WHLKKaeU5aFDhw5NCgoKKrT98Y9/XG0clX2Jo6pH+RjHjx+ftGjRokK7wYMHJ6eeemoyevTo5Mgjj6ywf/31r3/N6H3QkF9qSZIkueSSSyp9/t26dUuOPvro5Mwzz0y++MUvJiNHjky6du2a0X590UUXVbruTp06JSNHjky++MUvJmeddVZy0kknJQceeGCl703FEND8yBur7gt5o7yxPHnjp+SN8sb6PFbIG1PJG6t+yBu377yx/Pu5/D7ds2fP5IQTTih7Xct/TyTikx8jXb58ebXbqY9iiCRpmM/3X3/99QpFX5X1RZs2bVJey7/85S8ZP8eGeD7bWzFEknxSMLvbbrtV+r4aMGBAcsIJJyRnnXVWcvrppyejRo1KBg8eXOmxsjoNdV6gfimGgEakspP/woULkz333DOti9DCwsLkT3/6U4PEeu2111b4RZCqHiNHjkxWr16d0cVqXQa/0n0ccsghyeLFi6uMobKT9erVq5MjjjgirfXn5eUlP/rRjzLq182bNyff+973Kj0Jp/No27ZtsnDhwirXX5cTbjb7uraxvfDCCxUuLGp6nHjiiTX+2n6SNJ3Br4YshkiST6rQr7vuukoHFdM9Tk2ePLnabbz77rtVXrhmsp+UlJRUSEQjotJftSiv/EB3RPW/ZFOVBQsWVHqBXN1j1113rfZXPbZVl/f0VrXZh8aPH19hgPKUU06pcNeL+tIczjlbPfbYY5UO/pZ/VBbjvHnzyn5lJp3H0UcfnXz88ccZHQtycWx86623kj322CPjPk8nyZ4zZ07aBViVPU4++eSMnj8A2z95ffV9URl5fepDXl/zY3vL67davHhxhV9+zOQxdOjQGrcxY8aMCr/aWtWje/fuyYsvvljrD7OycR2fzS+1JMknv1p48sknpx3rpZdemnFcW2X7WPHEE09U+uF5VY/vf//7SZJk9uFjU/lSS5IkycqVK6v8IlH5R35+fvKHP/whSZLMjmt1+VJLOo8WLVok11xzTY3PtbS0NPnGN76R1jori/H222+v9EtUlT0KCgqSG264IUmSzN4HDf2lliRJkj//+c+Vfmmjpkc6+/Wdd95Z4dcc033k5+cnDzzwQNrPH9g+yBur74vKyBtTH/LGmh/yxsof8sZU8kZ547bkjZU/5I01P5py3ljZ+/nGG29M+/pv3333TZYsWVLjduqrGCJJGubz/WnTpiW9evVKa32dO3dOXnjhhVo/x2w/n+2xGCJJPingPPvss2vdb507d65xGw1xXqB+5QfQqPXq1SsmTpwYP/3pT6NPnz6VtikoKIjjjjsupk+fHt/4xjcaJK4rrrgiJk6cGIcffnjk5eVV2mbgwIHxu9/9Lp5++uno0KFDVuI49thj44EHHoivfe1rMXDgwBrb5+XlxYgRI+Lf//53vPjii9GjR4+MttehQ4d46qmn4ne/+12V28vLy4uDDz44XnrppfjFL36R0foLCwvjt7/9bbz99tvxzW9+M3r27FnjMt26dYsvfOELcccdd8TixYujV69eGW0zXQ3d1+kYMWJEvPPOO3HVVVdV+f6IiMjPz4+DDz44HnnkkXjkkUeytj82B3l5efGDH/wg5s6dGz/84Q+jX79+NS7ToUOHOOGEE+KWW26JRYsWxQEHHFBt+wEDBsT06dPjX//6V5x++ukxZMiQ6NSpU7Ro0SKjWPPz8+PII49MmdeqVas47LDDalz22GOPrTDvmGOOyWj7ERG9e/eOyZMnx5133hl77bVXtW133XXXuPHGG+P111+PwYMHZ7ythnTwwQfH888/HzvssEPZvAcffDBOOOGEWLt2bb1vrzmdc44//viYPXt2/Pa3v40TTjgh+vfvH+3bt4/8/Jov23faaad49dVX49vf/na0bdu2ynb77LNP/PnPf44nn3wyOnbsWON6c23w4MExY8aM+Mc//hH7779/lfvAVkOGDImf/OQn8bOf/azGdQ8cODAmT54c//vf/+Loo4+OVq1a1bjMkCFD4uKLL44XX3wxHnjggbSfBwDNl7y+evJ6eb28/hM9evSIJ598Ml544YU4+eSTo127djUus/POO8fXvva1ePzxx2Pq1Kk1tt9rr71i6tSpce6551aZY3fs2DEuuOCCeO211+LQQw/N+Hlslc3r+Gxp1apVPPjgg/Hvf/87Bg0aVGW7gw8+OP73v//Fb37zm1pvK9vHilGjRsXUqVPj85//fJV936JFixg1alSMHTs2fv3rX9f6uTQFnTt3jhdffDFuvPHG6Nu3b6VtCgoK4thjj40XX3wxvvOd72QtlhtuuCFuvPHGOOGEE6JLly41tu/YsWOce+65MXPmzPjpT39aY/u8vLz405/+FJMmTYrvfOc7MXz48OjRo0e0bt06rfjOO++8ePHFF2PkyJFVtmndunWceuqpMXny5Pj2t7+d1npz7etf/3rMnTs3Lr300hrPs61atYpjjjkm/vnPf8bw4cNrXPc555wTH3zwQVx77bVpjem1bt06jjzyyLj++uvjgw8+iFNOOSXt5wFsv+SN1ZM3yhvljZ+QN8obayJvrD15o7xR3viJiy++OF544YU49thjo6CgoNI2vXv3juuvvz4mTZoURUVFDRZbRMN8vj906NB488034+KLL67yeqJ9+/Zx3nnnxcyZM2PEiBEZP4+tfF+hdtq3bx//+te/YsaMGfGlL30prWNl79694+yzz4777rsvPvrooxrbN6bzAunJS5IkyXUQwCeee+65OOKII8qmr7rqqrj66qvLpktLS2PChAnx3nvvxcKFC6N169bRp0+fOOyww7IysJCu+fPnx/jx42PBggVRWloavXv3jkGDBsX+++/f4LEsX7483njjjZg7d24sX7481q9fH61atYqOHTvGwIEDY+jQodGtW7e01vX+++/HzjvvXDZ97rnnxh133JHS5pVXXonZs2fHwoULIz8/P3r37h0HH3xw7LTTTvX2nN58882YOXNmLF++PFatWhUtWrSIjh07xo477hi77bZbDBgwoMaBgWyoz76uL6+//nrMmDEjli1bFuvWrYtu3bpFr1694pBDDmnwWJqTuXPnxquvvhpLly6NlStXRn5+fnTo0CF69+4du+22W+y6665VJknNzYIFC2LixImxePHiWLVqVXTo0CF69OgRBxxwQAwYMCDX4TUJ2+s5p76tW7cuXn755Zg9e3asXr06OnXqFDvssEPsvffeaX2A0ZgtW7YsJkyYEIsWLYrly5dHXl5edOrUKXbeeefYe++96/Qh0MaNG2PSpEkxb968WL58eaxbty7atWsXXbp0iYEDB8aQIUOcTwColry+7uT1DacxXs/K6z9VXFwcU6dOjXfeeSeWL18ea9asibZt20anTp1iwIABMWTIkJQC9UytXr06XnjhhXj//fdj9erVUVRUFDvttFMcdthh0aZNm3p8Jp/I5nV8tsyYMSOmT58eH330UbRp0yZ69+4d++67b9by92wdKxYvXhwvvfRSfPDBB7Fhw4YoKiqKXr16xUEHHRTdu3fPwjNp3JIkiUmTJsWsWbNiyZIlZWNYBx10UIPvh0mSxDvvvBNz5syJDz74ID7++OPYsmVLtG/fPrp16xZ77LFHfOYzn4mWLVs2aFxbffDBBzF+/PhYuHBhbNmyJXr06BG9e/eOQw45pMl/ufD111+P119/PZYuXRoff/xxtGnTJrp37x6DBg2KoUOH1uk4uGjRopg8eXIsWbIkVqxYEaWlpdGhQ4fYYYcdYvDgwTF48OCcvaZA4yBvrDt5Y8ORNzZu8sbckzdun+SN6ZM31k5jyRtHjhwZzz//fNl0+a8RL1q0KCZNmhQLFiyINWvWRI8ePWK33XaLgw46KK0fc2wI2f58f9OmTfHcc8/F3LlzY+XKlVFUVBR9+/aNESNGpFWUmCnfV6id0tLSmDlzZsyaNStWrFgRq1atitatW0fHjh2jf//+MWTIkNhxxx1rvf7GdF6gaoohoBGpafCLhpXO4BcAAABsJa9vXOT1AABAYyNvbFzkjQBAc1VTMQRAU9I4SrQAAAAAAAAAAAAAAADSpBgCAAAAAAAAAAAAAABoUhRDAAAAAAAAAAAAAAAATYpiCAAAAAAAAAAAAAAAoElRDAEAAAAAAAAAAAAAADQpiiEAAAAAAAAAAAAAAIAmRTEEAAAAAAAAAAAAAADQpOQlSZLkOggAAAAAAAAAAAAAAIB0uTMEAAAAAAAAAAAAAADQpCiGAAAAAAAAAAAAAAAAmhTFEAAAAAAAAAAAAAAAQJOiGAIAAAAAAAAAAAAAAGhSFEMAAAAAAAAAAAAAAABNimIIAAAAAAAAAAAAAACgSVEMAQAAAAAAAAAAAAAANCmKIQAAAAAAAAAAAAAAgCZFMQQAAAAAAAAAAAAAANCkKIYAAIDt3IYNG2L+/PmxYcOGXIcCAAAAAAAAAABQLxRDAADAduyxxx6LAQMGxI477hgDBgyIxx57LNchAQAAAAAAAAAA1FlekiRJroMAAADq34oVK2LXXXeNFStWlM3r1q1bvP3229G1a9ccRgYAAAAAAAAAAFA37gwBAADbqfvvvz+lECIiYvny5TFmzJgcRQQAAAAAAAAAAFA/FEMAAMB2qqqiB8UQAAAAAAAAAABAU5eXJEmS6yAAAID6tXLlyujRo0cUFxdX+F+LFi1iyZIl0aVLlxxEBgAAAAAAAAAAUHfuDAEAANuhhx9+uNJCiIiI4uLi+N///tfAEQEAAAAAAAAAANQfxRAAALAdGjNmTJ3+DwAAAAAAAAAA0JjlJUmS5DoIAACg/qxevTqKiopi8+bNVbZp1apVLF26NDp06NCAkQEAAAAAAAAAANQPd4YAAIDtzKOPPlptIURExKZNm+LRRx9toIgAAAAAAAAAAADql2IIAADYzowZM6Ze2wEAAAAAAAAAADQ2eUmSJLkOAgAAqB/r16+PoqKiWL9+fY1t27ZtG0uXLo22bds2QGQAAAAAAAAAAAD1x50hAABgO/LEE09UWgjRtkX7CvPWr18fTz75ZEOEBQAAAAAAAAAAUK8UQwAAwHbk/vvvr3T+/+39vYzaAwAAAAAAAAAANGaKIQAAYDuxadOmeOSRRyrM79m2Txy/86nRs23vCv975JFHYtOmTQ0RHgAAAAAAAAAAQL1RDAEAANuJp59+OtasWVNh/oi+R0d+Xn4c2vfoCv9bvXp1PPPMMw0RHgAAAAAAAAAAQL1RDAEAANuJMWPGVDp/axHEoX2OyWg5AAAAAAAAAACAxkoxBAAAbAe2bNkSDz30UIX53Vr3iN267hUREUO67RXdWveo0Oahhx6KLVu2ZD1GAAAAAAAAAACA+qIYAgAAtgPjxo2LlStXVph/aN+jIj/vk8v+/Lz8OKTPkRXarFixIp577rlshwgAAAAAAAAAAFBvFEMAAMB2YMyYMZXOH9H3mHLTx2a0PAAAAAAAAAAAQGOkGAIAAJq4kpKS+O9//1thfudWXWOP7vumzPtM0b7RqVXXCm0ffPDBKCkpyVaIAAAAAAAAAAAA9UoxBAAANHEvvfRSLFmypML8g/scGQV5BSnzCvIK4uDeR1Rou2TJkhg/fnzWYgQAAAAAAAAAAKhPiiEAAKCJGzNmTKXzD+1zTKXzR/StfH5V6wEAAAAAAAAAAGhsFEMAAEATVlpaWmkRQ4fCjjG0xwGVLrN3jwOjfWGHCvPHjBkTpaWl9R4jAAAAAAAAAABAfVMMAQAATdikSZNi4cKFFeYf1HtktMgvrHSZwvzCOKj3ERXmL1iwICZPnlzvMQIAAAAAAAAAANQ3xRAAANCEVXZXiIiIEX2PrXa5EX2PyWh9AAAAAAAAAAAAjYliCAAAaKKSJKm0eKFti3axb8/h1S67X8/h0aZF2wrzx4wZE0mS1FuMAAAAAAAAAAAA2aAYAgAAmqhp06bF+++/X2H+sF6HRcuCltUu27KgVQzrdXiF+XPnzo3p06fXU4QAAAAAAAAAAADZoRgCAACaqPvvv7/S+Yf2PSat5Q/te3RG6wUAAAAAAAAAAGgsFEMAAEATlCRJjBkzpsL8VgWtY/8dDklrHQfscGi0KmhdYf6YMWMiSZI6xwgAAAAAAAAAAJAtiiEAAKAJeuONN+Ltt9+uMP+AHUZEmxZt01pHmxZt44AdDq0wf/bs2TFr1qw6xwgAAAAAAAAAAJAtLXIdAAAANEUlJSVx7bXXxiOPPBIrV65s8O2vXr260vkj+h6d0XoO7Xt0vLTgmQrzjzrqqOjYsWOtYquLLl26xEknnRRXXnllFBQUNPj2AQAAAAAAAACApkExBAAA1MIll1wSN910U67DSFGYXxgH9joso2WG9To8CvMLY0vplpT5ixcvjsWLF9dneGmbPHlyLFu2LG644YacbB8AAAAAAAAAAGj88nMdAAAANDUlJSVx55135jqMCvbteXC0K2yf0TLtCtvHvj2HZymi2rvzzjujtLQ012EAAABAk1e8cWMseeWVKN64MdehAAAAAA3MuACwvVMMAQAAGSooKIg2bdrkOowKRvQ9ppbLHVvPkdRdmzZtIj9fugIAAAB1Nf6yy+KZc86Jl7///VyHAgAAADQw4wLA9s63iwAAoBa+973v5TqEFP06DowjdjqhVssesdMJ0a/jLvUcUd1ccskluQ4BAAAAmrz1H30UC8aNi4iI+c8+G+sXL85xRAAAAEBDMS4ANActch0AAAA0Rd///vejtLQ0fvzjH0dJSUm1bfu27x+92++YlTjy8wpiQOdBcdqgc6Mwv7BW6yjML4zfH/GPuP/tO+O9VW9HaVL986mtBWs/iAVr51XbpkWLFvGLX/wivu9XKQAAAKDOPhw7NnX6mWdi8Nln5ygaAAAAoCEZFwCag7wkSZJcBwEAAJkq3rgxVrzxRnTdY49o0bp1zuKYOHFinHXWWTF37twq27TMbxXfGPqDOHHAFyMvL68Bo2sckiSJR977T/x5+vWxuXRTle123nnnuPvuu2PYsGENGB0AAABNUWMZF2jsnjnvvFgyZUrZdI8DDoij77gjdwEBAABAPTAukB7jAkBzkJ/rAAAAoDbGX3ZZPHPOOfFyju8gcNBBB8W0adNi9OjRVbbZXLopbnz15/HzCd+L1Zs/bsDocm/15o/jZxMuiZte/UW1hRCjR4+OadOmKYQAAAAgLY1lXKAx27h8eSx95ZWUeUtfeSU2rliRo4gAAACgfhgXqJlxAaC5UAwBAECTs/6jj2LBuHERETH/2Wdj/eLFOY2nU6dO8e9//ztuv/32aNeuXZXtXlrwTHzjqVNj5tKpDRhd7sxcOjW+8dSpMX7B2CrbtGvXLu64447497//HZ06dWrA6AAAAGiqGtu4QGM1f+zYSEpLU+YlpaUxf2zVeToAAAA0dsYF0mNcAGguFEMAANDkfFguOf/wmWdyFMmn8vLy4rzzzotXXnkl9tlnnyrbLduwOH7w3Pnxjzf+GCWlxQ0YYcMpKS2Of7xxS/zgufNj2YaqB5722WefePXVV+Pcc8+NvLy8BowQAACApqwxjgs0Rh88/XSl8z+sYj4AAAA0BcYF0mNcAGguFEMAANDklE/OG1OyPnjw4JgwYUJccsklVbYpjdL416w/xfefPz+WrF/UgNFl3+J1C+Oy574a/5p1a5RGaZXtvve978WECRNi0KBBDRgdAAAA24PGPC7QWGxatSoWT55c6f8+mjQpNn/8cQNHBAAAAPXDuEDNjAsAzUlekiRJroMAAIB0bVy+PB4cOTLldo55+flxyvPPR+uuXXMYWUWPPfZYnHfeebF06dIq27Qv7BCX7H9NjOh7TANGlh0vzn86fj/1qli7ZU2VbYqKiuLOO++M448/vgEjAwAAYHvRlMYFsmX1vHnx2k03xaZqvriw+eOPY8Ubb1T5/6577BEtO3Wq8v+tOnWKPS++ODr261enWAEAAKA+GRcwLgBQXotcBwAAAJmYP3ZsysBGRERSWhrzx46NgV/8Yo6iqtwJJ5wQM2bMiHPOOSeeqeLWnGu3rImfT/henDjgi3HB3t+P1i3aNHCUdbexeEPcOuPX8dh791fb7phjjol//OMfscMOOzRQZAAAAGxvmtK4QLbM+stfYt7jj9dpHdV9IWKrglat4qBf/rJO2wEAAID6ZFzAuABAefm5DgAAADLxQRW3uGyst77s1atXPPnkk3HddddFixZV1yI/+t59cfHY0TH347cbMLq6e2/V7Lh47OhqCyFatGgRv/71r+OJJ55QCAEAAECdNLVxgWzofdhhEXl52d1IXt4n2wEAAIBGxLiAcQGA8hRDAADQZGxatSoWT55c6f8+mjQpNldzG8hcys/Pjx/84Acxfvz4GDBgQJXt5q1+Ny56ZnQ8/M49kSRJA0aYuSRJ4uF37o6Lx54V81a/W2W7XXbZJV5++eX4/ve/H/n50g8AAABqr6mOC9S3nUaNiiP/9rdo06NHVtbfpkePOOq222KnUaOysn4AAACoDeMCnzAuAJAqL2ns37ICAKBZWD1vXrx2002xqZoBis0ff1zt7Rq77rFHtOzUqcr/t+rUKfa8+OLo2K9fnWKti9WrV8c3v/nNuOuuu6ptN7z3EXHp/j+Ljq06N0xgGVi9aVX8dupPY8LCcdW2O/vss+OPf/xjdOzYsYEiAwAAoKlqLuMC9WnjypUx6cc/jgXPPVdv6+wzcmQM+8UvonWXLvW2TgAAAKiJcYHMGRcA+IRiCAAAGoWJP/pRvPff/2Z9OwNOPjkO+uUvs76d6iRJEv/85z/jwgsvjHXr1lXZrnubHvHDYb+KvYoOaMDoqjdjyZS4bvIPY9mGJVW2ad++ffzxj3+ML3/5yw0YGQAAAE1ZcxoXqE9JksTbd90V037zmyjdvLnW68lv2TL2ueyyGHTWWZGXl1ePEQIAAEDNjAvUjnEBgIj8XAcAAAAREb0POywi20l1Xt4n28mxvLy8OOecc2LatGmx7777Vtlu2YYl8f3nzo87X785SkqLGzDCikpKi+OO12+KHzx/frWFEPvtt1+8+uqrCiEAAADISHMaF6hPeXl5Mfjss2PU3XdHxwEDarWOjgMGxKh77onBZ5/tCw8AAADkhHGB2jEuAODOEAAANCIfTZwYE664IjYsqfrL9rXVpkePOPhXv4qew4bV+7rrYvPmzXHllVfGb3/722rb7d5taFwx7Lro2a53A0X2qcXrFsb/m3R5zFo+vdp2l112Wfzyl7+Mli1bNkxgAAAAbFea47hAfSresCGeOuusWPX222kv03nQoDj2rruiRZs2WYwMAAAAamZcoG6MCwDNlTtDAADQaOxw0EFx/AMPRJ+RI+t1vX1GjozjH3igUQ5stGzZMn7zm9/EE088ET169Kiy3azl0+MbT58W05dMbsDoIqYvmRzfePq0agshevToEU888URcf/31CiEAAACoteY4LlCf8vLzY+2CBRkts3bBgsgrKMhSRAAAAJA+4wJ1Y1wAaK4UQwAA0Ki07tIlDrv55tjvyisjv45frM9v2TL2u/LKOOzmm6N1ly71FGF2jBo1KmbMmBHHHntslW3WbVkTV4//Tqzfsq5BYlq/ZV1cPf7bsW7LmirbjBo1KmbOnBmjRo1qkJgAAADYvjXXcYH6sOjll6N4XWZjBsXr1sVHL7+cpYgAAAAgM8YFas+4ANBcKYYAAKDRycvLi8Fnnx2j7r47Og4YUKt1dBwwIEbdc08MPvvsyMvLq+cIs2OHHXaIxx9/PK6//vooLCystM364rXx1oqZDRLPWytmxvriygdLCgsL4ze/+U089thj0bNnzwaJBwAAgOahuY4L1NWHTz/doMsBAABANhgXqB3jAkBzpRgCAIBGq8tuu8Vx//lPdB40KKPlOg8aFMf95z/RZfDgLEWWPfn5+XHZZZfFyy+/HEVFRZW26dq68vn1rUvr7pXO79GjR7z88stx6aWXRn6+lAIAAIDsaI7jArVVumVLLBg3rlbLzn/22SjdsqWeIwIAAIC6MS6QPuMCQHPmm0sAADRqefn5sXbBgoyWWbtgQeQVFGQpooax5557xqZNmyrM79m2T/TruEuDxNC/48Do2bZ3hfkbN26MPffcs0FiAAAAoHlrruMCmVo8eXJsXr260v/1PeqoOOmxx6LvkUdW+v/Nq1fH4ilTshkeAAAA1IpxgfQYFwCaM8UQAAA0aotefjmK163LaJnidevio5dfzlJEDeOZZ56J1ZUMVhza96gGu41nXl5eHNLnqArzV69eHWPHjm2QGAAAAGjemuu4QKY+fPrpCvPyW7aMA37ykxhxww3RsV+/GHHjjbH/j38c+S1bprU8AAAA5JpxgfQYFwCaM8UQAAA0arVNupt6sj5mzJhK5x/a55gGjWNE38q3V1V8AAAAUJ+a67hAJkpLSmL+s8+mzOu0yy5x3L33xq5nnln2owp5eXkxaPToOO7ee6PTLql3nZw/dmyUlpQ0WMwAAACQDuMCNTMuADR3iiEAAGi0SrdsiQXjxtVq2fnPPhulW7bUc0QNY8uWLfHQQw9VmN+tdY8Y0m2vBo1lSLe9o2vrogrzH3rooSguLm7QWAAAAGhemuu4QKY2LF4cG5cvL5seeMYZMeree6PzoEGVtu88aFCMuvfeGHj66WXzNi5fHhsWL856rAAAAJAu4wLpMS4ANHeKIQAAaLQWT54cm1evrvR/fY86Kk567LHoe+SRlf5/8+rVsXjKlGyGlzXPP/98rFixosL8Q/ocGfl5DXsJn5+XH4f0qdjHy5cvj+eff75BYwEAAKB5aa7jAplq07Nn9P/sZ6PTwIEx4g9/iAN/+tNo0aZNtcu0aNMmDrzqqjj097+PTgMHRv/PfS7a7rBDA0UMAAAANTMukB7jAkBz1yLXAQAAQFUqu3VlfsuWsd/ll8fAM86IvLy8GHHjjTHnnnvi1V//Oko3b66wfK+DD26ocOvN/fffX+n8EX2PbeBIPt3u/969t8L8+++/P4466qgcRAQAAEBz0FzHBTKVX1AQB//qV7Vadqdjj42djs3NeAMAAABUx7hAeowLAM2dO0MAANAolZaUxPxnn02Z12mXXeK4e++NXc88M/Ly8iIiIi8vLwaNHh3H3XtvdNpll5T288eOjdKSkgaLuT6UlJTEgw8+WGF+p1Zd4zNF++Ygoog9u+8bnVp2qTD/wQcfjJIm1r8AAAA0Dc11XAAAAAAwLgBA+hRDAADQKG1YvDg2Ll9eNj3wjDNi1L33RudBgypt33nQoBh1770x8PTTy+ZtXL48NixenPVY69P48eNjyZIlFeYf3PuIKMgryHh9SZLEtCWTYszb/4hpSyZFkiQZr6Mgv0Uc3Kfi7UUXL14cL7/8csbrAwAAgJo013EBAAAAwLgAAOlrkesAAACgMm169oz+n/1srHzzzdjrootix2OOqXGZFm3axIFXXRU7DB8er91yS3TZffdou8MODRBt/RkzZkyl80f0rfn5l7dq04r47ZSfxKRFL5TNG9brsLj0gJ9H51ZdM1rXoX2PjsfnVoxtzJgxMWLEiIxjAwAAgOo013EBAAAAwLgAAOnLS2rz07AAAEC9Ky0tjX79+sX8+fNT5rcv7BD3fu75KMwvTHtd0xZPjOsmXxErNi6r8L+urYvi8gOvjX16HpT2+raUbonTHz481m1ZkzJ/xx13jHnz5pXdhhQAAAAAAAAAAKAh5Oc6AAAA4BNTpkypUAgREXFQ7yPSLoQoLt0St838ffzwha9XWggREbFi49L44Qtfj9te+0MUl25Ja72F+YUxvPfICvM//PDDmDJlSlrrAAAAAAAAAAAAqC+KIQAAoJG4//77K50/om/Nt/yMiFi09sO4ZNy5ce/sv0cS1d8ALokk7n3rtrhk3LmxaO2Haa2/qjiqihsAAAAAAAAAACBbFEMAAEAjkCRJjBkzpsL8Ni3axn49h9e4/LgPHotvPv3FmL3itYy2O3vFa/HNp78Y4z54rMa2+/U8ONq0aFth/pgxYyJJqi++AAAAAAAAAAAAqE+KIQAAoBGYPn16zJ07t8L8Yb0Oj5YFrapcbkPx+vjNlB/H/5t0eawvXldlu759+1b5v/XF6+L/Tbo8fjvlJ7GheH2V7VoWtIoDex1WYf57770XM2bMqHI5AAAAAAAAAACA+qYYAgAAGoHK7goREXFo36OrXGbOyllx4dOnx1PvP1Rlm5YtW8Yf/vCHmDdvXvz+97+PwsLCKts++f5/41tPnxFzVs6qss2IPpXHU1X8AAAAAAAAAAAA2ZCXJEmS6yAAAKA5S5IkhgwZErNnz06Z36qgdfznc89HmxZtU+aXJqXx4Jx/xW0zfx/FSXGV6x00aFDcc889sc8++5TNe/XVV2P06NHx9ttvV7lci7wWcf5el8QXdv1y5OXlpfxvQ/H6+OJDh8Xm0k0p84cMGRKzZlVdRAEAAAAAAAAAAFCf3BkCAABybNasWRUKISIi9t/hkAqFECs3Lo+fvPSt+POM66sthPjqV78ar7zySkohRETEvvvuG6+88kp85StfqXLZ4qQ4/jzj+vjJS9+KlRuXp/yvTYu2sf8Oh1RY5s0331QMAQAAAAAAAAAANBjFENS74o0bY8krr0Txxo25DgUAoEkYM2ZMpfNH9D0mZfqVxS/HN546NaZ89FKV6+rYsWPcfffdcdttt0X79u0rbdO+ffv4+9//HnfddVd07NixynVN/ujF+ObTp8WriydUG1dNzwOA5sW4AAAAADRfxgUAAABoSIohqHfjL7ssnjnnnHj5+9/PdSgAAE1CZUUEhfmFMazX4RERsaV0S/xt5u/iihcuiJWblldou9VBBx0U06dPjzPPPDOt7Y4ePTqmTZsWw4YNq7LNio3L4ooXLojbZv4+iku3fLKd3odHi7wWaT0PAJof4wIAAADQfBkXAAAAoCEphqBerf/oo1gwblxERMx/9tlYv3hxjiMCAGjc3nnnnZg5c2aF+fv2HB7tCtvHwrUfxveePSf+M/v2KteRl5cXV155Zbzwwgux8847Z7T9AQMGxIsvvhhXXHFF5OXlVdomiSTunf33uGTcubFw7YfRrrBD7NtzeIV2M2bMiHfffTej7QOwfTEuAAAAAM2XcQEAAAAammII6tWHY8emTj/zTI4iAQBoGqq6m8KhfY6OsfMeiQuf/mLMXvl6lcv36tUrnnnmmfjlL38ZhYWFtYqhsLAwrr322nj66aejV69eVbabveK1uPDpL8azHzwah/Y9ptI27g4B0LwZFwAAAIDmy7gAAAAADU0xBPXqw6efrnYaAIBU999/f6XzX1owNq6bfEWsL15X5bInnXRSzJw5M4488sh6ieWoo46KGTNmxIknnlhlm/XF6+JXk34Y4xeMrfT/VT0fAJoH4wIAAADQfBkXAAAAoKEphqDebFy+PJa+8krKvKWvvBIbV6zIUUQAAI3bvHnzYurUqZX+b9Ki56tcrmXLlnHjjTfGww8/HN27d6/XmIqKiuJ///tf3HDDDdGyZcsq21UV35QpU+KDDz6o15gAaBqMCwAAAEDzZVwAAACAXFAMQb2ZP3ZsJKWlKfOS0tKYP7byXw0GAGjuHnjggYyX2W233WLy5Mlx8cUXR15eXhaiisjLy4tvf/vbMWnSpBg8eHDGy9fmeQHQ9BkXAAAAgObLuAAAAAC5oBiCevNBFbe4dOtLAIDKjRkzJqP2X/va12Lq1Kmx9957ZymiVEOHDo1XXnklzj///IyWy/R5AbB9MC4AAAAAzZdxAQAAAHJBMQT1YtOqVbF48uRK//fRpEmx+eOPGzgiAIDGbeHChfHyyy+n1bZTp05x7733xl//+tdo165dliNL1a5du/jb3/4W99xzT3Ts2DGtZcaPHx+LFi3KcmQANCbGBQAAAKD5Mi4AAABAruQlSZLkOggat9Xz5sVrN90Um6oZoNj88cex4o03qvx/1z32iJadOlX5/1adOsWeF18cHfv1q1OsAABNxS233BIXXXRRje2GDx8ed911V/Tv3z/7QdXg/fffj9GjR8fEiRNrbHvLLbfEhRde2ABRAZBtxgUAAACg+TIuAAAAQGPWItcB0PjN+stfYt7jj9dpHdUNfGxV0KpVHPTLX9ZpOwAATcWYMWOq/X9eXl786Ec/iquuuipatGgcl+39+/ePF154Ia655pq49tpro7q66jFjxiiGANhOGBcAAACA5su4AAAAAI1Zfq4DoPHrfdhhEXl52d1IXt4n2wEAaAaSJImXXnqpyv/37t07xo4dGz//+c8bTSHEVoWFhfGLX/wixo4dG717966y3UsvvVRtsQQATYdxAQAAAGi+jAsAAADQmCmGoEY7jRoVR/7tb9GmR4+srL9Njx5x1G23xU6jRmVl/QAAjU1xcXHkVfHh0ec+97mYMWNGHHHEEQ0cVWaOOOKImDFjRnz2s5+tsk1xcXEDRgRAthgXAAAAgObLuAAAAACNmWII0rLDQQfF8Q88EH1GjqzX9fYZOTKOf+CB6DlsWL2uFwCgMSssLIzzzz8/ZV6rVq3i5ptvjv/+97/RvXv3HEWWme7du8dDDz0UN910U7Rq1Srlf1/72teisLAwR5EBUN+MCwAAAEDzZVwAAACAxiovSZIk10E0FkuXLs11CI1ekiTx4YMPxpw//SlKt2yp9XryCwtj129+M3Y85ZQqfxUZAGB7VlxcHH/84x9j/Pjx0adPn7jgggti8ODBuQ6r1mbPnh1//vOfY8GCBXHIIYfEhRdeGC1atMh1WLDdKyoqynUI2xXjAjUzLgAAANB4GBeoX8YFamZcAAAAoPEwLvAJxRDbkGSnb6dWreKivn2jT7lfAE7Hgk2b4qb58+PDTZuyEBkAAEDzIaWvX8YF0mdcAAAAIPeMC9Qv4wLpMy4AAACQe8YFPqEYYhsGNzLTMi8vrt555+jXunXay8zbuDGunjs3NtvtAAAA6kxKX7+MC2TGuAAAAEBuGReoX8YFMmNcAAAAILeMC3wiP9cB5NrSpUsjLy/PwEYtJBHRo7Awo2V6FBZGaXbCAQAAaHa25rNLly7NdShNlnGB2jMuAAAAkFvGBerOuEDtGRcAAADILeMCn2j2xRDU3mfatYs2BQUZLdOmoCD2bNcuSxEBAAAADcW4AAAAADRfxgUAAABoDFrkOoDGaNasWdG9e/dch9Hovf7//l8sevLJjJf73de/Hnv88IexbNmy2H333VP+p++zT7/njr7PHX2fG/o9d/R9buj33NH3uaHfc6eyvqd+2ZfTY1ygadLvuaPvc0O/546+zx19nxv6PXf0fW7o99wxLpB99uX0GBdomvR77uj73NDvuaPvc0O/546+zx19nxv6PXeMC1SkGKIS3bt3j6KiolyH0aiVbtkSyydMqNWyy15+Obp17lzp//R9buj33NH3uaPvc0O/546+zw39njv6Pjf0O9sL+3LNjAtsX/R77uj73NDvuaPvc0ff54Z+zx19nxv6ne2FfblmxgW2L/o9d/R9buj33NH3uaHfc0ff546+zw39Tq7k5zoAmqbFkyfH5tWrK/1f36OOipMeeyz6Hnlkpf/fvHp1LJ4yJZvhAQAAAFlkXAAAAACaL+MCAAAANBaKIaiVD59+usK8/JYt44Cf/CRG3HBDdOzXL0bceGPs/+MfR37LlmktDwAAADQNxgUAAACg+TIuAAAAQGOhGIKMlZaUxPxnn02Z12mXXeK4e++NXc88M/Ly8iIiIi8vLwaNHh3H3XtvdNpll5T288eOjaSkpMFiBgAAAOqHcQEAAABovowLAAAA0JgohiBjGxYvjo3Ll5dNDzzjjBh1773RedCgStt3HjQoRt17bww8/fSyeRuXL4+NS5dmPVYAAACgfhkXAAAAgObLuAAAAACNSYtcB0DT06Znz+j/2c/GyjffjL0uuih2POaYGpdp0aZNHHjVVbHD8OHx2i23RJfdd4/WPXo0QLQAAABAfTIuAAAAAM2XcQEAAAAaE8UQZCy/oCAO/tWvarXsTsceGzsde2xERCz1Sw8AAADQ5BgXAAAAgObLuAAAAACNSX6uAwAAAAAAAAAAAAAAAMiEYggAAAAAAAAAAAAAAKBJUQwBAAAAAAAAAAAAAAA0KYohAAAAAAAAAAAAAACAJkUxBAAAAAAAAAAAAAAA0KQohgAAAAAAAAAAAAAAAJoUxRAAAAAAAAAAAAAAAECTohgCAAAAAAAAAAAAAABoUhRDAAAAAAAAAAAAAAAATYpiCAAAAAAAAAAAAAAAoElRDAEAAAAAAAAAAAAAADQpiiEAAAAAAAAAAAAAAIAmRTEEAAAAAAAAAAAAAADQpCiGAAAAAAAAAAAAAAAAmhTFEAAAAAAAAAAAAAAAQJOiGAIAAAAAAAAAAAAAAGhSFEMAAAAAAAAAAAAAAABNimIIAAAAAAAAAAAAAACgSVEMAQAAAAAAAAAAAAAANCmKIQAAAAAAAAAAAAAAgCZFMQQAAAAAAAAAAAAAANCkKIYAAAAAAAAAAAAAAACaFMUQAAAAAAAAAAAAAABAk6IYAgAAAAAAAAAAAAAAaFIUQwAAAAAAAAAAAAAAAE2KYggAAAAAAAAAAAAAAKBJUQwBAAAAAAAAAAAAAAA0KYohAAAAAAAAAAAAAACAJkUxBAAAAAAAAAAAAAAA0KQohgAAAAAAAAAAAAAAAJoUxRAAAAAAAAAAAAAAAECTohgCAAAAAAAAAAAAAABoUhRDAAAAAAAAAAAAAAAATYpiCAAAAAAAAAAAAAAAoElRDAEAAAAAAAAAAAAAADQpiiEAAAAAAAAAAAAAAIAmRTEEAAAAAAAAAAAAAADQpCiGAAAAAAAAAAAAAAAAmhTFEAAAAAAAAAAAAAAAQJOiGAIAAAAAAAAAAAAAAGhSFEMAAAAAAAAAAAAAAABNimIIAAAAAAAAAAAAAACgSVEMAQAAAAAAAAAAAAAANCmKIQAAAAAAAAAAAAAAgCZFMQQAAAAAAAAAAAAAANCkKIYAAAAAAAAAAAAAAACaFMUQAAAAAAAAAAAAAABAk6IYAgAAAAAAAAAAAAAAaFIUQwAAAAAAAAAAAAAAAE2KYggAAAAAAAAAAAAAAKBJUQwBAAAAAAAAAAAAAAA0KYohAAAAAAAAAAAAAACAJkUxBAAAAAAAAAAAAAAA0KQohgAAAAAAAAAAAAAAAJoUxRAAAAAAAAAAAAAAAECTohgCAAAAAAAAAAAAAABoUhRDAAAAAAAAAAAAAAAATYpiCAAAAAAAAAAAAAAAoElRDAEAAAAAAAAAAAAAADQpiiEAAAAAAAAAAAAAAIAmRTEEAAAAAAAAAAAAAADQpCiGAAAAAAAAAAAAAAAAmhTFEAAAAAAAAAAAAAAAQJOiGAIAAAAAAAAAAAAAAGhSFEMAAAAAAAAAAAAAAABNimIIAAAAAAAAAAAAAACgSVEMAQAAAAAAAAAAAAAANCmKIQAAAAAAAAAAAAAAgCZFMQQAAAAAAAAAAAAAANCkKIYAAAAAAAAAAAAAAACaFMUQAAAAAAAAAAAAAABAk6IYAgAAAAAAAAAAAAAAaFIUQwAAAAAAAAAAAAAAAE2KYggAAAAAAAAAAAAAAKBJUQwBAAAAAAAAAAAAAAA0KYohAAAAAAAAAAAAAACAJkUxBAAAAAAAAAAAAAAA0KQohgAAAAAAAAAAAAAAAJoUxRAAAAAAAAAAAAAAAECTohgCAAAAAAAAgAaxYcOGmD9/fmzYsCHXoQAAAADQxCmGAAAAAAAAACDrHnvssRgwYEDsuOOOMWDAgHjsscdyHRIAAAAATViLXAfQGC1btizXITQLlfWzvs8+/Z47+j539H1u6Pfc0fe5od9zR9/nhn7PHf2cffq4YTiO5IZ+zx19nxv6PXf0fe7o+9zQ77mj73OjNv2+cuXK+NKXvhQrV66MiIiPPvoovvzlL8eECROiS5cuWYlze2T/zj593DAcv3NDv+eOvs8N/Z47+j439Hvu6Pvc0fe5od9zRz9XlJckSZLrIHJp6dKl0aNHj1yHAQAAALW2ZMmSKCoqynUYTZJxAQAAAJo64wK1Z1wAAACApq65jwvk5zoAAAAAAAAAAAAAAACATCiGAAAAAAAAAAAAAAAAmhTFEAAAAAAAAAAAAAAAQJPSItcBNEazZs2K7t275zqM7d6yZcti9913T5mn77NPv+eOvs8dfZ8b+j139H1u6Pfc0fe5od9zp7K+p37ZlxuG40hu6Pfc0fe5od9zR9/njr7PDf2eO/o+NzLt9y9/+cvx5JNPVrm+4447Lv7xj3/Ua4zbK+MC2ecY0jAcv3NDv+eOvs8N/Z47+j439Hvu6Pvc0fe5od9zx7hARYohKtG9e/coKirKdRjNkr7PDf2eO/o+d/R9buj33NH3uaHfc0ff54Z+Z3thX84dfZ8b+j139H1u6Pfc0fe5o+9zQ7/njr7Pjar6ffXq1TFu3Lhqlx03bly0bt06OnTokK3wIG2OIbmj73NDv+eOvs8N/Z47+j439Hvu6Pvc0fe5od/JlfxcBwAAAAAAAADA9unRRx+NzZs3V9tm06ZN8eijjzZQRAAAAABsLxRDAAAAAAAAAJAVY8aMqdd2AAAAALCVYggAAAAAAAAA6t369evj8ccfT6vtY489FuvXr89yRAAAAABsTxRDAAAAAAAAAFDvnnjiiUoLHDq2alFh3vr16+PJJ59siLAAAAAA2E4ohgAAAAAAAACg3t1///2Vzr/+mM9k1B4AAAAAKqMYAgAAAAAAAIB6tWnTpnjkkUcqzO/fuW18bd9+0a9Tmwr/e+SRR2LTpk0NER4AAAAA2wHFEAAAAAAAAADUq6effjrWrFlTYf6pQ3pHfl5enDqkd4X/rV69Op555pmGCA8AAACA7YBiCAAAAAAAAADq1ZgxYyqdv7UI4tTdKxZDVLccAAAAAJSnGAIAAAAAAACAerNly5Z46KGHKszv3aF1DOvbJSIiDurbNXp3aF2hzUMPPRRbtmzJeowAAAAANH2KIQAAAAAAAACoN+PGjYuVK1dWmP+F3XpFfl5eRETk5+XFKbv1qtBmxYoV8dxzz2U7RAAAAAC2A4ohAAAAAAAAAKg3Y8aMqXT+abv3KTfdO6PlAQAAAGBbiiEAAAAAAAAAqBclJSXx3//+t8L8Hu1axaE7dUuZN2Kn7lHUtmWFtg8++GCUlJRkK0QAAAAAthOKIQAAAAAAAACoFy+99FIsWbKkwvyTB/eKgvy8lHkF+Xlx8m69KrRdsmRJjB8/PmsxAgAAALB9UAwBAAAAAAAAQL0YM2ZMpfNP3b135fOHVD6/qvUAAAAAwFaKIQAAAAAAAACos9LS0kqLGLq0Lowj+nevdJkjdi6Kzq0LK8wfM2ZMlJaW1nuMAAAAAGw/FEMAAAAAAAAAUGeTJk2KhQsXVpj/ucE7RGFB5R9NtyzIj88N3qHC/AULFsTkyZPrPUYAAAAAth+KIQAAAAAAAACos8ruChERcdrufapd7rQhvTNaHwAAAABEKIYAAAAAAAAAoI6SJKm0eKFDyxZxzICiapc9Zpce0b5liwrzx4wZE0mS1FuMAADA/2fvzsOkrM78cT/VKwg0omyuKCgo0bhFxUx0UCJoYpLJZMZ1NGab/CZjJsFlTIyJ+SaayWI0blk1RmOiODTEqKjDFhdQQAR0xHFFBJRmp9maprvr9weJSVtVvVe9vdz3deUydd5zTn36pPNSHt6nDgB0L4ohAAAAAAAAAGiXF154Id58882M9rNGDo3ykuImx/YqKY6zRg7JaF+2bFksXry4gxICAAAA0N0ohgAAAAAAAACgXR588MGs7Z86fJ8Wjf/U4ftmbZ88eXKbMwEAAADQvSmGAAAAAAAAAKBdHnrooYy23iXFccYhmSc+ZHPmIUOid5YTJCorKyOdTrc7HwAAAADdj2IIAAAAAAAAANrl9ddfz2j7yKFDok9ZSYvG9ykriTMPHZzR/vLLL8fSpUvbnQ8AAACA7qdlO08AAAAAAAAAdEr19fXxve99Lx566KHYuHFjQd6vJT51+L6tmvdTh+8bU156J6N93LhxUVFR0aq5OsKAAQPirLPOiquuuiqKizNPrQAAAAAgWYohAAAAAAAAALqwiRMnxi233JJ0jEbKiovioyOHtGrMWSOHRllxUdTWNzRqr6qqiqqqqo6M12Lz58+PdevWxU033ZTI+wMAAACQW1HSAQAAAOh56mpqYs3ChVFXU5N0FAAAAOjS6uvr46677ko6RobxIwZFRXlpq8ZUlJfG6cMH5SlR2911113R0NDQfEcAAACgSZ4VoKMphgAAAKDg5lx+ecy46KKYe8UVSUcBAACALq24uDh69+6ddIwM/3T4fm0a98+j2zYun3r37h1FRf5qHQAAANrLswJ0NDs2AAAAFNT21atj1ezZERGxctas2F5VlXAiAAAA6NouvfTSpCM08r5B/eK8I/dv09jzjtw/Rg/q18GJ2mfixIlJRwAAAIAuz7MC5ENJ0gEAAADoWVbMnNn49YwZMeqCCxJKAwAAAF3fFVdcEQ0NDXH11VdHfX19k31H7t03DtmrT15yFKdScdSQirjsg4dEWXHbvpevrLgo5nz25Pjx3NdiSVV11KfTHZxyt1fXb41XN2xrsk9JSUlce+21cYVvqwQAAIB286wA+aAYAgAAgIJaMX16xmsbHAAAANB2qVQqvva1r8XYsWPj/PPPj2XLluXs+9bm7TFxzIj44nEHRSqVKmDKltuzV1l897TReZk7nU7Hz599My5d9kKT/Q4++OC4995748QTT8xLDgAAAOhpPCtAPrTt6zgAAACgDWrWr4+1Cxc2alu7cGHUbNiQUCIAAADoPsaMGROLFi2K8847L2efmrqG+LeHl8Q//ff82LCjtoDpkrdhR2186v758aVpS6KmriFnv/POOy8WLVqkEAIAAAA6iGcFyBfFEAAAABTMypkzI93Q+GGDdENDrHzPcZgAAABA2/Tv3z9+97vfxZ133hl9+vTJ2W/KS+/EUT+fHU8sX1fAdMl5Yvm6OOrns2Pq/72Ts0+fPn3iN7/5Tfzud7+L/v37FzAdAAAAdG+eFSBfFEMAAABQMG+959jLv3jvcZgAAABA26VSqbj44otj4cKFccwxx+Tst7J6R5x611Px7T+9FHUNuU9K6MrqGhrimtkvxal3PRUrq3fk7HfMMcfEc889F5/+9KcjlUoVMCEAAAB0f54VIF8UQwAAAFAQOzdtiqr587NeWz1vXtRu3lzgRAAAANC9jRo1Kp5++umYOHFizj4N6Yj/9/jLcepdc+KtzdsLmC7/lm/aHmN/81R854mXoyGdu9+ll14aTz/9dIwcObJw4QAAAKCH8KwA+VSSdAAAAAC6viFlZfH8d74TqZqanH1qN2+OdF1d1mvpurqY9YUvRFn//jnHl/fvH0d++ctRMWxYu/MCAABAT1FeXh433HBDfPjDH46LL7441q5dm7XfU2+tj6N+Pjtu/9jR8anR+xU4ZcerXLoqPv/g4thUsytnn0GDBsVdd90VZ555ZgGTAQAAQPcxpKws/mnQoFh4+eVRVlaWtY9nBcgnxRAAAAC02ycGDoyqWbPaNceGF19stk9xeXmMue66dr0PAAAA9EQf+chHYsmSJXHRRRfFjBkzsvbZVLMr/um/F8QXj1sbN0w4IvYo7Xp/nbx9V11MfPR/45fPvdlkv9NPPz3uvvvuGDp0aGGCAQAAQDf0iYED44P9+8eGZ59t8xyeFaA9ipIOAAAAQNe3eMuWiFQqv2+SSsW+p5yS3/cAAACAbmyfffaJxx57LH7wgx9ESUnuQodfLHwzjv/V4/FC1eYCpmu/56s2x/G/erzJQoiSkpL44Q9/GI8++qhCCAAAAGinxVu2REM6nd838awATVAMAQAAQLvN37Iljvvxj6P34MF5mb/34MEx7o474sAJE/IyPwAAAPQURUVF8Z//+Z8xZ86cGD58eM5+S9duieN/9Xj8dMEbkc73Qw3tlE6n47b5b8QJv3o8lq7dkrPfiBEjYu7cuXHFFVdEUZG/KgcAAID2mr9lS/zX8uVRPnBgXub3rADNscMDAABAh9jr2GPjzClTYr+xYzt03v3Gjo0zp0yJISee2KHzAgAAQE92wgknxKJFi+L888/P2WdnfUP8+7Tn45OT5sX67bUFTNdy67fXxicnzYtLHnk+dtY35Ox3wQUXxHPPPRfHH398AdMBAABA97d0+/YYc/vtnhUgEYohAAAA6DC9BgyIU269NY676qooKitr11xFZWVx3FVXxSm33hq9BgzooIQAAADAX1RUVMQ999wTd911V/Tp0ydnvwdeXh1H/XxWPP7mugKma96f3lwbR/18Vjzw8uqcffr27Rt333133HPPPVFRUVHAdAAAANBzlO25p2cFSIRiCAAAADpUKpWKURdcEBPuvTcqhg9v0xwVw4fHhPvui1EXXBCpVKqDEwIAAAB/kUql4qKLLopFixbFsccem7Pfqi01cepdT8W3Zr8UdQ25T2AohLqGhvjmrKVx2l1zYtWWmpz9jjvuuHjuuefiwgsvLGA6AAAA6Jk8K0ASFEMAAACQFwMOOyzOuP/+2HPkyFaN23PkyDjj/vtjwKhReUoGAAAAvNehhx4aTz/9dFx22WU5+6Qj4rtPvBx//5unYvmm7YUL9zeWb9oef/+bp+LaJ1+JdBP9Lr/88pg7d24ceuihBcsGAAAAeFaAwlIMAQAAQN6kiopi66pVrRqzddWqSBUX5ykRAAAAkEtZWVlcf/318eijj8bgwYNz9pu7YkMc9fNZMXvZ2gKmi5i9bG0c9fNZMXfFhpx9Bg8eHI8++mj86Ec/irKysgKmAwAAAP7CswIUimIIAAAA8uaduXOjbtu2Vo2p27YtVs+dm6dEAAAAQHMmTJgQS5YsifHjx+fss3lnXfzDpHmxZeeugmTasnNXfOK+ebF5Z13OPhMmTIjnn38+JkyYUJBMAAAAQHaeFaBQFEMAAACQNyumTy/oOAAAAKBjDB06NB555JH40Y9+FKWlpVn7VO+si3mrNhYkz7xVG2NLbfZCiNLS0rj++utj2rRpMWTIkILkAQAAAHLzrACFohgCAACAvGjYtStWzZ7dprErZ82Khl2F+WZJAAAAILuioqK4/PLLY+7cuTFo0KCsffbp26sgWYbmeJ/BgwfH3Llz47LLLouiIn/9DQAAAEnzrACFZDcIAACAvKiaPz9qq6uzXtt/3Lg4a9q02P+007Jer62ujqoFC/IZDwAAAGihI488Mnbu3JnRftCee8ToQf0KkuF9g/rFsP69M9pramriyCOPLEgGAAAAoHmeFaCQFEMAAACQF9mOrywqK4vjv/nNOPmmm6Ji2LA4+eab4wNXXx1FZWUtGg8AAAAU3owZM6I6y0MM/3jYPpFKpQqSIZVKxT8evm9Ge3V1dcycObMgGQAAAIDmeVaAQlIMAQAAQIdrqK+PlbNmNWrrP2JEnDFpUhx67rnvPiiRSqVi5HnnxRmTJkX/ESMa9V85c2Y01NcXLDMAAACQXWVlZdb2T43OLE7Ip09lKYaIyJ0PAAAAKCzPClBoiiEAAADocDuqqqJm/fp3Xx9yzjkxYdKk2HPkyKz99xw5MiZMmhSHnH32u20169fHjqqqvGcFAAAActu1a1c88MADGe379usVY/bfq6BZTjpgr9inb6+M9gceeCDq6uoKmgUAAADI5FkBCq0k6QAAAAB0P72HDImDPvax2PjSS/H+Sy6JA04/vdkxJb17xwnXXBNDTzopXrjtthgwenTsMXRoAdICAAAAuTz++OOxYcOGjPZPHrZPFP352xwLpSiVik8etk/89NlljdrXr18fjz/+eIwbN66geQAAAIDGPCtAoSmGAAAAoMMVFRfHB7///TaNPXD8+Dhw/PgOTgQAAAC0xeTJk7O2/9PofQuc5K/v+95iiIjdORVDAAAAQLI8K0ChFSUdAAAAAAAAAIDOp76+PqZOnZrRPmiPsjj5wIEJJIo4edjeMXCPsoz2qVOnRn19fQKJAAAAAEiKYggAAAAAAAAAMsyZMyfWrFmT0f4Ph+0TxUWpVs+XTqdj1rK1cePTr8WsZWsjnU63eo6SoqL4h1H7ZLRXVVXF3LlzWz0fAAAAAF1XSdIBAAAAAAAAAOh8Kisrs7Z/6vB9Wz3X2m074zMPPBcPv1r1bttHDx0Sd37i2BjUp7xVc31q9L5x+6LlGe2VlZVx8skntzobAAAAAF2TkyEAAAAAAAAAaKShoSGmTJmS0b5nr9I49eBBrZpr5htr4/0/n9WoECIi4uFXq+Kon8+OmW+sbdV8px08KPqXZ37v35QpU9p02gQAAAAAXZNiCAAAAAAAAAAaWbBgQaxcuTKj/eOjhkZZccv+mnlXfUN8bcaLcfpv58TqrTuz9nlna02c/ts58fUZL8au+oYWzVtWXBQfH7VPRvuKFStiwYIFLZoDAAAAgK5PMQQAAAAAAAAAjUyePDlr+z8dvm+Lxr+xcVt86M4n4wdzXo3mzmpIR8T357waH7rzyXhj47YWzf9Po7PnyJUbAAAAgO5HMQQAAAAAAAAA70qn01FZWZnR3resJE4fMbjZ8fe+sDKO/vnsmL9qY6ved/6qjXH0z2fHvS9knkjxXuNHDI6+ZSUZ7ZWVlZFON1d+AQAAAEB3oBgCAAAAAAAAgHctXrw4li1bltF+1sgh0aukOOe4rbV18ZkHnovzpzwbW2rrcvbbf//9c17bUlsX5095Nj77wHOxtYk5epUUx0cPHZLR/sYbb8SSJUtyjgMAAACg+1AMAQAAAAAAAMC7sp0KERHxqcP3zTnmuXc2xbG/mB2/WfxWzj5lZWXxk5/8JJYvXx433nhjlJaW5ux75+K34rhf/imee2dTzj658uTKDwAAAED3ohgCAAAAAAAAgIiISKfTMXny5Iz23iXFceYhmScxNKTTcePTr8WY2x+PVzdsyznvyJEj45lnnomvfOUrUVRUFF/96lfjmWeeiZEjR+Yc88r6rTHm9sfjxqdfi3Q6nXH9zEOHRK+SzL/yVgwBAAAA0DMohgAAAAAAAAAgIiKWLl0aL7/8ckb7GYcMjj5lJY3a1mzbGWf9/pm49H/+N3Y1ZBYr/MVnP/vZWLhwYRxzzDGN2o899thYuHBhfOYzn8k5dldDOi79n/+Ns+59JtZs29noWt+ykjgjS4HGSy+9FEuXLs05JwAAAADdg2IIAAAAAAAAACIi96kK/zR630avp7++Jt7/s1nxyGtVOeeqqKiIe++9N+64447o27dv1j59+/aNX//61/H73/8+Kioqcs417dWqOOrns2LGG2sa5zp836z9nQ4BAAAA0P0phgAAAAAAAAAgIrIXEZQVF8VZI4dGRERtfUNcOf3FGH/P3Kh6z0kNf2vMmDGxePHiOPfcc1v0vuedd14sWrQoTjzxxJx9Vm/dGeN/Oze+NuPF2FXfEBERZ40cGqVFqRb9HAAAAAB0L4ohAAAAAAAAAIjXXnstnn/++Yz204cPiory0nh9w7b40K+fiB/OfTXnHKlUKq666qp44okn4uCDD27V+w8fPjyefPLJ+PrXvx6pVGaBQ0REOiJ+MOfV+NCdT8brG7ZF/16lcfqIwRn9lixZEq+//nqr3h8AAACArkUxBAAAAAAAAAA5T1P41OH7xu+eXxHH/GJ2LHh7U87x++yzT8yYMSOuu+66KC0tbVOG0tLS+N73vhfTp0+PffbZJ2e/+as2xjG/mB2/f2FFfOrwfbP2cToEAAAAQPemGAIAAAAAAACAmDx5ctb2Kf/3dvzL1IWxpbYu59jx48fH888/H6eddlqHZBk3blwsWbIkPvrRj+bss6W2Li6YsjCm/t/bWa/n+nkAAAAA6B4UQwAAAAAAAAD0cMuXL49nn30267WHXqlqdvxvf/vbGDhwYIdmGjRoUDz44INx0003RVlZWc5+ufItWLAg3nrrrQ7NBAAAAEDnoRgCAAAAAAAAoIebMmVKu8anUqkOSpI573/8x3/EvHnzYtSoUa0e396fCwAAAIDOSzEEAAAAAAAAQA9XWVmZdIQmHX300bFw4cL43Oc+16pxnf3nAgAAAKDtFEMAAAAAAAAA9GBvv/12zJ07t0V9+/fvH7/61a/ynCi7Pn36xO233x733XdfVFRUtGjMnDlz4p133slzMgAAAACSoBgCAAAAAAAAoAebOnVqpNPpZvuddNJJsXjx4vjEJz5RgFS5nXPOObFkyZIYM2ZMs33T6XRMnTq1AKkAAAAAKDTFEAAAAAAAAAA9WGVlZZPXU6lUXH311fHEE0/EQQcdVJhQzTjooIPiiSeeiG984xuRSqWa7NvczwcAAABA16QYAgAAAAAAAKCHSqfT8dRTT+W8vu+++8bMmTPju9/9bpSUlBQwWfNKS0vj2muvjZkzZ8a+++6bs99TTz3VopMvAAAAAOhaFEMAAAAAAAAA9FB1dXU5T1b4+Mc/HkuWLIlTTz21wKla59RTT40lS5bExz72sZx96urqCpgIAAAAgEJQDAEAAAAAAADQQ5WWlsbnPve5Rm3l5eVx6623xh/+8IcYOHBgQslaZ+DAgfHAAw/ELbfcEuXl5Y2uff7zn4/S0tKEkgEAAACQL53rHFMAAAAAAAAACurmm2+OYcOGxezZs+OAAw6IiRMnxujRo5OO1WqpVCouueSSOO200+LGG2+MFStWxKmnnhqXXXZZ0tEAAAAAyAPFEAAAAAAAAAA9WElJSVx55ZVx5ZVXJh2lQ4wePTp+9atfJR0DAAAAgDwrSjoAAAAAAAAAAAAAAABAayiGAAAAAAAAAAAAAAAAuhTFEAAAAAAAAAAAAAAAQJdSknQAAAAAAAAAAAAAAIAuY82aiGnTIl56KeLwwyM+8pGIwYOTTgU9jmIIAAAAAAAAAAAAAICWmD494oILItau/WvboEERv/99xIc/nFwu6IGKkg4AAAAAAAAAAAAAANDprVsXcfbZjQshIna/PvvsiPXrk8kFPZRiCAAAAAAAAAAAAACA5tx4Y8SmTdmvbdwYccMNBY0DPZ1iCAAAAAAAAAAAAACApqTTEfff33Sf++/f3Q8oCMUQAAAAAAAAAAAAAABNef75iNdea7rPa69FvPBCYfIAiiEAAAAAAAAAAAAAAJpUWdmx/YB2K0k6QGe0bt26pCP0CNnW2drnn3VPjrVPjrVPhnVPjrVPhnVPjrVPhnVPjnXOP2tcGO4jybDuybH2ybDuybH2ybH2ybDuybH2ybDuybHO+WeNC8N9JBnWPTnWPhnWPTnWPhnWPTnWPjmFXvsB99/fogev6+6/PzZeckneciTN73xyrHOmVDqdTicdIklr166NwYMHJx0DAAAA2mzNmjUxaNCgpGN0SfYFAAAA6OrsC7SdfQEAAKClRkXE/7Wy/yt5ygJ/q6fvCxQlHQAAAAAAAAAAAAAAoLP6VJ77A22jGAIAAAAAAAAAAAAAIAfFENA5KYYAAAAAAAAAAAAAAMji4Ig4tpVjjvvzOCC/SpIO0BktXbo0Bg4cmHSMbm/dunUxevToRm3WPv+se3KsfXKsfTKse3KsfTKse3KsfTKse3KyrT0dy+9yYbiPJMO6J8faJ8O6J8faJ8faJ8O6J8faJ8O6J8e+QP75XS4M95FkWPfkWPtkWPfkWPtkWPfkWPvkFGrte996a8R3vtPqcc9fc03s+Pd/79AsnYHf+eTYF8ikGCKLgQMHxqBBg5KO0SNZ+2RY9+RY++RY+2RY9+RY+2RY9+RY+2RYd7oLv8vJsfbJsO7JsfbJsO7JsfbJsfbJsO7JsfbJsO50F36Xk2Ptk2Hdk2Ptk2Hdk2Ptk2Hdk2Ptk5OXtX/ssTYN6/vYY9H329/u2CydlN95klKUdAAAAAAAAAAAAAAAgE5n5cqIefPaNvaZZ3aPB/JGMQQAAAAAAAAAAAAAwHtNmdK+8VOndkwOICvFEAAAAAAAAAAAAAAA7zV5crLjgSYphgAAAAAAAAAAAAAA+FurV0c89VT75njyyYiqqo7JA2RQDAEAAAAAAAAAAAAA8Lf+8IeIdLrJLsv6/n3Tc6TTu+cB8kIxBAAAAEAL7dixI1auXBk7duxIOgoAAAAAAACQT5WVTV6uT5XG/+zzX1GfKm3XPEDbKYYAAAAAaIFp06bF8OHD44ADDojhw4fHtGnTko4EAAAAAAAA5MP69RGzZzfZ5c0+J0d12f6xvM+Hmp5r9uyIDRs6MBzwF4ohAAAAAJqxYcOGuPDCC2P16tUREbF69eq46KKLYoNNSwAAAAAAAOh+/vjHiPr6Jru8UnFmo3/mVFe3ez6gwymGAAAAAGjG5MmTMwof1q9fH5WOtAUAAAAAAIDuZ/LkJi83RHG81m98RES81m98NERxu+YD2kYxBAAAAEAzchU9KIYAAAAAAACAbmbz5ojp05vssqLPmKgpGRARETtK9ooVfU5ses7p0yOqqzsqIfBniiEAAAAAmrBx48aYNWtW1mszZ86MjRs3FjgRAAAAAAAAkDcPPRSxa1eTXV6u+Eij169UfLTpOWtrd88LdCjFEAAAAABN+OMf/xh1dXVZr9XV1cWDDz5Y4EQAAAAAAABA3jRzOnw6UvFavwmN2l7tNyHSkWrXvEDrKYYAAAAAaEJlM5uSzV0HAAAAAAAAuoitWyMeeaTJLiv3OD62lQ5u1LatdHCs2uMDTc/9yCMR27a1NyHwNxRDAAAAAORQXV0djz32WJN9HnvssdiyZUuBEgEAAAAAAAB588gjETU1TXZ5peLMVrW/a8eOZgstgNZRDAEAAACQw8MPPxy1tbVN9tm5c2c8/PDDBUoEAAAAAAAA5E0LToV/NVcxRL9miiFaOD/QcoohAAAAAHKobOFmZEv7AQAAAAAAAJ1UTU1EM1+C9nbvY2JL6b5Zr20p2y/e7n100+/x0EPNnjwBtFxJ0gEAAAAAOqPt27fHIy08pnbatGmxffv22GOPPfKcCgAAAAAAALq5Xbsili6NqK5uslvppk3xofe2PfNMxJ57tu19n302YuvWJru8kuNUiL94teLM2HfH4twdtm6N+NnPIj7wgTYEbIeKiojRoyNKSwv7vpBniiEAAAAAsnj00Udj+/btGe19UuWxLb2zUdv27dvjsccei09+8pOFigcAAAAAAADdS319xHXXRXz/+xE7djTbfc+IePK9jR//eB6C/VVzxRCvVJwZf1/1X01PcumlHZioFXr3jvja1yK+8Y2I4uJkMkAHK0o6AAAAAEBnNHny5Kztl/Q5o1X9AQAAAAAAgBaYODHimmtaVAiRhKpe74vNZcOa7LOp7KBY02t0gRK10o4du9d34sSkk0CHUQwBAAAA8B47d+6Mhx56KKN9n6IB8fFeH4ihRXtmXHvooYdi586dGe0AAAAAAABAM157LeK225JO0aTmToV4t1+/lvVLzE9/unu9oRtQDAEAeVZXUxNrFi6MupqapKMAkAfu89A9TZ8+PbZs2ZLRPrb8fVGUKopTy9+Xca26ujpmzJhRiHgAdCE+LwJ0b+7zAAA0xedFgFZYvDiioSHpFE1qcTFEC/slpr4+YsmSpFNAh1AMAQB5Nufyy2PGRRfF3CuuSDoKAHngPg/dU2VlZdb2vxRBjM1SDNHUOAB6Lp8XAbo393kAAJri8yJAK9TVJZ2gSevKD40N5Ye2qO/6XiNjXfkheU7UTrt2JZ0AOoRiCADIo+2rV8eq2bMjImLlrFmxvaoq4UQAdCT3eeiedu3aFQ888EBG+8CifvG+kv0jIuKIkgNiYFG/jD4PPPBA7LJxCMCf+bwI0L25zwMA0BSfFwFaafz4iJKSpFPktGTABXntX1AlJRETJiSdAjqEYggAyKMVM2c2fj1jRkJJAMgH93nonp566qnYuHFjRvvYsvdFUWr3VkpRqij+vmx0Rp8NGzbEn/70p3xHBKCL8HkRoHtznwcAoCk+LwK00l57Rfzwh0mnyKqq1/ti8V4XtmrM4r0uiqpe2U+bT9yPfhQxYEDSKaBDKIYAgDxaMX16k68B6Nrc56F7euihh7K2n1p+RKPXp73n9V9UVlZ2eCYAuiafFwG6N/d5AACa4vMiQBtMnBjx4x93mhMithUPjEUDLox7D66MhlRpq8Y2pErj3oMrY9GAC2Nb8d55SthKJSURN9wQ8dWvJp0EOkznuFsAQDdUs359rF24sFHb2oULo2bDhui1114JpQKgo7jPQ/f1yCOPZLQNSPWJo0qHNWo7qvSgGJDqExvT2xq1T506NW677bYoLi7Oa04AOjefFwG6N/d5AACa4vMiQDtcemnEySdHnHdexOuvt2rojuL+8T/7/Fes2uOEdsdoSBXHjuK9IlKpNs+xq2iPmLHvdTFjn2ujd/2GKErXtzvXftvnx/h3vh696ze3buCIERH33htx/PHtzgCdiZMhACBPVs6cGemGhkZt6YaGWPmeozAB6Jrc56H7WrduXUbbKeWjozjVeBulOFUUp5QfntF3zZo1MWfOnLzlA6Br8HkRoHtznwcAoCk+LwK00/HHRzz3XMS//EurhvWu3xwfW3lJvH/j72N7yd6xrXRwm/+zo2TvdhVCNJJKxY525tleslcctfF38bGVl7S+EOLCCyMWLVIIQbekGAIA8uStHEdcOvoSoHtwn4ee5dTy92VtH1t+RNb2ysrKfMYBoAvweRGge3OfBwCgKT4vAnSAioqI3/424u67I/r2bfGwomiID629Ic5589zot+vtPAYsnH673o5z3jw3/m7tjVEUDc0P+Iu+fXev3913R/Trl7+AkCDFEACQBzs3bYqq+fOzXls9b17Ubm5ldS4AnYr7PPQs/VK947jS4VmvHVd6cPRL9cpor6ysjIaGVmxEAtCt+LwI0L25zwMA0BSfFwE62IUX7j4l4rjjWjXsgO3z4tOvT4hDqx/NU7DCOLT6kfj06xPigO3Z/2zJ6QMf2H0axIUX5icYdBIlSQcAgK6mevnyeOGWW2JnExsUtZs3R7quLuu1dF1dzPrCF6Ksf/+c48v7948jv/zlqBg2rN15AWgd93ngvU4uOyxKUsVZr5WmSuJDZYfHIzsXNWpftWpVzJ8/P8aMGVOIiAAUkM+LAN2b+zwAAE3xeREgIYceGjF3bsQ3vhFx/fUtHta7fnP8w4p/jUUDLow/Df1m1BVlfslZZ1XSUBOnrv5OHL3xntYPvuKKiGuvjSgr6/hg0MkohgCAVlr6y1/G8kceadccG158sdk+xeXlMea669r1PgC0nvs88F6nlh/RzPX3ZRRDROw+HUIxBED34/MiQPfmPg8AQFN8XgRIUFlZxI9+FPHhD0dcdFHEmjUtHnrMxt/G/tvnxUP73xbreo3KY8iOMbDm5Thr5b/HoJ2vtG7gkCERd98dMX58foJBJ1SUdAAA6Gr2PeWUiFQqv2+SSu1+HwAKzn0e+Ft7pMrjhLJDmuxzQtkhsUcq81tVKisrI51O5ysaAAnxeRGge3OfBwCgKT4vAnQCEyZEPP/87n+2wqCdr8S/vHFWHLXhtxGd9e/w0uk4esNv41/eOKv1hRATJkQsWaIQgh5HMQQAtNKBEybEabffHr0HD87L/L0HD45xd9wRB7byAzsAHcN9Hvhbf1c2KspSTR+sWZ4qjb8rOyyjfdmyZbF48eI8JQMgKT4vAnRv7vMAADTF50WATmLIkIhp02Lrt78dta0YVpreGePf+UZ8YsUXo1fdpnyla5NedZviH1b8a5z+zjeiNL2z5QNLSyOuvz5i2rTd6wI9jGIIAGiDoWPGxJlTpsR+Y8d26Lz7jR0bZ06ZEkNOPLFD5wWgddzngb84tfx9Leo3Nke/yZMnd2QcADoJnxcBujf3eQAAmuLzIkAnUVQUO770pfhgRLzayqEjtzwan359Quy/bV4+krXa/tvmxadfnxCHbnmsdQMPOSTi6acjLrssosgj4fRMfvMBoI16DRgQp9x6axx31VVRVFbWrrmKysriuKuuilNuvTV6DRjQQQkBaA/3eaA8SmNM2cgW9T2pbGSUR2lGe2VlZaQ76zG7ALSLz4sA3Zv7PAAATfF5EaDzWBgRx0bEXa0cV1H3Tpzz5jnxwTU3RCpdl4dkzUul6+Lv1vw4znnznKioe6d1gz/96Yjnnos47rj8hIMuQjEEALRDKpWKURdcEBPuvTcqhg9v0xwVw4fHhPvui1EXXBCpVKqDEwLQHu7z0LN9sGxk9E617C+xeqfK4qQshRMvv/xyLF26tKOjAdBJ+LwI0L25zwMA0BSfFwE6j60RcXFE/EtENPTp0+JxRdEQf7f2J3HOm+dGv9pVeUqXXb/aVXHum+fEB9feFEXR0PKBfftG3HNPxG9+E9GvX97yQVdRknQAAOgOBhx2WJxx//3xP+efH5teeaXF4/YcOTLG//73UdK7dx7TAdBe7vOQX/X19fG9730vHnroodi4cWPB3zuXseXva9VcY8vfF3+qfTGjfdy4cVFRUdHqbO01YMCAOOuss+Kqq66K4uLigr8/QE/i8yJA9+Y+DwBAU3xeBOg8fhcRN82cGXt/+csRCxa0eNwB2+fHxa9PiP8edk+s3uPovOX7i6HbF8c/L/+X6NVQ3bqBxx8fce+9ESNG5CcYdEGKIQCgg6SKimLrqtZVCG9dtSpSHkwD6BLc5yF/Jk6cGLfcckvSMRopjeL4u7JRrRrzobJRURrFsSsaF1hUVVVFVVVVR8Zrsfnz58e6devipptuSuT9AXoSnxcBujf3eQAAmuLzIkDn0TB8eMRTT0V885sRP/xhi8f1aqiOT711cfxmxKOxrXRo3vL12bU6PvXWxa0vhLjyyojvfCeirGUn20NPUZR0gK6mrqYm1ixcGHU1NUlHAaCTeWfu3Kjbtq1VY+q2bYvVc+fmKREAHcl9HvKjvr4+7rrrrqRjZDih7JDoU9SrVWP6FPWK48sOyVOitrvrrruioaEVR+sC0CY+LwJ0b+7zgGcFAGiKz4sAnUxZWcQPfhDx2GMRQ4a0eNge9Rvi8M0P5jFYxOGb/xh71G9o+YAhQyL+538ivv99hRCQhWKIVppz+eUx46KLYu4VVyQdBYBOZsX06QUdB0Bhuc9DfhQXF0fvTngE+KnlR7Rp3GltHJdPvXv3jqIiW0AA+ebzIkD35j4PeFYAgKb4vAjQSY0fH/H88xFnnNHiIUNqns9joIghNS+0vPOZZ+7Of/rp+QsEXZy/CW+F7atXx6rZsyMiYuWsWbG9qirhRAB0Fg27dr37Z0RrrZw1Kxp27ergRAB0JPd5yK9LL7006QiNDC8eHOPL39+msePL3x8HFw/u4ETtM3HixKQjAHR7Pi8CdG/u84BnBQBois+LAJ3c4MERDz8cccMNEaWlzXbfXjwwr3FaNH9pacSNN0Y89NDu/EBOJUkH6EpWzJzZ+PWMGTHqggsSSgNAZ1I1f37UVldnvbb/uHFx9GWXxeLrr4+Vs2ZlXK+tro6qBQtinw9+MN8xAWgj93nIryuuuCIaGhri6quvjvr6+ib7Hlg8MPYv3isvOYqiKA4pGRrn9/5QlKbatmVSmiqJX+z5r/H7HU/Fa3WroyEaOjjlbivq18eK+vVN9ikpKYlrr702rvCNlQB55/MiQPfmPg94VgCApvi8CNAFFBVFTJwYsWVLxDXXNNn17T2OzWuUt/c4JmJDM52uvjriq1/Naw7oLhRDtMJ7jyVbMX26DQ4AIiL70ZVFZWVx3JVXxiHnnBOpVCpOvvnmePW+++K5H/4wGmprM8bb3ADovNznIb9SqVR87Wtfi7Fjx8b5558fy5Yty9l3df2mOKf3B+OTvU6IVCpVwJQt16+od3yxT36Oqk2n0zG1Zn7ctHVak/0OPvjguPfee+PEE0/MSw4AGvN5EaB7c58HPCsAQFN8XgToQt5T6Pxeu1Ll8Ubf0/Ia4Y2+p0VdqjxK0jtzd5o1K+Jb38prDuguipIO0FXUrF8faxcubNS2duHCqNnQXHkWAN1dQ319xjc49B8xIs6YNCkOPffcdx/SS6VSMfK88+KMSZOi/4gRjfqvnDkzGpr5FmQAkuE+D4UzZsyYWLRoUZx33nk5+9RGXfxo6x/jqup7Y3PD9gKmS97mhu3x9erfx4+2/jFqoy5nv/POOy8WLVqkEAKgQHxeBOje3OcBzwoA0BSfFwG6kKqqiCefbLLLm33/PnYV98lrjF3FfWNZ31Oa7vTkkxFr1uQ1B3QXiiFaaOXMmZFuaGjUlm5oiJXNVIkB0P3tqKqKmvXr3319yDnnxIRJk2LPkSOz9t9z5MiYMGlSHHL22e+21axfHzuqqvKeFYDWc5+Hwurfv3/87ne/izvvvDP69Mm90fin2hfjoo23xqLa3KdIdCeLapfFRRtvjcdrl+bs06dPn/jNb34Tv/vd76J///4FTAfQs/m8CNC9uc8DnhUAoCk+LwJ0IX/4Q0Q63WSXVyo+UpAozb5PQ8PuvECzSpIO0FW8leU4s4jdx5Qd8s//XOA0AHQmvYcMiYM+9rHY+NJL8f5LLokDTj+92TElvXvHCddcE0NPOileuO22GDB6dOwxdGgB0gLQWu7zUHipVCouvvjiOOmkk9495SCbNQ2b45LNd8Rn9jg1Lt5jbJSkigucNP/q0vVx5/bZ8Zvtf4qGyL05e8wxx8R9990XI3P8BRsA+ePzIkD35j4PeFYAgKb4vAjQhVRWNnm5PlUar/cbV5Aor/f7cNSnSqM4vSt3p8rKiH/914Lkga5MMUQL7Ny0Karmz896bfW8eVG7eXOU+cZFgB6rqLg4Pvj977dp7IHjx8eB48d3cCIAOpL7PCRn1KhR8fTTT8fXv/71uPHGG7P2aYh03LF9Vjxb+3p8u+LsGFq8Z2FD5tE79Rvj29X/Hc/XLW+y36WXXhrf+973ory8vEDJAPhbPi8CdG/u89CzeVYAgOb4vAjQRaxfHzFrVpNdlvf5UOwsLszn+53F/WN5n7+L4Vv/lLvTrFkRGzZE7LVXQTJBV9XjiyG2rVwZ/77fftGv+K/fHrnw8sujrKzs3de1mzdHuq4u6/h0XV3M+sIXmtzgKO/fP4788pejYtiwjgsOAAAAPUB5eXnccMMN8eEPfzguvvjiWLt2bdZ+S+qWx0Ubb4mv9/tknFp+RIFTdrzZO/83/mvL1NiSrsnZZ9CgQXHXXXfFmWeeWcBkAAAA0D1UL18ez19/fXztwAMbtf/t8wKeFQAAgG7ij3+MqK9vsssrFa34O7d0OoZvnRnHbLg79qhbF9tLBsaivS6KN/qOi0ilWjTFKxVnNl0MUVe3O/fFF7c8F/RAPb4Y4s177okPvmdzYsOzz7Zqjg0vvthsn+Ly8hhz3XWtmhcAAADY7SMf+UgsWbIkLrroopgxY0bWPlvSNXFV9b3xD72Oj6/0/Uj0SpVl7deZ1aRr4ydbp8UDNQua7Hf66afH3XffHUMdnQ4AAABtsvSXv4yqWbPiyL59G7W35nkBzwoAAEAXUVnZ5OWGKI7X+rXstJ7edRvijLcvj0O2NP47y+Fb/xSv9ftwPLrv9bGjpPnTHF7rNz4a4utRFA1N51YMAU0qSjpA0gaOGRMN6XR+3ySVin1POSW/7wEAAADd3D777BOPPfZY/OAHP4iSktzf7/CHmgXx2Y0/i9fqVhcwXfu9Vrc6PrvxZ00WQpSUlMQPf/jDePTRRxVCAAAAQDvse8opLf7G1jbzrAAAACSvujpi+vQmu6zoc2KLChgO2DY3Pv36hIxCiL84ZMuM+PTrE+KAbXObnWtHyd6xos+Ypjv9z//szg/k1OOLIYaMHRv/tXx5bNi1Ky/z9x48OMbdcUccOGFCXuYHAACAnqSoqCj+8z//M+bMmRPDhw/P2W9Z/Zr43MafReWOZyKd7y9BaKd0Oh2TdzwTn9v4s1hWvyZnvxEjRsTcuXPjiiuuiKKiHr+lAwAAAO1y4IQJcdyPf+xZAQAA6O4eeiiitrbJLq9UfLTJ60XpXfGhqh/GOW+eF/3qqprs26+uKs5587z4UNWPoijd9L9vvFLxkSavR21txMMPN90Hejh/cx4RS7dvj6+/8UYs3LKlQ+fdb+zYOHPKlBhy4okdOi8AAAD0dCeccEIsWrQozj///Jx9aqMurt/6YHyt+nexuWF7AdO13OaG7fG16t/Fj7c+GLVRl7PfBRdcEM8991wcf/zxBUwHAAAA3dtexx7rWQEAAOjuKiubvJyOVLzaL3cRc//at+K8Zf8cJ627NVLRsi9hS0U6Tlp3S5y77OyoqF2Rs9+r/SZEOpo5sa6Z/NDTKYb4s6319XHDihXxm3feiaLS0nbNVVRWFsdddVWccuut0WvAgA5KCAAAAPytioqKuOeee+Kuu+6KPn365Oz3RO1LceHGW+K52mUFTNe852rfiAs33hJP1L6Us0/fvn3j7rvvjnvuuScqKioKmA4AAAB6hr99VqC2oaFdc3lWAAAAOplt2yIeeaTJLqv2+EBsKx2c9dqozX+MT79+Zuy747k2vf1+OxbGp18/M0ZtfjB7vNIhsWqP45qe5JFHdv8cQFaKId5j+saNccLPfhYVw4e3aXzF8OEx4b77YtQFF0Qq1Uy1FgAAANAuqVQqLrrooli0aFEce+yxOfutbaiOSzbfEb/cNiPq0vUFTJipLl0fv9g2PS7Z/OtY21Cds99xxx0Xzz33XFx44YUFTAcAAAA90/SNG+OaZcuiz4EHtmm8ZwUAAKATeuSRiB07muzySsWZGW2lDdtjwqor4uMrL4nyhvadJNeroTo+vvLfY8Kq/4zSLKfZv9LvI01PsH17xKOPtisDdGeKIbLod8ghccb998eeI0e2atyeI0fGGfffHwNGjcpTMgAAACCbQw89NJ5++um47LLLcvZJRzru3D47vrTp9ninfmMB0/3VO/Ub40ubbo/fbP9TpJs4Rvfyyy+PuXPnxqGHHlrAdAAAANCzvbVzZ5z4y196VgAAALqLyspmu7zSr3ExxOAdL8aFr3803r9pUodGef+m++LC1z8ag3e82Kj91Yozmh/cgp8DeirFEDmkiopi66pVrRqzddWqSBUX5ykRAAAA0JSysrK4/vrr49FHH43Bg7MfZRsR8ULdW3HRxltjYe0bBUwXsbD2jbho463xQt1bOfsMHjw4Hn300fjRj34UZWVlBUwHAAAAREREKuVZAQAA6A5qaiIeeqjJLm/3Pjq2lO23+0U6Hceu/3VcsOwTsXft63mJtHft63HBsk/Eset/HZHe/cVp1WX7xzu9j2p64EMPRezcmZdM0NUphsjhnblzo27btlaNqdu2LVbPnZunRAAAAEBLTJgwIZYsWRLjx4/P2WdruiaurL4ntjUUZtNwW8PO+M/qe2JruiZnnwkTJsTzzz8fEyZMKEgmAAAAINOGhQs9KwAAAN3B9OkRW7c22eXVit2nQvSuWx//+NZnYtzqb0dJurbl71FeHvG5z0W04kvOStK1MW71t+OTb302etetj4jM0ykybNmy++cBMiiGyGFFG28abR0HAAAAdJyhQ4fGI488Ej/60Y+itLQ0a59t6Z3xYt2KguR5sW5FbE9nL7woLS2N66+/PqZNmxZDhgwpSB4AAAAgu6rHH2/TOM8KAABAJ1NZ2WyXVyrOjAO3PhUXvz4hRmyd1br5DzssYt68iNtvj5g/f/frVjhk68y4+PUJceDWOfFKxUeaH9CCnwd6IsUQWTTU1cWq2bPbNHblrFnRsGtXBycCAAAAWquoqCguv/zymDt3bgwaNChrn4FF/QqSZe8c7zN48OCYO3duXHbZZVFUZJsGAAAAklQcEWvbeMKDZwUAAKATqa2NeOCBJrusLR8ZR26cFGcvvyD61q1p3fxf+ELEs89GHHXU7tdHHbX79ec/36pp+tatibOXnx9HbpoU68oPbbrzAw9E+HcOyOBv2bPYuGhR1FZXZ722/7hxcda0abH/aadlvV5bXR1VCxbkMx4AAADQCkceeWTs3Jl5KsM+RQPi4OLBBckwvHhwDC3aM6O9pqYmjjzyyIJkAAAAAJo2uk+fqNuyJes1zwoAAEAXMnt2xKZNTXYZuPPVGLPutkhFuuXz9u8fcf/9Eb/8ZUSfPo2v9ekT8atfRUyatLtfC6UiHWPW3RZ773yt6Y4bN+7+uYBGFENkUfXEExltRWVlcfw3vxkn33RTVAwbFifffHN84Oqro6isLKOv4y8BAACg85gxY0ZUZ/nSg7HloyOVShUkQyqVirHl78tor66ujpkzZxYkAwAAANC04ysqMto8KwAAAF1QZWWzXVpVBBER8cEPRixZEvHP/9x0v7PPjli8OOKkk1o1fYvytODngp5GMcR7pCJi7VNPNWrrP2JEnDFpUhx67rnvPiSRSqVi5HnnxRmTJkX/ESMa9V85c2Y01NcXKjIAAADQhMocm4LZihPyKdf75coHAAAAFE4qIj7Qr1+jNs8KAABAF1RfH/GHP3TcfKlUxDe/GfH44xHDhrVszEEHRTzxRMTVV+8e31H+8IfdPx/wLsUQ77F3aWnUbtz47utDzjknJkyaFHuOHJm1/54jR8aESZPikLPPfretZv362FFVlfesAAAAQNN27doVDzzwQEb7wKJ+cUTJAQXNcmTJATGwqF9G+wMPPBB1dXUFzQIAAAA0tndpafQvKXn3tWcFAACgayp95pmItWs7ZrL99ouYNSviO9+J+Jt/X2iRkpKI73539/h99+2YPGvWRLznC9+hp1MM8R7rd+2KfU4/Pfofckic/JOfxAnf+laU9O7d5JiS3r3jhGuuiQ/deGP0P+SQOOjjH489hg4tUGIAAAAgl8cffzw2bNiQ0f73ZaOjKFXYbZGiVFGcUjY6o339+vXx+OOPFzQLAAAA0Nj6XbviqU2bos9BB3lWAAAAurDyBx/smIk+8YmIJUsixo5t3zxjx+6e5+Mf74hUEZMnd8w80E20skyp+0tHxBHf+EYMGjSo1WMPHD8+Dhw/vuNDAQAAAG0yOcdm4GnlRxQ4yV/fd0rNvIz2yZMnx7hx4xJIBAAAAETsflbgZ2+/Hf9v8eJWPy/gWQEAAOgcUhFR9vDD7ZukvDzihhsi/u3fIlKpDskVAwdG/OEPET/9acRll0Xs3Nn2uaZMibjppogi34cPEU6GAAAAALqp+vr6mDp1akb7gFSfOKr0oMIHioijSofFnqk9MtqnTp0a9fX1CSQCAAAAAACA7mFMRBRXVbV9gtGjIxYsiPjSlzquEOIvUqmIf//3iPnzIw4/vO3zvP12xLzML1+DnkoxBAAAANAtzZkzJ9asWZPRfkr54VGcav2WSDqdjmdrX497t8+JZ2tfj3Q63eo5SlLFcUr56Iz2qqqqmDt3bqvnAwAAAAAAAHb7VHsGf/GLuwshjjyyo+Jk9/73Rzz7bMS//mvb56is7Lg80MUphgAAAAC6pcocm4Bjy49o9VwbG7bF5dW/jS9v/nXcvG1afHnzr+Py6t/GxoZtrZ5rbPn7srbnygsAAAAAAAA0r03FEHvuGTF5csTPfx6xR+YJ73mxxx4Rv/hFxH//9+73b63Kyog2fHEbdEeKIQAAAIBup6GhIaZMmZLR3i/VK44rPbhVcy2ofT0u3HhzzK19uVH73NqX46KNt8SC2tdbNd8HSodH31SvjPYpU6a06bQJAAAAAAAA6OmOjoiDWjvoQx+KWLIk4lPtOlOi7f7pnyIWL474u79r3bg339w9DlAMAQAAAHQ/CxYsiJUrV2a0f6js8ChNlbRojrp0ffx062Pxlc13xvqGrVn7rGvYEl/ZfGf8dOtjUZeub9G8pamS+FDZYRntK1asiAULFrRoDgAAAAAAAOCvsp/NnkNRUcQ110TMnh1x4IH5itQyw4ZF/OlPEd/61u5cLbV0ad4iQVeiGAIAAADodiZPnpy1/dTylm2DrqrfEF/c9Mv47Y4nIh1Nn9aQjnT8dscT8cVNv4xV9RtaNP9p5Udkbc+VGwAAAAAAAMitb0s77r//7iKIb387oqRlX6KWdyUlEf/v/0XMmrU7X0tszf5lbtDTKIYAAAAAupV0Oh2VlZUZ7XukyuKEskOaHf8/NUvioo23xtK6zJMlmrK0bmVctPHW+J+aJc32PaHskNgjVZbRXllZGel008UXAAAAAAAAQGOPtaTTJz8ZsWRJxCmn5DtO2/z930csXhzxD//QfN/x4/OdBroExRAAAABAt7J48eJYtmxZRvvflR0W5anSnOO2p3fGtdWVcc2W+2N7emfOfvs38W0s29M745ot98e1WyqbnKM8VRofLBuV0f7GG2/EkiXNF1MAAAAAAAAAf/VmRNya62KvXhE/+1lEZWXEXnsVLlRb7L13xJQpET/96e7c2fz7v0ccfHBhc0EnpRgCAAAA6FaynQoRETG2/H05x7y8a1VcvPG2eHjnczn7lJWVxU9+8pNYvnx53HjjjVFamruw4uGa5+IzG38aL+9albNPrjy58gMAAAAAAAC5fSUitl12WcSAAbsbUqndpywsWBDx//1/u193BalUxL/92+7c//APf809YEDEt74VcdNNicaDzkQxBAAAANBtpNPpmDx5ckZ7eZTGSWUjM9ob0g1x7/Y58flNv4gV9etzzjty5Mh45pln4itf+UoUFRXFV7/61XjmmWdi5MjMOf/irfp18flNv4h7t8+JdDqdcf2kspFRFiUZ7YohAAAAAAAAoPUaImL7lVdGrFoVsWJFxNq1EVOnRhxxRNLR2uaII3bnX7t298+zalXE//t/EcXFSSeDTkMxBAAAANBtLF26NF5++eWM9jFlh0bvVFmjtg0NW+Py6t/GzdumRV3U55zzs5/9bCxcuDCOOeaYRu3HHntsLFy4MD7zmc/kHFsX9XHztmlxefXdsaFha6Nre6TKY0zZoRljXnrppVi6dGnOOQEAAAAAAIAm9O4dsf/+EXvvnXSSjrH33rt/nt69k04CnY5iCAAAAKDbyHWqwqnljb/tZX7ta3Hhhlvi6dpXcs5VUVER9957b9xxxx3Rt2/frH369u0bv/71r+P3v/99VFRU5Jxrbu0rcdHGW2J+7WuN2k8rz/4tNE6HAAAAAAAAAICmKYYAAAAAuo1sRQSlURwfKhsVERG70nVx29ZH4yub74wN6a0Zff9izJgxsXjx4jj33HNb9L7nnXdeLFq0KE488cScfdY3bI2vbv5N/HTrY1GX3n0Sxd+VHRYlkXmMrWIIAAAAAAAAAGiaYggAAACgW3jttdfi+eefz2g/vuyQ6FPUK1bWr48vbvpl3LPjySbn+epXvxpPPPFEHHzwwa16/+HDh8eTTz4ZX//61yOVSmXtk450/HbHE/HFTb+MlfXro29RrzihbERGvyVLlsTrr7/eqvcHAAAAAAAAgJ5EMQQAAADQLeQ6TeHU8vfFYzWL49Mbb4uX6lY1O89VV10VpaWlbcpQWloa3/ve92L69Omxzz775Oy3tG5lfHrjbfFYzZIYW/a+rH2cDgEAAAAAAAAAuSmGAAAAALqFyZMnZ23/084X49tb/ju2p3cWLMu4ceNiyZIl8dGPfjRnn+3pnfHtLffH47VLs17P9fMAAAAAAAAAAIohAAAAgG5g+fLl8eyzz2a9Nqf25ZzjysrK8hUpBg0aFA8++GDcdNNNTb5PrnwLFiyIt956K1/xAAAAAAAAAKBLUwwBAAAAdHlTpkxp9ZjDDjssHn300Tyk+atUKhX/8R//EfPmzYtRo0a1enxbfi4AAAAAAAAA6AkUQwAAAABdXmVlZav6f/7zn49nn302jjjiiDwlauzoo4+OhQsXxuc+97lWjWvtzwUAAAAAAAAAPYViCAAAAKBLe/vtt2Pu3Lkt6tu/f/+YNGlS/OpXv4o+ffrkOVljffr0idtvvz3uu+++qKioaNGYOXPmxDvvvJPnZAAAAAAAAADQ9SiGAAAAALq0qVOnRjqdbrbfSSedFIsXL46zzz67AKlyO+ecc2LJkiUxZsyYZvum0+mYOnVqAVIBAAAAAAAAQNeiGAIAAADo0iorK5u8nkql4uqrr44nnngiDjrooMKEasZBBx0UTzzxRHzjG9+IVCrVZN/mfj4AAAAAAAAA6IkUQwAAAABdVjqdjqeeeirn9X333TdmzpwZ3/3ud6OkpKSAyZpXWloa1157bcycOTP23XffnP2eeuqpFp18AQAAAAAAAAA9Sed6CqCTWLduXdIReoRs62zt88+6J8faJ8faJ8O6J8faJ8O6J8faJ8O6J8c6N1ZXV5fzZIWPf/zjcccdd8TAgQNbNWeh1/iII46ImTNnxle/+tV47LHHsvZ55513orS0tKC58s19JBnWPTnWPhnWPTnWPjnWPhnWPTnWPhnWPTnWOf+scWG4jyTDuifH2ifDuifH2ifDuifH2ifH2ifDuifHOmdKpXv4VwuuXbs2Bg8enHQMAAAAaLM1a9bEoEGDko6RmC996Uvxs5/97N3X5eXl8eMf/zi+9KUv5SyU+Av7AgAAAHR1PX1foD3sCwAAANDV9fR9ASdDAAAAAF3azTffHMOGDYvZs2fHAQccEBMnTozRo0cnHQsAAAAAAAAAyCPFEAAAAECXVlJSEldeeWVceeWVSUcBAAAAAAAAAAqkKOkAAAAAAAAAAAAAAAAAreFkiCyWLl0aAwcOTDpGt7du3boYPXp0ozZrn3/WPTnWPjnWPhnWPTnWPhnWPTnWPhnWPTnZ1p6O5Xe5MNxHkmHdk2Ptk2Hdk2Ptk2Ptk2Hdk2Ptk2Hdk2NfIP/8LheG+0gyrHtyrH0yrHtyrH0yrHtyrH1yrH0yrHty7AtkUgyRxcCBA2PQoEFJx+iRrH0yrHtyrH1yrH0yrHtyrH0yrHtyrH0yrDvdhd/l5Fj7ZFj35Fj7ZFj35Fj75Fj7ZFj35Fj7ZFh3ugu/y8mx9smw7smx9smw7smx9smw7smx9smx9smw7iSlKOkAAAAAAAAAAAAAAAAAraEYAgAAAAAAAAAAAAAA6FIUQwAAAAAAAAAAAAAAAF2KYggAAAAAAAAAAAAAAKBLUQwBAAAAAAAAAAAAAAB0KYohAAAAAAAAAAAAAACALkUxBAAAAAAAAAAAAAAA0KUohgAAAAAAAAAAAAAAALoUxRAAAAAAAAAAAAAAAECXohgCAAAAAAAAAAAAAADoUhRDAAAAAAAAAAAAAAAAXYpiCAAAAAAAAAAAAAAAoEtRDAEAAAAAAAAAAAAAAHQpiiEAAAAAAAAAAAAAAIAuRTEEAAAAAAAAAAAAAADQpSiGAAAAAAAAAAAAAAAAuhTFEAAAAAAAAAAAAAAAQJeiGAIAAAAAAAAAAAAAAOhSFEMAAAAAAAAAAAAAAABdimIIAAAAAAAAAAAAAACgS1EMAQAAAAAAAAAAAAAAdCmKIQAAAAAAAAAAAAAAgC5FMQQAAAAAAAAAAAAAANClKIYAAAAAAAAAAAAAAAC6FMUQAAAAAAAAAAAAAABAl6IYAgAAAAAAAAAAAAAA6FIUQwAAAAAAAAAAAAAAAF2KYggAAAAAAAAAAAAAAKBLUQwBAAAAAAAAAAAAAAB0KYohAAAAAAAAAAAAAACALkUxBAAAAAAAAAAAAAAA0KUohgAAAAAAAAAAAAAAALoUxRAAAAAAAAAAAAAAAECXohgCAAAAAAAAAAAAAADoUhRDAAAAAAAAAAAAAAAAXYpiCAAAAAAAAAAAAAAAoEtRDAEAAAAAAAAAAAAAAHQpiiEAAAAAAAAAAAAAAIAuRTEEAAAAAAAAAAAAAADQpSiG4F07duyIlStXxo4dO5KOAgAAAAAAAAAAAAAAOSmGICIipk2bFsOHD48DDjgghg8fHtOmTUs6EgAAAAAAAAAAAAAAZKUYgtiwYUNceOGFsXr16oiIWL16dVx00UWxYcOGhJMBAAAAAAAAAAAAAEAmxRDE5MmTMwof1q9fH5WVlQklAgAAAAAAAAAAAACA3BRDkLPoQTEEdG51NTWxZuHCqKupSToKAAAAUGD2BQAAAKDnsi8AAAC7KYbo4TZu3BizZs3Kem3mzJmxcePGAicCWmrO5ZfHjIsuirlXXJF0FAAAAKDA7AsAAABAz2VfAAAAdlMM0cP98Y9/jLq6uqzX6urq4sEHHyxwIqAltq9eHatmz46IiJWzZsX2qqqEEwEAAACFYl8AAAAAei77AgAA8FeKIXq4ysrKdl0HkrFi5szGr2fMSCgJAAAAUGj2BQAAAKDnsi8AAAB/pRiiB6uuro7HHnusyT6PPfZYbNmypUCJgJZaMX16k68BAACA7su+AAAAAPRc9gUAAOCvFEP0YA8//HDU1tY22Wfnzp3x8MMPFygR0BI169fH2oULG7WtXbgwajZsSCgRAAAAUCj2BQAAAKDnsi8AAACNKYbowSorKzu0H1AYK2fOjHRDQ6O2dENDrHzPUZgAAABA92NfAAAAAHou+wIAANCYYogeavv27fHII4+0qO+0adNi+/bteU4EtNRbOY64dPQlAAAAdH/2BQAAAKDnsi8AAACNKYbooR599NGsBQ69SlIZbdu3b4/HHnusELGAZuzctCmq5s/Pem31vHlRu3lzgRMBAAAAhWJfAAAAAHou+wIAAJCpJOkAJGPy5MlZ2z966B5R+dK2rP0/+clP5jsW9GjVy5fHC7fcEjub2KCo3bw50nV1Wa+l6+pi1he+EGX9++ccX96/fxz55S9HxbBh7c4LAAAAdBz7AgAAANBz2RcAAIC2UQzRA+3cuTMeeuihjPYBvYrihP3KY9ayHbGxpqHRtYceeih27twZ5eXlhYoJPc7SX/4ylj/ySLvm2PDii832KS4vjzHXXdeu9wEAAAA6ln0BAAAA6LnsCwAAQNsUJR2Awps+fXps2bIlo/3IIWVRlErFkYPLMq5VV1fHjBkzChEPeqx9TzklIpXK75ukUrvfBwAAAOhU7AsAAABAz2VfAAAA2kYxRA9UWVmZtf0vRRBHDskshmhqHNAxDpwwIU67/fboPXhwXubvPXhwjLvjjjhwwoS8zA8AAAC0nX0BAAAA6LnsCwAAQNsohuhhdu3aFQ888EBGe0V5Kg7sXxIREQf2L4mK8sxq8wceeCB27dqV94zQkw0dMybOnDIl9hs7tkPn3W/s2DhzypQYcuKJHTovAAAA0HHsCwAAAEDPZV8AAABaTzFEDzN79uzYuHFjRvuRg8uj6M/H7RWlUnHE4MzTITZs2BB/+tOf8h0RerxeAwbEKbfeGsdddVUUlWU/qaWlisrK4rirropTbr01eg0Y0EEJAQAAgHyxLwAAAAA9l30BAABoHcUQPUxlZWXW9iPfU/zw/sHlrRoPdKxUKhWjLrggJtx7b1QMH96mOSqGD48J990Xoy64IFKpzNNeAAAAgM7JvgAAAAD0XPYFAACg5RRD9CD19fXxhz/8IaO9b1kqDh5Q0qjt4AEl0ac081+Gpk6dGvX19fmKCLzHgMMOizPuvz/2HDmyVeP2HDkyzrj//hgwalSekgEAAAD5Zl8AAAAAei77AgAA0DzFED3IU089FWvWrMlof9+gsih6TxV4USoVRwzOPG5vzZo1MWfOnLxlBDKliopi66pVrRqzddWqSBUX5ykRAAAAUCj2BQAAAKDnsi8AAABNUwzRg1RWVmZtP3JIZtFDRMSRWYohmpoHyI935s6Num3bWjWmbtu2WD13bp4SAQAAAIViXwAAAAB6LvsCAADQNMUQPURDQ0PWIobeJak4ZEBp1jEj9iqN3iWpjPbKyspoaGjo8IxAdiumTy/oOAAAAKDzsC8AAAAAPZd9AQAAaJpiiB5i3rx58fbbb2e0jx5UFsVFmQUPERElRakYPSjzdIhVq1bF/PnzOzwjkKlh165YNXt2m8aunDUrGnbt6uBEAAAAQKHYFwAAAICey74AAAA0TzFED5HtVIiIiPcPySx2aMn1XPMBHatq/vyora7Oem3/cePirGnTYv/TTst6vba6OqoWLMhnPAAAACCP7AsAAABAz2VfAAAAmqcYogdIp9NZixfKi1Mxcu/SJsceuldplBdntldWVkY6ne6oiEAO2Y6uLCori+O/+c04+aabomLYsDj55pvjA1dfHUVlmcVLjr4EAACArsu+AAAAAPRc9gUAAKB5iiF6gEWLFsWbb76Z0X74oNIoKUo1Oba0OBWHD8z8F6Zly5bF4sWLOyghkE1DfX2snDWrUVv/ESPijEmT4tBzz41Uavf/f1OpVIw877w4Y9Kk6D9iRKP+K2fOjIb6+oJlBgAAADqGfQEAAADouewLAABAyyiG6AEmT56ctf3IwZlFDln7DcneL9e8QMfYUVUVNevXv/v6kHPOiQmTJsWeI0dm7b/nyJExYdKkOOTss99tq1m/PnZUVeU9KwAAANCx7AsAAABAz2VfAAAAWqYk6QDkVzqdjsrKyoz20qKIw7Kc+JDNYQPLorQoYldD4/bKysq49tpr3602BzpW7yFD4qCPfSw2vvRSvP+SS+KA009vdkxJ795xwjXXxNCTTooXbrstBoweHXsMHVqAtAAAAEBHsi8AAAAAPZd9AQAAaBnFEN3ciy++GK+88kpG+2EDy6KsuGVFDGXFqRg1sCz+d01to/aXX345li5dGu973/s6JCvQWFFxcXzw+99v09gDx4+PA8eP7+BEAAAAQKHYFwAAAICey74AAAC0jGKIPKuvr4/vfe978dBDD8XGjRsL/v7V1dVZ248c3LJTIf7i/YMziyEiIsaNGxcVFRVtylZfX5/RNmbMmCguLm527IABA+Kss86Kq666qkX9AQAAAAAAAAAAAADoPhRD5NnEiRPjlltuSTpGI8WpiMMHlbZqzOGDSqM4FVGfbtxeVVUVVVVVHZbtjTfeaHHf+fPnx7p16+Kmm27qsPcHAAAAAAAAAAAAAKDzK0o6QHdWX18fd911V9IxMozcuzR6lbTuf/peJUUxcu/WFVAUwl133RUNDQ1JxwAAAIAur66mJtYsXBh1NTVJRwEAAAAKzL4AAAAAXZFiiDwqLi6O3r17Jx0jw/uHlBV0XD717t07ior8GgMAAEB7zbn88phx0UUx94orko4CAAAAFJh9AQAAALoiT5Hn2aWXXpp0hEaG9CmOo4eWt2ns0UPLY0if4g5O1D4TJ05MOgIAAAB0edtXr45Vs2dHRMTKWbNie1VVwokAAACAQrEvAAAAQFdVknSA7u6KK66IhoaGuPrqq6O+vr7JvoP2KIq998hPsUFRROzTryT+flivKClKtWmOkqJU/PvxFfH48pp4Z0tdNHRsxHet214f67Y3PXtJSUlce+21cYVvpQAAAIB2WzFzZuPXM2bEqAsuSCgNAAAAUEj2BQAAAOiqFEPkWSqViq997WsxduzYOP/882PZsmU5+26saYiTD+wdY/Yvj1SqbQUL+da7tCjOOGSPvMydTqfj6ZU748FXtjXZ7+CDD4577703TjzxxLzkAAAAgJ5mxfTpGa899AAAAAA9g30BAAAAuqqipAP0FGPGjIlFixbFeeedl7NPXUPElP/bFnc/vzW278rXuQud0/ZdDXH381tj6v9ti7omfvTzzjsvFi1apBACAAAAOkjN+vWxduHCRm1rFy6Mmg0bEkoEAAAAFIp9AQAAALoyxRAF1L9///jd734Xd955Z/Tp0ydnv/9dUxs3PL053ti4q4DpkvPGxl1xw9Ob43/X1Obs06dPn/jNb34Tv/vd76J///4FTAcAAADd28qZMyPd0PibCdINDbFy5syEEgEAAACFYl8AAACArkwxRIGlUqm4+OKLY+HChXHMMcfk7Ld5Z0P8/Nnq+J/Xt0d9Q7qACQunviEdj72+PX7+bHVs3pn7OIhjjjkmnnvuufj0pz8dqVSqgAkBAACg+3tr+vSs7StytAMAAADdh30BAAAAujLFEAkZNWpUPP300zFx4sScfdIRMf2NHfGLhdWxcUd94cIVwMYd9fHzhdUx440d0VSpx6WXXhpPP/10jBw5smDZAAAAoKfYuWlTVM2fn/Xa6nnzonbz5gInAgAAAArFvgAAAABdXUnSAXqy8vLyuOGGG+LDH/5wXHzxxbF27dqs/ZZtqosbn9kc/zS6T7x/SHmBU3a856t2xuSl22JHXe4yiEGDBsVdd90VZ555ZgGTAQAAQPdRvXx5vHDLLbGziQcXajdvjnRdXdZr6bq6mPWFL0RZ//45x5f37x9HfvnLUTFsWLvzAgAAAB3HvgAAAAA9gWKITuAjH/lILFmyJC666KKYMWNG1j476tLx2+e3xpj9dsXHRvWJsuJUgVO2X219Ov748raYt2pnk/1OP/30uPvuu2Po0KEFSgYAAADdz9Jf/jKWP/JIu+bY8OKLzfYpLi+PMddd1673AQAAADqWfQEAAAB6gqKkA7DbPvvsE4899lj84Ac/iJKS3DUqz6zaGTfP2xzvbMn+7Qyd1dtb6uLmeZubLYT41re+FY8++qhCCAAAAGinfU85JSKV5y9TSKV2vw8AAADQqdgXAAAAoCdQDNGJFBUVxX/+53/GnDlzYvjw4Tn7VW2rj5vnb465K2oinU4XMGHrpdPpmLOiJm6ZvzmqttU32/+SSy6JoiK/lgAAANBeB06YEKfdfnv0Hjw4L/P3Hjw4xt1xRxw4YUJe5gcAAADazr4AAAAAPYGnzjuhE044IRYtWhTnn39+zj51DRFT/29b3LVkS2yrbShgupbbVtsQdy3ZEn/4v21R1zkjAgAAQLc2dMyYOHPKlNhv7NgOnXe/sWPjzClTYsiJJ3bovAAAAEDHsS8AAABAd6cYopOqqKiIe+65J+66667o06dPzn4vrt0VNz6zOV7fsKuA6Zr3+obduV5cmztXUz8XAAAA0DF6DRgQp9x6axx31VVRVFbWrrmKysriuKuuilNuvTV6DRjQQQkBAACAfLEvAAAAQHdWknSAzmjdunVJR3jXmWeeGTNnzox//dd/jeeffz5rn807G+IXC6tj3MG948PDe0dxUarAKf+qviEd09/YEbOW7Yh0E/2OOuqo+K//+q/4yEc+0qi9M619d5Vtja17YVj75Fj7ZFj35Fj7ZFj35Fj7ZFj35Fjn/Ouua7zX+PFxwvDh8cJ3vhPb3nqr1eP7DBsWR37rW9FvxIgOWSP3kWRY9+RY+2RY9+RY++RY+2RY9+RY+2RY9+RY5/zrrmtsX4AI654ka58M654ca58M654ca58ca58M654c65wplU6nm3pmvdtbu3ZtDB48OOkYHWZY/5K44Mi+MaB3ccHfe+OO+vjdC1tj+ea6gr83AABAT7ZmzZoYNGhQ0jG6pO62L9ASZalUfPvgg2NYr14tHrO8pia+vWxZ1PbsbSQAAIBOyb5A29kXaBn7AgAAAJ1XT98XKEo6AB1r+ea6uOGZzfHahl0Ffd/XNuyKG57ZrBACgLwqTaViZO/eUZpK7hQkAICuLh0Rg0tLWzVmcGlpNOQnDgC0mH0BAID2sy8AQFdlXwAAyEYxRDdUU5eOu5ZsiZq6wnwrQ01dOn6zuHDvB0DP9eX9949rDj44Ltlvv6SjAAB0WUf06RO9i1t3omTv4uI4sk+fPCUCgJaxLwAA0H72BQDoquwLAADZKIbopmrq0vHW5sKcDvHW5l2xs14hBAD5tVdJSRzXr19ERHygoiIGlJQknAgAoGs6oaKiTeOOb+M4AOgI9gUAADqGfQEAuiL7AgBALj4VZLF06dIYOHBg0jFaZPHixXH++efHunXrMq5VlBem1iXX+wwcODB+//vfx9FHH531+rp162L06NGN2rrS2ndV1j051j451j4ZHb3ub02ZEi/ffPO7r6ffemsc+I//2K6M3ZXf+WRY9+RY+2RY9+RkW3s6Vnf+XW6oq4vHP/nJqNuypdVjxx1wQHzn2WejqIP+ksl9JBnWPTnWPhnWPTn2BZLj9z4Z1j051j4Z1j059gXyrzv/LtsXwLonx9onw7onx75AMvzOJ8faJ8faJ8O6J8e+QCbFEFkMHDgwBg0alHSMFjnllFOitrY2o31Ar6IY0qd1R1u21ZA+xTGgV1FsrGlo1F5bWxunnHJKlJeXt3iurrT23Yl1T461T461T0Z71n3J0083er3x6afjuC9+sSNi9Qh+55Nh3ZNj7ZNh3ekuuvPv8jtz5uR84GH/cePi6Msui8XXXx8rZ83KuF63ZUs0LFsWQz74wbzl685r35lZ9+RY+2RY9+TYF0iO3/tkWPfkWPtkWHe6i+78u2xfgGyse3KsfTKse3LsCyTD73xyrH1yrH0yrDtJKczRAeTNjBkzorq6OqP9yMFlkUqlCpIhlUrFEYPLMtqrq6tj5syZBckAQPdWs359rF24sFHb2oULo2bDhoQSAQB0TSumT89oKyori+O/+c04+aabomLYsDj55pvjA1dfHUVlmf+un208AOSbfQEAgI5hXwCArsi+AOSwZk3Eb34TceWVu/+5Zk3SiQASoRiii6usrMzafuSQzI2JfMr1frnyAUBrrJw5M9INjU8gSjc0xEpFdwAALdZQX5/xzY79R4yIMyZNikPPPffdL1VIpVIx8rzz4oxJk6L/iBGN+q+cOTMa6usLlhkAIuwLAAB0BPsCAHRV9gUgi+nTI444IuIzn4n44Q93//OIIyJmzEg6GUDBKYbownbt2hUPPPBARntFeSoO7F9S0CzD+pdERVnmSRQPPPBA1NXVFTQLAN3PWzm+acg3EAEAtNyOqqqoWb/+3deHnHNOTJg0KfYcOTJr/z1HjowJkybFIWef/W5bzfr1saOqKu9ZAeBv2RcAAGg/+wIAdFX2BeA91q2LOPvsiLVrG7evXbu7/W8+8wH0BIohurDHH388NmQ57uuIwWVRlMosTMinolQq3jc483SI9evXx+OPP17QLAB0Lzs3bYqq+fOzXls9b17Ubt5c4EQAAF1T7yFD4qCPfSz6H3JInPyTn8QJ3/pWlPTu3eSYkt6944RrrokP3Xhj9D/kkDjo4x+PPYYOLVBiALAvAADQUewLANAV2ReALG68MWLTpuzXNm6MuOGGgsYBSFphjw+gQ02ePDlr+/sHlxc4yZ/fd0h5PL1yZ0b75MmTY9y4cQkkAqCzq16+PF645ZbY2cQGRe3mzZHOccpQuq4uZn3hC1HWv3/O8eX9+8eRX/5yVAwb1u68AABdWVFxcXzw+99v09gDx4+PA8eP7+BEAPR09gUAAArHvgAAnY19AWiDdDri/vub7nP//RHXXhtR4C/UBkiKYoguqr6+PqZOnZrR3qc0FQcPSOZ/1oP3LIk+panYtivdqH3q1Klx6623RnFxcSK5AOi8lv7yl7H8kUfaNceGF19stk9xeXmMue66dr0PAAAA0LHsCwAAAEDPZV8A2uD55yNee63pPq+9FvHCCxHvf39hMgEkrCjpALTNnDlzYs2aNRntRwwui6I2VPSl0+l4bcOueGL5jnhtw65Ip9PND3qP4qJUvG9wWUZ7VVVVzJ07t9XzAdD97XvKKfmvRE+ldr8PAAAA0KnYFwAAAICey74AtEFlZcf2A+gGFEN0UZU5/rA6MksxQnO21jbEnYu3xC8WVseDr2yPXyysjjsXb4mttQ2tnivX++fKC0DPduCECXHa7bdH78GD8zJ/78GDY9wdd8SBEybkZX4AAACg7ewLAAAAQM9lXwDaQDEEQAbFEF1QQ0NDTJkyJaO9d0kqRuxV2qq5Xl2/K254elO8tG5Xo/aX1u2KG5/eFK+u35VjZHaH7FUavUoyK3anTJnSptMmAOj+ho4ZE2dOmRL7jR3bofPuN3ZsnDllSgw58cQOnRcAAADoOPYFAAAAoOeyLwCt8H//F7F0acv6vvhixMsv5zcPQCehGKILWrBgQaxcuTKjffSgsigpatnRYfUN6Zj26rb41XPVsaU2e5FCdW06fvVcdUx7dVvUN7SskKGkKBWjB2UWZKxYsSIWLFjQojkA6Hl6DRgQp9x6axx31VVRVNb6U47+VlFZWRx31VVxyq23Rq8BAzooIQAAAJAv9gUAAACg57IvAC3U2tMenA4B9BCKIbqgyZMnZ21//5CWfRhcv70+bltQHbPfrInmShzSETH7zZq4bUF1rN9e36L53z+4PGt7rtwAEBGRSqVi1AUXxIR7742K4cPbNEfF8OEx4b77YtQFF0Qq1bICQQAAACB59gUAAACg57IvAC2gGAIgK8UQXUw6nY7KLH9IlRdHHLpX5okM77XonZ1x4zObY0V1Xaved0V1Xdz4zOZY9M7OZvuO3Ls0yosz2ysrKyOdbtkJEwD0XAMOOyzOuP/+2HPkyFaN23PkyDjj/vtjwKhReUoGAAAA5Jt9AQAAAOi57AtADm+8EbFoUevGPPfc7nEA3ZxiiC5m8eLFsWzZsoz2wweWRWlx7orWnXXpmPTi1vj9/26NnfW5CxL233//3HPUp+P3/7s17n9xa+ysyz1HaXEqDhuYeUrFG2+8EUuWLMk5DgD+IlVUFFtXrWrVmK2rVkWqOEs1HgAAANCl2BcAAACAnsu+AGTR1lMepkzp2BwAnZBiiC4m26kQERFHDsksPviLldV18ZN5m+LZt3Of6lBWVhY/+clPYvny5XHjjTdGaWnuUyYWvL0zbpq3KVY2cbpErjy58gPA33pn7tyo27atVWPqtm2L1XPn5ikRAAAAUCj2BQAAAKDnsi8AWbT1uUvPawI9gGKILiSdTsfkyZMz2kuLIutJDA3pdDyxfEfcOn9zrNvekHPekSNHxjPPPBNf+cpXoqioKL761a/GM888EyObOG5s7faGuHX+5nhi+Y5IpzNPiThs77IoyfLbpRgCgJZYMX16QccBAAAAnYd9AQAAAOi57AvAe6xcGTFvXtvGPvPM7vEA3ZhiiC5k6dKl8fLLL2e0jxpYFmXFqUZtW2sb4s5FW+LBV7ZHfWatwrs++9nPxsKFC+OYY45p1H7sscfGwoUL4zOf+UzOsfXpiAdf2R6/XrwlttY2LrYoL0nFqL0zT5d46aWXYunSpbkDAdDjNezaFatmz27T2JWzZkXDrl0dnAgAAAAoFPsCAAAA0HPZF4Aspkxp3/ipUzsmB0AnpRiiC8l1qsL7Bzc+FeKV9bXx46c3xf+tz/3hrqKiIu6999644447om/fvln79O3bN37961/H73//+6ioqMg51/+t2xU3PL0pXllf2zjXkPJW/RwAEBFRNX9+1FZXZ722/7hxcda0abH/aadlvV5bXR1VCxbkMx4AAACQR/YFAAAAoOeyLwBZTJ6c7HiATk4xRBeSrYigOBVx+KDdJzDUNaTj4Ve3xa+e2xJba3MfBzFmzJhYvHhxnHvuuS163/POOy8WLVoUJ554Ys4+W2rTcftzW2Laq9uivmH3ex8+sDTec2BFzp8DAP4i29GVRWVlcfw3vxkn33RTVAwbFifffHN84Oqro6isrEXjAQAAgK7BvgAAAAD0XPYF4D1Wr4546qn2zfHkkxFVVR2TB6ATUgzRRbz22mvx/PPPZ7SP3Ls0epUUxbrt9fHTBZvjT2/W5JwjlUrFVVddFU888UQcfPDBrXr/4cOHx5NPPhlf//rXI5XKUuEQEemImP1mTdy2oDrWba+P3qVFcejepRn9lixZEq+//nqr3h+AnqGhvj5WzprVqK3/iBFxxqRJcei55777Z1AqlYqR550XZ0yaFP1HjGjUf+XMmdFQX1+wzAAAAEDHsC8AAAAAPZd9AcjiD3+ISOf+YuzdJjR9OZ3ePQ9AN6UYoovIdZrCkYPL4rl3dsZPntkcK6pzf5DbZ599YsaMGXHddddFaWlmgUJLlJaWxve+972YPn167LPPPjn7raiui588szkWvbMzjhycWYEb4XQIALLbUVUVNevXv/v6kHPOiQmTJsWeI0dm7b/nyJExYdKkOOTss99tq1m/PnaoaAcAAIAux74AAAAA9Fz2BSCLZp+zLI2IX/z5n+2ZB6DrKkk6AC0zefLkrO0vrKmNl9btanLsWWedFXfeeWcMHDiwQ7KMGzculixZEp/5zGfi4YcfztpnZ306fv+/W+Pwgdn/kJ08eXJ85jOf6ZA8AHQfvYcMiYM+9rHY+NJL8f5LLokDTj+92TElvXvHCddcE0NPOileuO22GDB6dOwxdGgB0gIAAAAdyb4AAAAA9Fz2BeA91q+PmD27mU6nR8SwiPhwRDySu9vs2REbNkTstVfH5QPoJBRDdAHLly+PZ599Nuu1pgohysrK4vrrr49LLrnk3WPCOsqgQYPiwQcfjFtuuSWuuOKKqK2tbVW+BQsWxMqVKzs0EwBdX1FxcXzw+99v09gDx4+PA8eP7+BEAAAAQKHYFwAAAICey74AvMcf/xhRX99Mp0/9zT+bKIaoq9s938UXd0w2gE6kKOkANG/KlCmtHnPYYYfF/Pnz48tf/nKHF0L8RSqViv/4j/+IefPmxahRo1o9PtepEgAAAAAAAAAAAAA91uTJzXQojohP/Pm/f+LPr9szH0DXpBiiC6isrGxV/89//vPx7LPPxlFHHZWnRI0dffTRsXDhwvjc5z7XqnEPPfRQnhIBAAAAAAAAAAAAdEGbN0dMn95Mp7ERsfef//vAiPj7prtPnx5RXd3uaACdjWKITu7tt9+OuXPntqhv//79Y9KkSfGrX/0q+vTpk+dkjfXp0yduv/32uO+++6KioqJFY+bPn5/nVAAAAAAAAAAAAABdyEMPReza1Uynf2rm9XvU1u6eF6CbUQzRyU2dOjXS6XSz/U466aRYvHhxnH322QVIlds555wTS5YsiTFjxjTbtyU/FwAAAAAAAAAAAECPUVnZTIdURPzDe9o++ef29swL0PUohujkKpv5wyeVSsXVV18dTzzxRBx00EGFCdWMgw46KJ544on4xje+EalUM3+4AgAAAAAAAAAAABCxdWvEI4800+lDETH0PW1DI+Lvmh72yCMR27a1PRtAJ6QYohNLp9Px1FNP5by+7777xsyZM+O73/1ulJSUFDBZ80pLS+Paa6+NmTNnxr777pt0HAAAAAAAAAAAAIDO7ZFHImpqmun0qVa2/9mOHS0otADoWhRDdGJ1dXU5T1b4+Mc/HkuWLIlTTz21wKla59RTT40lS5bExz72saSjAAAAAAAAAAAAAHRelZUt6PSPrWxv7fwAXYdiiE6stLQ0Pve5zzVqKy8vj1tvvTX+8Ic/xMCBAxNK1joDBw6MBx54IG655ZYoLy9POg4AAAAAAAAAAABA51JTE/Hww810OjEiDshx7cCIOKHp4Q891IKTJwC6jpKkA9C0m2++OYYNGxazZ8+OAw44ICZOnBijR49OOlarpVKpuOSSS+K0006LG2+8MVasWBHHH398XHvttUlHAwAAAAAAAAAAANht166IpUsjqqtb1L1006b40HvbnnkmYs89W/e+zz4bsXVrM50+1YLr83Nf3ro14mc/i/jAB1qXrb0qKiJGj44oLS3s+wLdnmKITq6kpCSuvPLKuPLKK5OO0iFGjx4dv/rVryIiYu3atYohAAAAAAAAAAAAgOTV10dcd13E978fsWNHi4ftGRFPvrfx4x/vwGB/qyXFEM08b3rppR0VpnV694742tcivvGNiOLiZDIA3U5R0gEAAAAAAAAAAAAAIFETJ0Zcc02rCiEK6+iIGN5MnxERcVT+o7TFjh2713fixKSTAN2IYggAAAAAAAAAAAAAeq7XXou47bakUzSjuVMhWtsvIT/96e71BugAiiEAAKCLq6upiTULF0ZdTU3SUQAAAIACsy8AAAAAHWDx4oiGhqRTNKObFEPU10csWZJ0CqCbUAwBAABd3JzLL48ZF10Uc6+4IukoAAAAQIHZFwAAAIAOUFeXdIJmjI6Iw/PQNyG7diWdAOgmFEMAAEAXtn316lg1e3ZERKycNSu2V1UlnAgAAAAoFPsCAAAA0EHGj48oKUk6RRO+mOf+BVRSEjFhQtIpgG5CMQQAAHRhK2bObPx6xoyEkgAAAACFZl8AAAAAOshee0X88IdJp8jh6Ij4t1aO+dKfx3VCP/pRxIABSacAugnFEAAA0IWtmD69ydcAAABA92VfAAAAADrQxIkRP/5xJzohYnDsLoJ4KiJKWzm29M/j/i0iBnVwrjYqKYm44YaIr3416SRAN9JZ7tgAAEAr1axfH2sXLmzUtnbhwqjZsCF67bVXQqkAAACAQrAvAAAAAHlw6aURJ58ccd55Ea+/3srBAyLiFxFxcgcEKY6IgRGRasccfSLipxFxW0Ssi4j6Dsj1ZER8MSI2tm7YiBER994bcfzxHZAB4K+cDAEAAF3UypkzI93Q0Kgt3dAQK2fOTCgRAAAAUCj2BQAAACBPjj8+4rnnIv7lX1o5cGNEnBsRv4zdpzEMbcd/BkX7CiH+VqoD8gyM3YUe50arCyEuvDBi0SKFEEBeKIYAAIAu6q3p07O2r8jRDgAAAHQf9gUAAAAgjyoqIn7724i7747o27cVAxsi4pqIOC0iVuQnW8GtiN0/z7dj98/XQn377l6/u++O6NcvP9GAHk8xBAAAdEE7N22Kqvnzs15bPW9e1G7eXOBEAAAAQKHYFwAAAIACufDC3adEHHdcKwc+ERFHRcTUPIQqpCmx++d4snXDPvCB3adBXHhhPkIBvKsk6QAAAEBj1cuXxwu33BI7m3hwoXbz5kjX1WW9lq6ri1lf+EKU9e+fc3x5//5x5Je/HBXDhrU7LwAAANBx7AsAAABAJ3PooRFz50Z84xsR11/fioEbI+IfI+LfIuLHEdE7L/HyY0dEXBoRP2/90CuuiLj22oiyso4OBZBBMQQAAHQyS3/5y1j+yCPtmmPDiy8226e4vDzGXHddu94HAAAA6Fj2BQAAAKATKiuL+NGPIj784YiLLopYs6YVg38Wu0+KuC8ijshPvg71vxFxbkQ0v7/QyJAhEXffHTF+fD5CAWRVlHQAAACgsX1POSUilcrvm6RSu98HAAAA6FTsCwAAAEAnNmFCxPPP7/5nq7wYEcfH7pMW0h2fq0OkY3fhxvHR6kKICRMilixRCAEUnGIIAADoZA6cMCFOu/326D34/2fv7uOsrO874X/PzDCAyMPIzEB8AAUFy66m3vichLBaRbs1TWo30bqxve823TRNutuq9/YmatJsbX21dvuKkjRxtU0fUosrxCQIsQjUVknFYDRusDFtiQKGYXiQQXCAebj/GLTCPM+cc37nN+f9/sec61zXdb5+X8fzCp+XH6/mktx/YnNzXPnggzFr2OEMAAAAUGpyAQAAAKhwM2ZErF4dcc89EePGDePC9oj4tYi4PiL2lma2EdsbET8XEZ+InjmHaNy4nj2sXt2zF4AyU4YAAIAKNPPSS+PalSvjtMWLi3rf0xYvjmtXrowZl1xS1PsCAAAAxSMXAAAAgApXUxNxyy0RGzdGx1lnDfPir0XEuyPi70sw2Ej8ffTM8+jwLjv77Ihvf7tnDzX+dWQgDb8+AABQoSY0NMSiZcti4dKlUVNfP6p71dTXx8KlS2PRsmUxoaGhSBMCAAAApSIXAAAAgAxceGG8vm5d/PmwL9weEf8hIj4bER1FHmqoOiLiM8fm2D68S3/xFyOeey5i4cISzAUwdMoQAABQwQqFQsy/6aZY8tBDMWXOnBHdY8qcObHkb/4m5t90UxQKhSJPCAAAAJSKXAAAAAAqX/fJJ8cvRcR/jogDw7qyKyJ+JyKuiIhXiz7XwF6NnhLE547NMUQnnxzxV38V8ZWvREyeXJrRAIZBGQIAADLQcO65cc3DD8e0efOGdd20efPimocfjob580s0GQAAAFBqcgEAAACofF+NiAsiYtOwr/yHiHj3iK4cmU3HPu+p4V120UURzz8fcdNNJZgJYGSUIQAAIBOFmpp4Y8eOYV3zxo4dUaitLdFEAAAAQLnIBQAAAKDy/UtEvDciDn3yk8O88vWI+I8R8VqxRzrBa8c+5/XhXfbf/3vEU09FzJ1bgpkARk4ZAgAAMvHjjRuj4+DBYV3TcfBg7Ny4sUQTAQAAAOUiFwAAAIA8HI2Ig3feGfH44xEzZgzjyt0R8TclmuotDx37nCGaMSPib/824u67I+rrSzYVwEgpQwAAQCa2rV1b1usAAACAyiEXAAAAgMxcfXXE974Xcc01w7joOyUbp8fmoZ967bU98191VenGARglZQgAAMhA19GjsWPDhhFdu339+ug6erTIEwEAAADlIhcAAACATDU3Rzz2WMT//J8R48YN4YLhPEliJIZw/3HjIv74jyNWreqZH6CCKUMAAEAGWjZtiiNtbX2+d/qVV8bPrF4dp19xRZ/vH2lri5Znny3leAAAAEAJyQUAAAAgYzU1Eb/5mxG33z6Eky8r8TCXDn7K7bdH/Lf/1jM3QIXzSwUAABnYtnZtr2M19fVx0R13xPs+//mYMnt2vO/ee+PC22+Pmvr6IV0PAAAA5EEuAAAAAGPAunWDnDAhIn66xEP8dESMH/iU9etLPANA8ShDAABAhevq7IztJ4QNU+fOjWuWL49zbrghCoVCREQUCoWYd+ONcc3y5TF17tzjzt++bl10dXaWbWYAAACgOOQCAAAAMAa0tET8wz8MctKSiDi5xINMPvY5A/iHf4jYtavEcwAUhzIEAABUuDdbWqJ9z563X5/9kY/EkuXLY9q8eX2eP23evFiyfHmc/eEPv32sfc+eeLOlpeSzAgAAAMUlFwAAAIAx4NFHI7q7Bznp58sxyeCf09XVMy9ABupSDwAAAAxs4owZceZ118W+l16K8z/5yTjjqqsGvaZu4sS4+DOfiZmXXRYvfuEL0bBgQZw0c2YZpgUAAACKSS4AAAAAY8CKFYOcMC4ifqYck0TEdcc+72j/p6xYEfGrv1qmeQBGThkCAAAqXE1tbVx+990junbW1VfHrKuvLvJEAAAAQLnIBQAAACBze/ZErF8/yEk/FRHTyjBMHPucKyPiW/2fsn59xN69EaecUqaZAEamJvUAAAAAAAAAAAAAADAmfeMbEZ2dg5x0/TBu2B0RqyLi2ohYeOyvq44dH6pBPq+jo2dugAqnDAEAAAAAAAAAAAAApbBixSAn1EbEzw7xZruPnXtd9DzZ4bljf73u2PHdQ7zPz8ag/wrxoHMDpKcMAQAAAAAAAAAAAADF1tYWsXbtICe9PyIah3CzDRHx7oj4Zj/vf/PY+xuGcK+mY587gL/92575ASqYMgQAAAAAAAAAAAAAFNuqVRFHjgxy0s8P8v7RiPh0RFwZEa8Ncu5rx867/dh1o/jcI0ciHntskHsApKUMAQAAAAAAAAAAAADFtmLFICcUIuJDA7y/NSIWRcTvRUT3ED+0OyLuip4nP/xogPM+dOzzBzDo/ABpKUMAAAAAAAAAAAAAQDEdPBixZs0gJ70nImb2897yiPjJiPjHEQ7w7WPXP9zP+++KiMsHvsWaNT1/HwAVShkCAAAAAAAAAAAAAIppzZqIN98c5KTr+zh2MCJ+OSJuiIi2UQ6xPyI+EhG/cuy+Q/n8dzh0KOJb3xrlDAClowwBAAAAAAAAAAAAAMW0YsUQTvq5E14/HxELI+JPizzMg8fu+/wgn9+HIf19AKShDAEAAAAAAAAAAAAAxdLeHrFq1SAnXRwRs4797+6IuDciLomIH5RoqB8cu/+9xz4vImJ2RFw08GWrVkUcPlyimQBGRxkCAAAAAAAAAAAAAIqk/sknI954Y5Czrj/219aIuC4i/mtEHBn6h4wfH/HLvxxRXz+MyY4c+5wPHPvcd87RjwMHItauHcZnAJSPMgQAAAAAAAAAAAAAFMn4QZ8KEdFTQlgXEe+OiMeG9wHnnhvxzDMRDzwQsWlTz+thWXXsc9fHoGWIiIgVK4Z5f4DyUIYAAAAAAAAAAAAAgCIYFxH13/rWIGf9u4h4MCKuiogfD+8DPvaxiO98J+Ld7+55/e5397z+lV8Z5qQ/joifiog/jYgFA5/69a9HHD06zPsDlJ4yBAAAAAAAAAAAAAAUwX+IiJr9+wc5a0tE/H5EdA/9xlOnRjz8cMT990dMmnT8e5MmRfyv/xWxfHnPeUPWfWyOlwY+bd++iA0bhnFfgPJQhgAAAAAAAAAAAACAIrh+SGcNowQREXH55REvvBDxn/7TwOd9+MMRzz8fcdllw7v/UOZZsWKY9wQoPWUIAAAAAAAAAAAAABilmoj4YDFvWChE3HFHxJNPRsyePbRrzjwz4u//PuL223uuL5ZHH43o7Cze/QCKQBkCAAAAAAAAAAAAAEbpfRHRXKybnXZaxPr1EZ/7XERd3fCurauL+B//o+f6U08tzjy7dkU89VRx7gVQJMoQAAAAAAAAAAAAADBKP1+sG/3sz0a88ELE4sWju8/ixT33+cAHijFVxCOPFOc+AEWiDAEAAAAAAAAAAAAAo1CIiJ8b7U3Gj4/4whcivva1iOnTizBVRDQ2Rjz6aMSyZT33H42VKyO6uooyFkAxKEMAAAAAAAAAAAAAwChcGhGnjuYGCxZEPPtsxCc+EVEoFGmqYwqFiF//9YhNmyJ+4idGfp/XXot45pnizQUwSsoQAAAAAAAAAAAAADAK14/m4v/yX3qKEOedV6xx+nb++RHf+U7Er/7qyO+xYkXx5gEYJWUIAAAAAAAAAAAAABiFEZUhpk2LeOSRiC99KeKkk4o8UT9OOiniy1+O+N//u+fzh2vFioju7qKPBTASyhAAAAAAAAAAAAAAMEI/GRFnDvei97434oUXIq4f1TMlRu7nfz7i+ecj3vOe4V33ox/1XAdQAZQhAAAAAAAAAAAAAGCE/t1wTq6pifjMZyI2bIiYNatUIw3N7NkRf/d3EXfe2TPXUG3ZUrKRAIZDGQIAAAAAAAAAAAAARujkoZ54+uk9JYjPfjairq6EEw1DXV3E7/xOxPr1PfMNxRtvlHYmgCFShgAAAAAAAAAAAACAEXp8KCd96EMRL7wQsWhRqccZmfe/P+L55yM++MHBz7366lJPAzAkyhAAAAAAAAAAAAAAMEI/iohl/b05YULEn/xJxIoVEaecUr6hRmL69IiVKyO++MWeufvy678ecdZZ5Z0LoB/KEAAAAAAAAAAAAAAwCv81In4nIva+daBQ6HnKwrPPRnz84z2vc1AoRPzar/XM/cEP/tvcDQ0Rd94Z8fnPJx0P4J3qUg9QiXbv3p16hKrQ157tvvTsPR27T8fu07D3dOw+DXtPx+7TsPd07Ln07Lg8/I6kYe/p2H0a9p6O3adj92nYezp2n4a9p2PPpWfH5eF3JA17T8fu07D3dOw+DXtP5609d0XEZyPi7oj43vr10XDqqdH91pMgWlsTTTcKM2ZE3H9/FO6+Owrt7dHV0BAxcWLE3r2DX1smvvdp2Hs69txbobu7uzv1ECm1trZGc3Nz6jEAAABgxHbt2hVNTU2px8iSXAAAAIDcyQVGTi4AAABA7qo9F6hJPQAAAAAAAAAAAAAAAMBwKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyUpd6gEq0ZcuWaGxsTD3GmLd79+5YsGDBccfsvvTsPR27T8fu07D3dOw+DXtPx+7TsPd0+to9xeW7XB5+R9Kw93TsPg17T8fu07H7NOw9HbtPw97TkQuUnu9yefgdScPe07H7NOw9HbtPw97Tsft07D4Ne09HLtCbMkQfGhsbo6mpKfUYVcnu07D3dOw+HbtPw97Tsfs07D0du0/D3hkrfJfTsfs07D0du0/D3tOx+3TsPg17T8fu07B3xgrf5XTsPg17T8fu07D3dOw+DXtPx+7Tsfs07J1UalIPAAAAAAAAAAAAAAAAMBzKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAIAxq6O9PXZt3hwd7e2pRwEAAADKTC4AAAAA1UsuAADVQRkCABiznr711nji5ptj4223pR4FAAAAKDO5AAAAAFQvuQAAVAdlCABgTDq0c2fs2LAhIiK2r18fh1paEk8EAAAAlItcAAAAAKqXXAAAqocyBAAwJm1bt+741088kWgSAAAAoNzkAgAAAFC95AIAUD2UIQCAMWnb2rUDvgYAAADGLrkAAAAAVC+5AABUD2UIAGDMad+zJ1o3bz7uWOvmzdG+d2+iiQAAAIBykQsAAABA9ZILAEB1UYYAAMac7evWRXdX13HHuru6YvsJj8IEqDQd7e2xa/Pm6GhvTz0KAABkSy4A5EouAAAAoycXAHIlF4CRUYYAAMacV/t5xKVHXwKV7ulbb40nbr45Nt52W+pRAAAgW3IBIFdyAQAAGD25AJAruQCMjDIEADCmHH799WjZtKnP93Y+80wc2b+/zBMBDM2hnTtjx4YNERGxff36ONTSkngiAADIj1wAyJVcAAAARk8uAORKLgAjV5d6AACAoWp75ZV48b774vAAAcWR/fuju6Ojz/e6Ozpi/cc+FvVTp/Z7/fipU+O8T30qpsyePep5AYZj2wmP5t32xBMx/6abEk0DAACVRy4AjGVyAQAAGJhcABjL5AIwcvHySjgAAEBkSURBVMoQAEA2ttx/f7yyZs2o7rH3+98f9Jza8ePj0rvuGtXnAAzXiY/m3bZ2rXADAADeQS4AjGVyAQAAGJhcABjL5AIwcjWpBwAAGKpTFy2KKBRK+yGFQs/nAJRR+5490bp583HHWjdvjva9exNNBAAAlUcuAIxVcgEAABicXAAYq+QCMDrKEABANmYtWRJXPPBATGxuLsn9JzY3x5UPPhizliwpyf0B+rN93bro7uo67lh3V1dsP+FRmAAAUM3kAsBYJRcAAIDByQWAsUouAKOjDAEAZGXmpZfGtStXxmmLFxf1vqctXhzXrlwZMy65pKj3BRiKV0945OVbTnwUJgAAVDu5ADAWyQUAAGBo5ALAWCQXgNFRhgAAsjOhoSEWLVsWC5cujZr6+lHdq6a+PhYuXRqLli2LCQ0NRZoQYOgOv/56tGza1Od7O595Jo7s31/miQAAoLLJBYCxRC4AAADDIxcAxhK5AIxeXeoBAABGolAoxPybbormhQvj6dtui7Z//ddh32PKnDnxnnvuiYb580swIUBE2yuvxIv33ReHBwgojuzfH90dHX2+193REes/9rGonzq13+vHT50a533qUzFl9uxRzwsAALmQCwA5kAsAAEBpyAWAHMgFoDyUIQCArDWce25c8/DD8be/8Avx+ssvD/m6afPmxdV//ddRN3FiCacDqt2W+++PV9asGdU99n7/+4OeUzt+fFx6112j+hwAAMiRXACoZHIBAAAoLbkAUMnkAlAeNakHAAAYrUJNTbyxY8ewrnljx44o1NaWaCKAHqcuWhRRKJT2QwqFns8BAIAqJRcAKpVcAAAASk8uAFQquQCUhzIEAJC9H2/cGB0HDw7rmo6DB2Pnxo0lmgigx6wlS+KKBx6Iic3NJbn/xObmuPLBB2PWkiUluT8AAORALgBUKrkAAACUnlwAqFRyASgPZQgAIHvb1q4t63UAwzHz0kvj2pUr47TFi4t639MWL45rV66MGZdcUtT7AgBAbuQCQCWTCwAAQGnJBYBKJheA0lOGAACy1nX0aOzYsGFE125fvz66jh4t8kQAvU1oaIhFy5bFwqVLo6a+flT3qqmvj4VLl8aiZctiQkNDkSYEAIA8yQWAHMgFAACgNOQCQA7kAlBadakHqES7d+9OPUJV6GvPdl969p6O3adj92mUa+97nn02jrS19fle03vfG+d8/OPxwz/5k2h9+ule7x9pa4uXn3gipl94YdHnSsl3Pg17Tyen3Z9y9dVx8Zw58eLnPhcHX3112NdPmj07zrvzzpg8d27yv8ec9j7W2HPp2XF5+B1Jw97Tsfs07D0duUA6vvdp2Hs6Oe1eLkAx2HPp2XF5+B1Jw97Tsfs07D0duUAavvPp2H06Oe1eLkAx2HNvhe7u7u7UQ6TU2toazc3NqccAAEbo/3nXu+LKE5rOR7q64q9aWmLdvn1vH/uphoa4acaMqK85/sFY6/bujT/dubMsswK8pb5QiM+edVbMnjBhyNe80t4en926NY5U9x/h6MeuXbuiqakp9RhZkgsAQN7kAkCO5AIUm1xg5OQCAJA3uQCQI7kAxVbtuUDN4KcAAFSmQkRcOHnycce2t7fHnVu3HhdsREQ8sW9f3Ll1a2xvbz/u+IVTpkSh1IMCnKA7IprHjRvWNc3jxkVXacYBAIAsyQWAXMkFAABg9OQCQK7kAlBcyhAAQLamjxsXU+vq3n79xN69ccfWrbHt8OE+z992+HDcsXVrrNu79+1jU+vqYvow/4ABMFr/ftKkmFhbO6xrJtbWxnmTJpVoIgAAyI9cAMiVXAAAAEZPLgDkSi4AxVU3+CkAAJVpz9Gj8dTrr8fsCRPikdbW+M6BA4Nec6S7O/5058548eDBuL6pKX7U3h57jh4tw7QA/+biKVNGdN1FU6bEd994o8jTAABAnuQCQK7kAgAAMHpyASBXcgEorkJ3d3d36iFSam1tjebm5uOObdmyJRobGxNNVD12794dCxYsOO6Y3Zeevadj9+nYfRr2no7dp2Hv6eS2+66OjnjyQx+KjiEEsieqmzw53v+1r0VNXfpee257H0v62v2uXbuiqakp0UR5kwuk43ckDXtPx+7TsPd07D4du0/D3tPJbfdyAUZLLlBccoF0/I6kYe/p2H0a9p6O3adh7+nYfTq57V4uwGjJBXpL/09EBWpsbKzqL0VKdp+Gvadj9+nYfRr2no7dp2Hv6VTy7n/89NP9BhunX3ll/OQtt8Tz99wT29ev7/V+x4ED0bV1a8y4/PJSjzkilbx3GA7f5XTsPg17T8fu07D3dOw+HbtPw97TqeTdywWg8vkup2P3adh7Onafhr2nY/dp2Hs6dp9OJe9eLgDFV5N6AAAAgGqybe3aXsdq6uvjojvuiPd9/vMxZfbseN+998aFt98eNfX1Q7oeAAAAyINcAAAAAKqXXACKTxkCAACgTLo6O3v9Fxymzp0b1yxfHufccEMUCoWIiCgUCjHvxhvjmuXLY+rcucedv33duujq7CzbzAAAAEBxyAUAAACgeskFoDSUIQAAAMrkzZaWaN+z5+3XZ3/kI7Fk+fKYNm9en+dPmzcvlixfHmd/+MNvH2vfsyfebGkp+awAAABAcckFAAAAoHrJBaA06lIPAAAAUC0mzpgRZ153Xex76aU4/5OfjDOuumrQa+omToyLP/OZmHnZZfHiF74QDQsWxEkzZ5ZhWgAAAKCY5AIAAABQveQCUBrKEAAAAGVSU1sbl99994iunXX11THr6quLPBEAAABQLnIBAAAAqF5yASiNmtQDAAAAAAAAAAAAAAAADIcyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAABZ6mhvj12bN0dHe3vqUQAAAIAykwsAAABA9ZIL8BZlCAAAALL09K23xhM33xwbb7st9SgAAABAmckFAAAAoHrJBXiLMgQAAADZObRzZ+zYsCEiIravXx+HWloSTwQAAACUi1wAAAAAqpdcgHdShgAAACA729atO/71E08kmgQAAAAoN7kAAAAAVC+5AO+kDAEAAEB2tq1dO+BrAAAAYOySCwAAAED1kgvwTsoQAAAAZKV9z55o3bz5uGOtmzdH+969iSYCAAAAykUuAAAAANVLLsCJlCEAAADIyvZ166K7q+u4Y91dXbH9hEdhAgAAAGOPXAAAAACql1yAEylDAAAAkJVX+3nEpUdfAgAAwNgnFwAAAIDqJRfgRMoQAAAAZOPw669Hy6ZNfb6385ln4sj+/WWeCAAAACgXuQAAAABUL7kAfalLPQAAAABERLS98kq8eN99cXiAgOLI/v3R3dHR53vdHR2x/mMfi/qpU/u9fvzUqXHepz4VU2bPHvW8AAAAQPHIBQAAAKB6yQUYKWUIAAAAKsKW+++PV9asGdU99n7/+4OeUzt+fFx6112j+hwAAACguOQCAAAAUL3kAoxUTeoBAAAAICLi1EWLIgqF0n5IodDzOQAAAEBFkQsAAABA9ZILMFLKEAAAAFSEWUuWxBUPPBATm5tLcv+Jzc1x5YMPxqwlS0pyfwAAAGDk5AIAAABQveQCjJQyBAAAABVj5qWXxrUrV8ZpixcX9b6nLV4c165cGTMuuaSo9wUAAACKRy4AAAAA1UsuwEgoQwAAAFBRJjQ0xKJly2Lh0qVRU18/qnvV1NfHwqVLY9GyZTGhoaFIEwIAAAClIhcAAACA6iUXYLiUIQAAAKg4hUIh5t90Uyx56KGYMmfOiO4xZc6cWPI3fxPzb7opCoVCkScEAAAASkUuAAAAANVLLsBwKEMAAABQsRrOPTeuefjhmDZv3rCumzZvXlzz8MPRMH9+iSYDAAAASk0uAAAAANVLLsBQKEMAAABQ0Qo1NfHGjh3DuuaNHTuiUFtbookAAACAcpELAAAAQPWSCzAYZQgAAAAq2o83boyOgweHdU3HwYOxc+PGEk0EAAAAlItcAAAAAKqXXIDBKEMAAABQ0batXVvW6wAAAIDKIRcAAACA6iUXYDDKEAAAAFSsrqNHY8eGDSO6dvv69dF19GiRJwIAAADKRS4AAAAA1UsuwFAoQwAAAFCxWjZtiiNtbX2+d/qVV8bPrF4dp19xRZ/vH2lri5Znny3leAAAAEAJyQUAAACgeskFGAplCAAAACpWX4+urKmvj4vuuCPe9/nPx5TZs+N9994bF95+e9TU1w/pegAAACAPcgEAAACoXnIBhkIZAgAAgIrU1dkZ29evP+7Y1Llz45rly+OcG26IQqEQERGFQiHm3XhjXLN8eUydO/e487evWxddnZ1lmxkAAAAoDrkAAAAAVC+5AEOlDAEAAEBFerOlJdr37Hn79dkf+UgsWb48ps2b1+f50+bNiyXLl8fZH/7w28fa9+yJN1taSj4rAAAAUFxyAQAAAKhecgGGqi71AAAAANCXiTNmxJnXXRf7Xnopzv/kJ+OMq64a9Jq6iRPj4s98JmZedlm8+IUvRMOCBXHSzJllmBYAAAAoJrkAAAAAVC+5AEOlDNGH3bt3px6hKvS1Z7svPXtPx+7Tsfs07D0du0/D3tOx+zTKtfdzbrnl7f/d2to65OsmXnBBXPzAAz1zveO/FjEW+H6Xnh2Xh9/vNOw9HbtPw97Tsft07D4Ne0/H7tOQC6Tj+116dlwefr/TsPd07D4Ne0/H7tOw93TsPh27T0MukI7vd2+F7u7u7tRDpNTa2hrNzc2pxwAAAIAR27VrVzQ1NaUeI0tyAQAAAHInFxg5uQAAAAC5q/ZcoCb1AAAAAAAAAAAAAAAAAMOhDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMhKXeoBKtGWLVuisbEx9Rhj3u7du2PBggXHHbP70rP3dOw+HbtPw97Tsfs07D0du0/D3tPpa/cUl+9yefgdScPe07H7NOw9HbtPx+7TsPd07D4Ne09HLlB6vsvl4XckDXtPx+7TsPd07D4Ne0/H7tOx+zTsPR25QG/KEH1obGyMpqam1GNUJbtPw97Tsft07D4Ne0/H7tOw93TsPg17Z6zwXU7H7tOw93TsPg17T8fu07H7NOw9HbtPw94ZK3yX07H7NOw9HbtPw97Tsfs07D0du0/H7tOwd1KpST0AAAAAAAAAAAAAAADAcChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACArdakHqES7d+9OPUJV6GvPdl969p6O3ZdH5+HD0faDH8SU+fOjdvz4iLD7VOw9HbtPw97Tsfs07D0dey49Oy4PvyNp2Hs6dl8eJ+YC9p6O3adj92nYezp2n4a9p2PPpWfH5eF3JA17T8fuy0MuUDnsPg17T8fu07H7NOw9HXvurdDd3d2deoiUWltbo7m5OfUYABTJb51xRiycPDm+09YWf7x9e+pxAADKYteuXdHU1JR6jCzJBQDGFrkAAFCN5AIjJxcAGFvkAgBANar2XKAm9QAAUCyn1NXFwsmTIyLiwilToqHOA5AAAACgWsgFAAAAoHrJBQAAqpMyBABjxoXHgo3+XgMAAABjl1wAAAAAqpdcAACgOilDADBmXDRlynGvLz7hNQAAADB2yQUAAACgeskFAACqk+eB9WHLli3R2NiYeowxb/fu3bFgwYLjjtl96dl7OnZfWkf27Ysnr78+oqvr7WMLJk+O7S+/HG0dHXafgO98Onafhr2nY/dp2Hs6fe2e4vJdLg+/I2nYezp2X1r95QIvfPvb8e7LLjvuXHsvD9/5dOw+DXtPx+7TsPd05AKl57tcHn5H0rD3dOy+tOQClcd3Pg17T8fu07H7NOw9HblAb8oQfWhsbIympqbUY1Qlu0/D3tOx++L55w0bjgs2IiKiqyvefP75aFy8uNf5dp+Gvadj92nYezp2n4a9M1b4Lqdj92nYezp2Xzz95QKdL73U61x7T8fu07H7NOw9HbtPw94ZK3yX07H7NOw9HbsvHrlAHuw+DXtPx+7Tsfs07J1UalIPAADF8OratX0e39bPcQAAAGDs6C8X2PXkk2WeBAAAACg3uQAAQPVShgAge4dffz1aNm3q872dzzwTRw8cKPNEAAAAQLkMlAvsfe65OKlGDA4AAABjlVwAAKC61aUeAAAG0vbKK/HifffF4f37+z3nyP790d3R0ed73R0dsfmWW+K3Z8067vjmW2+N+vr6iIgYP3VqnPepT8WU2bOLNzgAAAAwaqPOBTo74/+bPTsOdna+feydmUCEXAAAAAAqlVwAAIDBKEMAUNG23H9/vLJmzajuceDll+O8k08+7tje73znuNe148fHpXfdNarPAQAAAIqrGLnAnIkTj3t9YiYQIRcAAACASiQXAABgMJ4DBkBFO3XRoohCobQfUij0fA4AAABQUeQCAAAAUL3kAgAADEYZAoCKNmvJkrjigQdiYnNzSe4/sbk5rnzwwZi1ZElJ7g8AAACMnFwAAAAAqpdcAACAwShDAFDxZl56aVy7cmWctnhxUe972uLFce3KlTHjkkuKel8AAACgeOQCAAAAUL3kAgAADEQZAoAsTGhoiEXLlsXCpUujpr5+VPc60tUV83/jN2LRsmUxoaGhSBMCAAAApVLMXKBm3LhYuHSpXAAAAAAyIRcAAKA/yhAAZKNQKMT8m26KJQ89FFPmzBnRPXYcPhx3bt0as37u56JQKBR5QgAAAKBUipULXPylL8X8m26SCwAAAEBG5AIAAPRFGQKA7DSce25c8/DDMW3evGFd90p7e9z+r/8a2w4fLtFkAAAAQKmNNheYPHduiSYDAAAASk0uAADAOylDAJClQk1NvLFjx7CuaR43LrpKNA8AAABQPnIBAAAAqF5yAQAA3qIMAUCWfrxxY3QcPDisaybW1sZ5kyaVaCIAAACgXOQCAAAAUL3kAgAAvEUZAoAsbVu7dkTXXTRlSpEnAQAAAMpNLgAAAADVSy4AAMBblCEAyE7X0aOxY8OGEV27cPLkqC3yPAAAAED5jDYX6OroKPJEAAAAQLnIBQAAeCdlCACy07JpUxxpa+vzvdOvvDJ+ZvXqOP2KK/p8/+Ta2vgJj74EAACAbI02F9j3/PMlnA4AAAAoJbkAAADvpAwBQHb6euRlTX19XHTHHfG+z38+psyeHe+799648Pbbo6a+vte5F0+eXI4xAQAAgBIYVi4wblyvc1uefLIcYwIAAAAlIBcAAOCdlCEAyEpXZ2dsX7/+uGNT586Na5Yvj3NuuCEKhUJERBQKhZh3441xzfLlMenMM487/8IpU6K7s7NcIwMAAABFMtxc4OIvfzm2t7cfd37rU09Fl1wAAAAAsiMXAADgRMoQAGTlzZaWaN+z5+3XZ3/kI7Fk+fKYNm9en+dPmzcvLvnSl2Ld3r1vH5taVxftra0lnxUAAAAoruHmApPnzIk7tm49Lhc4sm9fvNnSUvJZAQAAgOKSCwAAcKK61AMAwHBMnDEjzrzuutj30ktx/ic/GWdcddWg19ROmBB/unNnvHjwYFzf1BQ/am+Pn2puLsO0AAAAQDGNJBc40t19XC5w8Qc+ECfNnFmGaQEAAIBikgsAAHAiZQgAslJTWxuX3333iK599sCBePbAgYiI+FyNhyMBAABAboqRC+xaujQKcgEAAADIjlwAAIAT+X92AAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyUpd6gEq0e/fu1CNUhb72bPelZ+/p2H06dp+Gvadj92nYezp2n4a9p2PPpWfH5eF3JA17T8fu07D3dOw+HbtPw97Tsfs07D0dey49Oy4PvyNp2Hs6dp+Gvadj92nYezp2n47dp2Hv6dhzb4Xu7u7u1EOk1NraGs3NzanHAAAAgBHbtWtXNDU1pR4jS3IBAAAAcicXGDm5AAAAALmr9lygJvUAAAAAAAAAAAAAAAAAw6EMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyEpd6gEq0ZYtW6KxsTH1GGPe7t27Y8GCBccds/vSs/d07D4du0/D3tOx+zTsPR27T8Pe0+lr9xSX73J5+B1Jw97Tsfs07D0du0/H7tOw93TsPg17T0cuUHq+y+XhdyQNe0/H7tOw93TsPg17T8fu07H7NOw9HblAb8oQfWhsbIympqbUY1Qlu0/D3tOx+3TsPg17T8fu07D3dOw+DXtnrPBdTsfu07D3dOw+DXtPx+7Tsfs07D0du0/D3hkrfJfTsfs07D0du0/D3tOx+zTsPR27T8fu07B3UqlJPQAAAAAAAAAAAAAAAMBwKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAAAAAAAAAAAEBWlCEAAAAAAAAAAAAAAICsKEMAAAAAAAAAAAAAAABZUYYAAAAAAAAAAAAAAACyogwBAAAAAAAAAAAAAABkRRkCAAAAAAAAAAAAAADIijIEAAAAAAAAAAAAAACQFWUIAAAAAAAAAAAAAAAgK8oQAAAAAAAAAAAAAABAVpQhAAAAAAAAAAAAAACArChDAAAAAAAAAAAAAAAAWVGGAAAAAAAAAAAAAAAAsqIMAQAAAAAAAAAAAAAAZEUZAgAAAAAAAAAAAAAAyIoyBAAAAAAAAAAAAAAAkBVlCAAAAAAAAAAAAAAAICvKEAAAAAAAAAAAAAAAQFaUIQAAAAAAAAAAAAAAgKwoQwAAAAAAAAAAAAAAAFlRhgAAAAAAAAAAAAAAALKiDAEAAAAAAAAAAAAAAGRFGQIAAAAAAAAAAAAAAMiKMgQAAAAAAAAAAAAAAJAVZQgAAAAAAAAAAAAAACAryhAAAAAV5M0334zt27fHm2++mXoUAAAAoMzkAgAAAFC95AIwfMoQAAAAFWL16tUxZ86cOOOMM2LOnDmxevXq1CMBAAAAZSIXAAAAgOolF4CRUYYAAACoAHv37o2PfvSjsXPnzoiI2LlzZ9x8882xd+/exJMBAAAApSYXAAAAgOolF4CRU4YAAACoAI888kivIGPPnj2xYsWKRBMBAAAA5SIXAAAAgOolF4CRU4YAAACoAP2FGMINAAAAGPvkAgAAAFC95AIwcsoQAAAAie3bty/Wr1/f53vr1q2Lffv2lXkiAAAAoFzkAgAAAFC95AIwOsoQAAAAiX3jG9+Ijo6OPt/r6OiIb37zm2WeCAAAACgXuQAAAABUL7kAjI4yBAAAQGKDPdrSoy8BAABg7JILAAAAQPWSC8DoKEMAAAAk1NbWFo8//viA5zz++ONx4MCBMk0EAAAAlItcAAAAAKqXXABGTxkCAAAgocceeyyOHDky4DmHDx+Oxx57rEwTAQAAAOUiFwAAAIDqJReA0VOGAAAASGioj7T06EsAAAAYe+QCAAAAUL3kAjB6yhAAAACJHDp0KNasWTOkc1evXh2HDh0q8UQAAABAucgFAAAAoHrJBaA4lCEAAAAS+da3vtVnYFF7Un2vY4cOHYrHH3+8HGMBAAAAZSAXAAAAgOolF4DiUIYAAABI5JFHHunz+Fn/9/uGdT4AAACQH7kAAAAAVC+5ABSHMgQAAEAChw8fjlWrVvU6Pr55Ssy4+rwY3zyl13urVq2Kw4cPl2M8AAAAoITkAgAAAFC95AJQPMoQAAAACaxduzYOHDjQ63jj5edEoaYQ0y8/u9d7bW1t8cQTT5RjPAAAAKCE5AIAAABQveQCUDzKEAAAAAmsWLGiz+PT39MTajRefs6wrgMAAADyIRcAAACA6iUXgOJRhgAAACizo0ePxte//vVex+tPmRST570rIiImz39X1J8yqdc5X//61+Po0aMlnxEAAAAoDbkAAAAAVC+5ABSXMgQAAECZbdiwIfbt29fr+PRjj7yMiJ5HX17W+9GXe/fujb/7u78r9YgAAABAicgFAAAAoHrJBaC4lCEAAADKrL9HV574qMvp7/HoSwAAABhr5AIAAABQveQCUFzKEAAAAGXU2dkZjz76aK/j46adFFMWnHrcsakLTotxUyf2OvdrX/tadHZ2lmpEAAAAoETkAgAAAFC95AJQfMoQAAAAZfTUU0/Frl27eh2ffsncKNQe/0e0Qm1NnHLp3F7n7tq1K55++umSzQgAAACUhlwAAAAAqpdcAIpPGQIAAKCM+ntk5fTL+37E5YmPwhzsPgAAAEDlkgsAAABA9ZILQPEpQwAAAJRJV1dXn6FE3cnjY+r5p/d5zdTzzojaSeN7HV+xYkV0dXUVfUYAAACgNOQCAAAAUL3kAlAayhAAAABl8swzz8Rrr73W6/gpF8+NmrraPq+pGVcb0y+Z0+v4jh07YtOmTUWfEQAAACgNuQAAAABUL7kAlIYyBAAAQJn096jKxvf0/WjLt0zv532PvgQAAIB8yAUAAACgeskFoDSUIQAAAMqgu7u7zzCidmJ9TLtg1oDXNvzk7KidOK7X8RUrVkR3d3fRZgQAAABKQy4AAAAA1UsuAKWjDAEAAFAG3/3ud+NHP/pRr+OnXHRW1IyrG/Damvq6aLio96Mvt27dGs8//3yRJgQAAABKRS4AAAAA1UsuAKWjDAEAAFAGjzzySJ/Hp18+8CMv39J4+dnDui8AAABQOeQCAAAAUL3kAlA6yhAAAAAl1t8jL2vq66Jh4ZlDukfDwrOipr73fxHCoy8BAACgsskFAAAAoHrJBaC0lCEAAABK7Pvf/368/PLLvY43XHhm1E4YN6R71E4Y12cQ8oMf/CC2bNky2hEBAACAEpELAAAAQPWSC0Bp9a4JAQAAjDGdnZ3xe7/3e7Fq1arYt29f2T+/ra2tz+ONQ3zk5VumX35O7Pn2P/c6fuWVV8aUKVNGNNtIdXZ2lvXzAAAAYKTkAsUnFwAAACAXcoHikwtQSZQhAACAMe83f/M347777ks9xnEKdbXRcNFZw7rmlIvPikJdbXR3HB8stLS0REtLSzHHAwAAgDFDLgAAAADVSy4AY1tN6gEAAABKqbOzM/78z/889Ri9TLtgVtSdNH5Y19SdND6m/eSsEk0EAAAAY49cAAAAAKqXXADGPmUIAABgTKutrY2JEyemHqOXxvcM75GXb1/33pFdBwAAANVILgAAAADVSy4AY58yBAAAMOb91m/9VuoRjnPSrOnRtOjcEV3btOjcOOmMU4o8EQAAAIxdcgEAAACoXnIBGNvqUg8AAABQarfddlt0dXXF7bffHp2dnQOeO/G0hpjwrmklmaNQU4hJZzXFaR/8v6JmXO2I7lEzrjbO/4OPxI5Hn4uDW1uju6u7yFP2ePO1fdH+2usluTcAAACUk1xg+OQCAAAAjBVygeGTC5ATZQgAAGDMKxQK8du//duxePHi+IVf+IXYunVrv+cebm2LU3/2gph5zflRKBTKOOXQ1Z08IWb/58tLcu/u7u7YueZ7sfXBVwc8b9asWfHqqwOfAwAAAJVALjB0cgEAAADGGrnA0MkFyFFN6gEAAADK5dJLL43vfve7ceONN/Z7TteRzviXL66Pf/r9VXH0QHsZp0vv6IH2+KffXxX/8ifro+tI//9FjBtvvDHWr19fxskAAABg9OQCA5MLAAAAMJbJBQYmFyBXyhAAAEBVmTp1anz1q1+NP/uzP4tJkyb1e96eb/9zfPc3/jL2/5/tZZwunf3/Z3t89zf+MvZ8+5/7PWfSpEnxla98Jb761a/GlClTyjgdAAAAFIdcoG9yAQAAAKqBXKBvcgFypgwBAABUnUKhEL/0S78UmzdvjgsuuKDf847sfiNe/PQj8cpffzu6O7vKOGH5dHd2xStf3RgvfvqROLL7jX7Pu+CCC+K5556LX/zFX6zYx4ECAADAUMgF/o1cAAAAgGojF/g3cgHGgrrUA1Si3bt3px6hKvS1Z7svPXtPx+7Tsfs07D0du0/D3tMZze5POeWU+MY3vhG/+7u/G1/+8pf7PqmrO7Y99I+x/4VXY94t18aE5rHzXzho39UWL9+zJtpeem3A8z7+8Y/Hpz/96Rg/fny0trZGhO98SvZcenZcHn5H0rD3dOw+DXtPx+7Tsfs07D0ducDIyQXyZM+lZ8fl4XckDXtPx+7TsPd07D4Ne0/H7tORC4ycXCBP9txbobu7uzv1ECm1trZGc3Nz6jEAAIAM1E4aH+d86qpofM85qUcZtd1P/zB+eN/a6Dx4OPUoFMGuXbuiqakp9RhZkgsAAABDJRegUskFRk4uAAAADJVcgEpV7bmAJ0MAAAAMUefBw/FPd6+KmdecF2f98vujdsK41CMNW2f70dj6wJOx8/EXU48CAAAAWZELAAAAQPWSC0BlqvonQ7xToVBIPQIAAJCJk844Jeb/v/8xJp3ZmHqUITu4tTV+8Ier49C2valHoUj8kb645AIAAMBQyQWoBHKB4pILAAAAQyUXoBLIBXooQ7yDcAMAABiOwrjamPPL74+ZP31+Rf95oru7O368+oXY+uDfR/fRztTjUET+SF9clfzPMQAAUHnkAqQmFyiuSv7nGAAAqDxyAVKTC/RQhniH1tbW1CMAAAAV5MCBA3HbbbfFypUrBzzvlEvmxjm/cVWMmzKxTJMN3dG2N+OH966Nvc/8y4DnXX/99fEHf/AHMXny5DJNRjE0NTWlHmFMkQsAAADvJBeg0skFiksuAAAAvJNcgEonF+ihDAEAADCA7u7u+Mu//Mv4xCc+EQcPHuz3vPrpJ8f8W66NqeedXsbpBvb6i9vi5T/6VhzZ80a/55x88snxxS9+MT760Y+WcTIAAADIg1wAAAAAqpdcACqfMgQAAMAQ/PCHP4wbbrghnnvuuf5PKkSc8eFLYtaNl0ahtqZ8w52gu7MrXn3oH2Pbw89EDPAnvoULF8ZDDz0U55xzTvmGAwAAgAzJBQAAAKB6yQWgcilDAAAADNGRI0di6dKl8Ud/9EcDnjf5J94V82/96ZjQPKVMk/2b9l1t8YN7VseBl3484Hm33npr3HXXXVFfX1+myQAAACBvcgEAAACoXnIBqEzKEAAAAMP0+OOPx8033xy7du3q95zaSePjJ5ZeF9POP6Nsc73+vW3x0u99MzoPHu73nObm5viLv/iLWLJkSdnmAgAAgLFELgAAAADVSy4AlSXdc1gAAAAytWTJknjhhRfi6quv7veczoOH46W7vhEdh46UZaaOQ0fipd/9xoDBxpIlS+J73/ueYAMAAABGQS4AAAAA1UsuAJVFGQIAAGAEZs6cGWvWrIk//MM/jHHjxvV5TuehI/HGywM/frJY3nj5x9H5Zt9Byrhx4+Kee+6J1atXx4wZM8oyDwAAAIxlcgEAAACoXnIBqBzKEAAAACNUU1MTt956a2zcuDGampr6PGdcw6SyzNLf5zQ3N8fGjRvjlltuiZoafwQEAACAYpELAAAAQPWSC0Bl8M0GAAAYpfPOOy8OH+79uMnxzVPipFnTyzLDSbOmx/jmKb2Ot7e3x3nnnVeWGQAAAKAayQUAAACgeskFIC1lCAAAgFF64oknoq2trdfx6ZefHYVCoSwzFAqFmH7Z2b2Ot7W1xbp168oyAwAAAFQjuQAAAABUL7kApKUM8f+3dy+xdZZnHsCfY/vYTZPGJPHGaQJOyi1UMyRM3ZggFtnMCpgdEAlpFBKhWZC0CCHEpV1UglVQMgqLEVKACsJNOXY8EqoGqFI7AxKJHftE1BBPwDG5NBdBXJQmkW9fF1WrcY+P7eNQ+xy+32/5fO/7fs9Znr/0fC8AAMA1yuVyk9YbNtw0p300bCgMNyKK9wcAAABcO7kAAAAApJdcAOaXYQgAAIBrMDIyEu3t7QX12qUL4we3NM5pLz+4dXnULl1YUG9vb4/R0dE57QUAAADSQC4AAAAA6SUXgPlnGAIAAOAadHR0xNdff11QX3bnjZGpmpsrL/8qU5WJZS2FX3v46quvoqOjY057AQAAgDSQCwAAAEB6yQVg/hmGAAAAuAb79u2btL7srrm98nK69xbrEwAAAJg9uQAAAACkl1wA5p9hCAAAgFkaGxuLtra2gnq2fkHU3/bDeegoov7HP4yaxQsK6m1tbTE2NjYPHQEAAMB3k1wAAAAA0ksuAOXBMAQAAMAsffjhh3H+/PmC+tKWH0WmuvS/W0mSxFD+yzi9/0gM5b+MJElKPiNTXRXLWn5UUD937lx89NFHJZ8HAAAATE4uAAAAAOklF4DyUDPfDQAAAFSqXC43ab1hQ+lXXo788XL073ovLnYN/K225Cer4uaf/2tk679f0lkNG26Kc+99UlDP5XJx9913l9wbAAAAUEguAAAAAOklF4Dy4GYIAACAWRgfH4/W1taCevXCuqj/p5UlnTWU/zKObHttQrAREXGxayB6tr8eQ/kvSzqv/p9XRvXCuoJ6a2vrrL4eAQAAAEwkFwAAAID0kgtA+TAMAQAAMAuHDx+OU6dOFdSXrV8dVdnqGZ0xPjoWJ149GJ/8IhcjFy9Pumb46z/FJ7/IxYlf/2+Mj47N6NyqbHUs/enqgvrJkyfj8OHDMzoDAAAAKE4uAAAAAOklF4DyYRgCAABgFvbt2zdpfdldM7vy8urZoTj65DtxKtcVMd3HF5KIU/sOx9En34mrZ4dmdH5DkT6K9Q0AAADMnFwAAAAA0ksuAOXDMAQAAECJkiSJXC5XUK9ekI0la2+Ydv+Fjs+iZ/veuNR/tqT3Xuo/Gz3b98aFjs+mXbtk3Q1RvSBbUM/lcq6+BAAAgGsgFwAAAID0kgtAeTEMAQAAUKLe3t4YGBgoqC9pXh1VtTVF941dGY7+Xf8Tx3b8JsauDBddt2LFiinPOLbjN9H/n+9NeUZVbU0s+cmqgvoXX3wR+Xy+6D4AAABganIBAAAASC+5AJQXwxAAAAAlmuwrDxERDRtuLLrn0vFz0fPzvXH+t31F19TW1sauXbticHAwdu7cGdls4Zca/ur8B7+P3sfeiEvHzxVd07Bh8qsvi/UPAAAATE8uAAAAAOklF4DykkncdwIAADBjSZLEmjVr4tixYxPqVbU1sX7vf0T19yYGEsl4Emf+uydO/PpgJKPjRc+9+eab46233op169b9rXbkyJHYtGlT9Pf3F92XqamKpn+/O5b/27rIZDITno1dGY6PH/qvGB8em1Bfs2ZN9PUVD1kAAACAyckFAAAAIL3kAlB+3AwBAABQgr6+voJgIyJiyb80FQQbw0OXo+9X+2NgT8eUwcbDDz8c3d3dE4KNiIg77rgjuru7Y/PmzUX3JqPjMbCnI/p+1R7DQ5cnPKteUBvX3dFUsOfTTz8VbgAAAMAsyAUAAAAgveQCUH4MQwAAAJSg2JWRy/7uismLPYPRs+21uNh9ouhZixcvjjfffDP27NkTixYtmnTNokWL4uWXX4433ngjFi9eXPSsi10D0bP9tRjqHZxQb7jL1ZcAAADwbZELAAAAQHrJBaD8GIYAAAAowWShQKamOpb+dFVERIyPjMXAqwfj979sjZG/+/LC/9fS0hK9vb3x4IMPzui9mzZtip6enli/fn3RNSMXL8cnv2yNE68ejPHRv1x1ubR5dWRqCv/6CTcAAACgdHIBAAAASC+5AJQfwxAAAAAzdPz48Th69GhB/bq110fN9+viyh+G4uiTb8fpXFfRMzKZTDz99NPR2dkZq1atKun9q1evjoMHD8ZTTz0VmUxm8kVJxKlcVxx98p248oehqFlYF9etvaFgWT6fj88//7yk9wMAAECayQUAAAAgveQCUJ4MQwAAAMxQsa8jNNx1U5z/3afR+7O9cen/zhXd39jYGB988EE899xzkc1mZ9VDNpuN559/Pt5///1obGwsuu5S/9no/dneOP+7z2LZhhsnXeNrDwAAADBzcgEAAABIL7kAlKdMkiTJfDcBAABQCZqbm6Orq/ArDkuaV8XFwwNT7r3nnnvilVdeiYaGhm+tnwsXLsTmzZvj3XffnXJdsf6am5vj0KFD31o/AAAA8F0mFwAAAID0kgtAeTIMAQAAMAODg4PR1NRU8r7a2trYsWNHPProo8WvqrwGSZLE7t2744knnojh4eGS9w8ODsb111//rfcFAAAA3yVyAQAAAEgvuQCUr6r5bgAAAKAStLa2lrzn1ltvjUOHDsW2bdv+IcFGREQmk4nt27fHxx9/HLfcckvJ+2fzuwAAACBt5AIAAACQXnIBKF+GIQAAAGYgl8uVtH7r1q3R1dUVt99++z+oo4nWrl0b3d3dsWXLlpL2lfq7AAAAII3kAgAAAJBecgEoX5kkSZL5bgIAAKCcnTlzJlasWBEz+ftUX18fL730Utx///1z0Nnk3n777XjkkUfim2++mXZtJpOJ06dPR2Nj4xx0BgAAAJVHLgAAAADpJReA8uZmCAAAgGm0tbXNKNi48847o7e3d16DjYiIBx54IPL5fLS0tEy7NkmSaGtrm4OuAAAAoDLJBQAAACC95AJQ3gxDAAAATGO6qyEzmUw8++yz0dnZGU1NTXPT1DSampqis7MznnnmmchkMlOudfUlAAAAFCcXAAAAgPSSC0B5yyQzGVcCAABIqSRJoq6uLkZGRiZ9vnz58nj99ddj48aNc9zZzB04cCAeeuihOHPmzKTPa2tr4+rVq9OGIAAAAJA2cgEAAABIL7kAlD83QwAAAExhdHS06J/+++67L/L5fFkHGxERGzdujHw+H/fee2/RNaOjo3PYEQAAAFQGuQAAAACkl1wAyp9hCAAAgClks9nYsmXLhFpdXV28+OKLsX///mhoaJinzkrT0NAQ7e3tsXv37qirq5vwbOvWrZHNZuepMwAAAChfcgEAAABIL7kAlL9MkiTJfDcBAABQzkZHR+OFF16IAwcOxMqVK+Oxxx6L2267bb7bmrW+vr7YuXNnnDx5MjZu3BiPP/541NTUzHdbAAAAUJbkAgAAAJBecgEob4YhAAAAAAAAAAAAAACAilI13w0AAAAAAAAAAAAAAACUwjAEAAAAAAAAAAAAAABQUQxDAAAAAAAAAAAAAAAAFcUwBAAAAAAAAAAAAAAAUFEMQwAAAAAAAAAAAAAAABXFMAQAAAAAAAAAAAAAAFBRDEMAAAAAAAAAAAAAAAAVxTAEAAAAAAAAAAAAAABQUQxDAAAAAAAAAAAAAAAAFcUwBAAAAAAAAAAAAAAAUFEMQwAAAAAAAAAAAAAAABXFMAQAAAAAAAAAAAAAAFBRDEMAAAAAAAAAAAAAAAAVxTAEAAAAAAAAAAAAAABQUQxDAAAAAAAAAAAAAAAAFcUwBAAAAAAAAAAAAAAAUFEMQwAAAAAAAAAAAAAAABXFMAQAAAAAAAAAAAAAAFBRDEMAAAAAAAAAAAAAAAAVxTAEAAAAAAAAAAAAAABQUQxDAAAAAAAAAAAAAAAAFcUwBAAAAAAAAAAAAAAAUFEMQwAAAAAAAAAAAAAAABXFMAQAAAAAAAAAAAAAAFBRDEMAAAAAAAAAAAAAAAAVxTAEAAAAAAAAAAAAAABQUQxDAAAAAAAAAAAAAAAAFcUwBAAAAAAAAAAAAAAAUFEMQwAAAAAAAAAAAAAAABXFMAQAAAAAAAAAAAAAAFBR/gzY7j7I+a+2FQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 588, "width": 1569 } }, "output_type": "display_data" } ], "source": [ "fig, axarr = plt.subplots(1, 3, figsize=(20, 10))\n", "fig.subplots_adjust(wspace=-0.01)\n", "for i, m in enumerate(\n", " [pdispersion_from_cm, pdispersion_from_gdf, pdispersion_from_gdf_pre]\n", "):\n", " plot_results(m, P_FACILITIES, facility_points, ax=axarr[i])" ] }, { "cell_type": "markdown", "id": "ff2ce865", "metadata": {}, "source": [ "All 3 solutions to the $p$-dispersion problem vary spatially, as seen above, but they also all include facility $y_1$ since it is the most isolated location. A good demonstration of the intended results of dispersion can be seen in the first two models, `P-Dispersion-network-distance` and `P-Dispersion-euclidean-distance`, where the selected candidate facilites are arranged to form pseudo-equilateral triangles. Of course, the `P-Dispersion-euclidean-distance-predefined` model does not follow this pattern due to the stipulation that facilities $y_{11}$ and $y_{12}$ be included in the optimal solution.\n", "\n", "\n", "## References\n", "\n", "- [Kuby, Michael J. 1987. Programming Models for Facility Dispersion: The p-Dispersion and Maximum Dispersion Problems. Geographical Analysis, 19, 315–329.](https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.1987.tb00133.x)\n", "- [Maliszewski, Paul J., Michael J. Kuby, and Mark W. Horner. 2012. A comparison of multi-objective spatial dispersion models for managing critical assets in urban areas. Computers, Environment and Urban Systems. 36 (4):331-341.](https://www.sciencedirect.com/science/article/pii/S0198971511001293?via%3Dihub)" ] } ], "metadata": { "interpreter": { "hash": "56b72aab97c5d88c22a6bf5872989e2e65e9296dc12395fbfb8350007c775deb" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" } }, "nbformat": 4, "nbformat_minor": 5 }