<!-- HTML header for doxygen 1.8.14-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Caffe2 - Python API: caffe2/python/lstm_benchmark.py Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link rel="icon" href="/static/favicon.png" type="image/x-icon">
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { init_search(); });
</script>
<link href="stylesheet.css" rel="stylesheet" type="text/css" />
<link href="main.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectlogo" width="56"><a href="/"><img alt="Logo" src="Caffe2-with-name-55-tall.png"/></a></td>
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname">Caffe2 - Python API
   </div>
   <div id="projectbrief">A deep learning, cross platform ML framework</div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="namespaces.html"><span>Packages</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li><a href="/doxygen-c/html/classes.html"><span>C++&#160;API</span></a></li>
      <li><a href="/doxygen-python/html/annotated.html"><span>Python&#160;API</span></a></li>
      <li><a href="https://github.com/caffe2/caffe2"><span>GitHub</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_20697b8f204bdfcab31e6b1a416f3ab8.html">caffe2</a></li><li class="navelem"><a class="el" href="dir_f4fda25fc5253eea1ed54677ae5fa2de.html">python</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">lstm_benchmark.py</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">## @package lstm_benchmark</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"># Module caffe2.python.lstm_benchmark</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> absolute_import</div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> division</div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> print_function</div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> unicode_literals</div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;</div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="keyword">from</span> caffe2.proto <span class="keyword">import</span> caffe2_pb2</div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python.html">caffe2.python</a> <span class="keyword">import</span> workspace, core, utils, rnn_cell, model_helper</div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python.html">caffe2.python</a> <span class="keyword">import</span> recurrent</div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;</div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="keyword">import</span> argparse</div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="keyword">import</span> numpy <span class="keyword">as</span> np</div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="keyword">import</span> time</div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;</div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="keyword">import</span> logging</div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;</div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;logging.basicConfig()</div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;log = logging.getLogger(<span class="stringliteral">&quot;lstm_bench&quot;</span>)</div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;log.setLevel(logging.DEBUG)</div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;</div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;</div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="keyword">def </span>generate_data(T, shape, num_labels, fixed_shape):</div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;    <span class="stringliteral">&#39;&#39;&#39;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="stringliteral">    Fill a queue with input data</span></div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="stringliteral">    &#39;&#39;&#39;</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;    log.info(<span class="stringliteral">&quot;Generating T={} sequence batches&quot;</span>.format(T))</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;</div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;    generate_input_init_net = core.Net(<span class="stringliteral">&#39;generate_input_init&#39;</span>)</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;    queue = generate_input_init_net.CreateBlobsQueue(</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;        [], <span class="stringliteral">&quot;inputqueue&quot;</span>, num_blobs=1, capacity=T,</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;    )</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;    label_queue = generate_input_init_net.CreateBlobsQueue(</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;        [], <span class="stringliteral">&quot;labelqueue&quot;</span>, num_blobs=1, capacity=T,</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;    )</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;    workspace.RunNetOnce(generate_input_init_net)</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;    generate_input_net = core.Net(<span class="stringliteral">&#39;generate_input&#39;</span>)</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;</div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;    generate_input_net.EnqueueBlobs([queue, <span class="stringliteral">&quot;scratch&quot;</span>], [<span class="stringliteral">&quot;scratch&quot;</span>])</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;    generate_input_net.EnqueueBlobs([label_queue, <span class="stringliteral">&quot;label_scr&quot;</span>], [<span class="stringliteral">&quot;label_scr&quot;</span>])</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;    np.random.seed(2603)</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;    entry_counts = []</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;    <span class="keywordflow">for</span> t <span class="keywordflow">in</span> range(T):</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;        <span class="keywordflow">if</span> (t % (max(10, T // 10)) == 0):</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;            print(<span class="stringliteral">&quot;Generating data {}/{}&quot;</span>.format(t, T))</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;        <span class="comment"># Randomize the seqlength</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;        random_shape = (</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;            [np.random.randint(1, shape[0])] + shape[1:]</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;            <span class="keywordflow">if</span> t &gt; 0 <span class="keywordflow">and</span> <span class="keywordflow">not</span> fixed_shape <span class="keywordflow">else</span> shape</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        )</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        X = np.random.rand(*random_shape).astype(np.float32)</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;        batch_size = random_shape[1]</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;        L = num_labels * batch_size</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;        labels = (np.random.rand(random_shape[0]) * L).astype(np.int32)</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;        workspace.FeedBlob(<span class="stringliteral">&quot;scratch&quot;</span>, X)</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        workspace.FeedBlob(<span class="stringliteral">&quot;label_scr&quot;</span>, labels)</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        workspace.RunNetOnce(generate_input_net.Proto())</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;        entry_counts.append(random_shape[0] * random_shape[1])</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;    log.info(<span class="stringliteral">&quot;Finished data generation&quot;</span>)</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;    <span class="keywordflow">return</span> queue, label_queue, entry_counts</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="keyword">def </span>create_model(args, queue, label_queue, input_shape):</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;    model = model_helper.ModelHelper(name=<span class="stringliteral">&quot;LSTM_bench&quot;</span>)</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    seq_lengths, target = \</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        model.net.AddExternalInputs(</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;            <span class="stringliteral">&#39;seq_lengths&#39;</span>,</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;            <span class="stringliteral">&#39;target&#39;</span>,</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;        )</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    input_blob = model.net.DequeueBlobs(queue, <span class="stringliteral">&quot;input_data&quot;</span>)</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    labels = model.net.DequeueBlobs(label_queue, <span class="stringliteral">&quot;label&quot;</span>)</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    init_blobs = []</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <span class="keywordflow">if</span> args.implementation <span class="keywordflow">in</span> [<span class="stringliteral">&quot;own&quot;</span>, <span class="stringliteral">&quot;static&quot;</span>, <span class="stringliteral">&quot;static_dag&quot;</span>]:</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        T = <span class="keywordtype">None</span></div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        <span class="keywordflow">if</span> <span class="stringliteral">&quot;static&quot;</span> <span class="keywordflow">in</span> args.implementation:</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;            <span class="keyword">assert</span> args.fixed_shape, \</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;                <span class="stringliteral">&quot;Random input length is not static RNN compatible&quot;</span></div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;            T = args.seq_length</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;            print(<span class="stringliteral">&quot;Using static RNN of size {}&quot;</span>.format(T))</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;        <span class="keywordflow">for</span> i <span class="keywordflow">in</span> range(args.num_layers):</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;            hidden_init, cell_init = model.net.AddExternalInputs(</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;                <span class="stringliteral">&quot;hidden_init_{}&quot;</span>.format(i),</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;                <span class="stringliteral">&quot;cell_init_{}&quot;</span>.format(i)</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;            )</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;            init_blobs.extend([hidden_init, cell_init])</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;        output, last_hidden, _, last_state = rnn_cell.LSTM(</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;            model=model,</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;            input_blob=input_blob,</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;            seq_lengths=seq_lengths,</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;            initial_states=init_blobs,</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;            dim_in=args.input_dim,</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;            dim_out=[args.hidden_dim] * args.num_layers,</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;            scope=<span class="stringliteral">&quot;lstm1&quot;</span>,</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;            memory_optimization=args.memory_optimization,</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;            forward_only=args.forward_only,</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;            drop_states=<span class="keyword">True</span>,</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;            return_last_layer_only=<span class="keyword">True</span>,</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;            static_rnn_unroll_size=T,</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;        )</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;        <span class="keywordflow">if</span> <span class="stringliteral">&quot;dag&quot;</span> <span class="keywordflow">in</span> args.implementation:</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;            print(<span class="stringliteral">&quot;Using DAG net type&quot;</span>)</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;            model.net.Proto().type = <span class="stringliteral">&#39;dag&#39;</span></div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;            model.net.Proto().num_workers = 4</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    <span class="keywordflow">elif</span> args.implementation == <span class="stringliteral">&quot;cudnn&quot;</span>:</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;        <span class="comment"># We need to feed a placeholder input so that RecurrentInitOp</span></div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;        <span class="comment"># can infer the dimensions.</span></div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;        init_blobs = model.net.AddExternalInputs(<span class="stringliteral">&quot;hidden_init&quot;</span>, <span class="stringliteral">&quot;cell_init&quot;</span>)</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;        model.param_init_net.ConstantFill([], input_blob, shape=input_shape)</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;        output, last_hidden, _ = rnn_cell.cudnn_LSTM(</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;            model=model,</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;            input_blob=input_blob,</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;            initial_states=init_blobs,</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;            dim_in=args.input_dim,</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;            dim_out=args.hidden_dim,</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;            scope=<span class="stringliteral">&quot;cudnnlstm&quot;</span>,</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;            num_layers=args.num_layers,</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;        )</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;    <span class="keywordflow">else</span>:</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;        <span class="keyword">assert</span> <span class="keyword">False</span>, <span class="stringliteral">&quot;Unknown implementation&quot;</span></div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    weights = model.net.UniformFill(labels, <span class="stringliteral">&quot;weights&quot;</span>)</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;    softmax, loss = model.net.SoftmaxWithLoss(</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;        [model.Flatten(output), labels, weights],</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;        [<span class="stringliteral">&#39;softmax&#39;</span>, <span class="stringliteral">&#39;loss&#39;</span>],</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    )</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> args.forward_only:</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;        model.AddGradientOperators([loss])</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    <span class="comment"># carry states over</span></div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    <span class="keywordflow">for</span> init_blob <span class="keywordflow">in</span> init_blobs:</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;        model.net.Copy(last_hidden, init_blob)</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;        sz = args.hidden_dim</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;        <span class="keywordflow">if</span> args.implementation == <span class="stringliteral">&quot;cudnn&quot;</span>:</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;            sz *= args.num_layers</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;        workspace.FeedBlob(init_blob, np.zeros(</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;            [1, args.batch_size, sz], dtype=np.float32</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;        ))</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;    <span class="keywordflow">if</span> args.rnn_executor:</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;        <span class="keywordflow">for</span> op <span class="keywordflow">in</span> model.net.Proto().op:</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;            <span class="keywordflow">if</span> op.type.startswith(<span class="stringliteral">&#39;RecurrentNetwork&#39;</span>):</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;                recurrent.set_rnn_executor_config(</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;                    op,</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;                    num_threads=args.rnn_executor_num_threads,</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;                    max_cuda_streams=args.rnn_executor_max_cuda_streams,</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;                )</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;    <span class="keywordflow">return</span> model, output</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;<span class="keyword">def </span>Caffe2LSTM(args):</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;    T = args.data_size // args.batch_size</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;    input_blob_shape = [args.seq_length, args.batch_size, args.input_dim]</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;    queue, label_queue, entry_counts = generate_data(T // args.seq_length,</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;                                       input_blob_shape,</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;                                       args.hidden_dim,</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;                                       args.fixed_shape)</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;    workspace.FeedBlob(</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;        <span class="stringliteral">&quot;seq_lengths&quot;</span>,</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;        np.array([args.seq_length] * args.batch_size, dtype=np.int32)</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;    )</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;    model, output = create_model(args, queue, label_queue, input_blob_shape)</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;    workspace.RunNetOnce(model.param_init_net)</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    workspace.CreateNet(model.net)</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    start_time = time.time()</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    num_iters = T // args.seq_length</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;    total_iters = 0</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;    <span class="comment"># Run the Benchmark</span></div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    log.info(<span class="stringliteral">&quot;------ Warming up ------&quot;</span>)</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;    workspace.RunNet(model.net.Proto().name)</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;    <span class="keywordflow">if</span> (args.gpu):</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;        log.info(<span class="stringliteral">&quot;Memory stats:&quot;</span>)</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;        stats = utils.GetGPUMemoryUsageStats()</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;        log.info(<span class="stringliteral">&quot;GPU memory:\t{} MB&quot;</span>.format(stats[<span class="stringliteral">&#39;max_total&#39;</span>] / 1024 / 1024))</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    log.info(<span class="stringliteral">&quot;------ Starting benchmark ------&quot;</span>)</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;    start_time = time.time()</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    last_time = time.time()</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;    <span class="keywordflow">for</span> iteration <span class="keywordflow">in</span> range(1, num_iters, args.iters_to_report):</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;        iters_once = min(args.iters_to_report, num_iters - iteration)</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;        total_iters += iters_once</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;        workspace.RunNet(model.net.Proto().name, iters_once)</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;        new_time = time.time()</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;        log.info(</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;            <span class="stringliteral">&quot;Iter: {} / {}. Entries Per Second: {}k.&quot;</span>.format(</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;                iteration,</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;                num_iters,</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;                np.sum(entry_counts[iteration:iteration + iters_once]) /</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;                (new_time - last_time) // 100 / 10,</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;            )</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;        )</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;        last_time = new_time</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;    log.info(<span class="stringliteral">&quot;Done. Total EPS excluding 1st iteration: {}k {}&quot;</span>.format(</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;         np.sum(entry_counts[1:]) / (time.time() - start_time) // 100 / 10,</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;         <span class="stringliteral">&quot; (with RNN executor)&quot;</span> <span class="keywordflow">if</span> args.rnn_executor <span class="keywordflow">else</span> <span class="stringliteral">&quot;&quot;</span>,</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    ))</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    <span class="keywordflow">if</span> (args.gpu):</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;        log.info(<span class="stringliteral">&quot;Memory stats:&quot;</span>)</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;        stats = utils.GetGPUMemoryUsageStats()</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;        log.info(<span class="stringliteral">&quot;GPU memory:\t{} MB&quot;</span>.format(stats[<span class="stringliteral">&#39;max_total&#39;</span>] / 1024 / 1024))</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;        <span class="keywordflow">if</span> (stats[<span class="stringliteral">&#39;max_total&#39;</span>] != stats[<span class="stringliteral">&#39;total&#39;</span>]):</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;            log.warning(</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;                <span class="stringliteral">&quot;Max usage differs from current total usage: {} &gt; {}&quot;</span>.</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;                format(stats[<span class="stringliteral">&#39;max_total&#39;</span>], stats[<span class="stringliteral">&#39;total&#39;</span>])</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;            )</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;            log.warning(<span class="stringliteral">&quot;This means that costly deallocations occured.&quot;</span>)</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    <span class="keywordflow">return</span> time.time() - start_time</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;@utils.debug</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;<span class="keyword">def </span>Benchmark(args):</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;    <span class="keywordflow">return</span> Caffe2LSTM(args)</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;<span class="keyword">def </span>GetArgumentParser():</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;    parser = argparse.ArgumentParser(description=<span class="stringliteral">&quot;LSTM benchmark.&quot;</span>)</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;        <span class="stringliteral">&quot;--hidden_dim&quot;</span>,</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;        type=int,</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;        default=800,</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;        help=<span class="stringliteral">&quot;Hidden dimension&quot;</span>,</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;    )</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;        <span class="stringliteral">&quot;--input_dim&quot;</span>,</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;        type=int,</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;        default=40,</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;        help=<span class="stringliteral">&quot;Input dimension&quot;</span>,</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;    )</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;        <span class="stringliteral">&quot;--batch_size&quot;</span>,</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;        type=int,</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;        default=128,</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;        help=<span class="stringliteral">&quot;The batch size.&quot;</span></div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;    )</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;        <span class="stringliteral">&quot;--seq_length&quot;</span>,</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;        type=int,</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;        default=20,</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;        help=<span class="stringliteral">&quot;Max sequence length&quot;</span></div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;    )</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;        <span class="stringliteral">&quot;--data_size&quot;</span>,</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;        type=int,</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;        default=1000000,</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;        help=<span class="stringliteral">&quot;Number of data points to generate&quot;</span></div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    )</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;        <span class="stringliteral">&quot;--iters_to_report&quot;</span>,</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;        type=int,</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;        default=20,</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;        help=<span class="stringliteral">&quot;Number of iteration to report progress&quot;</span></div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;    )</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;        <span class="stringliteral">&quot;--gpu&quot;</span>,</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;        action=<span class="stringliteral">&quot;store_true&quot;</span>,</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;        help=<span class="stringliteral">&quot;Run all on GPU&quot;</span>,</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    )</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;        <span class="stringliteral">&quot;--implementation&quot;</span>,</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;        type=str,</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;        default=<span class="stringliteral">&quot;own&quot;</span>,</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;        help=<span class="stringliteral">&quot;&#39;cudnn&#39;, &#39;own&#39;, &#39;static&#39; or &#39;static_dag&#39;&quot;</span>,</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;    )</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;        <span class="stringliteral">&quot;--fixed_shape&quot;</span>,</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;        action=<span class="stringliteral">&quot;store_true&quot;</span>,</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;        help=(<span class="stringliteral">&quot;Whether to randomize shape of input batches. &quot;</span></div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;              <span class="stringliteral">&quot;Static RNN requires fixed shape&quot;</span>),</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;    )</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;        <span class="stringliteral">&quot;--memory_optimization&quot;</span>,</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;        action=<span class="stringliteral">&quot;store_true&quot;</span>,</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;        help=<span class="stringliteral">&quot;Whether to use memory optimized LSTM or not&quot;</span>,</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;    )</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;        <span class="stringliteral">&quot;--forward_only&quot;</span>,</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;        action=<span class="stringliteral">&quot;store_true&quot;</span>,</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;        help=<span class="stringliteral">&quot;Whether to run only forward pass&quot;</span></div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;    )</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;        <span class="stringliteral">&quot;--num_layers&quot;</span>,</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;        type=int,</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;        default=1,</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;        help=<span class="stringliteral">&quot;Number of LSTM layers. All output dimensions are going to be&quot;</span></div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;             <span class="stringliteral">&quot;of hidden_dim size&quot;</span>,</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;    )</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;        <span class="stringliteral">&quot;--rnn_executor&quot;</span>,</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;        action=<span class="stringliteral">&quot;store_true&quot;</span>,</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;        help=<span class="stringliteral">&quot;Whether to use RNN executor&quot;</span></div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;    )</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;        <span class="stringliteral">&quot;--rnn_executor_num_threads&quot;</span>,</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;        type=int,</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;        default=<span class="keywordtype">None</span>,</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;        help=<span class="stringliteral">&quot;Number of threads used by CPU RNN Executor&quot;</span></div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;    )</div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;        <span class="stringliteral">&quot;--rnn_executor_max_cuda_streams&quot;</span>,</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;        type=int,</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;        default=<span class="keywordtype">None</span>,</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;        help=<span class="stringliteral">&quot;Maximum number of CUDA streams used by RNN executor on GPU&quot;</span></div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;    )</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    <span class="keywordflow">return</span> parser</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;<span class="keywordflow">if</span> __name__ == <span class="stringliteral">&#39;__main__&#39;</span>:</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;    args, extra_args = GetArgumentParser().parse_known_args()</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;    rnn_executor_opt = 1 <span class="keywordflow">if</span> args.rnn_executor <span class="keywordflow">else</span> 0</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;    workspace.GlobalInit([</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;        <span class="stringliteral">&#39;caffe2&#39;</span>,</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;        <span class="stringliteral">&#39;--caffe2_log_level=0&#39;</span>,</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;        <span class="stringliteral">&#39;--caffe2_print_blob_sizes_at_exit=0&#39;</span>,</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;        <span class="stringliteral">&#39;--caffe2_rnn_executor={}&#39;</span>.format(rnn_executor_opt),</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;        <span class="stringliteral">&#39;--caffe2_gpu_memory_tracking=1&#39;</span>] + extra_args)</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;    device = core.DeviceOption(</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;        caffe2_pb2.CUDA <span class="keywordflow">if</span> args.gpu <span class="keywordflow">else</span> caffe2_pb2.CPU, 4)</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;    with core.DeviceScope(device):</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;        Benchmark(args)</div><div class="ttc" id="namespacecaffe2_1_1python_html"><div class="ttname"><a href="namespacecaffe2_1_1python.html">caffe2.python</a></div><div class="ttdef"><b>Definition:</b> <a href="python_2____init_____8py_source.html#l00001">__init__.py:1</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- HTML footer for doxygen 1.8.14-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated on Thu Apr 19 2018 13:04:04 for Caffe2 - Python API by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
<div class="footerContainer">
  <div id="footer_wrap" class="wrapper footerWrapper">
    <div class="footerBlocks">
      <div id="fb_oss" class="footerSection fbOpenSourceFooter">
          <svg class="facebookOSSLogoSvg" viewBox="0 0 1133.9 1133.9" x="0px" y="0px" height=50 width=50>
            <g>
              <path class="logoRing outerRing" d="M 498.3 3.7 c 153.6 88.9 307.3 177.7 461.1 266.2 c 7.6 4.4 10.3 9.1 10.3 17.8 c -0.3 179.1 -0.2 358.3 0 537.4 c 0 8.1 -2.4 12.8 -9.7 17.1 c -154.5 88.9 -308.8 178.1 -462.9 267.5 c -9 5.2 -15.5 5.3 -24.6 0.1 c -153.9 -89.2 -307.9 -178 -462.1 -266.8 C 3 838.8 0 833.9 0 825.1 c 0.3 -179.1 0.2 -358.3 0 -537.4 c 0 -8.6 2.6 -13.6 10.2 -18 C 164.4 180.9 318.4 92 472.4 3 C 477 -1.5 494.3 -0.7 498.3 3.7 Z M 48.8 555.3 c 0 79.9 0.2 159.9 -0.2 239.8 c -0.1 10 3 15.6 11.7 20.6 c 137.2 78.8 274.2 157.8 411 237.3 c 9.9 5.7 17 5.7 26.8 0.1 c 137.5 -79.8 275.2 -159.2 412.9 -238.5 c 7.4 -4.3 10.5 -8.9 10.5 -17.8 c -0.3 -160.2 -0.3 -320.5 0 -480.7 c 0 -8.8 -2.8 -13.6 -10.3 -18 C 772.1 218 633.1 137.8 494.2 57.4 c -6.5 -3.8 -11.5 -4.5 -18.5 -0.5 C 336.8 137.4 197.9 217.7 58.8 297.7 c -7.7 4.4 -10.2 9.2 -10.2 17.9 C 48.9 395.5 48.8 475.4 48.8 555.3 Z" />
              <path class="logoRing middleRing" d="M 184.4 555.9 c 0 -33.3 -1 -66.7 0.3 -100 c 1.9 -48 24.1 -86 64.7 -110.9 c 54.8 -33.6 110.7 -65.5 167 -96.6 c 45.7 -25.2 92.9 -24.7 138.6 1 c 54.4 30.6 108.7 61.5 162.2 93.7 c 44 26.5 67.3 66.8 68 118.4 c 0.9 63.2 0.9 126.5 0 189.7 c -0.7 50.6 -23.4 90.7 -66.6 116.9 c -55 33.4 -110.8 65.4 -167.1 96.5 c -43.4 24 -89 24.2 -132.3 0.5 c -57.5 -31.3 -114.2 -64 -170 -98.3 c -41 -25.1 -62.9 -63.7 -64.5 -112.2 C 183.5 621.9 184.3 588.9 184.4 555.9 Z M 232.9 556.3 c 0 29.5 0.5 59.1 -0.1 88.6 c -0.8 39.2 16.9 67.1 50.2 86.2 c 51.2 29.4 102.2 59.2 153.4 88.4 c 31.4 17.9 63.6 18.3 95 0.6 c 53.7 -30.3 107.1 -61.2 160.3 -92.5 c 29.7 -17.5 45 -44.5 45.3 -78.8 c 0.6 -61.7 0.5 -123.5 0 -185.2 c -0.3 -34.4 -15.3 -61.5 -44.9 -79 C 637.7 352.6 583 320.8 527.9 290 c -27.5 -15.4 -57.2 -16.1 -84.7 -0.7 c -56.9 31.6 -113.4 64 -169.1 97.6 c -26.4 15.9 -40.7 41.3 -41.1 72.9 C 232.6 491.9 232.9 524.1 232.9 556.3 Z" />
              <path class="logoRing innerRing" d="M 484.9 424.4 c 69.8 -2.8 133.2 57.8 132.6 132 C 617 630 558.5 688.7 484.9 689.1 c -75.1 0.4 -132.6 -63.6 -132.7 -132.7 C 352.1 485 413.4 421.5 484.9 424.4 Z M 401.3 556.7 c -3.4 37.2 30.5 83.6 83 84.1 c 46.6 0.4 84.8 -37.6 84.9 -84 c 0.1 -46.6 -37.2 -84.4 -84.2 -84.6 C 432.2 472.1 397.9 518.3 401.3 556.7 Z" />
            </g>
          </svg>
        <h2>Facebook Open Source</h2>
      </div>
      <div class="footerSection">
        <a class="footerLink" href="https://code.facebook.com/projects/" target="_blank">Open Source Projects</a>
        <a class="footerLink" href="https://github.com/facebook/" target="_blank">GitHub</a>
        <a class="footerLink" href="https://twitter.com/fbOpenSource" target="_blank">Twitter</a>
      </div>
      <div class="footerSection rightAlign">
        <a class="footerLink" href="https://github.com/caffe2/caffe2" target="_blank">Contribute to this project on GitHub</a>
      </div>
    </div>
  </div>
</div>
<script type="text/javascript" src="/js/jekyll-link-anchors.js"></script>
<script>
  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
  ga('create', '{{ site.gacode }}', 'auto');
  ga('send', 'pageview');
</script>
</body>
</html>