<!-- HTML header for doxygen 1.8.14-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Caffe2 - C++ API: caffe2/operators/softmax_with_loss_op.cc Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link rel="icon" href="/static/favicon.png" type="image/x-icon">
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { init_search(); });
</script>
<link href="stylesheet.css" rel="stylesheet" type="text/css" />
<link href="main.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectlogo" width="56"><a href="/"><img alt="Logo" src="Caffe2-with-name-55-tall.png"/></a></td>
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname">Caffe2 - C++ API
   </div>
   <div id="projectbrief">A deep learning, cross platform ML framework</div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="pages.html"><span>Related&#160;Pages</span></a></li>
      <li><a href="modules.html"><span>Modules</span></a></li>
      <li><a href="annotated.html"><span>Data&#160;Structures</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li><a href="/doxygen-c/html/classes.html"><span>C++&#160;API</span></a></li>
      <li><a href="/doxygen-python/html/annotated.html"><span>Python&#160;API</span></a></li>
      <li><a href="https://github.com/caffe2/caffe2"><span>GitHub</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
      <li><a href="globals.html"><span>Globals</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_20697b8f204bdfcab31e6b1a416f3ab8.html">caffe2</a></li><li class="navelem"><a class="el" href="dir_a88b8b93dde245e9b5ee872e77180f4c.html">operators</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">softmax_with_loss_op.cc</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="preprocessor">#include &quot;softmax_with_loss_op.h&quot;</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="preprocessor">#include &quot;softmax_shared.h&quot;</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;</div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="keyword">namespace </span><a class="code" href="namespacecaffe2.html">caffe2</a> {</div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;</div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;REGISTER_CPU_OPERATOR(SoftmaxWithLoss, SoftmaxWithLossOp&lt;float, CPUContext&gt;);</div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;REGISTER_CPU_OPERATOR(</div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;    SoftmaxWithLossGradient,</div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;    SoftmaxWithLossGradientOp&lt;float, CPUContext&gt;);</div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;</div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment">// Input: X (logits), T (labels); Output: P (probs), Y</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;OPERATOR_SCHEMA(SoftmaxWithLoss)</div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;    .NumInputs(2, 3)</div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;    .NumOutputs(2)</div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;    .TensorInferenceFunction(</div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;        [](<span class="keyword">const</span> OperatorDef&amp; def, <span class="keyword">const</span> vector&lt;TensorShape&gt;&amp; in) {</div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;          ArgumentHelper helper(def);</div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;          <span class="keyword">auto</span> axis = helper.GetSingleArgument&lt;int32_t&gt;(<span class="stringliteral">&quot;axis&quot;</span>, 1);</div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;</div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;          vector&lt;TensorShape&gt; out(2);</div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;</div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;          <span class="keyword">auto</span> logits = in[0]; <span class="comment">// Tensor with Shape [batch_size, num_classes]</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;          <span class="keyword">auto</span> labels = in[1]; <span class="comment">// Tensor with shape [batch_size, ]</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;          <span class="keyword">const</span> <span class="keyword">auto</span> canonical_axis =</div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;              canonical_axis_index_(axis, logits.dims().size());</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;          <span class="keyword">const</span> <span class="keywordtype">int</span> batch_size =</div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;              size_to_dim_(canonical_axis, GetDimsVector(logits));</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;          <span class="keyword">const</span> <span class="keywordtype">int</span> num_classes =</div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;              <a class="code" href="namespacecaffe2.html#add14fa17af46b7f9a8a81cd9651456d6">size_from_dim_</a>(canonical_axis, GetDimsVector(logits));</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;          out[0].set_data_type(logits.data_type());</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;          out[0].add_dims(batch_size);</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;          out[0].add_dims(num_classes);</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;          <span class="keywordflow">return</span> out;</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;        })</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;    .SetDoc(R<span class="stringliteral">&quot;DOC(</span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="stringliteral">Combined Softmax and Cross-Entropy loss operator.</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="stringliteral">The operator computes the softmax normalized values for each layer in the batch</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="stringliteral">of the given input, after which cross-entropy loss is computed. This operator is</span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="stringliteral">numerically more stable than separate Softmax and CrossEntropy ops.</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="stringliteral">The inputs are a 2-D tensor (Tensor&lt;float&gt;) of size</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;<span class="stringliteral">(batch_size x input_feature_dimensions) and tensor of labels (ground truth).</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="stringliteral">Output is tensor with the probability for each label for each example (N x D)</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="stringliteral">and averaged loss (scalar).</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="stringliteral">Use parameter label_prob=1 to enable inputting labels as a probability</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="stringliteral">distribution.</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="stringliteral">Optional third input blob can be used to weight the samples for the loss.</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="stringliteral">)DOC&quot;)</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="stringliteral">    .Input(0, </span><span class="stringliteral">&quot;logits&quot;</span>, <span class="stringliteral">&quot;Unscaled log probabilities&quot;</span>)</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;    .Input(1, <span class="stringliteral">&quot;labels&quot;</span>, <span class="stringliteral">&quot;Ground truth&quot;</span>)</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;    .Input(</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        2,</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;        <span class="stringliteral">&quot;weight_tensor&quot;</span>,</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;        <span class="stringliteral">&quot;Optional blob to be used to weight the samples for the loss.&quot;</span>)</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;    .Output(0, <span class="stringliteral">&quot;softmax&quot;</span>, <span class="stringliteral">&quot;Tensor with softmax cross entropy loss&quot;</span>)</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;    .Output(1, <span class="stringliteral">&quot;loss&quot;</span>, <span class="stringliteral">&quot;Average loss&quot;</span>);</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="comment">// Input: X, T, P, dY; Output: dX</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;OPERATOR_SCHEMA(SoftmaxWithLossGradient).NumOutputs(1);</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="preprocessor">#define DONT_CARE (-1)</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;<span class="keyword">template</span> &lt;&gt;</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="keywordtype">bool</span> SoftmaxWithLossOp&lt;float, CPUContext&gt;::RunOnDevice() {</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;  <span class="keyword">auto</span>&amp; X = Input(0); <span class="comment">// Logits</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;  <span class="keyword">auto</span>&amp; T = Input(1); <span class="comment">// Labels / targets</span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;  <span class="keyword">auto</span>* P = Output(0); <span class="comment">// Probabilities from softmax</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;  <span class="keyword">auto</span>* avg_loss = Output(1); <span class="comment">// Average loss</span></div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;  <span class="keyword">const</span> <span class="keyword">auto</span> canonical_axis = X.canonical_axis_index(axis_);</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;  <span class="keywordtype">int</span> N, D;</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;  N = X.size_to_dim(canonical_axis); <span class="comment">// batch size</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;  D = X.size_from_dim(canonical_axis);</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;  P-&gt;ResizeLike(X);</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;  <span class="keywordflow">if</span> (sum_multiplier_.size() != D) {</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    sum_multiplier_.Resize(D);</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    math::Set&lt;float, CPUContext&gt;(</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        D, 1.f, sum_multiplier_.mutable_data&lt;<span class="keywordtype">float</span>&gt;(), &amp;context_);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;  }</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;  <span class="keywordtype">float</span>* Pdata = P-&gt;mutable_data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;  <span class="keyword">const</span> <span class="keywordtype">float</span>* weights = (InputSize() &gt; 2 ? Input(2).data&lt;<span class="keywordtype">float</span>&gt;() : <span class="keyword">nullptr</span>);</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;  <span class="keywordflow">if</span> (label_prob_mode_) {</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    CAFFE_ENFORCE_GE(T.ndim(), 2);</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;    CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), D);</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;    <span class="keywordflow">if</span> (T.ndim() == canonical_axis) {</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;      CAFFE_ENFORCE_EQ(T.size(), N);</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;    } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;      CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;      CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), 1);</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    }</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;  }</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;  <span class="keywordflow">if</span> (sum_multiplier_.size() != D) {</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;    sum_multiplier_.Resize(D);</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    math::Set&lt;float, CPUContext&gt;(</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;        D, 1.f, sum_multiplier_.mutable_data&lt;<span class="keywordtype">float</span>&gt;(), &amp;context_);</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;  }</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;  rowmax_.Resize(N);</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;  losses_.Resize(N);</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;  SoftmaxCPU(</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;      context_,</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;      N,</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;      D,</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;      X.data&lt;<span class="keywordtype">float</span>&gt;(),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;      Pdata,</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;      losses_.mutable_data&lt;<span class="keywordtype">float</span>&gt;(),</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;      sum_multiplier_.data&lt;<span class="keywordtype">float</span>&gt;(),</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;      !label_prob_mode_,</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;      rowmax_.mutable_data&lt;<span class="keywordtype">float</span>&gt;());</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;  <span class="comment">// Then compute cross entropy</span></div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;  <span class="keywordtype">float</span> loss_sum = 0.0;</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;  <span class="keywordtype">float</span> weight_sum = 0.0;</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;  <span class="keywordflow">if</span> (!label_prob_mode_) {</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span>* label_data = T.data&lt;<span class="keywordtype">int</span>&gt;();</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">float</span>* Xdata = X.data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;    <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; N; ++i) {</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;      CAFFE_ENFORCE(</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;          label_data[i] &lt; D &amp;&amp; label_data[i] &gt;= 0,</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;          <span class="stringliteral">&quot;Label seems incorrect: label value larger than number of classes: &quot;</span>,</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;          label_data[i],</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;          <span class="stringliteral">&quot; vs &quot;</span>,</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;          D);</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;      <span class="keywordtype">float</span> weight = weights ? weights[i] : 1.0;</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;      <span class="keywordtype">float</span> l = -Pdata[i * D + label_data[i]] * weight;</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;      loss_sum += l;</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;      weight_sum += weight;</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    }</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;    math::Exp(N * D, Pdata, Pdata, &amp;context_);</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">float</span>* label_data = T.data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; N; ++i) {</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;      <span class="keywordtype">float</span> l = 0.0;</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;      <span class="keywordtype">float</span> total_prob = 0.0;</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;      <span class="keywordtype">float</span> weight = weights ? weights[i] : 1.0;</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; D; ++j) {</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;        CAFFE_ENFORCE(</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;            label_data[i * D + j] &gt;= 0,</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;            <span class="stringliteral">&quot;Label prob seems incorrect: label prob value must be nonnegative:&quot;</span>,</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;            <span class="stringliteral">&quot; &quot;</span>,</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;            label_data[i * D + j]);</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;        l += -log(std::max(Pdata[i * D + j], 1e-20f)) * label_data[i * D + j] *</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;            weight;</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;        total_prob += label_data[i * D + j];</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;      }</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;      loss_sum += l;</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;      CAFFE_ENFORCE(</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;          std::abs(total_prob - 1.) &lt; 1e-5f,</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;          <span class="stringliteral">&quot;Label prob seems incorrect: label prob values do not sum to 1.0: &quot;</span>,</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;          total_prob,</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;          <span class="stringliteral">&quot; vs 1.0 (+/- 1e-5)&quot;</span>);</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;      weight_sum += weight;</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    }</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;  }</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;  avg_loss-&gt;Resize(vector&lt;TIndex&gt;());</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;  <span class="keywordtype">float</span>* avg_loss_data = avg_loss-&gt;mutable_data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;  <span class="keywordflow">if</span> (weight_sum != 0.0) {</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    avg_loss_data[0] = loss_sum * scale_ / weight_sum;</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    avg_loss_data[0] = 0.0;</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;  }</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;}</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;<span class="keyword">template</span> &lt;&gt;</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;<span class="keywordtype">bool</span> SoftmaxWithLossGradientOp&lt;float, CPUContext&gt;::RunOnDevice() {</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;  <span class="keyword">auto</span>&amp; X = Input(0); <span class="comment">// Logits</span></div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;  <span class="keyword">auto</span>&amp; T = Input(1); <span class="comment">// Labels / targets</span></div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;  <span class="comment">// Input(2) is weights if given</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;  <span class="keyword">auto</span>&amp; P = Input(InputSize() - 2); <span class="comment">// Probabilities from softmax</span></div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;  <span class="keyword">auto</span>&amp; d_avg_loss = Input(InputSize() - 1); <span class="comment">// Gradient w.r.t. avg loss</span></div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;  <span class="keyword">auto</span>* dX = Output(0);</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;  <span class="keyword">const</span> <span class="keywordtype">float</span>* weights = (InputSize() &gt; 4 ? Input(2).data&lt;<span class="keywordtype">float</span>&gt;() : <span class="keyword">nullptr</span>);</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;  <span class="keyword">const</span> <span class="keyword">auto</span> canonical_axis = X.canonical_axis_index(axis_);</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;  <span class="keywordtype">int</span> N, D;</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;  N = X.size_to_dim(canonical_axis); <span class="comment">// batch size</span></div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;  D = X.size_from_dim(canonical_axis);</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;  dX-&gt;ResizeLike(X);</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;  <span class="keywordflow">if</span> (label_prob_mode_) {</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;    CAFFE_ENFORCE_GE(T.ndim(), 2);</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), D);</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    <span class="keywordflow">if</span> (T.ndim() == canonical_axis) {</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;      CAFFE_ENFORCE_EQ(T.size(), N);</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;    } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;      CAFFE_ENFORCE_EQ(T.size_to_dim(canonical_axis), N);</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;      CAFFE_ENFORCE_EQ(T.size_from_dim(canonical_axis), 1);</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;    }</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;  }</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;  <span class="keyword">const</span> <span class="keywordtype">float</span>* Pdata = P.data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;  <span class="keywordtype">float</span>* dX_data = dX-&gt;mutable_data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;  <span class="comment">// Copy softmax probabilities into dX. All but the neuron</span></div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;  <span class="comment">// corresponding to the correct label has gradient equaling e(x_j)</span></div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;  <span class="comment">// which is the probability under softmax.</span></div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;  context_.Copy&lt;float, CPUContext, CPUContext&gt;(P.size(), Pdata, dX_data);</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;  <span class="comment">// Compute gradient for the matching labels.</span></div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;  <span class="keywordtype">float</span> total_weight = 0.0f;</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;  <span class="keywordflow">if</span> (!label_prob_mode_) {</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span>* label_data = T.data&lt;<span class="keywordtype">int</span>&gt;();</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    <span class="keywordflow">if</span> (weights) {</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; N; ++i) {</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;        <span class="keywordtype">int</span> idx = i * D + label_data[i];</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;        <span class="keywordtype">float</span> weight = weights[i];</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;        dX_data[idx] = Pdata[idx] - 1.0;</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;        <span class="keywordflow">for</span> (<span class="keywordtype">int</span> d = 0; d &lt; D; d++) {</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;          <span class="keywordtype">int</span> k = i * D + d;</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;          dX_data[k] *= weight;</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;        }</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;        total_weight += weight;</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;      }</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; N; ++i) {</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;        <span class="keywordtype">int</span> idx = i * D + label_data[i];</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;        dX_data[idx] = Pdata[idx] - 1.0f;</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;      }</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;      total_weight = N;</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;    }</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">float</span>* label_data = T.data&lt;<span class="keywordtype">float</span>&gt;();</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;    <span class="keywordflow">if</span> (weights) {</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; N; ++i) {</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;        <span class="keywordtype">float</span> weight = weights[i];</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;        <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; D; ++j) {</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;          <span class="keywordtype">int</span> idx = i * D + j;</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;          dX_data[idx] = (Pdata[idx] - label_data[idx]) * weight;</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;        }</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;        total_weight += weight;</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;      }</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;    } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; N; ++i) {</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;        <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; D; ++j) {</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;          <span class="keywordtype">int</span> idx = i * D + j;</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;          dX_data[idx] = Pdata[idx] - label_data[idx];</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;        }</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;      }</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;      total_weight = N;</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;    }</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;  }</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;  <span class="comment">// Scale by d_avg_loss / N</span></div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;  <span class="keywordflow">if</span> (total_weight &gt; 0) {</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;    math::Scale&lt;float, CPUContext&gt;(</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;        dX-&gt;size(),</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;        scale_ / total_weight * d_avg_loss.data&lt;<span class="keywordtype">float</span>&gt;()[0],</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;        dX-&gt;data&lt;<span class="keywordtype">float</span>&gt;(),</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;        dX_data,</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;        &amp;context_);</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;  }</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;}</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;<span class="keyword">namespace </span>{</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;<span class="keyword">class </span>GetSoftmaxWithLossGradient : <span class="keyword">public</span> GradientMakerBase {</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;  <span class="keyword">using</span> GradientMakerBase::GradientMakerBase;</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;  vector&lt;OperatorDef&gt; GetGradientDefs()<span class="keyword"> override </span>{</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;    vector&lt;string&gt; blob_names{</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;        {I(0), I(1), O(0), GO(1)},</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;    };</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;    <span class="comment">// Add weight blob, if given</span></div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    <span class="keywordflow">if</span> (def_.input_size() == 3) {</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;      blob_names.emplace(blob_names.begin() + 2, I(2));</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;    }</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;    <span class="keywordflow">return</span> SingleGradientDef(</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;        <span class="stringliteral">&quot;SoftmaxWithLossGradient&quot;</span>, <span class="stringliteral">&quot;&quot;</span>, blob_names, vector&lt;string&gt;{GI(0)});</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;  }</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;};</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;REGISTER_GRADIENT(SoftmaxWithLoss, GetSoftmaxWithLossGradient);</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;}</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;} <span class="comment">// namespace caffe2</span></div><div class="ttc" id="namespacecaffe2_html_add14fa17af46b7f9a8a81cd9651456d6"><div class="ttname"><a href="namespacecaffe2.html#add14fa17af46b7f9a8a81cd9651456d6">caffe2::size_from_dim_</a></div><div class="ttdeci">TIndex size_from_dim_(int k, const vector&lt; TIndex &gt; &amp;dims)</div><div class="ttdoc">Return product of all dimensions starting from K. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00040">tensor.h:40</a></div></div>
<div class="ttc" id="namespacecaffe2_html"><div class="ttname"><a href="namespacecaffe2.html">caffe2</a></div><div class="ttdoc">A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...</div><div class="ttdef"><b>Definition:</b> <a href="convert__encoded__to__raw__leveldb_8cc_source.html#l00047">convert_encoded_to_raw_leveldb.cc:47</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- HTML footer for doxygen 1.8.14-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated on Thu Apr 19 2018 13:03:56 for Caffe2 - C++ API by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
<div class="footerContainer">
  <div id="footer_wrap" class="wrapper footerWrapper">
    <div class="footerBlocks">
      <div id="fb_oss" class="footerSection fbOpenSourceFooter">
          <svg class="facebookOSSLogoSvg" viewBox="0 0 1133.9 1133.9" x="0px" y="0px" height=50 width=50>
            <g>
              <path class="logoRing outerRing" d="M 498.3 3.7 c 153.6 88.9 307.3 177.7 461.1 266.2 c 7.6 4.4 10.3 9.1 10.3 17.8 c -0.3 179.1 -0.2 358.3 0 537.4 c 0 8.1 -2.4 12.8 -9.7 17.1 c -154.5 88.9 -308.8 178.1 -462.9 267.5 c -9 5.2 -15.5 5.3 -24.6 0.1 c -153.9 -89.2 -307.9 -178 -462.1 -266.8 C 3 838.8 0 833.9 0 825.1 c 0.3 -179.1 0.2 -358.3 0 -537.4 c 0 -8.6 2.6 -13.6 10.2 -18 C 164.4 180.9 318.4 92 472.4 3 C 477 -1.5 494.3 -0.7 498.3 3.7 Z M 48.8 555.3 c 0 79.9 0.2 159.9 -0.2 239.8 c -0.1 10 3 15.6 11.7 20.6 c 137.2 78.8 274.2 157.8 411 237.3 c 9.9 5.7 17 5.7 26.8 0.1 c 137.5 -79.8 275.2 -159.2 412.9 -238.5 c 7.4 -4.3 10.5 -8.9 10.5 -17.8 c -0.3 -160.2 -0.3 -320.5 0 -480.7 c 0 -8.8 -2.8 -13.6 -10.3 -18 C 772.1 218 633.1 137.8 494.2 57.4 c -6.5 -3.8 -11.5 -4.5 -18.5 -0.5 C 336.8 137.4 197.9 217.7 58.8 297.7 c -7.7 4.4 -10.2 9.2 -10.2 17.9 C 48.9 395.5 48.8 475.4 48.8 555.3 Z" />
              <path class="logoRing middleRing" d="M 184.4 555.9 c 0 -33.3 -1 -66.7 0.3 -100 c 1.9 -48 24.1 -86 64.7 -110.9 c 54.8 -33.6 110.7 -65.5 167 -96.6 c 45.7 -25.2 92.9 -24.7 138.6 1 c 54.4 30.6 108.7 61.5 162.2 93.7 c 44 26.5 67.3 66.8 68 118.4 c 0.9 63.2 0.9 126.5 0 189.7 c -0.7 50.6 -23.4 90.7 -66.6 116.9 c -55 33.4 -110.8 65.4 -167.1 96.5 c -43.4 24 -89 24.2 -132.3 0.5 c -57.5 -31.3 -114.2 -64 -170 -98.3 c -41 -25.1 -62.9 -63.7 -64.5 -112.2 C 183.5 621.9 184.3 588.9 184.4 555.9 Z M 232.9 556.3 c 0 29.5 0.5 59.1 -0.1 88.6 c -0.8 39.2 16.9 67.1 50.2 86.2 c 51.2 29.4 102.2 59.2 153.4 88.4 c 31.4 17.9 63.6 18.3 95 0.6 c 53.7 -30.3 107.1 -61.2 160.3 -92.5 c 29.7 -17.5 45 -44.5 45.3 -78.8 c 0.6 -61.7 0.5 -123.5 0 -185.2 c -0.3 -34.4 -15.3 -61.5 -44.9 -79 C 637.7 352.6 583 320.8 527.9 290 c -27.5 -15.4 -57.2 -16.1 -84.7 -0.7 c -56.9 31.6 -113.4 64 -169.1 97.6 c -26.4 15.9 -40.7 41.3 -41.1 72.9 C 232.6 491.9 232.9 524.1 232.9 556.3 Z" />
              <path class="logoRing innerRing" d="M 484.9 424.4 c 69.8 -2.8 133.2 57.8 132.6 132 C 617 630 558.5 688.7 484.9 689.1 c -75.1 0.4 -132.6 -63.6 -132.7 -132.7 C 352.1 485 413.4 421.5 484.9 424.4 Z M 401.3 556.7 c -3.4 37.2 30.5 83.6 83 84.1 c 46.6 0.4 84.8 -37.6 84.9 -84 c 0.1 -46.6 -37.2 -84.4 -84.2 -84.6 C 432.2 472.1 397.9 518.3 401.3 556.7 Z" />
            </g>
          </svg>
        <h2>Facebook Open Source</h2>
      </div>
      <div class="footerSection">
        <a class="footerLink" href="https://code.facebook.com/projects/" target="_blank">Open Source Projects</a>
        <a class="footerLink" href="https://github.com/facebook/" target="_blank">GitHub</a>
        <a class="footerLink" href="https://twitter.com/fbOpenSource" target="_blank">Twitter</a>
      </div>
      <div class="footerSection rightAlign">
        <a class="footerLink" href="https://github.com/caffe2/caffe2" target="_blank">Contribute to this project on GitHub</a>
      </div>
    </div>
  </div>
</div>
<script type="text/javascript" src="/js/jekyll-link-anchors.js"></script>
<script>
  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
  ga('create', '{{ site.gacode }}', 'auto');
  ga('send', 'pageview');
</script>
</body>
</html>