import torch
from .module import Module
from .. import functional as F
[docs]class PairwiseDistance(Module):
r"""
Computes the batchwise pairwise distance between vectors v1,v2:
.. math ::
\Vert x \Vert _p := \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}
Args:
x (Tensor): input tensor containing the two input batches
p (real): the norm degree. Default: 2
Shape:
- Input: :math:`(N, D)` where `D = vector dimension`
- Output: :math:`(N, 1)`
>>> pdist = nn.PairwiseDistance(2)
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> output = pdist(input1, input2)
"""
def __init__(self, p=2, eps=1e-6):
super(PairwiseDistance, self).__init__()
self.norm = p
self.eps = eps
def forward(self, x1, x2):
return F.pairwise_distance(x1, x2, self.norm, self.eps)
# TODO: Cosine
# TODO: CosineDistance - make sure lua's CosineDistance isn't actually cosine similarity
# TODO: Euclidean
# TODO: WeightedEuclidean