<!-- HTML header for doxygen 1.8.14-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Caffe2 - Python API: caffe2/python/mkl/convnet_benchmarks.py Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link rel="icon" href="/static/favicon.png" type="image/x-icon">
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { init_search(); });
</script>
<link href="stylesheet.css" rel="stylesheet" type="text/css" />
<link href="main.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectlogo" width="56"><a href="/"><img alt="Logo" src="Caffe2-with-name-55-tall.png"/></a></td>
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname">Caffe2 - Python API
   </div>
   <div id="projectbrief">A deep learning, cross platform ML framework</div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="namespaces.html"><span>Packages</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li><a href="/doxygen-c/html/classes.html"><span>C++&#160;API</span></a></li>
      <li><a href="/doxygen-python/html/annotated.html"><span>Python&#160;API</span></a></li>
      <li><a href="https://github.com/caffe2/caffe2"><span>GitHub</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_20697b8f204bdfcab31e6b1a416f3ab8.html">caffe2</a></li><li class="navelem"><a class="el" href="dir_f4fda25fc5253eea1ed54677ae5fa2de.html">python</a></li><li class="navelem"><a class="el" href="dir_66a75f7994308fa68b6557c2ea15a7a1.html">mkl</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">convnet_benchmarks.py</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">## @package convnet_benchmarks</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"># Module caffe2.python.convnet_benchmarks</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> absolute_import</div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> division</div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> print_function</div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> unicode_literals</div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="stringliteral">&quot;&quot;&quot;</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="stringliteral">Benchmark for common convnets.</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="stringliteral">Speed on Titan X, with 10 warmup steps and 10 main steps and with different</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="stringliteral">versions of cudnn, are as follows (time reported below is per-batch time,</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="stringliteral">forward / forward+backward):</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="stringliteral">                    CuDNN V3        CuDNN v4</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="stringliteral">AlexNet         32.5 / 108.0    27.4 /  90.1</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="stringliteral">OverFeat       113.0 / 342.3    91.7 / 276.5</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="stringliteral">Inception      134.5 / 485.8   125.7 / 450.6</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="stringliteral">VGG (batch 64) 200.8 / 650.0   164.1 / 551.7</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="stringliteral">Speed on Inception with varied batch sizes and CuDNN v4 is as follows:</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="stringliteral">Batch Size   Speed per batch     Speed per image</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="stringliteral"> 16             22.8 /  72.7         1.43 / 4.54</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="stringliteral"> 32             38.0 / 127.5         1.19 / 3.98</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="stringliteral"> 64             67.2 / 233.6         1.05 / 3.65</span></div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="stringliteral">128            125.7 / 450.6         0.98 / 3.52</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="stringliteral">Speed on Tesla M40, which 10 warmup steps and 10 main steps and with cudnn</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="stringliteral">v4, is as follows:</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="stringliteral">AlexNet         68.4 / 218.1</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="stringliteral">OverFeat       210.5 / 630.3</span></div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="stringliteral">Inception      300.2 / 1122.2</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="stringliteral">VGG (batch 64) 405.8 / 1327.7</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="stringliteral">(Note that these numbers involve a &quot;full&quot; backprop, i.e. the gradient</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="stringliteral">with respect to the input image is also computed.)</span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="stringliteral">To get the numbers, simply run:</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="stringliteral">for MODEL in AlexNet OverFeat Inception; do</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="stringliteral">  PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;<span class="stringliteral">    --batch_size 128 --model $MODEL --forward_only True</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="stringliteral">done</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="stringliteral">for MODEL in AlexNet OverFeat Inception; do</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="stringliteral">  PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="stringliteral">    --batch_size 128 --model $MODEL</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="stringliteral">done</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="stringliteral">PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="stringliteral">  --batch_size 64 --model VGGA --forward_only True</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="stringliteral">PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="stringliteral">  --batch_size 64 --model VGGA</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="stringliteral">for BS in 16 32 64 128; do</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="stringliteral">  PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;<span class="stringliteral">    --batch_size $BS --model Inception --forward_only True</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;<span class="stringliteral">  PYTHONPATH=../gen:$PYTHONPATH python convnet_benchmarks.py \</span></div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;<span class="stringliteral">    --batch_size $BS --model Inception</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="stringliteral">done</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="stringliteral"></span></div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="stringliteral">Note that VGG needs to be run at batch 64 due to memory limit on the backward</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="stringliteral">pass.</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<span class="stringliteral">&quot;&quot;&quot;</span></div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="keyword">import</span> argparse</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python.html">caffe2.python</a> <span class="keyword">import</span> brew, cnn, workspace</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python_1_1model__helper.html">caffe2.python.model_helper</a> <span class="keyword">import</span> ModelHelper</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python_1_1models.html">caffe2.python.models</a> <span class="keyword">import</span> resnet</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;<span class="keyword">import</span> numpy <span class="keyword">as</span> np</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;<span class="keyword">def </span>MLP(order, cudnn_ws, mkl):</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;    model = ModelHelper(name=<span class="stringliteral">&quot;benchmark&quot;</span>)</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    d = 256</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    depth = 20</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    width = 3</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    <span class="keywordflow">for</span> i <span class="keywordflow">in</span> range(depth):</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;        <span class="keywordflow">for</span> j <span class="keywordflow">in</span> range(width):</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;            current = <span class="stringliteral">&quot;fc_{}_{}&quot;</span>.format(i, j) <span class="keywordflow">if</span> i &gt; 0 <span class="keywordflow">else</span> <span class="stringliteral">&quot;data&quot;</span></div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;            next_ = <span class="stringliteral">&quot;fc_{}_{}&quot;</span>.format(i + 1, j)</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;            brew.fc(</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;                model,</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;                current, next_,</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;                dim_in=d, dim_out=d,</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;                weight_init=(<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;                bias_init=(<span class="stringliteral">&#39;XavierFill&#39;</span>, {}))</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    brew.sum(model, [<span class="stringliteral">&quot;fc_{}_{}&quot;</span>.format(depth, j) <span class="keywordflow">for</span> j <span class="keywordflow">in</span> range(width)], [<span class="stringliteral">&quot;sum&quot;</span>])</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    brew.fc(model, <span class="stringliteral">&quot;sum&quot;</span>, <span class="stringliteral">&quot;last&quot;</span>,</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;             dim_in=d, dim_out=1000,</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;             weight_init=(<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;             bias_init=(<span class="stringliteral">&#39;XavierFill&#39;</span>, {}))</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    xent = model.LabelCrossEntropy([<span class="stringliteral">&quot;last&quot;</span>, <span class="stringliteral">&quot;label&quot;</span>], <span class="stringliteral">&quot;xent&quot;</span>)</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> mkl:</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;        model.AveragedLoss(xent, <span class="stringliteral">&quot;loss&quot;</span>)</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    <span class="keywordflow">return</span> model, d</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;<span class="keyword">def </span>ResNet50(order, cudnn_ws, mkl):</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    my_arg_scope = {<span class="stringliteral">&#39;order&#39;</span>: order, <span class="stringliteral">&#39;use_cudnn&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;                    <span class="stringliteral">&#39;cudnn_exhaustive_search&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;                    <span class="stringliteral">&#39;ws_nbytes_limit&#39;</span>: str(cudnn_ws)}</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    model = ModelHelper(name=<span class="stringliteral">&quot;alexnet&quot;</span>, arg_scope=my_arg_scope)</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;    resnet.create_resnet50(model, <span class="stringliteral">&quot;data&quot;</span>, 3, 1000, is_test=<span class="keyword">True</span>,</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;                           final_avg_kernel=14)</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <span class="keywordflow">return</span> model, 448</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;<span class="keyword">def </span>AlexNet(order, cudnn_ws, mkl):</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    my_arg_scope = {<span class="stringliteral">&#39;order&#39;</span>: order, <span class="stringliteral">&#39;use_cudnn&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                    <span class="stringliteral">&#39;cudnn_exhaustive_search&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                    <span class="stringliteral">&#39;ws_nbytes_limit&#39;</span>: str(cudnn_ws)}</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    model = ModelHelper(name=<span class="stringliteral">&quot;alexnet&quot;</span>, arg_scope=my_arg_scope)</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    conv1 = brew.conv(</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;        model,</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;        <span class="stringliteral">&quot;data&quot;</span>,</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;        <span class="stringliteral">&quot;conv1&quot;</span>,</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;        3,</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;        64,</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;        11,</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;        stride=4,</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;        pad=2</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;    )</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;    relu1 = brew.relu(model, conv1, <span class="stringliteral">&quot;conv1&quot;</span>)</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;    pool1 = brew.max_pool(model, relu1, <span class="stringliteral">&quot;pool1&quot;</span>, kernel=3, stride=2)</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;    conv2 = brew.conv(</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;        model,</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;        pool1,</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;        <span class="stringliteral">&quot;conv2&quot;</span>,</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;        64,</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;        192,</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;        5,</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;        pad=2</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;    )</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    relu2 = brew.relu(model, conv2, <span class="stringliteral">&quot;conv2&quot;</span>)</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    pool2 = brew.max_pool(model, relu2, <span class="stringliteral">&quot;pool2&quot;</span>, kernel=3, stride=2)</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    conv3 = brew.conv(</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;        model,</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;        pool2,</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;        <span class="stringliteral">&quot;conv3&quot;</span>,</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;        192,</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;        384,</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;        3,</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;        pad=1</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;    )</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;    relu3 = brew.relu(model, conv3, <span class="stringliteral">&quot;conv3&quot;</span>)</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;    conv4 = brew.conv(</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;        model,</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;        relu3,</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;        <span class="stringliteral">&quot;conv4&quot;</span>,</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;        384,</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;        256,</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;        3,</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;        pad=1</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    )</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;    relu4 = brew.relu(model, conv4, <span class="stringliteral">&quot;conv4&quot;</span>)</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;    conv5 = brew.conv(</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;        model,</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;        relu4,</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;        <span class="stringliteral">&quot;conv5&quot;</span>,</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;        256,</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;        256,</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;        3,</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;        pad=1</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;    )</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;    relu5 = brew.relu(model, conv5, <span class="stringliteral">&quot;conv5&quot;</span>)</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;    pool5 = brew.max_pool(model, relu5, <span class="stringliteral">&quot;pool5&quot;</span>, kernel=3, stride=2)</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    fc6 = brew.fc(</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;        model, pool5, <span class="stringliteral">&quot;fc6&quot;</span>, 256 * 6 * 6, 4096, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;    )</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    relu6 = brew.relu(model, fc6, <span class="stringliteral">&quot;fc6&quot;</span>)</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    fc7 = brew.fc(</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;        model, relu6, <span class="stringliteral">&quot;fc7&quot;</span>, 4096, 4096, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;    )</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;    relu7 = brew.relu(model, fc7, <span class="stringliteral">&quot;fc7&quot;</span>)</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    fc8 = brew.fc(</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;        model, relu7, <span class="stringliteral">&quot;fc8&quot;</span>, 4096, 1000, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;    )</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;    pred = brew.softmax(model, fc8, <span class="stringliteral">&quot;pred&quot;</span>)</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;    xent = model.LabelCrossEntropy([pred, <span class="stringliteral">&quot;label&quot;</span>], <span class="stringliteral">&quot;xent&quot;</span>)</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> mkl:</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;        loss = model.AveragedLoss(xent, <span class="stringliteral">&quot;loss&quot;</span>)</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    <span class="keywordflow">return</span> model, 224</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;<span class="keyword">def </span>OverFeat(order, cudnn_ws, mkl):</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;    my_arg_scope = {<span class="stringliteral">&#39;order&#39;</span>: order, <span class="stringliteral">&#39;use_cudnn&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;                    <span class="stringliteral">&#39;cudnn_exhaustive_search&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;                    <span class="stringliteral">&#39;ws_nbytes_limit&#39;</span>: str(cudnn_ws)}</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;    model = ModelHelper(name=<span class="stringliteral">&#39;overfeat&#39;</span>, arg_scope=my_arg_scope)</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;    conv1 = brew.conv(</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;        model,</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;        <span class="stringliteral">&quot;data&quot;</span>,</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;        <span class="stringliteral">&quot;conv1&quot;</span>,</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;        3,</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;        96,</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;        11,</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;        stride=4</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;    )</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    relu1 = brew.relu(model, conv1, <span class="stringliteral">&quot;conv1&quot;</span>)</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;    pool1 = brew.max_pool(model, relu1, <span class="stringliteral">&quot;pool1&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;    conv2 = brew.conv(</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;        model, pool1, <span class="stringliteral">&quot;conv2&quot;</span>, 96, 256, 5, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    )</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    relu2 = brew.relu(model, conv2, <span class="stringliteral">&quot;conv2&quot;</span>)</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    pool2 = brew.max_pool(model, relu2, <span class="stringliteral">&quot;pool2&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    conv3 = brew.conv(</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;        model,</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;        pool2,</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;        <span class="stringliteral">&quot;conv3&quot;</span>,</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;        256,</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;        512,</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;        3,</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;        pad=1</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    )</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    relu3 = brew.relu(model, conv3, <span class="stringliteral">&quot;conv3&quot;</span>)</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;    conv4 = brew.conv(</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;        model,</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;        relu3,</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;        <span class="stringliteral">&quot;conv4&quot;</span>,</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;        512,</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;        1024,</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;        3,</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;        pad=1</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;    )</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    relu4 = brew.relu(model, conv4, <span class="stringliteral">&quot;conv4&quot;</span>)</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;    conv5 = brew.conv(</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;        model,</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;        relu4,</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;        <span class="stringliteral">&quot;conv5&quot;</span>,</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;        1024,</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;        1024,</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;        3,</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;        pad=1</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;    )</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;    relu5 = brew.relu(model, conv5, <span class="stringliteral">&quot;conv5&quot;</span>)</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;    pool5 = brew.max_pool(model, relu5, <span class="stringliteral">&quot;pool5&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;    fc6 = brew.fc(</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;        model, pool5, <span class="stringliteral">&quot;fc6&quot;</span>, 1024 * 6 * 6, 3072, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    )</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;    relu6 = brew.relu(model, fc6, <span class="stringliteral">&quot;fc6&quot;</span>)</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;    fc7 = brew.fc(</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;        model, relu6, <span class="stringliteral">&quot;fc7&quot;</span>, 3072, 4096, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;    )</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;    relu7 = brew.relu(model, fc7, <span class="stringliteral">&quot;fc7&quot;</span>)</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;    fc8 = brew.fc(</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;        model, relu7, <span class="stringliteral">&quot;fc8&quot;</span>, 4096, 1000, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;    )</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;    pred = brew.softmax(model, fc8, <span class="stringliteral">&quot;pred&quot;</span>)</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    xent = model.LabelCrossEntropy([pred, <span class="stringliteral">&quot;label&quot;</span>], <span class="stringliteral">&quot;xent&quot;</span>)</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> mkl:</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;        loss = model.AveragedLoss(xent, <span class="stringliteral">&quot;loss&quot;</span>)</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;    <span class="keywordflow">return</span> model, 231</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;<span class="keyword">def </span>VGGA(order, cudnn_ws, mkl):</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;    my_arg_scope = {<span class="stringliteral">&#39;order&#39;</span>: order, <span class="stringliteral">&#39;use_cudnn&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;                    <span class="stringliteral">&#39;cudnn_exhaustive_search&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;                    <span class="stringliteral">&#39;ws_nbytes_limit&#39;</span>: str(cudnn_ws)}</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;    model = ModelHelper(name=<span class="stringliteral">&#39;vgg-a&#39;</span>, arg_scope=my_arg_scope)</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    conv1 = brew.conv(</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;        model,</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;        <span class="stringliteral">&quot;data&quot;</span>,</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;        <span class="stringliteral">&quot;conv1&quot;</span>,</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;        3,</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;        64,</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;        3,</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;        pad=1</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;    )</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;    relu1 = brew.relu(model, conv1, <span class="stringliteral">&quot;conv1&quot;</span>)</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;    pool1 = brew.max_pool(model, relu1, <span class="stringliteral">&quot;pool1&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;    conv2 = brew.conv(</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;        model,</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;        pool1,</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;        <span class="stringliteral">&quot;conv2&quot;</span>,</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;        64,</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;        128,</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;        3,</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;        pad=1</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;    )</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;    relu2 = brew.relu(model, conv2, <span class="stringliteral">&quot;conv2&quot;</span>)</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;    pool2 = brew.max_pool(model, relu2, <span class="stringliteral">&quot;pool2&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;    conv3 = brew.conv(</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;        model,</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;        pool2,</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;        <span class="stringliteral">&quot;conv3&quot;</span>,</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;        128,</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;        256,</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;        3,</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;        pad=1</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;    )</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;    relu3 = brew.relu(model, conv3, <span class="stringliteral">&quot;conv3&quot;</span>)</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;    conv4 = brew.conv(</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;        model,</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;        relu3,</div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;        <span class="stringliteral">&quot;conv4&quot;</span>,</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;        256,</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;        256,</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;        3,</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;        pad=1</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;    )</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;    relu4 = brew.relu(model, conv4, <span class="stringliteral">&quot;conv4&quot;</span>)</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;    pool4 = brew.max_pool(model, relu4, <span class="stringliteral">&quot;pool4&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;    conv5 = brew.conv(</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;        model,</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;        pool4,</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;        <span class="stringliteral">&quot;conv5&quot;</span>,</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;        256,</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;        512,</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;        3,</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;        pad=1</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;    )</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;    relu5 = brew.relu(model, conv5, <span class="stringliteral">&quot;conv5&quot;</span>)</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;    conv6 = brew.conv(</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;        model,</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;        relu5,</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;        <span class="stringliteral">&quot;conv6&quot;</span>,</div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;        512,</div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;        512,</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;        3,</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;        pad=1</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;    )</div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;    relu6 = brew.relu(model, conv6, <span class="stringliteral">&quot;conv6&quot;</span>)</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;    pool6 = brew.max_pool(model, relu6, <span class="stringliteral">&quot;pool6&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;    conv7 = brew.conv(</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;        model,</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;        pool6,</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;        <span class="stringliteral">&quot;conv7&quot;</span>,</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;        512,</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;        512,</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;        3,</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;        pad=1</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;    )</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    relu7 = brew.relu(model, conv7, <span class="stringliteral">&quot;conv7&quot;</span>)</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;    conv8 = brew.conv(</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;        model,</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;        relu7,</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;        <span class="stringliteral">&quot;conv8&quot;</span>,</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;        512,</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;        512,</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;        3,</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;        pad=1</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;    )</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;    relu8 = brew.relu(model, conv8, <span class="stringliteral">&quot;conv8&quot;</span>)</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;    pool8 = brew.max_pool(model, relu8, <span class="stringliteral">&quot;pool8&quot;</span>, kernel=2, stride=2)</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;    fcix = brew.fc(</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;        model, pool8, <span class="stringliteral">&quot;fcix&quot;</span>, 512 * 7 * 7, 4096, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;    )</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;    reluix = brew.relu(model, fcix, <span class="stringliteral">&quot;fcix&quot;</span>)</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;    fcx = brew.fc(</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;        model, reluix, <span class="stringliteral">&quot;fcx&quot;</span>, 4096, 4096, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;    )</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;    relux = brew.relu(model, fcx, <span class="stringliteral">&quot;fcx&quot;</span>)</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;    fcxi = brew.fc(</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;        model, relux, <span class="stringliteral">&quot;fcxi&quot;</span>, 4096, 1000, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;    )</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;    pred = brew.softmax(model, fcxi, <span class="stringliteral">&quot;pred&quot;</span>)</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;    xent = model.LabelCrossEntropy([pred, <span class="stringliteral">&quot;label&quot;</span>], <span class="stringliteral">&quot;xent&quot;</span>)</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> mkl:</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        loss = model.AveragedLoss(xent, <span class="stringliteral">&quot;loss&quot;</span>)</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;    <span class="keywordflow">return</span> model, 231</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;<span class="keyword">def </span>_InceptionModule(</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;    model, input_blob, input_depth, output_name, conv1_depth, conv3_depths,</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;    conv5_depths, pool_depth</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;):</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;    <span class="comment"># path 1: 1x1 conv</span></div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;    conv1 = brew.conv(</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;        model, input_blob, output_name + <span class="stringliteral">&quot;:conv1&quot;</span>, input_depth, conv1_depth, 1,</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    )</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    conv1 = brew.relu(model, conv1, conv1)</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    <span class="comment"># path 2: 1x1 conv + 3x3 conv</span></div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;    conv3_reduce = brew.conv(</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;        model, input_blob, output_name + <span class="stringliteral">&quot;:conv3_reduce&quot;</span>, input_depth,</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;        conv3_depths[0], 1, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    )</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    conv3_reduce = brew.relu(model, conv3_reduce, conv3_reduce)</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    conv3 = brew.conv(</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;        model,</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;        conv3_reduce,</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;        output_name + <span class="stringliteral">&quot;:conv3&quot;</span>,</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;        conv3_depths[0],</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;        conv3_depths[1],</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;        3,</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;        pad=1</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;    )</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;    conv3 = brew.relu(model, conv3, conv3)</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;    <span class="comment"># path 3: 1x1 conv + 5x5 conv</span></div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;    conv5_reduce = brew.conv(</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;        model, input_blob, output_name + <span class="stringliteral">&quot;:conv5_reduce&quot;</span>, input_depth,</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;        conv5_depths[0], 1, (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;    )</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;    conv5_reduce = brew.relu(model, conv5_reduce, conv5_reduce)</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;    conv5 = brew.conv(</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;        model,</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;        conv5_reduce,</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;        output_name + <span class="stringliteral">&quot;:conv5&quot;</span>,</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;        conv5_depths[0],</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;        conv5_depths[1],</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;        5,</div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;        pad=2</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;    )</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;    conv5 = brew.relu(model, conv5, conv5)</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;    <span class="comment"># path 4: pool + 1x1 conv</span></div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;    pool = brew.max_pool(</div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;        model,</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;        input_blob,</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;        output_name + <span class="stringliteral">&quot;:pool&quot;</span>,</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;        kernel=3,</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;        stride=1,</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;        pad=1</div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;    )</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;    pool_proj = brew.conv(</div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;        model, pool, output_name + <span class="stringliteral">&quot;:pool_proj&quot;</span>, input_depth, pool_depth, 1,</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;    )</div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;    pool_proj = brew.relu(model, pool_proj, pool_proj)</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;    output = brew.concat(model, [conv1, conv3, conv5, pool_proj], output_name)</div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;    <span class="keywordflow">return</span> output</div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;</div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;<span class="keyword">def </span>Inception(order, cudnn_ws, mkl):</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;    my_arg_scope = {<span class="stringliteral">&#39;order&#39;</span>: order, <span class="stringliteral">&#39;use_cudnn&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;                    <span class="stringliteral">&#39;cudnn_exhaustive_search&#39;</span>: <span class="keyword">True</span>,</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;                    <span class="stringliteral">&#39;ws_nbytes_limit&#39;</span>: str(cudnn_ws)}</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;    model = ModelHelper(name=<span class="stringliteral">&quot;inception&quot;</span>, arg_scope=my_arg_scope)</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;    conv1 = brew.conv(</div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;        model,</div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;        <span class="stringliteral">&quot;data&quot;</span>,</div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;        <span class="stringliteral">&quot;conv1&quot;</span>,</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;        3,</div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;        64,</div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;        7,</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;        stride=2,</div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;        pad=3</div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;    )</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;    relu1 = brew.relu(model, conv1, <span class="stringliteral">&quot;conv1&quot;</span>)</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;    pool1 = brew.max_pool(model, relu1, <span class="stringliteral">&quot;pool1&quot;</span>, kernel=3, stride=2, pad=1)</div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;    conv2a = brew.conv(</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;        model, pool1, <span class="stringliteral">&quot;conv2a&quot;</span>, 64, 64, 1,</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;    )</div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;    conv2a = brew.relu(model, conv2a, conv2a)</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;    conv2 = brew.conv(</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;        model,</div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;        conv2a,</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;        <span class="stringliteral">&quot;conv2&quot;</span>,</div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;        64,</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;        192,</div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;        3,</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}),</div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;        (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {}),</div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;        pad=1</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;    )</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;    relu2 = brew.relu(model, conv2, <span class="stringliteral">&quot;conv2&quot;</span>)</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;    pool2 = brew.max_pool(model, relu2, <span class="stringliteral">&quot;pool2&quot;</span>, kernel=3, stride=2, pad=1)</div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;    <span class="comment"># Inception modules</span></div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;    inc3 = _InceptionModule(</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;        model, pool2, 192, <span class="stringliteral">&quot;inc3&quot;</span>, 64, [96, 128], [16, 32], 32</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;    )</div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;    inc4 = _InceptionModule(</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;        model, inc3, 256, <span class="stringliteral">&quot;inc4&quot;</span>, 128, [128, 192], [32, 96], 64</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;    )</div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;    pool5 = brew.max_pool(model, inc4, <span class="stringliteral">&quot;pool5&quot;</span>, kernel=3, stride=2, pad=1)</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;    inc5 = _InceptionModule(</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;        model, pool5, 480, <span class="stringliteral">&quot;inc5&quot;</span>, 192, [96, 208], [16, 48], 64</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;    )</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;    inc6 = _InceptionModule(</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;        model, inc5, 512, <span class="stringliteral">&quot;inc6&quot;</span>, 160, [112, 224], [24, 64], 64</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;    )</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;    inc7 = _InceptionModule(</div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;        model, inc6, 512, <span class="stringliteral">&quot;inc7&quot;</span>, 128, [128, 256], [24, 64], 64</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;    )</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;    inc8 = _InceptionModule(</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;        model, inc7, 512, <span class="stringliteral">&quot;inc8&quot;</span>, 112, [144, 288], [32, 64], 64</div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;    )</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;    inc9 = _InceptionModule(</div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;        model, inc8, 528, <span class="stringliteral">&quot;inc9&quot;</span>, 256, [160, 320], [32, 128], 128</div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;    )</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;    pool9 = brew.max_pool(model, inc9, <span class="stringliteral">&quot;pool9&quot;</span>, kernel=3, stride=2, pad=1)</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;    inc10 = _InceptionModule(</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;        model, pool9, 832, <span class="stringliteral">&quot;inc10&quot;</span>, 256, [160, 320], [32, 128], 128</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;    )</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;    inc11 = _InceptionModule(</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;        model, inc10, 832, <span class="stringliteral">&quot;inc11&quot;</span>, 384, [192, 384], [48, 128], 128</div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;    )</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;    pool11 = brew.average_pool(model, inc11, <span class="stringliteral">&quot;pool11&quot;</span>, kernel=7, stride=1)</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;    fc = brew.fc(</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;        model, pool11, <span class="stringliteral">&quot;fc&quot;</span>, 1024, 1000,</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;        (<span class="stringliteral">&#39;XavierFill&#39;</span>, {}), (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {})</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;    )</div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;    <span class="comment"># It seems that Soumith&#39;s benchmark does not have softmax on top</span></div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;    <span class="comment"># for Inception. We will add it anyway so we can have a proper</span></div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;    <span class="comment"># backward pass.</span></div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;    pred = brew.softmax(model, fc, <span class="stringliteral">&quot;pred&quot;</span>)</div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;    xent = model.LabelCrossEntropy([pred, <span class="stringliteral">&quot;label&quot;</span>], <span class="stringliteral">&quot;xent&quot;</span>)</div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> mkl:</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;        loss = model.AveragedLoss(xent, <span class="stringliteral">&quot;loss&quot;</span>)</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;    <span class="keywordflow">return</span> model, 224</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;<span class="keyword">def </span><a class="code" href="namespaceconvnet__benchmarks.html#ac095378d9a77f65064a88ed77e89b4a8">AddParameterUpdate</a>(model):</div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;    <span class="stringliteral">&quot;&quot;&quot; Simple plain SGD update -- not tuned to actually train the models &quot;&quot;&quot;</span></div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;    ITER = brew.iter(model, <span class="stringliteral">&quot;iter&quot;</span>)</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;    LR = model.LearningRate(</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;        ITER, <span class="stringliteral">&quot;LR&quot;</span>, base_lr=-1e-8, policy=<span class="stringliteral">&quot;step&quot;</span>, stepsize=10000, gamma=0.999)</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;    ONE = model.param_init_net.ConstantFill([], <span class="stringliteral">&quot;ONE&quot;</span>, shape=[1], value=1.0)</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;    <span class="keywordflow">for</span> param <span class="keywordflow">in</span> model.params:</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;        param_grad = model.param_to_grad[param]</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;        model.WeightedSum([param, ONE, param_grad, LR], param)</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;<span class="keyword">def </span>Benchmark(model_gen, arg):</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;    model, input_size = model_gen(arg.order, arg.cudnn_ws, arg.mkl)</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;    model.Proto().type = arg.net_type</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;    model.Proto().num_workers = arg.num_workers</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;    <span class="comment"># In order to be able to run everything without feeding more stuff, let&#39;s</span></div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;    <span class="comment"># add the data and label blobs to the parameter initialization net as well.</span></div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;    <span class="keywordflow">if</span> arg.order == <span class="stringliteral">&quot;NCHW&quot;</span>:</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;        input_shape = [arg.batch_size, 3, input_size, input_size]</div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;    <span class="keywordflow">else</span>:</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;        input_shape = [arg.batch_size, input_size, input_size, 3]</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;    <span class="keywordflow">if</span> arg.model == <span class="stringliteral">&quot;MLP&quot;</span>:</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;        input_shape = [arg.batch_size, input_size]</div><div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;</div><div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;    model.param_init_net.GaussianFill(</div><div class="line"><a name="l00574"></a><span class="lineno">  574</span>&#160;        [],</div><div class="line"><a name="l00575"></a><span class="lineno">  575</span>&#160;        <span class="stringliteral">&quot;data&quot;</span>,</div><div class="line"><a name="l00576"></a><span class="lineno">  576</span>&#160;        shape=input_shape,</div><div class="line"><a name="l00577"></a><span class="lineno">  577</span>&#160;        mean=0.0,</div><div class="line"><a name="l00578"></a><span class="lineno">  578</span>&#160;        std=1.0</div><div class="line"><a name="l00579"></a><span class="lineno">  579</span>&#160;    )</div><div class="line"><a name="l00580"></a><span class="lineno">  580</span>&#160;    <span class="comment">#MKL doesn&#39;t support int, so have to use numpy</span></div><div class="line"><a name="l00581"></a><span class="lineno">  581</span>&#160;    <span class="keywordflow">if</span> arg.mkl:</div><div class="line"><a name="l00582"></a><span class="lineno">  582</span>&#160;        label = np.random.randint(low=0, high=1000, size=(arg.batch_size,)).astype(np.int32)</div><div class="line"><a name="l00583"></a><span class="lineno">  583</span>&#160;        workspace.FeedBlob(<span class="stringliteral">&quot;label&quot;</span>, label)</div><div class="line"><a name="l00584"></a><span class="lineno">  584</span>&#160;    <span class="keywordflow">else</span>:</div><div class="line"><a name="l00585"></a><span class="lineno">  585</span>&#160;        model.param_init_net.UniformIntFill(</div><div class="line"><a name="l00586"></a><span class="lineno">  586</span>&#160;            [],</div><div class="line"><a name="l00587"></a><span class="lineno">  587</span>&#160;            <span class="stringliteral">&quot;label&quot;</span>,</div><div class="line"><a name="l00588"></a><span class="lineno">  588</span>&#160;            shape=[arg.batch_size, ],</div><div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;            min=0,</div><div class="line"><a name="l00590"></a><span class="lineno">  590</span>&#160;            max=999</div><div class="line"><a name="l00591"></a><span class="lineno">  591</span>&#160;        )</div><div class="line"><a name="l00592"></a><span class="lineno">  592</span>&#160;</div><div class="line"><a name="l00593"></a><span class="lineno">  593</span>&#160;    <span class="keywordflow">if</span> arg.forward_only:</div><div class="line"><a name="l00594"></a><span class="lineno">  594</span>&#160;        print(<span class="stringliteral">&#39;{}: running forward only.&#39;</span>.format(arg.model))</div><div class="line"><a name="l00595"></a><span class="lineno">  595</span>&#160;    <span class="keywordflow">else</span>:</div><div class="line"><a name="l00596"></a><span class="lineno">  596</span>&#160;        <span class="keywordflow">if</span> arg.mkl:</div><div class="line"><a name="l00597"></a><span class="lineno">  597</span>&#160;            print(</div><div class="line"><a name="l00598"></a><span class="lineno">  598</span>&#160;                <span class="stringliteral">&#39;==WARNING==\n&#39;</span></div><div class="line"><a name="l00599"></a><span class="lineno">  599</span>&#160;                <span class="stringliteral">&#39;forward-backward not supported yet in MKL, so exiting&#39;</span></div><div class="line"><a name="l00600"></a><span class="lineno">  600</span>&#160;            )</div><div class="line"><a name="l00601"></a><span class="lineno">  601</span>&#160;        print(<span class="stringliteral">&#39;{}: running forward-backward.&#39;</span>.format(arg.model))</div><div class="line"><a name="l00602"></a><span class="lineno">  602</span>&#160;        model.AddGradientOperators([<span class="stringliteral">&quot;loss&quot;</span>])</div><div class="line"><a name="l00603"></a><span class="lineno">  603</span>&#160;        <a class="code" href="namespaceconvnet__benchmarks.html#ac095378d9a77f65064a88ed77e89b4a8">AddParameterUpdate</a>(model)</div><div class="line"><a name="l00604"></a><span class="lineno">  604</span>&#160;        <span class="keywordflow">if</span> arg.order == <span class="stringliteral">&#39;NHWC&#39;</span>:</div><div class="line"><a name="l00605"></a><span class="lineno">  605</span>&#160;            print(</div><div class="line"><a name="l00606"></a><span class="lineno">  606</span>&#160;                <span class="stringliteral">&#39;==WARNING==\n&#39;</span></div><div class="line"><a name="l00607"></a><span class="lineno">  607</span>&#160;                <span class="stringliteral">&#39;NHWC order with CuDNN may not be supported yet, so I might\n&#39;</span></div><div class="line"><a name="l00608"></a><span class="lineno">  608</span>&#160;                <span class="stringliteral">&#39;exit suddenly.&#39;</span></div><div class="line"><a name="l00609"></a><span class="lineno">  609</span>&#160;            )</div><div class="line"><a name="l00610"></a><span class="lineno">  610</span>&#160;</div><div class="line"><a name="l00611"></a><span class="lineno">  611</span>&#160;    <span class="keywordflow">if</span> <span class="keywordflow">not</span> arg.cpu:</div><div class="line"><a name="l00612"></a><span class="lineno">  612</span>&#160;        <span class="keywordflow">if</span> arg.mkl:</div><div class="line"><a name="l00613"></a><span class="lineno">  613</span>&#160;            model.param_init_net.RunAllOnMKL()</div><div class="line"><a name="l00614"></a><span class="lineno">  614</span>&#160;            model.net.RunAllOnMKL()</div><div class="line"><a name="l00615"></a><span class="lineno">  615</span>&#160;        <span class="keywordflow">else</span>:</div><div class="line"><a name="l00616"></a><span class="lineno">  616</span>&#160;            model.param_init_net.RunAllOnGPU()</div><div class="line"><a name="l00617"></a><span class="lineno">  617</span>&#160;            model.net.RunAllOnGPU()</div><div class="line"><a name="l00618"></a><span class="lineno">  618</span>&#160;</div><div class="line"><a name="l00619"></a><span class="lineno">  619</span>&#160;    <span class="keywordflow">if</span> arg.engine:</div><div class="line"><a name="l00620"></a><span class="lineno">  620</span>&#160;        <span class="keywordflow">for</span> op <span class="keywordflow">in</span> model.net.Proto().op:</div><div class="line"><a name="l00621"></a><span class="lineno">  621</span>&#160;            op.engine = arg.engine</div><div class="line"><a name="l00622"></a><span class="lineno">  622</span>&#160;</div><div class="line"><a name="l00623"></a><span class="lineno">  623</span>&#160;    <span class="keywordflow">if</span> arg.dump_model:</div><div class="line"><a name="l00624"></a><span class="lineno">  624</span>&#160;        <span class="comment"># Writes out the pbtxt for benchmarks on e.g. Android</span></div><div class="line"><a name="l00625"></a><span class="lineno">  625</span>&#160;        with open(</div><div class="line"><a name="l00626"></a><span class="lineno">  626</span>&#160;            <span class="stringliteral">&quot;{0}_init_batch_{1}.pbtxt&quot;</span>.format(arg.model, arg.batch_size), <span class="stringliteral">&quot;w&quot;</span></div><div class="line"><a name="l00627"></a><span class="lineno">  627</span>&#160;        ) <span class="keyword">as</span> fid:</div><div class="line"><a name="l00628"></a><span class="lineno">  628</span>&#160;            fid.write(str(model.param_init_net.Proto()))</div><div class="line"><a name="l00629"></a><span class="lineno">  629</span>&#160;        with open(<span class="stringliteral">&quot;{0}.pbtxt&quot;</span>.format(arg.model, arg.batch_size), <span class="stringliteral">&quot;w&quot;</span>) <span class="keyword">as</span> fid:</div><div class="line"><a name="l00630"></a><span class="lineno">  630</span>&#160;            fid.write(str(model.net.Proto()))</div><div class="line"><a name="l00631"></a><span class="lineno">  631</span>&#160;</div><div class="line"><a name="l00632"></a><span class="lineno">  632</span>&#160;    workspace.RunNetOnce(model.param_init_net)</div><div class="line"><a name="l00633"></a><span class="lineno">  633</span>&#160;    workspace.CreateNet(model.net)</div><div class="line"><a name="l00634"></a><span class="lineno">  634</span>&#160;    workspace.BenchmarkNet(</div><div class="line"><a name="l00635"></a><span class="lineno">  635</span>&#160;        model.net.Proto().name, arg.warmup_iterations, arg.iterations,</div><div class="line"><a name="l00636"></a><span class="lineno">  636</span>&#160;        arg.layer_wise_benchmark)</div><div class="line"><a name="l00637"></a><span class="lineno">  637</span>&#160;</div><div class="line"><a name="l00638"></a><span class="lineno">  638</span>&#160;</div><div class="line"><a name="l00639"></a><span class="lineno">  639</span>&#160;<span class="keyword">def </span>GetArgumentParser():</div><div class="line"><a name="l00640"></a><span class="lineno">  640</span>&#160;    parser = argparse.ArgumentParser(description=<span class="stringliteral">&quot;Caffe2 benchmark.&quot;</span>)</div><div class="line"><a name="l00641"></a><span class="lineno">  641</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00642"></a><span class="lineno">  642</span>&#160;        <span class="stringliteral">&quot;--batch_size&quot;</span>,</div><div class="line"><a name="l00643"></a><span class="lineno">  643</span>&#160;        type=int,</div><div class="line"><a name="l00644"></a><span class="lineno">  644</span>&#160;        default=128,</div><div class="line"><a name="l00645"></a><span class="lineno">  645</span>&#160;        help=<span class="stringliteral">&quot;The batch size.&quot;</span></div><div class="line"><a name="l00646"></a><span class="lineno">  646</span>&#160;    )</div><div class="line"><a name="l00647"></a><span class="lineno">  647</span>&#160;    parser.add_argument(<span class="stringliteral">&quot;--model&quot;</span>, type=str, help=<span class="stringliteral">&quot;The model to benchmark.&quot;</span>)</div><div class="line"><a name="l00648"></a><span class="lineno">  648</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00649"></a><span class="lineno">  649</span>&#160;        <span class="stringliteral">&quot;--order&quot;</span>,</div><div class="line"><a name="l00650"></a><span class="lineno">  650</span>&#160;        type=str,</div><div class="line"><a name="l00651"></a><span class="lineno">  651</span>&#160;        default=<span class="stringliteral">&quot;NCHW&quot;</span>,</div><div class="line"><a name="l00652"></a><span class="lineno">  652</span>&#160;        help=<span class="stringliteral">&quot;The order to evaluate.&quot;</span></div><div class="line"><a name="l00653"></a><span class="lineno">  653</span>&#160;    )</div><div class="line"><a name="l00654"></a><span class="lineno">  654</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00655"></a><span class="lineno">  655</span>&#160;        <span class="stringliteral">&quot;--cudnn_ws&quot;</span>,</div><div class="line"><a name="l00656"></a><span class="lineno">  656</span>&#160;        type=int,</div><div class="line"><a name="l00657"></a><span class="lineno">  657</span>&#160;        help=<span class="stringliteral">&quot;The cudnn workspace size.&quot;</span></div><div class="line"><a name="l00658"></a><span class="lineno">  658</span>&#160;    )</div><div class="line"><a name="l00659"></a><span class="lineno">  659</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00660"></a><span class="lineno">  660</span>&#160;        <span class="stringliteral">&quot;--iterations&quot;</span>,</div><div class="line"><a name="l00661"></a><span class="lineno">  661</span>&#160;        type=int,</div><div class="line"><a name="l00662"></a><span class="lineno">  662</span>&#160;        default=10,</div><div class="line"><a name="l00663"></a><span class="lineno">  663</span>&#160;        help=<span class="stringliteral">&quot;Number of iterations to run the network.&quot;</span></div><div class="line"><a name="l00664"></a><span class="lineno">  664</span>&#160;    )</div><div class="line"><a name="l00665"></a><span class="lineno">  665</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00666"></a><span class="lineno">  666</span>&#160;        <span class="stringliteral">&quot;--warmup_iterations&quot;</span>,</div><div class="line"><a name="l00667"></a><span class="lineno">  667</span>&#160;        type=int,</div><div class="line"><a name="l00668"></a><span class="lineno">  668</span>&#160;        default=10,</div><div class="line"><a name="l00669"></a><span class="lineno">  669</span>&#160;        help=<span class="stringliteral">&quot;Number of warm-up iterations before benchmarking.&quot;</span></div><div class="line"><a name="l00670"></a><span class="lineno">  670</span>&#160;    )</div><div class="line"><a name="l00671"></a><span class="lineno">  671</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00672"></a><span class="lineno">  672</span>&#160;        <span class="stringliteral">&quot;--forward_only&quot;</span>,</div><div class="line"><a name="l00673"></a><span class="lineno">  673</span>&#160;        action=<span class="stringliteral">&#39;store_true&#39;</span>,</div><div class="line"><a name="l00674"></a><span class="lineno">  674</span>&#160;        help=<span class="stringliteral">&quot;If set, only run the forward pass.&quot;</span></div><div class="line"><a name="l00675"></a><span class="lineno">  675</span>&#160;    )</div><div class="line"><a name="l00676"></a><span class="lineno">  676</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00677"></a><span class="lineno">  677</span>&#160;        <span class="stringliteral">&quot;--layer_wise_benchmark&quot;</span>,</div><div class="line"><a name="l00678"></a><span class="lineno">  678</span>&#160;        action=<span class="stringliteral">&#39;store_true&#39;</span>,</div><div class="line"><a name="l00679"></a><span class="lineno">  679</span>&#160;        help=<span class="stringliteral">&quot;If True, run the layer-wise benchmark as well.&quot;</span></div><div class="line"><a name="l00680"></a><span class="lineno">  680</span>&#160;    )</div><div class="line"><a name="l00681"></a><span class="lineno">  681</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00682"></a><span class="lineno">  682</span>&#160;        <span class="stringliteral">&quot;--cpu&quot;</span>,</div><div class="line"><a name="l00683"></a><span class="lineno">  683</span>&#160;        action=<span class="stringliteral">&#39;store_true&#39;</span>,</div><div class="line"><a name="l00684"></a><span class="lineno">  684</span>&#160;        help=<span class="stringliteral">&quot;If True, run testing on CPU instead of GPU.&quot;</span></div><div class="line"><a name="l00685"></a><span class="lineno">  685</span>&#160;    )</div><div class="line"><a name="l00686"></a><span class="lineno">  686</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00687"></a><span class="lineno">  687</span>&#160;        <span class="stringliteral">&quot;--mkl&quot;</span>,</div><div class="line"><a name="l00688"></a><span class="lineno">  688</span>&#160;        action=<span class="stringliteral">&#39;store_true&#39;</span>,</div><div class="line"><a name="l00689"></a><span class="lineno">  689</span>&#160;        help=<span class="stringliteral">&quot;If True, run testing on CPU-MKL instead of GPU.&quot;</span></div><div class="line"><a name="l00690"></a><span class="lineno">  690</span>&#160;    )</div><div class="line"><a name="l00691"></a><span class="lineno">  691</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00692"></a><span class="lineno">  692</span>&#160;        <span class="stringliteral">&quot;--engine&quot;</span>,</div><div class="line"><a name="l00693"></a><span class="lineno">  693</span>&#160;        type=str,</div><div class="line"><a name="l00694"></a><span class="lineno">  694</span>&#160;        default=<span class="stringliteral">&quot;&quot;</span>,</div><div class="line"><a name="l00695"></a><span class="lineno">  695</span>&#160;        help=<span class="stringliteral">&quot;If set, blindly prefer the given engine(s) for every op.&quot;</span>)</div><div class="line"><a name="l00696"></a><span class="lineno">  696</span>&#160;    parser.add_argument(</div><div class="line"><a name="l00697"></a><span class="lineno">  697</span>&#160;        <span class="stringliteral">&quot;--dump_model&quot;</span>,</div><div class="line"><a name="l00698"></a><span class="lineno">  698</span>&#160;        action=<span class="stringliteral">&#39;store_true&#39;</span>,</div><div class="line"><a name="l00699"></a><span class="lineno">  699</span>&#160;        help=<span class="stringliteral">&quot;If True, dump the model prototxts to disk.&quot;</span></div><div class="line"><a name="l00700"></a><span class="lineno">  700</span>&#160;    )</div><div class="line"><a name="l00701"></a><span class="lineno">  701</span>&#160;    parser.add_argument(<span class="stringliteral">&quot;--net_type&quot;</span>, type=str, default=<span class="stringliteral">&quot;simple&quot;</span>)</div><div class="line"><a name="l00702"></a><span class="lineno">  702</span>&#160;    parser.add_argument(<span class="stringliteral">&quot;--num_workers&quot;</span>, type=int, default=2)</div><div class="line"><a name="l00703"></a><span class="lineno">  703</span>&#160;    parser.add_argument(<span class="stringliteral">&quot;--use-nvtx&quot;</span>, default=<span class="keyword">False</span>, action=<span class="stringliteral">&#39;store_true&#39;</span>)</div><div class="line"><a name="l00704"></a><span class="lineno">  704</span>&#160;    parser.add_argument(<span class="stringliteral">&quot;--htrace_span_log_path&quot;</span>, type=str)</div><div class="line"><a name="l00705"></a><span class="lineno">  705</span>&#160;    <span class="keywordflow">return</span> parser</div><div class="line"><a name="l00706"></a><span class="lineno">  706</span>&#160;</div><div class="line"><a name="l00707"></a><span class="lineno">  707</span>&#160;</div><div class="line"><a name="l00708"></a><span class="lineno">  708</span>&#160;<span class="keywordflow">if</span> __name__ == <span class="stringliteral">&#39;__main__&#39;</span>:</div><div class="line"><a name="l00709"></a><span class="lineno">  709</span>&#160;    args, extra_args = GetArgumentParser().parse_known_args()</div><div class="line"><a name="l00710"></a><span class="lineno">  710</span>&#160;    <span class="keywordflow">if</span> (</div><div class="line"><a name="l00711"></a><span class="lineno">  711</span>&#160;        <span class="keywordflow">not</span> args.batch_size <span class="keywordflow">or</span> <span class="keywordflow">not</span> args.model <span class="keywordflow">or</span> <span class="keywordflow">not</span> args.order</div><div class="line"><a name="l00712"></a><span class="lineno">  712</span>&#160;    ):</div><div class="line"><a name="l00713"></a><span class="lineno">  713</span>&#160;        GetArgumentParser().print_help()</div><div class="line"><a name="l00714"></a><span class="lineno">  714</span>&#160;    <span class="keywordflow">else</span>:</div><div class="line"><a name="l00715"></a><span class="lineno">  715</span>&#160;        workspace.GlobalInit(</div><div class="line"><a name="l00716"></a><span class="lineno">  716</span>&#160;            [<span class="stringliteral">&#39;caffe2&#39;</span>, <span class="stringliteral">&#39;--caffe2_log_level=0&#39;</span>] + extra_args +</div><div class="line"><a name="l00717"></a><span class="lineno">  717</span>&#160;            ([<span class="stringliteral">&#39;--caffe2_use_nvtx&#39;</span>] <span class="keywordflow">if</span> args.use_nvtx <span class="keywordflow">else</span> []) +</div><div class="line"><a name="l00718"></a><span class="lineno">  718</span>&#160;            ([<span class="stringliteral">&#39;--caffe2_htrace_span_log_path=&#39;</span> + args.htrace_span_log_path]</div><div class="line"><a name="l00719"></a><span class="lineno">  719</span>&#160;                <span class="keywordflow">if</span> args.htrace_span_log_path <span class="keywordflow">else</span> []))</div><div class="line"><a name="l00720"></a><span class="lineno">  720</span>&#160;</div><div class="line"><a name="l00721"></a><span class="lineno">  721</span>&#160;        model_map = {</div><div class="line"><a name="l00722"></a><span class="lineno">  722</span>&#160;            <span class="stringliteral">&#39;AlexNet&#39;</span>: AlexNet,</div><div class="line"><a name="l00723"></a><span class="lineno">  723</span>&#160;            <span class="stringliteral">&#39;OverFeat&#39;</span>: OverFeat,</div><div class="line"><a name="l00724"></a><span class="lineno">  724</span>&#160;            <span class="stringliteral">&#39;VGGA&#39;</span>: VGGA,</div><div class="line"><a name="l00725"></a><span class="lineno">  725</span>&#160;            <span class="stringliteral">&#39;Inception&#39;</span>: Inception,</div><div class="line"><a name="l00726"></a><span class="lineno">  726</span>&#160;            <span class="stringliteral">&#39;ResNet50&#39;</span>: ResNet50,</div><div class="line"><a name="l00727"></a><span class="lineno">  727</span>&#160;            <span class="stringliteral">&#39;MLP&#39;</span>: MLP,</div><div class="line"><a name="l00728"></a><span class="lineno">  728</span>&#160;        }</div><div class="line"><a name="l00729"></a><span class="lineno">  729</span>&#160;        Benchmark(model_map[args.model], args)</div><div class="ttc" id="namespacecaffe2_1_1python_html"><div class="ttname"><a href="namespacecaffe2_1_1python.html">caffe2.python</a></div><div class="ttdef"><b>Definition:</b> <a href="python_2____init_____8py_source.html#l00001">__init__.py:1</a></div></div>
<div class="ttc" id="namespacecaffe2_1_1python_1_1models_html"><div class="ttname"><a href="namespacecaffe2_1_1python_1_1models.html">caffe2.python.models</a></div><div class="ttdef"><b>Definition:</b> <a href="python_2models_2____init_____8py_source.html#l00001">__init__.py:1</a></div></div>
<div class="ttc" id="namespacecaffe2_1_1python_1_1model__helper_html"><div class="ttname"><a href="namespacecaffe2_1_1python_1_1model__helper.html">caffe2.python.model_helper</a></div><div class="ttdef"><b>Definition:</b> <a href="model__helper_8py_source.html#l00001">model_helper.py:1</a></div></div>
<div class="ttc" id="namespaceconvnet__benchmarks_html_ac095378d9a77f65064a88ed77e89b4a8"><div class="ttname"><a href="namespaceconvnet__benchmarks.html#ac095378d9a77f65064a88ed77e89b4a8">convnet_benchmarks.AddParameterUpdate</a></div><div class="ttdeci">def AddParameterUpdate(model)</div><div class="ttdef"><b>Definition:</b> <a href="experiments_2python_2convnet__benchmarks_8py_source.html#l00527">convnet_benchmarks.py:527</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- HTML footer for doxygen 1.8.14-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated on Thu Apr 19 2018 13:04:04 for Caffe2 - Python API by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
<div class="footerContainer">
  <div id="footer_wrap" class="wrapper footerWrapper">
    <div class="footerBlocks">
      <div id="fb_oss" class="footerSection fbOpenSourceFooter">
          <svg class="facebookOSSLogoSvg" viewBox="0 0 1133.9 1133.9" x="0px" y="0px" height=50 width=50>
            <g>
              <path class="logoRing outerRing" d="M 498.3 3.7 c 153.6 88.9 307.3 177.7 461.1 266.2 c 7.6 4.4 10.3 9.1 10.3 17.8 c -0.3 179.1 -0.2 358.3 0 537.4 c 0 8.1 -2.4 12.8 -9.7 17.1 c -154.5 88.9 -308.8 178.1 -462.9 267.5 c -9 5.2 -15.5 5.3 -24.6 0.1 c -153.9 -89.2 -307.9 -178 -462.1 -266.8 C 3 838.8 0 833.9 0 825.1 c 0.3 -179.1 0.2 -358.3 0 -537.4 c 0 -8.6 2.6 -13.6 10.2 -18 C 164.4 180.9 318.4 92 472.4 3 C 477 -1.5 494.3 -0.7 498.3 3.7 Z M 48.8 555.3 c 0 79.9 0.2 159.9 -0.2 239.8 c -0.1 10 3 15.6 11.7 20.6 c 137.2 78.8 274.2 157.8 411 237.3 c 9.9 5.7 17 5.7 26.8 0.1 c 137.5 -79.8 275.2 -159.2 412.9 -238.5 c 7.4 -4.3 10.5 -8.9 10.5 -17.8 c -0.3 -160.2 -0.3 -320.5 0 -480.7 c 0 -8.8 -2.8 -13.6 -10.3 -18 C 772.1 218 633.1 137.8 494.2 57.4 c -6.5 -3.8 -11.5 -4.5 -18.5 -0.5 C 336.8 137.4 197.9 217.7 58.8 297.7 c -7.7 4.4 -10.2 9.2 -10.2 17.9 C 48.9 395.5 48.8 475.4 48.8 555.3 Z" />
              <path class="logoRing middleRing" d="M 184.4 555.9 c 0 -33.3 -1 -66.7 0.3 -100 c 1.9 -48 24.1 -86 64.7 -110.9 c 54.8 -33.6 110.7 -65.5 167 -96.6 c 45.7 -25.2 92.9 -24.7 138.6 1 c 54.4 30.6 108.7 61.5 162.2 93.7 c 44 26.5 67.3 66.8 68 118.4 c 0.9 63.2 0.9 126.5 0 189.7 c -0.7 50.6 -23.4 90.7 -66.6 116.9 c -55 33.4 -110.8 65.4 -167.1 96.5 c -43.4 24 -89 24.2 -132.3 0.5 c -57.5 -31.3 -114.2 -64 -170 -98.3 c -41 -25.1 -62.9 -63.7 -64.5 -112.2 C 183.5 621.9 184.3 588.9 184.4 555.9 Z M 232.9 556.3 c 0 29.5 0.5 59.1 -0.1 88.6 c -0.8 39.2 16.9 67.1 50.2 86.2 c 51.2 29.4 102.2 59.2 153.4 88.4 c 31.4 17.9 63.6 18.3 95 0.6 c 53.7 -30.3 107.1 -61.2 160.3 -92.5 c 29.7 -17.5 45 -44.5 45.3 -78.8 c 0.6 -61.7 0.5 -123.5 0 -185.2 c -0.3 -34.4 -15.3 -61.5 -44.9 -79 C 637.7 352.6 583 320.8 527.9 290 c -27.5 -15.4 -57.2 -16.1 -84.7 -0.7 c -56.9 31.6 -113.4 64 -169.1 97.6 c -26.4 15.9 -40.7 41.3 -41.1 72.9 C 232.6 491.9 232.9 524.1 232.9 556.3 Z" />
              <path class="logoRing innerRing" d="M 484.9 424.4 c 69.8 -2.8 133.2 57.8 132.6 132 C 617 630 558.5 688.7 484.9 689.1 c -75.1 0.4 -132.6 -63.6 -132.7 -132.7 C 352.1 485 413.4 421.5 484.9 424.4 Z M 401.3 556.7 c -3.4 37.2 30.5 83.6 83 84.1 c 46.6 0.4 84.8 -37.6 84.9 -84 c 0.1 -46.6 -37.2 -84.4 -84.2 -84.6 C 432.2 472.1 397.9 518.3 401.3 556.7 Z" />
            </g>
          </svg>
        <h2>Facebook Open Source</h2>
      </div>
      <div class="footerSection">
        <a class="footerLink" href="https://code.facebook.com/projects/" target="_blank">Open Source Projects</a>
        <a class="footerLink" href="https://github.com/facebook/" target="_blank">GitHub</a>
        <a class="footerLink" href="https://twitter.com/fbOpenSource" target="_blank">Twitter</a>
      </div>
      <div class="footerSection rightAlign">
        <a class="footerLink" href="https://github.com/caffe2/caffe2" target="_blank">Contribute to this project on GitHub</a>
      </div>
    </div>
  </div>
</div>
<script type="text/javascript" src="/js/jekyll-link-anchors.js"></script>
<script>
  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
  ga('create', '{{ site.gacode }}', 'auto');
  ga('send', 'pageview');
</script>
</body>
</html>