from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import StepLR from torchvision import datasets, transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.rnn = nn.LSTM(input_size=28, hidden_size=64, batch_first=True) self.batchnorm = nn.BatchNorm1d(64) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64, 32) self.fc2 = nn.Linear(32, 10) def forward(self, input): # Shape of input is (batch_size,1, 28, 28) # converting shape of input to (batch_size, 28, 28) # as required by RNN when batch_first is set True input = input.reshape(-1, 28, 28) output, hidden = self.rnn(input) # RNN output shape is (seq_len, batch, input_size) # Get last output of RNN output = output[:, -1, :] output = self.batchnorm(output) output = self.dropout1(output) output = self.fc1(output) output = F.relu(output) output = self.dropout2(output) output = self.fc2(output) output = F.log_softmax(output, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() if args.dry_run: break test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example using RNN') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='learning rate step gamma (default: 0.7)') parser.add_argument('--accel', action='store_true', help='enables accelerator') parser.add_argument('--dry-run', action='store_true', help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', help='for Saving the current Model') args = parser.parse_args() if args.accel: device = torch.accelerator.current_accelerator() else: device = torch.device("cpu") torch.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.accel else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) scheduler.step() if args.save_model: torch.save(model.state_dict(), "mnist_rnn.pt") if __name__ == '__main__': main()