<!-- HTML header for doxygen 1.8.14-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Caffe2 - C++ API: caffe2/mkl/utils/mkl_dnn_cppwrapper.h Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link rel="icon" href="/static/favicon.png" type="image/x-icon">
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { init_search(); });
</script>
<link href="stylesheet.css" rel="stylesheet" type="text/css" />
<link href="main.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectlogo" width="56"><a href="/"><img alt="Logo" src="Caffe2-with-name-55-tall.png"/></a></td>
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname">Caffe2 - C++ API
   </div>
   <div id="projectbrief">A deep learning, cross platform ML framework</div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="pages.html"><span>Related&#160;Pages</span></a></li>
      <li><a href="modules.html"><span>Modules</span></a></li>
      <li><a href="annotated.html"><span>Data&#160;Structures</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li><a href="/doxygen-c/html/classes.html"><span>C++&#160;API</span></a></li>
      <li><a href="/doxygen-python/html/annotated.html"><span>Python&#160;API</span></a></li>
      <li><a href="https://github.com/caffe2/caffe2"><span>GitHub</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
      <li><a href="globals.html"><span>Globals</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_20697b8f204bdfcab31e6b1a416f3ab8.html">caffe2</a></li><li class="navelem"><a class="el" href="dir_05c92498e25fa977790f551ff793f1b1.html">mkl</a></li><li class="navelem"><a class="el" href="dir_9a8f178644e12033403db01c04c605e4.html">utils</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">mkl_dnn_cppwrapper.h</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">// Do not directl include this file. Include caffe2/mkl/mkl_utils.h instead.</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="preprocessor">#ifndef CAFFE2_UTILS_MKL_MKL_DNN_CPPWRAPPER_H</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="preprocessor">#define CAFFE2_UTILS_MKL_MKL_DNN_CPPWRAPPER_H</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;</div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="preprocessor">#include &lt;stdarg.h&gt;</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="preprocessor">#include &lt;stddef.h&gt;</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;</div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="preprocessor">#include &lt;mkl.h&gt;</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;</div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="preprocessor">#define C2_MKL_TEMPLATE_PREFIX \</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="preprocessor">  template &lt;typename T&gt;        \</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="preprocessor">  inline</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="preprocessor">#define C2_MKL_SPEC_PREFIX \</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="preprocessor">  template &lt;&gt;              \</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="preprocessor">  inline</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;</div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="keyword">namespace </span><a class="code" href="namespacecaffe2.html">caffe2</a> {</div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="keyword">namespace </span>mkl {</div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;</div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnLayoutCreate(</div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;    dnnLayout_t* pLayout,</div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size[],</div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> strides[]);</div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLayoutCreate&lt;float&gt;(</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;    dnnLayout_t* pLayout,</div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size[],</div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> strides[]) {</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;  <span class="keywordflow">return</span> dnnLayoutCreate_F32(pLayout, dimension, size, strides);</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;}</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLayoutCreate&lt;double&gt;(</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;    dnnLayout_t* pLayout,</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size[],</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> strides[]) {</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;  <span class="keywordflow">return</span> dnnLayoutCreate_F64(pLayout, dimension, size, strides);</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;}</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;</div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnLayoutCreateFromPrimitive(</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;    dnnLayout_t* pLayout,</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;    <span class="keyword">const</span> dnnPrimitive_t primitive,</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    dnnResourceType_t type);</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLayoutCreateFromPrimitive&lt;float&gt;(</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;    dnnLayout_t* pLayout,</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;    <span class="keyword">const</span> dnnPrimitive_t primitive,</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;    dnnResourceType_t type) {</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;  <span class="keywordflow">return</span> dnnLayoutCreateFromPrimitive_F32(pLayout, primitive, type);</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;}</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLayoutCreateFromPrimitive&lt;double&gt;(</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;    dnnLayout_t* pLayout,</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;    <span class="keyword">const</span> dnnPrimitive_t primitive,</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;    dnnResourceType_t type) {</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;  <span class="keywordflow">return</span> dnnLayoutCreateFromPrimitive_F64(pLayout, primitive, type);</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;}</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;C2_MKL_TEMPLATE_PREFIX <span class="keywordtype">size_t</span> dnnLayoutGetMemorySize(<span class="keyword">const</span> dnnLayout_t layout);</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;C2_MKL_SPEC_PREFIX <span class="keywordtype">size_t</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;dnnLayoutGetMemorySize&lt;float&gt;(<span class="keyword">const</span> dnnLayout_t layout) {</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;  <span class="keywordflow">return</span> dnnLayoutGetMemorySize_F32(layout);</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;}</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;C2_MKL_SPEC_PREFIX <span class="keywordtype">size_t</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;dnnLayoutGetMemorySize&lt;double&gt;(<span class="keyword">const</span> dnnLayout_t layout) {</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;  <span class="keywordflow">return</span> dnnLayoutGetMemorySize_F64(layout);</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;}</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;C2_MKL_TEMPLATE_PREFIX <span class="keywordtype">int</span> dnnLayoutCompare(</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;    <span class="keyword">const</span> dnnLayout_t l1,</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    <span class="keyword">const</span> dnnLayout_t l2);</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;C2_MKL_SPEC_PREFIX <span class="keywordtype">int</span> dnnLayoutCompare&lt;float&gt;(</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;    <span class="keyword">const</span> dnnLayout_t l1,</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;    <span class="keyword">const</span> dnnLayout_t l2) {</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;  <span class="keywordflow">return</span> dnnLayoutCompare_F32(l1, l2);</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;}</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;C2_MKL_SPEC_PREFIX <span class="keywordtype">int</span> dnnLayoutCompare&lt;double&gt;(</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    <span class="keyword">const</span> dnnLayout_t l1,</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    <span class="keyword">const</span> dnnLayout_t l2) {</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;  <span class="keywordflow">return</span> dnnLayoutCompare_F64(l1, l2);</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;}</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;dnnAllocateBuffer(<span class="keywordtype">void</span>** pPtr, dnnLayout_t layout);</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;dnnAllocateBuffer&lt;float&gt;(<span class="keywordtype">void</span>** pPtr, dnnLayout_t layout) {</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;  <span class="keywordflow">return</span> dnnAllocateBuffer_F32(pPtr, layout);</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;}</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;dnnAllocateBuffer&lt;double&gt;(<span class="keywordtype">void</span>** pPtr, dnnLayout_t layout) {</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;  <span class="keywordflow">return</span> dnnAllocateBuffer_F64(pPtr, layout);</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;}</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnReleaseBuffer(<span class="keywordtype">void</span>* ptr);</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnReleaseBuffer&lt;float&gt;(<span class="keywordtype">void</span>* ptr) {</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;  <span class="keywordflow">return</span> dnnReleaseBuffer_F32(ptr);</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;}</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnReleaseBuffer&lt;double&gt;(<span class="keywordtype">void</span>* ptr) {</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;  <span class="keywordflow">return</span> dnnReleaseBuffer_F64(ptr);</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;}</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnLayoutDelete(dnnLayout_t layout);</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLayoutDelete&lt;float&gt;(dnnLayout_t layout) {</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;  <span class="keywordflow">return</span> dnnLayoutDelete_F32(layout);</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;}</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLayoutDelete&lt;double&gt;(dnnLayout_t layout) {</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;  <span class="keywordflow">return</span> dnnLayoutDelete_F64(layout);</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;}</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;dnnPrimitiveAttributesCreate(dnnPrimitiveAttributes_t* attributes);</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;dnnPrimitiveAttributesCreate&lt;float&gt;(dnnPrimitiveAttributes_t* attributes) {</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;  <span class="keywordflow">return</span> dnnPrimitiveAttributesCreate_F32(attributes);</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;}</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;dnnPrimitiveAttributesCreate&lt;double&gt;(dnnPrimitiveAttributes_t* attributes) {</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;  <span class="keywordflow">return</span> dnnPrimitiveAttributesCreate_F64(attributes);</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;}</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;dnnPrimitiveAttributesDestroy(dnnPrimitiveAttributes_t attributes);</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;dnnPrimitiveAttributesDestroy&lt;float&gt;(dnnPrimitiveAttributes_t attributes) {</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;  <span class="keywordflow">return</span> dnnPrimitiveAttributesDestroy_F32(attributes);</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;}</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;dnnPrimitiveAttributesDestroy&lt;double&gt;(dnnPrimitiveAttributes_t attributes) {</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;  <span class="keywordflow">return</span> dnnPrimitiveAttributesDestroy_F64(attributes);</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;}</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnPrimitiveGetAttributes(</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;    dnnPrimitive_t primitive,</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    dnnPrimitiveAttributes_t* attributes);</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnPrimitiveGetAttributes&lt;float&gt;(</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;    dnnPrimitive_t primitive,</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;    dnnPrimitiveAttributes_t* attributes) {</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;  <span class="keywordflow">return</span> dnnPrimitiveGetAttributes_F32(primitive, attributes);</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;}</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnPrimitiveGetAttributes&lt;double&gt;(</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    dnnPrimitive_t primitive,</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    dnnPrimitiveAttributes_t* attributes) {</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;  <span class="keywordflow">return</span> dnnPrimitiveGetAttributes_F64(primitive, attributes);</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;}</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;dnnExecute(dnnPrimitive_t primitive, <span class="keywordtype">void</span>* resources[]);</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;dnnExecute&lt;float&gt;(dnnPrimitive_t primitive, <span class="keywordtype">void</span>* resources[]) {</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;  <span class="keywordflow">return</span> dnnExecute_F32(primitive, resources);</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;}</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;dnnExecute&lt;double&gt;(dnnPrimitive_t primitive, <span class="keywordtype">void</span>* resources[]) {</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;  <span class="keywordflow">return</span> dnnExecute_F64(primitive, resources);</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;}</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;dnnExecuteAsync(dnnPrimitive_t primitive, <span class="keywordtype">void</span>* resources[]);</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;dnnExecuteAsync&lt;float&gt;(dnnPrimitive_t primitive, <span class="keywordtype">void</span>* resources[]) {</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;  <span class="keywordflow">return</span> dnnExecuteAsync_F32(primitive, resources);</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;}</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;dnnExecuteAsync&lt;double&gt;(dnnPrimitive_t primitive, <span class="keywordtype">void</span>* resources[]) {</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;  <span class="keywordflow">return</span> dnnExecuteAsync_F64(primitive, resources);</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;}</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnWaitFor(dnnPrimitive_t primitive);</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnWaitFor&lt;float&gt;(dnnPrimitive_t primitive) {</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;  <span class="keywordflow">return</span> dnnWaitFor_F32(primitive);</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;}</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnWaitFor&lt;double&gt;(dnnPrimitive_t primitive) {</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;  <span class="keywordflow">return</span> dnnWaitFor_F64(primitive);</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;}</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnDelete(dnnPrimitive_t primitive);</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnDelete&lt;float&gt;(dnnPrimitive_t primitive) {</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;  <span class="keywordflow">return</span> dnnDelete_F32(primitive);</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;}</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnDelete&lt;double&gt;(dnnPrimitive_t primitive) {</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;  <span class="keywordflow">return</span> dnnDelete_F64(primitive);</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;}</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConversionCreate(</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    dnnPrimitive_t* pConversion,</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;    <span class="keyword">const</span> dnnLayout_t from,</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;    <span class="keyword">const</span> dnnLayout_t to);</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConversionCreate&lt;float&gt;(</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    dnnPrimitive_t* pConversion,</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;    <span class="keyword">const</span> dnnLayout_t from,</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;    <span class="keyword">const</span> dnnLayout_t to) {</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;  <span class="keywordflow">return</span> dnnConversionCreate_F32(pConversion, from, to);</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;}</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConversionCreate&lt;double&gt;(</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;    dnnPrimitive_t* pConversion,</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    <span class="keyword">const</span> dnnLayout_t from,</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    <span class="keyword">const</span> dnnLayout_t to) {</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;  <span class="keywordflow">return</span> dnnConversionCreate_F64(pConversion, from, to);</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;}</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;dnnConversionExecute(dnnPrimitive_t conversion, <span class="keywordtype">void</span>* from, <span class="keywordtype">void</span>* to);</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;dnnConversionExecute&lt;float&gt;(dnnPrimitive_t conversion, <span class="keywordtype">void</span>* from, <span class="keywordtype">void</span>* to) {</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;  <span class="keywordflow">return</span> dnnConversionExecute_F32(conversion, from, to);</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;}</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;dnnConversionExecute&lt;double&gt;(dnnPrimitive_t conversion, <span class="keywordtype">void</span>* from, <span class="keywordtype">void</span>* to) {</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;  <span class="keywordflow">return</span> dnnConversionExecute_F64(conversion, from, to);</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;}</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConvolutionCreateForward(</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateForward&lt;float&gt;(</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateForward_F32(</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;      pConvolution,</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;      attributes,</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;      algorithm,</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;      dimension,</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;      srcSize,</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;      dstSize,</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;      filterSize,</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;      inputOffset,</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;      border_type);</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;}</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateForward&lt;double&gt;(</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateForward_F64(</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;      pConvolution,</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;      attributes,</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;      algorithm,</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;      dimension,</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;      srcSize,</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;      dstSize,</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;      filterSize,</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;      inputOffset,</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;      border_type);</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;}</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConvolutionCreateForwardBias(</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateForwardBias&lt;float&gt;(</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateForwardBias_F32(</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;      pConvolution,</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;      attributes,</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;      algorithm,</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;      dimension,</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;      srcSize,</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;      dstSize,</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;      filterSize,</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;      inputOffset,</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;      border_type);</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;}</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateForwardBias&lt;double&gt;(</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateForwardBias_F64(</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;      pConvolution,</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;      attributes,</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;      algorithm,</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;      dimension,</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;      srcSize,</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;      dstSize,</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;      filterSize,</div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;      inputOffset,</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;      border_type);</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;}</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConvolutionCreateBackwardData(</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateBackwardData&lt;float&gt;(</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateBackwardData_F32(</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;      pConvolution,</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;      attributes,</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;      algorithm,</div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;      dimension,</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;      srcSize,</div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;      dstSize,</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;      filterSize,</div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;      inputOffset,</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;      border_type);</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;}</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateBackwardData&lt;double&gt;(</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateBackwardData_F64(</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;      pConvolution,</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;      attributes,</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;      algorithm,</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;      dimension,</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;      srcSize,</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;      dstSize,</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;      filterSize,</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;      inputOffset,</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;      border_type);</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;}</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConvolutionCreateBackwardFilter(</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateBackwardFilter&lt;float&gt;(</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateBackwardFilter_F32(</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;      pConvolution,</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;      attributes,</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;      algorithm,</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;      dimension,</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;      srcSize,</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;      dstSize,</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;      filterSize,</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;      inputOffset,</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;      border_type);</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;}</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateBackwardFilter&lt;double&gt;(</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateBackwardFilter_F64(</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;      pConvolution,</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;      attributes,</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;      algorithm,</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;      dimension,</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;      srcSize,</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;      dstSize,</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;      filterSize,</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;      inputOffset,</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;      border_type);</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;}</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;</div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConvolutionCreateBackwardBias(</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[]);</div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateBackwardBias&lt;float&gt;(</div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[]) {</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateBackwardBias_F32(</div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;      pConvolution, attributes, algorithm, dimension, dstSize);</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;}</div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConvolutionCreateBackwardBias&lt;double&gt;(</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[]) {</div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;  <span class="keywordflow">return</span> dnnConvolutionCreateBackwardBias_F64(</div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;      pConvolution, attributes, algorithm, dimension, dstSize);</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;}</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;</div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnGroupsConvolutionCreateForward(</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateForward&lt;float&gt;(</div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateForward_F32(</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;      pConvolution,</div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;      attributes,</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;      algorithm,</div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;      groups,</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;      dimension,</div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;      srcSize,</div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;      dstSize,</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;      filterSize,</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;      inputOffset,</div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;      border_type);</div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;}</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateForward&lt;double&gt;(</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateForward_F64(</div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;      pConvolution,</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;      attributes,</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;      algorithm,</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;      groups,</div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;      dimension,</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;      srcSize,</div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;      dstSize,</div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;      filterSize,</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;      inputOffset,</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;      border_type);</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;}</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnGroupsConvolutionCreateForwardBias(</div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateForwardBias&lt;float&gt;(</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateForwardBias_F32(</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;      pConvolution,</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;      attributes,</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;      algorithm,</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;      groups,</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;      dimension,</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;      srcSize,</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;      dstSize,</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;      filterSize,</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;      inputOffset,</div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;      border_type);</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;}</div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateForwardBias&lt;double&gt;(</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00574"></a><span class="lineno">  574</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00575"></a><span class="lineno">  575</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00576"></a><span class="lineno">  576</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00577"></a><span class="lineno">  577</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00578"></a><span class="lineno">  578</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00579"></a><span class="lineno">  579</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00580"></a><span class="lineno">  580</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateForwardBias_F64(</div><div class="line"><a name="l00581"></a><span class="lineno">  581</span>&#160;      pConvolution,</div><div class="line"><a name="l00582"></a><span class="lineno">  582</span>&#160;      attributes,</div><div class="line"><a name="l00583"></a><span class="lineno">  583</span>&#160;      algorithm,</div><div class="line"><a name="l00584"></a><span class="lineno">  584</span>&#160;      groups,</div><div class="line"><a name="l00585"></a><span class="lineno">  585</span>&#160;      dimension,</div><div class="line"><a name="l00586"></a><span class="lineno">  586</span>&#160;      srcSize,</div><div class="line"><a name="l00587"></a><span class="lineno">  587</span>&#160;      dstSize,</div><div class="line"><a name="l00588"></a><span class="lineno">  588</span>&#160;      filterSize,</div><div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00590"></a><span class="lineno">  590</span>&#160;      inputOffset,</div><div class="line"><a name="l00591"></a><span class="lineno">  591</span>&#160;      border_type);</div><div class="line"><a name="l00592"></a><span class="lineno">  592</span>&#160;}</div><div class="line"><a name="l00593"></a><span class="lineno">  593</span>&#160;</div><div class="line"><a name="l00594"></a><span class="lineno">  594</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardData(</div><div class="line"><a name="l00595"></a><span class="lineno">  595</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00596"></a><span class="lineno">  596</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00597"></a><span class="lineno">  597</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00598"></a><span class="lineno">  598</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00599"></a><span class="lineno">  599</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00600"></a><span class="lineno">  600</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00601"></a><span class="lineno">  601</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00602"></a><span class="lineno">  602</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00603"></a><span class="lineno">  603</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00604"></a><span class="lineno">  604</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00605"></a><span class="lineno">  605</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00606"></a><span class="lineno">  606</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardData&lt;float&gt;(</div><div class="line"><a name="l00607"></a><span class="lineno">  607</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00608"></a><span class="lineno">  608</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00609"></a><span class="lineno">  609</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00610"></a><span class="lineno">  610</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00611"></a><span class="lineno">  611</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00612"></a><span class="lineno">  612</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00613"></a><span class="lineno">  613</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00614"></a><span class="lineno">  614</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00615"></a><span class="lineno">  615</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00616"></a><span class="lineno">  616</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00617"></a><span class="lineno">  617</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00618"></a><span class="lineno">  618</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateBackwardData_F32(</div><div class="line"><a name="l00619"></a><span class="lineno">  619</span>&#160;      pConvolution,</div><div class="line"><a name="l00620"></a><span class="lineno">  620</span>&#160;      attributes,</div><div class="line"><a name="l00621"></a><span class="lineno">  621</span>&#160;      algorithm,</div><div class="line"><a name="l00622"></a><span class="lineno">  622</span>&#160;      groups,</div><div class="line"><a name="l00623"></a><span class="lineno">  623</span>&#160;      dimension,</div><div class="line"><a name="l00624"></a><span class="lineno">  624</span>&#160;      srcSize,</div><div class="line"><a name="l00625"></a><span class="lineno">  625</span>&#160;      dstSize,</div><div class="line"><a name="l00626"></a><span class="lineno">  626</span>&#160;      filterSize,</div><div class="line"><a name="l00627"></a><span class="lineno">  627</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00628"></a><span class="lineno">  628</span>&#160;      inputOffset,</div><div class="line"><a name="l00629"></a><span class="lineno">  629</span>&#160;      border_type);</div><div class="line"><a name="l00630"></a><span class="lineno">  630</span>&#160;}</div><div class="line"><a name="l00631"></a><span class="lineno">  631</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardData&lt;double&gt;(</div><div class="line"><a name="l00632"></a><span class="lineno">  632</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00633"></a><span class="lineno">  633</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00634"></a><span class="lineno">  634</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00635"></a><span class="lineno">  635</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00636"></a><span class="lineno">  636</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00637"></a><span class="lineno">  637</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00638"></a><span class="lineno">  638</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00639"></a><span class="lineno">  639</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00640"></a><span class="lineno">  640</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00641"></a><span class="lineno">  641</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00642"></a><span class="lineno">  642</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00643"></a><span class="lineno">  643</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateBackwardData_F64(</div><div class="line"><a name="l00644"></a><span class="lineno">  644</span>&#160;      pConvolution,</div><div class="line"><a name="l00645"></a><span class="lineno">  645</span>&#160;      attributes,</div><div class="line"><a name="l00646"></a><span class="lineno">  646</span>&#160;      algorithm,</div><div class="line"><a name="l00647"></a><span class="lineno">  647</span>&#160;      groups,</div><div class="line"><a name="l00648"></a><span class="lineno">  648</span>&#160;      dimension,</div><div class="line"><a name="l00649"></a><span class="lineno">  649</span>&#160;      srcSize,</div><div class="line"><a name="l00650"></a><span class="lineno">  650</span>&#160;      dstSize,</div><div class="line"><a name="l00651"></a><span class="lineno">  651</span>&#160;      filterSize,</div><div class="line"><a name="l00652"></a><span class="lineno">  652</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00653"></a><span class="lineno">  653</span>&#160;      inputOffset,</div><div class="line"><a name="l00654"></a><span class="lineno">  654</span>&#160;      border_type);</div><div class="line"><a name="l00655"></a><span class="lineno">  655</span>&#160;}</div><div class="line"><a name="l00656"></a><span class="lineno">  656</span>&#160;</div><div class="line"><a name="l00657"></a><span class="lineno">  657</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardFilter(</div><div class="line"><a name="l00658"></a><span class="lineno">  658</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00659"></a><span class="lineno">  659</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00660"></a><span class="lineno">  660</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00661"></a><span class="lineno">  661</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00662"></a><span class="lineno">  662</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00663"></a><span class="lineno">  663</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00664"></a><span class="lineno">  664</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00665"></a><span class="lineno">  665</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00666"></a><span class="lineno">  666</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00667"></a><span class="lineno">  667</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00668"></a><span class="lineno">  668</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00669"></a><span class="lineno">  669</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardFilter&lt;float&gt;(</div><div class="line"><a name="l00670"></a><span class="lineno">  670</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00671"></a><span class="lineno">  671</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00672"></a><span class="lineno">  672</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00673"></a><span class="lineno">  673</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00674"></a><span class="lineno">  674</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00675"></a><span class="lineno">  675</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00676"></a><span class="lineno">  676</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00677"></a><span class="lineno">  677</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00678"></a><span class="lineno">  678</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00679"></a><span class="lineno">  679</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00680"></a><span class="lineno">  680</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00681"></a><span class="lineno">  681</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateBackwardFilter_F32(</div><div class="line"><a name="l00682"></a><span class="lineno">  682</span>&#160;      pConvolution,</div><div class="line"><a name="l00683"></a><span class="lineno">  683</span>&#160;      attributes,</div><div class="line"><a name="l00684"></a><span class="lineno">  684</span>&#160;      algorithm,</div><div class="line"><a name="l00685"></a><span class="lineno">  685</span>&#160;      groups,</div><div class="line"><a name="l00686"></a><span class="lineno">  686</span>&#160;      dimension,</div><div class="line"><a name="l00687"></a><span class="lineno">  687</span>&#160;      srcSize,</div><div class="line"><a name="l00688"></a><span class="lineno">  688</span>&#160;      dstSize,</div><div class="line"><a name="l00689"></a><span class="lineno">  689</span>&#160;      filterSize,</div><div class="line"><a name="l00690"></a><span class="lineno">  690</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00691"></a><span class="lineno">  691</span>&#160;      inputOffset,</div><div class="line"><a name="l00692"></a><span class="lineno">  692</span>&#160;      border_type);</div><div class="line"><a name="l00693"></a><span class="lineno">  693</span>&#160;}</div><div class="line"><a name="l00694"></a><span class="lineno">  694</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardFilter&lt;double&gt;(</div><div class="line"><a name="l00695"></a><span class="lineno">  695</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00696"></a><span class="lineno">  696</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00697"></a><span class="lineno">  697</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00698"></a><span class="lineno">  698</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00699"></a><span class="lineno">  699</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00700"></a><span class="lineno">  700</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l00701"></a><span class="lineno">  701</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[],</div><div class="line"><a name="l00702"></a><span class="lineno">  702</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> filterSize[],</div><div class="line"><a name="l00703"></a><span class="lineno">  703</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> convolutionStrides[],</div><div class="line"><a name="l00704"></a><span class="lineno">  704</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00705"></a><span class="lineno">  705</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00706"></a><span class="lineno">  706</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateBackwardFilter_F64(</div><div class="line"><a name="l00707"></a><span class="lineno">  707</span>&#160;      pConvolution,</div><div class="line"><a name="l00708"></a><span class="lineno">  708</span>&#160;      attributes,</div><div class="line"><a name="l00709"></a><span class="lineno">  709</span>&#160;      algorithm,</div><div class="line"><a name="l00710"></a><span class="lineno">  710</span>&#160;      groups,</div><div class="line"><a name="l00711"></a><span class="lineno">  711</span>&#160;      dimension,</div><div class="line"><a name="l00712"></a><span class="lineno">  712</span>&#160;      srcSize,</div><div class="line"><a name="l00713"></a><span class="lineno">  713</span>&#160;      dstSize,</div><div class="line"><a name="l00714"></a><span class="lineno">  714</span>&#160;      filterSize,</div><div class="line"><a name="l00715"></a><span class="lineno">  715</span>&#160;      convolutionStrides,</div><div class="line"><a name="l00716"></a><span class="lineno">  716</span>&#160;      inputOffset,</div><div class="line"><a name="l00717"></a><span class="lineno">  717</span>&#160;      border_type);</div><div class="line"><a name="l00718"></a><span class="lineno">  718</span>&#160;}</div><div class="line"><a name="l00719"></a><span class="lineno">  719</span>&#160;</div><div class="line"><a name="l00720"></a><span class="lineno">  720</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardBias(</div><div class="line"><a name="l00721"></a><span class="lineno">  721</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00722"></a><span class="lineno">  722</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00723"></a><span class="lineno">  723</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00724"></a><span class="lineno">  724</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00725"></a><span class="lineno">  725</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00726"></a><span class="lineno">  726</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[]);</div><div class="line"><a name="l00727"></a><span class="lineno">  727</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardBias&lt;float&gt;(</div><div class="line"><a name="l00728"></a><span class="lineno">  728</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00729"></a><span class="lineno">  729</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00730"></a><span class="lineno">  730</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00731"></a><span class="lineno">  731</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00732"></a><span class="lineno">  732</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00733"></a><span class="lineno">  733</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[]) {</div><div class="line"><a name="l00734"></a><span class="lineno">  734</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateBackwardBias_F32(</div><div class="line"><a name="l00735"></a><span class="lineno">  735</span>&#160;      pConvolution, attributes, algorithm, groups, dimension, dstSize);</div><div class="line"><a name="l00736"></a><span class="lineno">  736</span>&#160;}</div><div class="line"><a name="l00737"></a><span class="lineno">  737</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnGroupsConvolutionCreateBackwardBias&lt;double&gt;(</div><div class="line"><a name="l00738"></a><span class="lineno">  738</span>&#160;    dnnPrimitive_t* pConvolution,</div><div class="line"><a name="l00739"></a><span class="lineno">  739</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00740"></a><span class="lineno">  740</span>&#160;    dnnAlgorithm_t algorithm,</div><div class="line"><a name="l00741"></a><span class="lineno">  741</span>&#160;    <span class="keywordtype">size_t</span> groups,</div><div class="line"><a name="l00742"></a><span class="lineno">  742</span>&#160;    <span class="keywordtype">size_t</span> dimension,</div><div class="line"><a name="l00743"></a><span class="lineno">  743</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> dstSize[]) {</div><div class="line"><a name="l00744"></a><span class="lineno">  744</span>&#160;  <span class="keywordflow">return</span> dnnGroupsConvolutionCreateBackwardBias_F64(</div><div class="line"><a name="l00745"></a><span class="lineno">  745</span>&#160;      pConvolution, attributes, algorithm, groups, dimension, dstSize);</div><div class="line"><a name="l00746"></a><span class="lineno">  746</span>&#160;}</div><div class="line"><a name="l00747"></a><span class="lineno">  747</span>&#160;</div><div class="line"><a name="l00748"></a><span class="lineno">  748</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnReLUCreateForward(</div><div class="line"><a name="l00749"></a><span class="lineno">  749</span>&#160;    dnnPrimitive_t* pRelu,</div><div class="line"><a name="l00750"></a><span class="lineno">  750</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00751"></a><span class="lineno">  751</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00752"></a><span class="lineno">  752</span>&#160;    <span class="keywordtype">float</span> negativeSlope);</div><div class="line"><a name="l00753"></a><span class="lineno">  753</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnReLUCreateForward&lt;float&gt;(</div><div class="line"><a name="l00754"></a><span class="lineno">  754</span>&#160;    dnnPrimitive_t* pRelu,</div><div class="line"><a name="l00755"></a><span class="lineno">  755</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00756"></a><span class="lineno">  756</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00757"></a><span class="lineno">  757</span>&#160;    <span class="keywordtype">float</span> negativeSlope) {</div><div class="line"><a name="l00758"></a><span class="lineno">  758</span>&#160;  <span class="keywordflow">return</span> dnnReLUCreateForward_F32(pRelu, attributes, dataLayout, negativeSlope);</div><div class="line"><a name="l00759"></a><span class="lineno">  759</span>&#160;}</div><div class="line"><a name="l00760"></a><span class="lineno">  760</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnReLUCreateForward&lt;double&gt;(</div><div class="line"><a name="l00761"></a><span class="lineno">  761</span>&#160;    dnnPrimitive_t* pRelu,</div><div class="line"><a name="l00762"></a><span class="lineno">  762</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00763"></a><span class="lineno">  763</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00764"></a><span class="lineno">  764</span>&#160;    <span class="keywordtype">float</span> negativeSlope) {</div><div class="line"><a name="l00765"></a><span class="lineno">  765</span>&#160;  <span class="keywordflow">return</span> dnnReLUCreateForward_F64(pRelu, attributes, dataLayout, negativeSlope);</div><div class="line"><a name="l00766"></a><span class="lineno">  766</span>&#160;}</div><div class="line"><a name="l00767"></a><span class="lineno">  767</span>&#160;</div><div class="line"><a name="l00768"></a><span class="lineno">  768</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnReLUCreateBackward(</div><div class="line"><a name="l00769"></a><span class="lineno">  769</span>&#160;    dnnPrimitive_t* pRelu,</div><div class="line"><a name="l00770"></a><span class="lineno">  770</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00771"></a><span class="lineno">  771</span>&#160;    <span class="keyword">const</span> dnnLayout_t diffLayout,</div><div class="line"><a name="l00772"></a><span class="lineno">  772</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00773"></a><span class="lineno">  773</span>&#160;    <span class="keywordtype">float</span> negativeSlope);</div><div class="line"><a name="l00774"></a><span class="lineno">  774</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnReLUCreateBackward&lt;float&gt;(</div><div class="line"><a name="l00775"></a><span class="lineno">  775</span>&#160;    dnnPrimitive_t* pRelu,</div><div class="line"><a name="l00776"></a><span class="lineno">  776</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00777"></a><span class="lineno">  777</span>&#160;    <span class="keyword">const</span> dnnLayout_t diffLayout,</div><div class="line"><a name="l00778"></a><span class="lineno">  778</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00779"></a><span class="lineno">  779</span>&#160;    <span class="keywordtype">float</span> negativeSlope) {</div><div class="line"><a name="l00780"></a><span class="lineno">  780</span>&#160;  <span class="keywordflow">return</span> dnnReLUCreateBackward_F32(</div><div class="line"><a name="l00781"></a><span class="lineno">  781</span>&#160;      pRelu, attributes, diffLayout, dataLayout, negativeSlope);</div><div class="line"><a name="l00782"></a><span class="lineno">  782</span>&#160;}</div><div class="line"><a name="l00783"></a><span class="lineno">  783</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnReLUCreateBackward&lt;double&gt;(</div><div class="line"><a name="l00784"></a><span class="lineno">  784</span>&#160;    dnnPrimitive_t* pRelu,</div><div class="line"><a name="l00785"></a><span class="lineno">  785</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00786"></a><span class="lineno">  786</span>&#160;    <span class="keyword">const</span> dnnLayout_t diffLayout,</div><div class="line"><a name="l00787"></a><span class="lineno">  787</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00788"></a><span class="lineno">  788</span>&#160;    <span class="keywordtype">float</span> negativeSlope) {</div><div class="line"><a name="l00789"></a><span class="lineno">  789</span>&#160;  <span class="keywordflow">return</span> dnnReLUCreateBackward_F64(</div><div class="line"><a name="l00790"></a><span class="lineno">  790</span>&#160;      pRelu, attributes, diffLayout, dataLayout, negativeSlope);</div><div class="line"><a name="l00791"></a><span class="lineno">  791</span>&#160;}</div><div class="line"><a name="l00792"></a><span class="lineno">  792</span>&#160;</div><div class="line"><a name="l00793"></a><span class="lineno">  793</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnLRNCreateForward(</div><div class="line"><a name="l00794"></a><span class="lineno">  794</span>&#160;    dnnPrimitive_t* pLrn,</div><div class="line"><a name="l00795"></a><span class="lineno">  795</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00796"></a><span class="lineno">  796</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00797"></a><span class="lineno">  797</span>&#160;    <span class="keywordtype">size_t</span> kernel_size,</div><div class="line"><a name="l00798"></a><span class="lineno">  798</span>&#160;    <span class="keywordtype">float</span> alpha,</div><div class="line"><a name="l00799"></a><span class="lineno">  799</span>&#160;    <span class="keywordtype">float</span> beta,</div><div class="line"><a name="l00800"></a><span class="lineno">  800</span>&#160;    <span class="keywordtype">float</span> k);</div><div class="line"><a name="l00801"></a><span class="lineno">  801</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLRNCreateForward&lt;float&gt;(</div><div class="line"><a name="l00802"></a><span class="lineno">  802</span>&#160;    dnnPrimitive_t* pLrn,</div><div class="line"><a name="l00803"></a><span class="lineno">  803</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00804"></a><span class="lineno">  804</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00805"></a><span class="lineno">  805</span>&#160;    <span class="keywordtype">size_t</span> kernel_size,</div><div class="line"><a name="l00806"></a><span class="lineno">  806</span>&#160;    <span class="keywordtype">float</span> alpha,</div><div class="line"><a name="l00807"></a><span class="lineno">  807</span>&#160;    <span class="keywordtype">float</span> beta,</div><div class="line"><a name="l00808"></a><span class="lineno">  808</span>&#160;    <span class="keywordtype">float</span> k) {</div><div class="line"><a name="l00809"></a><span class="lineno">  809</span>&#160;  <span class="keywordflow">return</span> dnnLRNCreateForward_F32(</div><div class="line"><a name="l00810"></a><span class="lineno">  810</span>&#160;      pLrn, attributes, dataLayout, kernel_size, alpha, beta, k);</div><div class="line"><a name="l00811"></a><span class="lineno">  811</span>&#160;}</div><div class="line"><a name="l00812"></a><span class="lineno">  812</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLRNCreateForward&lt;double&gt;(</div><div class="line"><a name="l00813"></a><span class="lineno">  813</span>&#160;    dnnPrimitive_t* pLrn,</div><div class="line"><a name="l00814"></a><span class="lineno">  814</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00815"></a><span class="lineno">  815</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00816"></a><span class="lineno">  816</span>&#160;    <span class="keywordtype">size_t</span> kernel_size,</div><div class="line"><a name="l00817"></a><span class="lineno">  817</span>&#160;    <span class="keywordtype">float</span> alpha,</div><div class="line"><a name="l00818"></a><span class="lineno">  818</span>&#160;    <span class="keywordtype">float</span> beta,</div><div class="line"><a name="l00819"></a><span class="lineno">  819</span>&#160;    <span class="keywordtype">float</span> k) {</div><div class="line"><a name="l00820"></a><span class="lineno">  820</span>&#160;  <span class="keywordflow">return</span> dnnLRNCreateForward_F64(</div><div class="line"><a name="l00821"></a><span class="lineno">  821</span>&#160;      pLrn, attributes, dataLayout, kernel_size, alpha, beta, k);</div><div class="line"><a name="l00822"></a><span class="lineno">  822</span>&#160;}</div><div class="line"><a name="l00823"></a><span class="lineno">  823</span>&#160;</div><div class="line"><a name="l00824"></a><span class="lineno">  824</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnLRNCreateBackward(</div><div class="line"><a name="l00825"></a><span class="lineno">  825</span>&#160;    dnnPrimitive_t* pLrn,</div><div class="line"><a name="l00826"></a><span class="lineno">  826</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00827"></a><span class="lineno">  827</span>&#160;    <span class="keyword">const</span> dnnLayout_t diffLayout,</div><div class="line"><a name="l00828"></a><span class="lineno">  828</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00829"></a><span class="lineno">  829</span>&#160;    <span class="keywordtype">size_t</span> kernel_size,</div><div class="line"><a name="l00830"></a><span class="lineno">  830</span>&#160;    <span class="keywordtype">float</span> alpha,</div><div class="line"><a name="l00831"></a><span class="lineno">  831</span>&#160;    <span class="keywordtype">float</span> beta,</div><div class="line"><a name="l00832"></a><span class="lineno">  832</span>&#160;    <span class="keywordtype">float</span> k);</div><div class="line"><a name="l00833"></a><span class="lineno">  833</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLRNCreateBackward&lt;float&gt;(</div><div class="line"><a name="l00834"></a><span class="lineno">  834</span>&#160;    dnnPrimitive_t* pLrn,</div><div class="line"><a name="l00835"></a><span class="lineno">  835</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00836"></a><span class="lineno">  836</span>&#160;    <span class="keyword">const</span> dnnLayout_t diffLayout,</div><div class="line"><a name="l00837"></a><span class="lineno">  837</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00838"></a><span class="lineno">  838</span>&#160;    <span class="keywordtype">size_t</span> kernel_size,</div><div class="line"><a name="l00839"></a><span class="lineno">  839</span>&#160;    <span class="keywordtype">float</span> alpha,</div><div class="line"><a name="l00840"></a><span class="lineno">  840</span>&#160;    <span class="keywordtype">float</span> beta,</div><div class="line"><a name="l00841"></a><span class="lineno">  841</span>&#160;    <span class="keywordtype">float</span> k) {</div><div class="line"><a name="l00842"></a><span class="lineno">  842</span>&#160;  <span class="keywordflow">return</span> dnnLRNCreateBackward_F32(</div><div class="line"><a name="l00843"></a><span class="lineno">  843</span>&#160;      pLrn, attributes, diffLayout, dataLayout, kernel_size, alpha, beta, k);</div><div class="line"><a name="l00844"></a><span class="lineno">  844</span>&#160;}</div><div class="line"><a name="l00845"></a><span class="lineno">  845</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnLRNCreateBackward&lt;double&gt;(</div><div class="line"><a name="l00846"></a><span class="lineno">  846</span>&#160;    dnnPrimitive_t* pLrn,</div><div class="line"><a name="l00847"></a><span class="lineno">  847</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00848"></a><span class="lineno">  848</span>&#160;    <span class="keyword">const</span> dnnLayout_t diffLayout,</div><div class="line"><a name="l00849"></a><span class="lineno">  849</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l00850"></a><span class="lineno">  850</span>&#160;    <span class="keywordtype">size_t</span> kernel_size,</div><div class="line"><a name="l00851"></a><span class="lineno">  851</span>&#160;    <span class="keywordtype">float</span> alpha,</div><div class="line"><a name="l00852"></a><span class="lineno">  852</span>&#160;    <span class="keywordtype">float</span> beta,</div><div class="line"><a name="l00853"></a><span class="lineno">  853</span>&#160;    <span class="keywordtype">float</span> k) {</div><div class="line"><a name="l00854"></a><span class="lineno">  854</span>&#160;  <span class="keywordflow">return</span> dnnLRNCreateBackward_F64(</div><div class="line"><a name="l00855"></a><span class="lineno">  855</span>&#160;      pLrn, attributes, diffLayout, dataLayout, kernel_size, alpha, beta, k);</div><div class="line"><a name="l00856"></a><span class="lineno">  856</span>&#160;}</div><div class="line"><a name="l00857"></a><span class="lineno">  857</span>&#160;</div><div class="line"><a name="l00858"></a><span class="lineno">  858</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnPoolingCreateForward(</div><div class="line"><a name="l00859"></a><span class="lineno">  859</span>&#160;    dnnPrimitive_t* pPooling,</div><div class="line"><a name="l00860"></a><span class="lineno">  860</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00861"></a><span class="lineno">  861</span>&#160;    dnnAlgorithm_t op,</div><div class="line"><a name="l00862"></a><span class="lineno">  862</span>&#160;    <span class="keyword">const</span> dnnLayout_t srcLayout,</div><div class="line"><a name="l00863"></a><span class="lineno">  863</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelSize[],</div><div class="line"><a name="l00864"></a><span class="lineno">  864</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelStride[],</div><div class="line"><a name="l00865"></a><span class="lineno">  865</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00866"></a><span class="lineno">  866</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00867"></a><span class="lineno">  867</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnPoolingCreateForward&lt;float&gt;(</div><div class="line"><a name="l00868"></a><span class="lineno">  868</span>&#160;    dnnPrimitive_t* pPooling,</div><div class="line"><a name="l00869"></a><span class="lineno">  869</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00870"></a><span class="lineno">  870</span>&#160;    dnnAlgorithm_t op,</div><div class="line"><a name="l00871"></a><span class="lineno">  871</span>&#160;    <span class="keyword">const</span> dnnLayout_t srcLayout,</div><div class="line"><a name="l00872"></a><span class="lineno">  872</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelSize[],</div><div class="line"><a name="l00873"></a><span class="lineno">  873</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelStride[],</div><div class="line"><a name="l00874"></a><span class="lineno">  874</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00875"></a><span class="lineno">  875</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00876"></a><span class="lineno">  876</span>&#160;  <span class="keywordflow">return</span> dnnPoolingCreateForward_F32(</div><div class="line"><a name="l00877"></a><span class="lineno">  877</span>&#160;      pPooling,</div><div class="line"><a name="l00878"></a><span class="lineno">  878</span>&#160;      attributes,</div><div class="line"><a name="l00879"></a><span class="lineno">  879</span>&#160;      op,</div><div class="line"><a name="l00880"></a><span class="lineno">  880</span>&#160;      srcLayout,</div><div class="line"><a name="l00881"></a><span class="lineno">  881</span>&#160;      kernelSize,</div><div class="line"><a name="l00882"></a><span class="lineno">  882</span>&#160;      kernelStride,</div><div class="line"><a name="l00883"></a><span class="lineno">  883</span>&#160;      inputOffset,</div><div class="line"><a name="l00884"></a><span class="lineno">  884</span>&#160;      border_type);</div><div class="line"><a name="l00885"></a><span class="lineno">  885</span>&#160;}</div><div class="line"><a name="l00886"></a><span class="lineno">  886</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnPoolingCreateForward&lt;double&gt;(</div><div class="line"><a name="l00887"></a><span class="lineno">  887</span>&#160;    dnnPrimitive_t* pPooling,</div><div class="line"><a name="l00888"></a><span class="lineno">  888</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00889"></a><span class="lineno">  889</span>&#160;    dnnAlgorithm_t op,</div><div class="line"><a name="l00890"></a><span class="lineno">  890</span>&#160;    <span class="keyword">const</span> dnnLayout_t srcLayout,</div><div class="line"><a name="l00891"></a><span class="lineno">  891</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelSize[],</div><div class="line"><a name="l00892"></a><span class="lineno">  892</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelStride[],</div><div class="line"><a name="l00893"></a><span class="lineno">  893</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00894"></a><span class="lineno">  894</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00895"></a><span class="lineno">  895</span>&#160;  <span class="keywordflow">return</span> dnnPoolingCreateForward_F64(</div><div class="line"><a name="l00896"></a><span class="lineno">  896</span>&#160;      pPooling,</div><div class="line"><a name="l00897"></a><span class="lineno">  897</span>&#160;      attributes,</div><div class="line"><a name="l00898"></a><span class="lineno">  898</span>&#160;      op,</div><div class="line"><a name="l00899"></a><span class="lineno">  899</span>&#160;      srcLayout,</div><div class="line"><a name="l00900"></a><span class="lineno">  900</span>&#160;      kernelSize,</div><div class="line"><a name="l00901"></a><span class="lineno">  901</span>&#160;      kernelStride,</div><div class="line"><a name="l00902"></a><span class="lineno">  902</span>&#160;      inputOffset,</div><div class="line"><a name="l00903"></a><span class="lineno">  903</span>&#160;      border_type);</div><div class="line"><a name="l00904"></a><span class="lineno">  904</span>&#160;}</div><div class="line"><a name="l00905"></a><span class="lineno">  905</span>&#160;</div><div class="line"><a name="l00906"></a><span class="lineno">  906</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnPoolingCreateBackward(</div><div class="line"><a name="l00907"></a><span class="lineno">  907</span>&#160;    dnnPrimitive_t* pPooling,</div><div class="line"><a name="l00908"></a><span class="lineno">  908</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00909"></a><span class="lineno">  909</span>&#160;    dnnAlgorithm_t op,</div><div class="line"><a name="l00910"></a><span class="lineno">  910</span>&#160;    <span class="keyword">const</span> dnnLayout_t srcLayout,</div><div class="line"><a name="l00911"></a><span class="lineno">  911</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelSize[],</div><div class="line"><a name="l00912"></a><span class="lineno">  912</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelStride[],</div><div class="line"><a name="l00913"></a><span class="lineno">  913</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00914"></a><span class="lineno">  914</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type);</div><div class="line"><a name="l00915"></a><span class="lineno">  915</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnPoolingCreateBackward&lt;float&gt;(</div><div class="line"><a name="l00916"></a><span class="lineno">  916</span>&#160;    dnnPrimitive_t* pPooling,</div><div class="line"><a name="l00917"></a><span class="lineno">  917</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00918"></a><span class="lineno">  918</span>&#160;    dnnAlgorithm_t op,</div><div class="line"><a name="l00919"></a><span class="lineno">  919</span>&#160;    <span class="keyword">const</span> dnnLayout_t srcLayout,</div><div class="line"><a name="l00920"></a><span class="lineno">  920</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelSize[],</div><div class="line"><a name="l00921"></a><span class="lineno">  921</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelStride[],</div><div class="line"><a name="l00922"></a><span class="lineno">  922</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00923"></a><span class="lineno">  923</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00924"></a><span class="lineno">  924</span>&#160;  <span class="keywordflow">return</span> dnnPoolingCreateBackward_F32(</div><div class="line"><a name="l00925"></a><span class="lineno">  925</span>&#160;      pPooling,</div><div class="line"><a name="l00926"></a><span class="lineno">  926</span>&#160;      attributes,</div><div class="line"><a name="l00927"></a><span class="lineno">  927</span>&#160;      op,</div><div class="line"><a name="l00928"></a><span class="lineno">  928</span>&#160;      srcLayout,</div><div class="line"><a name="l00929"></a><span class="lineno">  929</span>&#160;      kernelSize,</div><div class="line"><a name="l00930"></a><span class="lineno">  930</span>&#160;      kernelStride,</div><div class="line"><a name="l00931"></a><span class="lineno">  931</span>&#160;      inputOffset,</div><div class="line"><a name="l00932"></a><span class="lineno">  932</span>&#160;      border_type);</div><div class="line"><a name="l00933"></a><span class="lineno">  933</span>&#160;}</div><div class="line"><a name="l00934"></a><span class="lineno">  934</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnPoolingCreateBackward&lt;double&gt;(</div><div class="line"><a name="l00935"></a><span class="lineno">  935</span>&#160;    dnnPrimitive_t* pPooling,</div><div class="line"><a name="l00936"></a><span class="lineno">  936</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00937"></a><span class="lineno">  937</span>&#160;    dnnAlgorithm_t op,</div><div class="line"><a name="l00938"></a><span class="lineno">  938</span>&#160;    <span class="keyword">const</span> dnnLayout_t srcLayout,</div><div class="line"><a name="l00939"></a><span class="lineno">  939</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelSize[],</div><div class="line"><a name="l00940"></a><span class="lineno">  940</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> kernelStride[],</div><div class="line"><a name="l00941"></a><span class="lineno">  941</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> inputOffset[],</div><div class="line"><a name="l00942"></a><span class="lineno">  942</span>&#160;    <span class="keyword">const</span> dnnBorder_t border_type) {</div><div class="line"><a name="l00943"></a><span class="lineno">  943</span>&#160;  <span class="keywordflow">return</span> dnnPoolingCreateBackward_F64(</div><div class="line"><a name="l00944"></a><span class="lineno">  944</span>&#160;      pPooling,</div><div class="line"><a name="l00945"></a><span class="lineno">  945</span>&#160;      attributes,</div><div class="line"><a name="l00946"></a><span class="lineno">  946</span>&#160;      op,</div><div class="line"><a name="l00947"></a><span class="lineno">  947</span>&#160;      srcLayout,</div><div class="line"><a name="l00948"></a><span class="lineno">  948</span>&#160;      kernelSize,</div><div class="line"><a name="l00949"></a><span class="lineno">  949</span>&#160;      kernelStride,</div><div class="line"><a name="l00950"></a><span class="lineno">  950</span>&#160;      inputOffset,</div><div class="line"><a name="l00951"></a><span class="lineno">  951</span>&#160;      border_type);</div><div class="line"><a name="l00952"></a><span class="lineno">  952</span>&#160;}</div><div class="line"><a name="l00953"></a><span class="lineno">  953</span>&#160;</div><div class="line"><a name="l00954"></a><span class="lineno">  954</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnConcatCreate(</div><div class="line"><a name="l00955"></a><span class="lineno">  955</span>&#160;    dnnPrimitive_t* pConcat,</div><div class="line"><a name="l00956"></a><span class="lineno">  956</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00957"></a><span class="lineno">  957</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> N,</div><div class="line"><a name="l00958"></a><span class="lineno">  958</span>&#160;    dnnLayout_t src[]);</div><div class="line"><a name="l00959"></a><span class="lineno">  959</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConcatCreate&lt;float&gt;(</div><div class="line"><a name="l00960"></a><span class="lineno">  960</span>&#160;    dnnPrimitive_t* pConcat,</div><div class="line"><a name="l00961"></a><span class="lineno">  961</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00962"></a><span class="lineno">  962</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> N,</div><div class="line"><a name="l00963"></a><span class="lineno">  963</span>&#160;    dnnLayout_t src[]) {</div><div class="line"><a name="l00964"></a><span class="lineno">  964</span>&#160;  <span class="keywordflow">return</span> dnnConcatCreate_F32(pConcat, attributes, N, src);</div><div class="line"><a name="l00965"></a><span class="lineno">  965</span>&#160;}</div><div class="line"><a name="l00966"></a><span class="lineno">  966</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnConcatCreate&lt;double&gt;(</div><div class="line"><a name="l00967"></a><span class="lineno">  967</span>&#160;    dnnPrimitive_t* pConcat,</div><div class="line"><a name="l00968"></a><span class="lineno">  968</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00969"></a><span class="lineno">  969</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> N,</div><div class="line"><a name="l00970"></a><span class="lineno">  970</span>&#160;    dnnLayout_t src[]) {</div><div class="line"><a name="l00971"></a><span class="lineno">  971</span>&#160;  <span class="keywordflow">return</span> dnnConcatCreate_F64(pConcat, attributes, N, src);</div><div class="line"><a name="l00972"></a><span class="lineno">  972</span>&#160;}</div><div class="line"><a name="l00973"></a><span class="lineno">  973</span>&#160;</div><div class="line"><a name="l00974"></a><span class="lineno">  974</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnSplitCreate(</div><div class="line"><a name="l00975"></a><span class="lineno">  975</span>&#160;    dnnPrimitive_t* pSplit,</div><div class="line"><a name="l00976"></a><span class="lineno">  976</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00977"></a><span class="lineno">  977</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> N,</div><div class="line"><a name="l00978"></a><span class="lineno">  978</span>&#160;    dnnLayout_t src,</div><div class="line"><a name="l00979"></a><span class="lineno">  979</span>&#160;    <span class="keywordtype">size_t</span> dst[]);</div><div class="line"><a name="l00980"></a><span class="lineno">  980</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnSplitCreate&lt;float&gt;(</div><div class="line"><a name="l00981"></a><span class="lineno">  981</span>&#160;    dnnPrimitive_t* pSplit,</div><div class="line"><a name="l00982"></a><span class="lineno">  982</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00983"></a><span class="lineno">  983</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> N,</div><div class="line"><a name="l00984"></a><span class="lineno">  984</span>&#160;    dnnLayout_t src,</div><div class="line"><a name="l00985"></a><span class="lineno">  985</span>&#160;    <span class="keywordtype">size_t</span> dst[]) {</div><div class="line"><a name="l00986"></a><span class="lineno">  986</span>&#160;  <span class="keywordflow">return</span> dnnSplitCreate_F32(pSplit, attributes, N, src, dst);</div><div class="line"><a name="l00987"></a><span class="lineno">  987</span>&#160;}</div><div class="line"><a name="l00988"></a><span class="lineno">  988</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnSplitCreate&lt;double&gt;(</div><div class="line"><a name="l00989"></a><span class="lineno">  989</span>&#160;    dnnPrimitive_t* pSplit,</div><div class="line"><a name="l00990"></a><span class="lineno">  990</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l00991"></a><span class="lineno">  991</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> N,</div><div class="line"><a name="l00992"></a><span class="lineno">  992</span>&#160;    dnnLayout_t src,</div><div class="line"><a name="l00993"></a><span class="lineno">  993</span>&#160;    <span class="keywordtype">size_t</span> dst[]) {</div><div class="line"><a name="l00994"></a><span class="lineno">  994</span>&#160;  <span class="keywordflow">return</span> dnnSplitCreate_F64(pSplit, attributes, N, src, dst);</div><div class="line"><a name="l00995"></a><span class="lineno">  995</span>&#160;}</div><div class="line"><a name="l00996"></a><span class="lineno">  996</span>&#160;</div><div class="line"><a name="l00997"></a><span class="lineno">  997</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnSumCreate(</div><div class="line"><a name="l00998"></a><span class="lineno">  998</span>&#160;    dnnPrimitive_t* pSum,</div><div class="line"><a name="l00999"></a><span class="lineno">  999</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01000"></a><span class="lineno"> 1000</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> nSummands,</div><div class="line"><a name="l01001"></a><span class="lineno"> 1001</span>&#160;    dnnLayout_t layout,</div><div class="line"><a name="l01002"></a><span class="lineno"> 1002</span>&#160;    T* coefficients);</div><div class="line"><a name="l01003"></a><span class="lineno"> 1003</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnSumCreate&lt;float&gt;(</div><div class="line"><a name="l01004"></a><span class="lineno"> 1004</span>&#160;    dnnPrimitive_t* pSum,</div><div class="line"><a name="l01005"></a><span class="lineno"> 1005</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01006"></a><span class="lineno"> 1006</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> nSummands,</div><div class="line"><a name="l01007"></a><span class="lineno"> 1007</span>&#160;    dnnLayout_t layout,</div><div class="line"><a name="l01008"></a><span class="lineno"> 1008</span>&#160;    <span class="keywordtype">float</span>* coefficients) {</div><div class="line"><a name="l01009"></a><span class="lineno"> 1009</span>&#160;  <span class="keywordflow">return</span> dnnSumCreate_F32(pSum, attributes, nSummands, layout, coefficients);</div><div class="line"><a name="l01010"></a><span class="lineno"> 1010</span>&#160;}</div><div class="line"><a name="l01011"></a><span class="lineno"> 1011</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnSumCreate&lt;double&gt;(</div><div class="line"><a name="l01012"></a><span class="lineno"> 1012</span>&#160;    dnnPrimitive_t* pSum,</div><div class="line"><a name="l01013"></a><span class="lineno"> 1013</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01014"></a><span class="lineno"> 1014</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> nSummands,</div><div class="line"><a name="l01015"></a><span class="lineno"> 1015</span>&#160;    dnnLayout_t layout,</div><div class="line"><a name="l01016"></a><span class="lineno"> 1016</span>&#160;    <span class="keywordtype">double</span>* coefficients) {</div><div class="line"><a name="l01017"></a><span class="lineno"> 1017</span>&#160;  <span class="keywordflow">return</span> dnnSumCreate_F64(pSum, attributes, nSummands, layout, coefficients);</div><div class="line"><a name="l01018"></a><span class="lineno"> 1018</span>&#160;}</div><div class="line"><a name="l01019"></a><span class="lineno"> 1019</span>&#160;</div><div class="line"><a name="l01020"></a><span class="lineno"> 1020</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnBatchNormalizationCreateForward(</div><div class="line"><a name="l01021"></a><span class="lineno"> 1021</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01022"></a><span class="lineno"> 1022</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01023"></a><span class="lineno"> 1023</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01024"></a><span class="lineno"> 1024</span>&#160;    <span class="keywordtype">float</span> eps);</div><div class="line"><a name="l01025"></a><span class="lineno"> 1025</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateForward&lt;float&gt;(</div><div class="line"><a name="l01026"></a><span class="lineno"> 1026</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01027"></a><span class="lineno"> 1027</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01028"></a><span class="lineno"> 1028</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01029"></a><span class="lineno"> 1029</span>&#160;    <span class="keywordtype">float</span> eps) {</div><div class="line"><a name="l01030"></a><span class="lineno"> 1030</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateForward_F32(</div><div class="line"><a name="l01031"></a><span class="lineno"> 1031</span>&#160;      pBatchNormalization, attributes, dataLayout, eps);</div><div class="line"><a name="l01032"></a><span class="lineno"> 1032</span>&#160;}</div><div class="line"><a name="l01033"></a><span class="lineno"> 1033</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateForward&lt;double&gt;(</div><div class="line"><a name="l01034"></a><span class="lineno"> 1034</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01035"></a><span class="lineno"> 1035</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01036"></a><span class="lineno"> 1036</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01037"></a><span class="lineno"> 1037</span>&#160;    <span class="keywordtype">float</span> eps) {</div><div class="line"><a name="l01038"></a><span class="lineno"> 1038</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateForward_F64(</div><div class="line"><a name="l01039"></a><span class="lineno"> 1039</span>&#160;      pBatchNormalization, attributes, dataLayout, eps);</div><div class="line"><a name="l01040"></a><span class="lineno"> 1040</span>&#160;}</div><div class="line"><a name="l01041"></a><span class="lineno"> 1041</span>&#160;</div><div class="line"><a name="l01042"></a><span class="lineno"> 1042</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnBatchNormalizationCreateBackwardData(</div><div class="line"><a name="l01043"></a><span class="lineno"> 1043</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01044"></a><span class="lineno"> 1044</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01045"></a><span class="lineno"> 1045</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01046"></a><span class="lineno"> 1046</span>&#160;    <span class="keywordtype">float</span> eps);</div><div class="line"><a name="l01047"></a><span class="lineno"> 1047</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateBackwardData&lt;float&gt;(</div><div class="line"><a name="l01048"></a><span class="lineno"> 1048</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01049"></a><span class="lineno"> 1049</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01050"></a><span class="lineno"> 1050</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01051"></a><span class="lineno"> 1051</span>&#160;    <span class="keywordtype">float</span> eps) {</div><div class="line"><a name="l01052"></a><span class="lineno"> 1052</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateBackwardData_F32(</div><div class="line"><a name="l01053"></a><span class="lineno"> 1053</span>&#160;      pBatchNormalization, attributes, dataLayout, eps);</div><div class="line"><a name="l01054"></a><span class="lineno"> 1054</span>&#160;}</div><div class="line"><a name="l01055"></a><span class="lineno"> 1055</span>&#160;</div><div class="line"><a name="l01056"></a><span class="lineno"> 1056</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateBackwardData&lt;double&gt;(</div><div class="line"><a name="l01057"></a><span class="lineno"> 1057</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01058"></a><span class="lineno"> 1058</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01059"></a><span class="lineno"> 1059</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01060"></a><span class="lineno"> 1060</span>&#160;    <span class="keywordtype">float</span> eps) {</div><div class="line"><a name="l01061"></a><span class="lineno"> 1061</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateBackwardData_F64(</div><div class="line"><a name="l01062"></a><span class="lineno"> 1062</span>&#160;      pBatchNormalization, attributes, dataLayout, eps);</div><div class="line"><a name="l01063"></a><span class="lineno"> 1063</span>&#160;}</div><div class="line"><a name="l01064"></a><span class="lineno"> 1064</span>&#160;</div><div class="line"><a name="l01065"></a><span class="lineno"> 1065</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnBatchNormalizationCreateBackwardScaleShift(</div><div class="line"><a name="l01066"></a><span class="lineno"> 1066</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01067"></a><span class="lineno"> 1067</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01068"></a><span class="lineno"> 1068</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01069"></a><span class="lineno"> 1069</span>&#160;    <span class="keywordtype">float</span> eps);</div><div class="line"><a name="l01070"></a><span class="lineno"> 1070</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l01071"></a><span class="lineno"> 1071</span>&#160;dnnBatchNormalizationCreateBackwardScaleShift&lt;float&gt;(</div><div class="line"><a name="l01072"></a><span class="lineno"> 1072</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01073"></a><span class="lineno"> 1073</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01074"></a><span class="lineno"> 1074</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01075"></a><span class="lineno"> 1075</span>&#160;    <span class="keywordtype">float</span> eps) {</div><div class="line"><a name="l01076"></a><span class="lineno"> 1076</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateBackwardScaleShift_F32(</div><div class="line"><a name="l01077"></a><span class="lineno"> 1077</span>&#160;      pBatchNormalization, attributes, dataLayout, eps);</div><div class="line"><a name="l01078"></a><span class="lineno"> 1078</span>&#160;}</div><div class="line"><a name="l01079"></a><span class="lineno"> 1079</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t</div><div class="line"><a name="l01080"></a><span class="lineno"> 1080</span>&#160;dnnBatchNormalizationCreateBackwardScaleShift&lt;double&gt;(</div><div class="line"><a name="l01081"></a><span class="lineno"> 1081</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01082"></a><span class="lineno"> 1082</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01083"></a><span class="lineno"> 1083</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01084"></a><span class="lineno"> 1084</span>&#160;    <span class="keywordtype">float</span> eps) {</div><div class="line"><a name="l01085"></a><span class="lineno"> 1085</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateBackwardScaleShift_F64(</div><div class="line"><a name="l01086"></a><span class="lineno"> 1086</span>&#160;      pBatchNormalization, attributes, dataLayout, eps);</div><div class="line"><a name="l01087"></a><span class="lineno"> 1087</span>&#160;}</div><div class="line"><a name="l01088"></a><span class="lineno"> 1088</span>&#160;</div><div class="line"><a name="l01089"></a><span class="lineno"> 1089</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnBatchNormalizationCreateForward_v2(</div><div class="line"><a name="l01090"></a><span class="lineno"> 1090</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01091"></a><span class="lineno"> 1091</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01092"></a><span class="lineno"> 1092</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01093"></a><span class="lineno"> 1093</span>&#160;    <span class="keywordtype">float</span> eps,</div><div class="line"><a name="l01094"></a><span class="lineno"> 1094</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> flags);</div><div class="line"><a name="l01095"></a><span class="lineno"> 1095</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateForward_v2&lt;float&gt;(</div><div class="line"><a name="l01096"></a><span class="lineno"> 1096</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01097"></a><span class="lineno"> 1097</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01098"></a><span class="lineno"> 1098</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01099"></a><span class="lineno"> 1099</span>&#160;    <span class="keywordtype">float</span> eps,</div><div class="line"><a name="l01100"></a><span class="lineno"> 1100</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> flags) {</div><div class="line"><a name="l01101"></a><span class="lineno"> 1101</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateForward_v2_F32(</div><div class="line"><a name="l01102"></a><span class="lineno"> 1102</span>&#160;      pBatchNormalization, attributes, dataLayout, eps, flags);</div><div class="line"><a name="l01103"></a><span class="lineno"> 1103</span>&#160;}</div><div class="line"><a name="l01104"></a><span class="lineno"> 1104</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateForward_v2&lt;double&gt;(</div><div class="line"><a name="l01105"></a><span class="lineno"> 1105</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01106"></a><span class="lineno"> 1106</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01107"></a><span class="lineno"> 1107</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01108"></a><span class="lineno"> 1108</span>&#160;    <span class="keywordtype">float</span> eps,</div><div class="line"><a name="l01109"></a><span class="lineno"> 1109</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> flags) {</div><div class="line"><a name="l01110"></a><span class="lineno"> 1110</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateForward_v2_F64(</div><div class="line"><a name="l01111"></a><span class="lineno"> 1111</span>&#160;      pBatchNormalization, attributes, dataLayout, eps, flags);</div><div class="line"><a name="l01112"></a><span class="lineno"> 1112</span>&#160;}</div><div class="line"><a name="l01113"></a><span class="lineno"> 1113</span>&#160;</div><div class="line"><a name="l01114"></a><span class="lineno"> 1114</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnBatchNormalizationCreateBackward_v2(</div><div class="line"><a name="l01115"></a><span class="lineno"> 1115</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01116"></a><span class="lineno"> 1116</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01117"></a><span class="lineno"> 1117</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01118"></a><span class="lineno"> 1118</span>&#160;    <span class="keywordtype">float</span> eps,</div><div class="line"><a name="l01119"></a><span class="lineno"> 1119</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> flags);</div><div class="line"><a name="l01120"></a><span class="lineno"> 1120</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateBackward_v2&lt;float&gt;(</div><div class="line"><a name="l01121"></a><span class="lineno"> 1121</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01122"></a><span class="lineno"> 1122</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01123"></a><span class="lineno"> 1123</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01124"></a><span class="lineno"> 1124</span>&#160;    <span class="keywordtype">float</span> eps,</div><div class="line"><a name="l01125"></a><span class="lineno"> 1125</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> flags) {</div><div class="line"><a name="l01126"></a><span class="lineno"> 1126</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateBackward_v2_F32(</div><div class="line"><a name="l01127"></a><span class="lineno"> 1127</span>&#160;      pBatchNormalization, attributes, dataLayout, eps, flags);</div><div class="line"><a name="l01128"></a><span class="lineno"> 1128</span>&#160;}</div><div class="line"><a name="l01129"></a><span class="lineno"> 1129</span>&#160;</div><div class="line"><a name="l01130"></a><span class="lineno"> 1130</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnBatchNormalizationCreateBackward_v2&lt;double&gt;(</div><div class="line"><a name="l01131"></a><span class="lineno"> 1131</span>&#160;    dnnPrimitive_t* pBatchNormalization,</div><div class="line"><a name="l01132"></a><span class="lineno"> 1132</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01133"></a><span class="lineno"> 1133</span>&#160;    <span class="keyword">const</span> dnnLayout_t dataLayout,</div><div class="line"><a name="l01134"></a><span class="lineno"> 1134</span>&#160;    <span class="keywordtype">float</span> eps,</div><div class="line"><a name="l01135"></a><span class="lineno"> 1135</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> flags) {</div><div class="line"><a name="l01136"></a><span class="lineno"> 1136</span>&#160;  <span class="keywordflow">return</span> dnnBatchNormalizationCreateBackward_v2_F64(</div><div class="line"><a name="l01137"></a><span class="lineno"> 1137</span>&#160;      pBatchNormalization, attributes, dataLayout, eps, flags);</div><div class="line"><a name="l01138"></a><span class="lineno"> 1138</span>&#160;}</div><div class="line"><a name="l01139"></a><span class="lineno"> 1139</span>&#160;</div><div class="line"><a name="l01140"></a><span class="lineno"> 1140</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnInnerProductCreateForward(</div><div class="line"><a name="l01141"></a><span class="lineno"> 1141</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01142"></a><span class="lineno"> 1142</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01143"></a><span class="lineno"> 1143</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01144"></a><span class="lineno"> 1144</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01145"></a><span class="lineno"> 1145</span>&#160;    <span class="keywordtype">size_t</span> outputChannels);</div><div class="line"><a name="l01146"></a><span class="lineno"> 1146</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateForward&lt;float&gt;(</div><div class="line"><a name="l01147"></a><span class="lineno"> 1147</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01148"></a><span class="lineno"> 1148</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01149"></a><span class="lineno"> 1149</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01150"></a><span class="lineno"> 1150</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01151"></a><span class="lineno"> 1151</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01152"></a><span class="lineno"> 1152</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateForward_F32(</div><div class="line"><a name="l01153"></a><span class="lineno"> 1153</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01154"></a><span class="lineno"> 1154</span>&#160;}</div><div class="line"><a name="l01155"></a><span class="lineno"> 1155</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateForward&lt;double&gt;(</div><div class="line"><a name="l01156"></a><span class="lineno"> 1156</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01157"></a><span class="lineno"> 1157</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01158"></a><span class="lineno"> 1158</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01159"></a><span class="lineno"> 1159</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01160"></a><span class="lineno"> 1160</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01161"></a><span class="lineno"> 1161</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateForward_F64(</div><div class="line"><a name="l01162"></a><span class="lineno"> 1162</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01163"></a><span class="lineno"> 1163</span>&#160;}</div><div class="line"><a name="l01164"></a><span class="lineno"> 1164</span>&#160;</div><div class="line"><a name="l01165"></a><span class="lineno"> 1165</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnInnerProductCreateForwardBias(</div><div class="line"><a name="l01166"></a><span class="lineno"> 1166</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01167"></a><span class="lineno"> 1167</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01168"></a><span class="lineno"> 1168</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01169"></a><span class="lineno"> 1169</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01170"></a><span class="lineno"> 1170</span>&#160;    <span class="keywordtype">size_t</span> outputChannels);</div><div class="line"><a name="l01171"></a><span class="lineno"> 1171</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateForwardBias&lt;float&gt;(</div><div class="line"><a name="l01172"></a><span class="lineno"> 1172</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01173"></a><span class="lineno"> 1173</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01174"></a><span class="lineno"> 1174</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01175"></a><span class="lineno"> 1175</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01176"></a><span class="lineno"> 1176</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01177"></a><span class="lineno"> 1177</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateForwardBias_F32(</div><div class="line"><a name="l01178"></a><span class="lineno"> 1178</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01179"></a><span class="lineno"> 1179</span>&#160;}</div><div class="line"><a name="l01180"></a><span class="lineno"> 1180</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateForwardBias&lt;double&gt;(</div><div class="line"><a name="l01181"></a><span class="lineno"> 1181</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01182"></a><span class="lineno"> 1182</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01183"></a><span class="lineno"> 1183</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01184"></a><span class="lineno"> 1184</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01185"></a><span class="lineno"> 1185</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01186"></a><span class="lineno"> 1186</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateForwardBias_F64(</div><div class="line"><a name="l01187"></a><span class="lineno"> 1187</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01188"></a><span class="lineno"> 1188</span>&#160;}</div><div class="line"><a name="l01189"></a><span class="lineno"> 1189</span>&#160;</div><div class="line"><a name="l01190"></a><span class="lineno"> 1190</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnInnerProductCreateBackwardData(</div><div class="line"><a name="l01191"></a><span class="lineno"> 1191</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01192"></a><span class="lineno"> 1192</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01193"></a><span class="lineno"> 1193</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01194"></a><span class="lineno"> 1194</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01195"></a><span class="lineno"> 1195</span>&#160;    <span class="keywordtype">size_t</span> outputChannels);</div><div class="line"><a name="l01196"></a><span class="lineno"> 1196</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateBackwardData&lt;float&gt;(</div><div class="line"><a name="l01197"></a><span class="lineno"> 1197</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01198"></a><span class="lineno"> 1198</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01199"></a><span class="lineno"> 1199</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01200"></a><span class="lineno"> 1200</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01201"></a><span class="lineno"> 1201</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01202"></a><span class="lineno"> 1202</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateBackwardData_F32(</div><div class="line"><a name="l01203"></a><span class="lineno"> 1203</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01204"></a><span class="lineno"> 1204</span>&#160;}</div><div class="line"><a name="l01205"></a><span class="lineno"> 1205</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateBackwardData&lt;double&gt;(</div><div class="line"><a name="l01206"></a><span class="lineno"> 1206</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01207"></a><span class="lineno"> 1207</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01208"></a><span class="lineno"> 1208</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01209"></a><span class="lineno"> 1209</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01210"></a><span class="lineno"> 1210</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01211"></a><span class="lineno"> 1211</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateBackwardData_F64(</div><div class="line"><a name="l01212"></a><span class="lineno"> 1212</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01213"></a><span class="lineno"> 1213</span>&#160;}</div><div class="line"><a name="l01214"></a><span class="lineno"> 1214</span>&#160;</div><div class="line"><a name="l01215"></a><span class="lineno"> 1215</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnInnerProductCreateBackwardFilter(</div><div class="line"><a name="l01216"></a><span class="lineno"> 1216</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01217"></a><span class="lineno"> 1217</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01218"></a><span class="lineno"> 1218</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01219"></a><span class="lineno"> 1219</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01220"></a><span class="lineno"> 1220</span>&#160;    <span class="keywordtype">size_t</span> outputChannels);</div><div class="line"><a name="l01221"></a><span class="lineno"> 1221</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateBackwardFilter&lt;float&gt;(</div><div class="line"><a name="l01222"></a><span class="lineno"> 1222</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01223"></a><span class="lineno"> 1223</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01224"></a><span class="lineno"> 1224</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01225"></a><span class="lineno"> 1225</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01226"></a><span class="lineno"> 1226</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01227"></a><span class="lineno"> 1227</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateBackwardFilter_F32(</div><div class="line"><a name="l01228"></a><span class="lineno"> 1228</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01229"></a><span class="lineno"> 1229</span>&#160;}</div><div class="line"><a name="l01230"></a><span class="lineno"> 1230</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateBackwardFilter&lt;double&gt;(</div><div class="line"><a name="l01231"></a><span class="lineno"> 1231</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01232"></a><span class="lineno"> 1232</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01233"></a><span class="lineno"> 1233</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01234"></a><span class="lineno"> 1234</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[],</div><div class="line"><a name="l01235"></a><span class="lineno"> 1235</span>&#160;    <span class="keywordtype">size_t</span> outputChannels) {</div><div class="line"><a name="l01236"></a><span class="lineno"> 1236</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateBackwardFilter_F64(</div><div class="line"><a name="l01237"></a><span class="lineno"> 1237</span>&#160;      pInnerProduct, attributes, dimensions, srcSize, outputChannels);</div><div class="line"><a name="l01238"></a><span class="lineno"> 1238</span>&#160;}</div><div class="line"><a name="l01239"></a><span class="lineno"> 1239</span>&#160;</div><div class="line"><a name="l01240"></a><span class="lineno"> 1240</span>&#160;C2_MKL_TEMPLATE_PREFIX dnnError_t dnnInnerProductCreateBackwardBias(</div><div class="line"><a name="l01241"></a><span class="lineno"> 1241</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01242"></a><span class="lineno"> 1242</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01243"></a><span class="lineno"> 1243</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01244"></a><span class="lineno"> 1244</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[]);</div><div class="line"><a name="l01245"></a><span class="lineno"> 1245</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateBackwardBias&lt;float&gt;(</div><div class="line"><a name="l01246"></a><span class="lineno"> 1246</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01247"></a><span class="lineno"> 1247</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01248"></a><span class="lineno"> 1248</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01249"></a><span class="lineno"> 1249</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[]) {</div><div class="line"><a name="l01250"></a><span class="lineno"> 1250</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateBackwardBias_F32(</div><div class="line"><a name="l01251"></a><span class="lineno"> 1251</span>&#160;      pInnerProduct, attributes, dimensions, srcSize);</div><div class="line"><a name="l01252"></a><span class="lineno"> 1252</span>&#160;}</div><div class="line"><a name="l01253"></a><span class="lineno"> 1253</span>&#160;C2_MKL_SPEC_PREFIX dnnError_t dnnInnerProductCreateBackwardBias&lt;double&gt;(</div><div class="line"><a name="l01254"></a><span class="lineno"> 1254</span>&#160;    dnnPrimitive_t* pInnerProduct,</div><div class="line"><a name="l01255"></a><span class="lineno"> 1255</span>&#160;    dnnPrimitiveAttributes_t attributes,</div><div class="line"><a name="l01256"></a><span class="lineno"> 1256</span>&#160;    <span class="keywordtype">size_t</span> dimensions,</div><div class="line"><a name="l01257"></a><span class="lineno"> 1257</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> srcSize[]) {</div><div class="line"><a name="l01258"></a><span class="lineno"> 1258</span>&#160;  <span class="keywordflow">return</span> dnnInnerProductCreateBackwardBias_F64(</div><div class="line"><a name="l01259"></a><span class="lineno"> 1259</span>&#160;      pInnerProduct, attributes, dimensions, srcSize);</div><div class="line"><a name="l01260"></a><span class="lineno"> 1260</span>&#160;}</div><div class="line"><a name="l01261"></a><span class="lineno"> 1261</span>&#160;</div><div class="line"><a name="l01262"></a><span class="lineno"> 1262</span>&#160;} <span class="comment">// namespace mkl</span></div><div class="line"><a name="l01263"></a><span class="lineno"> 1263</span>&#160;} <span class="comment">// namespace caffe2</span></div><div class="line"><a name="l01264"></a><span class="lineno"> 1264</span>&#160;</div><div class="line"><a name="l01265"></a><span class="lineno"> 1265</span>&#160;<span class="comment">// Undef macros to make sure that things are clean.</span></div><div class="line"><a name="l01266"></a><span class="lineno"> 1266</span>&#160;<span class="preprocessor">#undef C2_MKL_TEMPLATE_PREFIX</span></div><div class="line"><a name="l01267"></a><span class="lineno"> 1267</span>&#160;<span class="preprocessor">#undef C2_MKL_SPEC_PREFIX</span></div><div class="line"><a name="l01268"></a><span class="lineno"> 1268</span>&#160;</div><div class="line"><a name="l01269"></a><span class="lineno"> 1269</span>&#160;<span class="preprocessor">#endif // CAFFE2_UTILS_MKL_MKL_DNN_CPPWRAPPER_H</span></div><div class="ttc" id="namespacecaffe2_html"><div class="ttname"><a href="namespacecaffe2.html">caffe2</a></div><div class="ttdoc">A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...</div><div class="ttdef"><b>Definition:</b> <a href="convert__encoded__to__raw__leveldb_8cc_source.html#l00047">convert_encoded_to_raw_leveldb.cc:47</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- HTML footer for doxygen 1.8.14-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated on Thu Apr 19 2018 13:03:50 for Caffe2 - C++ API by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
<div class="footerContainer">
  <div id="footer_wrap" class="wrapper footerWrapper">
    <div class="footerBlocks">
      <div id="fb_oss" class="footerSection fbOpenSourceFooter">
          <svg class="facebookOSSLogoSvg" viewBox="0 0 1133.9 1133.9" x="0px" y="0px" height=50 width=50>
            <g>
              <path class="logoRing outerRing" d="M 498.3 3.7 c 153.6 88.9 307.3 177.7 461.1 266.2 c 7.6 4.4 10.3 9.1 10.3 17.8 c -0.3 179.1 -0.2 358.3 0 537.4 c 0 8.1 -2.4 12.8 -9.7 17.1 c -154.5 88.9 -308.8 178.1 -462.9 267.5 c -9 5.2 -15.5 5.3 -24.6 0.1 c -153.9 -89.2 -307.9 -178 -462.1 -266.8 C 3 838.8 0 833.9 0 825.1 c 0.3 -179.1 0.2 -358.3 0 -537.4 c 0 -8.6 2.6 -13.6 10.2 -18 C 164.4 180.9 318.4 92 472.4 3 C 477 -1.5 494.3 -0.7 498.3 3.7 Z M 48.8 555.3 c 0 79.9 0.2 159.9 -0.2 239.8 c -0.1 10 3 15.6 11.7 20.6 c 137.2 78.8 274.2 157.8 411 237.3 c 9.9 5.7 17 5.7 26.8 0.1 c 137.5 -79.8 275.2 -159.2 412.9 -238.5 c 7.4 -4.3 10.5 -8.9 10.5 -17.8 c -0.3 -160.2 -0.3 -320.5 0 -480.7 c 0 -8.8 -2.8 -13.6 -10.3 -18 C 772.1 218 633.1 137.8 494.2 57.4 c -6.5 -3.8 -11.5 -4.5 -18.5 -0.5 C 336.8 137.4 197.9 217.7 58.8 297.7 c -7.7 4.4 -10.2 9.2 -10.2 17.9 C 48.9 395.5 48.8 475.4 48.8 555.3 Z" />
              <path class="logoRing middleRing" d="M 184.4 555.9 c 0 -33.3 -1 -66.7 0.3 -100 c 1.9 -48 24.1 -86 64.7 -110.9 c 54.8 -33.6 110.7 -65.5 167 -96.6 c 45.7 -25.2 92.9 -24.7 138.6 1 c 54.4 30.6 108.7 61.5 162.2 93.7 c 44 26.5 67.3 66.8 68 118.4 c 0.9 63.2 0.9 126.5 0 189.7 c -0.7 50.6 -23.4 90.7 -66.6 116.9 c -55 33.4 -110.8 65.4 -167.1 96.5 c -43.4 24 -89 24.2 -132.3 0.5 c -57.5 -31.3 -114.2 -64 -170 -98.3 c -41 -25.1 -62.9 -63.7 -64.5 -112.2 C 183.5 621.9 184.3 588.9 184.4 555.9 Z M 232.9 556.3 c 0 29.5 0.5 59.1 -0.1 88.6 c -0.8 39.2 16.9 67.1 50.2 86.2 c 51.2 29.4 102.2 59.2 153.4 88.4 c 31.4 17.9 63.6 18.3 95 0.6 c 53.7 -30.3 107.1 -61.2 160.3 -92.5 c 29.7 -17.5 45 -44.5 45.3 -78.8 c 0.6 -61.7 0.5 -123.5 0 -185.2 c -0.3 -34.4 -15.3 -61.5 -44.9 -79 C 637.7 352.6 583 320.8 527.9 290 c -27.5 -15.4 -57.2 -16.1 -84.7 -0.7 c -56.9 31.6 -113.4 64 -169.1 97.6 c -26.4 15.9 -40.7 41.3 -41.1 72.9 C 232.6 491.9 232.9 524.1 232.9 556.3 Z" />
              <path class="logoRing innerRing" d="M 484.9 424.4 c 69.8 -2.8 133.2 57.8 132.6 132 C 617 630 558.5 688.7 484.9 689.1 c -75.1 0.4 -132.6 -63.6 -132.7 -132.7 C 352.1 485 413.4 421.5 484.9 424.4 Z M 401.3 556.7 c -3.4 37.2 30.5 83.6 83 84.1 c 46.6 0.4 84.8 -37.6 84.9 -84 c 0.1 -46.6 -37.2 -84.4 -84.2 -84.6 C 432.2 472.1 397.9 518.3 401.3 556.7 Z" />
            </g>
          </svg>
        <h2>Facebook Open Source</h2>
      </div>
      <div class="footerSection">
        <a class="footerLink" href="https://code.facebook.com/projects/" target="_blank">Open Source Projects</a>
        <a class="footerLink" href="https://github.com/facebook/" target="_blank">GitHub</a>
        <a class="footerLink" href="https://twitter.com/fbOpenSource" target="_blank">Twitter</a>
      </div>
      <div class="footerSection rightAlign">
        <a class="footerLink" href="https://github.com/caffe2/caffe2" target="_blank">Contribute to this project on GitHub</a>
      </div>
    </div>
  </div>
</div>
<script type="text/javascript" src="/js/jekyll-link-anchors.js"></script>
<script>
  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
  ga('create', '{{ site.gacode }}', 'auto');
  ga('send', 'pageview');
</script>
</body>
</html>