torch¶
Tensors¶
-
torch.
is_tensor
(obj)[source]¶ Returns True if obj is a PyTorch tensor.
Parameters: obj (Object) – Object to test
-
torch.
is_storage
(obj)[source]¶ Returns True if obj is a PyTorch storage object.
Parameters: obj (Object) – Object to test
-
torch.
set_default_tensor_type
(t)[source]¶ Sets the default
torch.Tensor
type to typet
.Parameters: t (type or string) – the tensor type or its name Example:
>>> torch.set_default_tensor_type("torch.FloatTensor") >>> torch.Tensor([1.2, 3]) 1.2000 3.0000 [torch.FloatTensor of size (2,)] >>> torch.set_default_tensor_type(torch.double) >>> torch.Tensor([1.2, 3]) 1.2000 3.0000 [torch.DoubleTensor of size (2,)] >>> torch.set_default_tensor_type(torch.cuda.uint8) >>> torch.Tensor([2, 3]) 2 3 [torch.cuda.ByteTensor of size (2,) (GPU 0)] >>> torch.set_default_tensor_type(torch.cuda.LongTensor) >>> torch.Tensor([3, 4]) 3 4 [torch.cuda.LongTensor of size (2,) (GPU 0)]
-
torch.
numel
(input) → int¶ Returns the total number of elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 2, 3, 4, 5) >>> torch.numel(a) 120 >>> a = torch.zeros(4,4) >>> torch.numel(a) 16
-
torch.
set_printoptions
(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None)[source]¶ Set options for printing. Items shamelessly taken from NumPy
Parameters: - precision – Number of digits of precision for floating point output (default = 8).
- threshold – Total number of array elements which trigger summarization rather than full repr (default = 1000).
- edgeitems – Number of array items in summary at beginning and end of each dimension (default = 3).
- linewidth – The number of characters per line for the purpose of inserting line breaks (default = 80). Thresholded matricies will ignore this parameter.
- profile – Sane defaults for pretty printing. Can override with any of the above options. (any one of default, short, full)
-
torch.
set_flush_denormal
(mode) → bool¶ Disables denormal floating numbers on CPU.
Returns
True
if your system supports flushing denormal numbers and it successfully configures flush denormal mode.set_flush_denormal()
is only supported on x86 architectures supporting SSE3.Parameters: mode (bool) – Controls whether to enable flush denormal mode or not Example:
>>> torch.set_flush_denormal(True) True >>> torch.DoubleTensor([1e-323]) 0 [torch.DoubleTensor of size (1,)] >>> torch.set_flush_denormal(False) True >>> torch.DoubleTensor([1e-323]) 9.88131e-324 * 1.0000 [torch.DoubleTensor of size (1,)]
Creation Ops¶
-
torch.
eye
(n, m=None, out=None)¶ Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.
Parameters: Returns: A 2-D tensor with ones on the diagonal and zeros elsewhere
Return type: Example:
>>> torch.eye(3) 1 0 0 0 1 0 0 0 1 [torch.FloatTensor of size (3,3)]
-
torch.
from_numpy
(ndarray) → Tensor¶ Creates a
Tensor
from anumpy.ndarray
.The returned tensor and ndarray share the same memory. Modifications to the tensor will be reflected in the ndarray and vice versa. The returned tensor is not resizable.
Example:
>>> a = numpy.array([1, 2, 3]) >>> t = torch.from_numpy(a) >>> t 1 2 3 [torch.LongTensor of size (3,)] >>> t[0] = -1 >>> a array([-1, 2, 3])
-
torch.
linspace
(start, end, steps=100, out=None) → Tensor¶ Returns a one-dimensional tensor of
steps
equally spaced points betweenstart
andend
.The output tensor is 1-D of size
steps
.Parameters: Example:
>>> torch.linspace(3, 10, steps=5) 3.0000 4.7500 6.5000 8.2500 10.0000 [torch.FloatTensor of size (5,)] >>> torch.linspace(-10, 10, steps=5) -10 -5 0 5 10 [torch.FloatTensor of size (5,)] >>> torch.linspace(start=-10, end=10, steps=5) -10 -5 0 5 10 [torch.FloatTensor of size (5,)]
-
torch.
logspace
(start, end, steps=100, out=None) → Tensor¶ Returns a one-dimensional tensor of
steps
points logarithmically spaced between \(10^{\text{start}}\) and \(10^{\text{end}}\).The output is a 1-D tensor of size
steps
.Parameters: Example:
>>> torch.logspace(start=-10, end=10, steps=5) 1.0000e-10 1.0000e-05 1.0000e+00 1.0000e+05 1.0000e+10 [torch.FloatTensor of size (5,)] >>> torch.logspace(start=0.1, end=1.0, steps=5) 1.2589 2.1135 3.5481 5.9566 10.0000 [torch.FloatTensor of size (5,)]
-
torch.
ones
(*sizes, out=None) → Tensor¶ Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument
sizes
.Parameters: - sizes (int...) – a set of integers defining the shape of the output tensor
- out (Tensor, optional) – the output tensor
Example:
>>> torch.ones(2, 3) 1 1 1 1 1 1 [torch.FloatTensor of size (2,3)] >>> torch.ones(5) 1 1 1 1 1 [torch.FloatTensor of size (5,)]
-
torch.
ones_like
(input, out=None) → Tensor¶ Returns a tensor filled with the scalar value 1, with the same size as
input
.Parameters: Example:
>>> input = torch.FloatTensor(2, 3) >>> torch.ones_like(input) 1 1 1 1 1 1 [torch.FloatTensor of size (2,3)]
-
torch.
arange
(start=0, end, step=1, out=None) → Tensor¶ Returns a 1-D tensor of size \(\left\lfloor \frac{end - start}{step} \right\rfloor\) with values from the interval
[start, end)
taken with common differencestep
beginning from start.Note that non-integer step is subject to floating point rounding errors when comparing against end; to avoid inconsistency, we advise adding a small epsilon to end in such cases.
\[\text{out}_{i+1} = \text{out}_{i} + \text{step}\]Parameters: Example:
>>> torch.arange(5) 0 1 2 3 4 [torch.FloatTensor of size (5,)] >>> torch.arange(1, 4) 1 2 3 [torch.FloatTensor of size (3,)] >>> torch.arange(1, 2.5, 0.5) 1.0000 1.5000 2.0000 [torch.FloatTensor of size (3,)]
-
torch.
range
(start, end, step=1, out=None) → Tensor¶ Returns a 1-D tensor of size \(\left\lfloor \frac{end - start}{step} \right\rfloor + 1\) with values from
start
toend
with stepstep
. Step is the gap between two values in the tensor.\[\text{out}_{i+1} = \text{out}_i + step.\]Warning
This function is deprecated in favor of
torch.arange()
.Parameters: Example:
>>> torch.range(1, 4) 1 2 3 4 [torch.FloatTensor of size (4,)] >>> torch.range(1, 4, 0.5) 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 [torch.FloatTensor of size (7,)]
-
torch.
zeros
(*sizes, out=None) → Tensor¶ Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument
sizes
.Parameters: - sizes (int...) – a set of integers defining the shape of the output tensor
- out (Tensor, optional) – the output tensor
Example:
>>> torch.zeros(2, 3) 0 0 0 0 0 0 [torch.FloatTensor of size (2,3)] >>> torch.zeros(5) 0 0 0 0 0 [torch.FloatTensor of size (5,)]
-
torch.
zeros_like
(input, out=None) → Tensor¶ Returns a tensor filled with the scalar value 0, with the same size as
input
.Parameters: Example:
>>> input = torch.FloatTensor(2, 3) >>> torch.zeros_like(input) 0 0 0 0 0 0 [torch.FloatTensor of size (2,3)]
-
torch.
empty_like
(input) → Tensor¶ Returns an uninitialized tensor with the same size as
input
.Parameters: input (Tensor) – the size of input
will determine size of the output tensorExample:
>>> input = torch.LongTensor(2,3) >>> input.new(input.size()) 1.3996e+14 1.3996e+14 1.3996e+14 4.0000e+00 0.0000e+00 0.0000e+00 [torch.LongTensor of size (2,3)]
Indexing, Slicing, Joining, Mutating Ops¶
-
torch.
cat
(seq, dim=0, out=None) → Tensor¶ Concatenates the given sequence of
seq
tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be empty.torch.cat()
can be seen as an inverse operation fortorch.split()
andtorch.chunk()
.torch.cat()
can be best understood via examples.Parameters: Example:
>>> x = torch.randn(2, 3) >>> x 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735 [torch.FloatTensor of size (2,3)] >>> torch.cat((x, x, x), 0) 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735 [torch.FloatTensor of size (6,3)] >>> torch.cat((x, x, x), 1) 0.5983 -0.0341 2.4918 0.5983 -0.0341 2.4918 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735 1.5981 -0.5265 -0.8735 1.5981 -0.5265 -0.8735 [torch.FloatTensor of size (2,9)]
-
torch.
chunk
(tensor, chunks, dim=0) → List of Tensors¶ Splits a tensor into a specific number of chunks.
Last chunk will be smaller if the tensor size along the given dimension
dim
is not divisible bychunks
.Parameters:
-
torch.
gather
(input, dim, index, out=None) → Tensor¶ Gathers values along an axis specified by dim.
For a 3-D tensor the output is specified by:
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
If
input
is an n-dimensional tensor with size \((x_0, x_1..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})\) anddim
\(= i\), thenindex
must be an \(n\)-dimensional tensor with size \((x_0, x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})\) where \(y \geq 1\) andout
will have the same size asindex
.Parameters: Example:
>>> t = torch.Tensor([[1,2],[3,4]]) >>> torch.gather(t, 1, torch.LongTensor([[0,0],[1,0]])) 1 1 4 3 [torch.FloatTensor of size (2,2)]
-
torch.
index_select
(input, dim, index, out=None) → Tensor¶ Returns a new tensor which indexes the
input
tensor along dimensiondim
using the entries inindex
which is a LongTensor.The returned tensor has the same number of dimensions as the original tensor (
input
). Thedim
th dimension has the same size as the length ofindex
; other dimensions have the same size as in the original tensor.Note
The returned tensor does not use the same storage as the original tensor. If
out
has a different shape than expected, we silently change it to the correct shape, reallocating the underlying storage if necessary.Parameters: Example:
>>> x = torch.randn(3, 4) >>> x 1.2045 2.4084 0.4001 1.1372 0.5596 1.5677 0.6219 -0.7954 1.3635 -1.2313 -0.5414 -1.8478 [torch.FloatTensor of size (3,4)] >>> indices = torch.LongTensor([0, 2]) >>> torch.index_select(x, 0, indices) 1.2045 2.4084 0.4001 1.1372 1.3635 -1.2313 -0.5414 -1.8478 [torch.FloatTensor of size (2,4)] >>> torch.index_select(x, 1, indices) 1.2045 0.4001 0.5596 0.6219 1.3635 -0.5414 [torch.FloatTensor of size (3,2)]
-
torch.
masked_select
(input, mask, out=None) → Tensor¶ Returns a new 1-D tensor which indexes the
input
tensor according to the binary maskmask
which is a ByteTensor.The shapes of the
mask
tensor and theinput
tensor don’t need to match, but they must be broadcastable.Note
The returned tensor does not use the same storage as the original tensor
Parameters: - input (Tensor) – the input data
- mask (ByteTensor) – the tensor containing the binary mask to index with
- out (Tensor, optional) – the output tensor
Example:
>>> x = torch.randn(3, 4) >>> x 1.2045 2.4084 0.4001 1.1372 0.5596 1.5677 0.6219 -0.7954 1.3635 -1.2313 -0.5414 -1.8478 [torch.FloatTensor of size (3,4)] >>> mask = x.ge(0.5) >>> mask 1 1 0 1 1 1 1 0 1 0 0 0 [torch.ByteTensor of size (3,4)] >>> torch.masked_select(x, mask) 1.2045 2.4084 1.1372 0.5596 1.5677 0.6219 1.3635 [torch.FloatTensor of size (7,)]
-
torch.
nonzero
(input, out=None) → LongTensor¶ Returns a tensor containing the indices of all non-zero elements of
input
. Each row in the result contains the indices of a non-zero element ininput
.If
input
has n dimensions, then the resulting indices tensorout
is of size \((z \times n)\), where \(z\) is the total number of non-zero elements in theinput
tensor.Parameters: - input (Tensor) – the input tensor
- out (LongTensor, optional) – the output tensor containing indices
Example:
>>> torch.nonzero(torch.Tensor([1, 1, 1, 0, 1])) 0 1 2 4 [torch.LongTensor of size (4,1)] >>> torch.nonzero(torch.Tensor([[0.6, 0.0, 0.0, 0.0], [0.0, 0.4, 0.0, 0.0], [0.0, 0.0, 1.2, 0.0], [0.0, 0.0, 0.0,-0.4]])) 0 0 1 1 2 2 3 3 [torch.LongTensor of size (4,2)]
-
torch.
reshape
(input, shape) → Tensor¶ Returns a tensor with the same data and number of elements as
input
, but with the specified shape. When possible, the returned tensor will be a view ofinput
. Otherwise, it will be a copy. Contiguous inputs and inputs with compatible strides can be reshaped without copying, but you should not depend on the copying vs. viewing behavior.A single dimension may be -1, in which case it’s inferred from the remaining dimensions and the number of elements in
input
.Parameters: - input (Tensor) – the tensor to be reshaped
- shape (tuple of python:ints) – the new shape
Example:
>>> a = torch.arange(4) >>> torch.reshape(a, (2, 2)) 0 1 2 3 [torch.FloatTensor of size (2,2)] >>> b = torch.tensor([[0, 1], [2, 3]]) >>> torch.reshape(b, (-1,)) 0 1 2 3 [torch.FloatTensor of size (4,)]
-
torch.
split
(tensor, split_size_or_sections, dim=0)[source]¶ Splits the tensor into chunks.
If
split_size_or_sections
is an integer type, thentensor
will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimensiondim= is not divisible by :attr:`split_size
.If
split_size_or_sections
is a list, thentensor
will be split intolen(split_size_or_sections)
chunks with sizes indim
according tosplit_size_or_sections
.Parameters:
-
torch.
squeeze
(input, dim=None, out=None) → Tensor¶ Returns a tensor with all the dimensions of
input
of size 1 removed.For example, if input is of shape: \((A \times 1 \times B \times C \times 1 \times D)\) then the out tensor will be of shape: \((A \times B \times C \times D)\).
When
dim
is given, a squeeze operation is done only in the given dimension. If input is of shape: \((A \times 1 \times B)\), squeeze(input, 0) leaves the tensor unchanged, butsqueeze(input, 1)()
will squeeze the tensor to the shape \((A \times B)\).Note
As an exception to the above, a 1-dimensional tensor of size 1 will not have its dimensions changed.
Note
The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other.
Parameters: Example:
>>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2])
-
torch.
stack
(seq, dim=0, out=None) → Tensor¶ Concatenates sequence of tensors along a new dimension.
All tensors need to be of the same size.
Parameters:
-
torch.
t
(input, out=None) → Tensor¶ Expects
input
to be a matrix (2-D tensor) and transposes dimensions 0 and 1.Can be seen as a short-hand function for
transpose(input, 0, 1)()
Parameters: Example:
>>> x = torch.randn(2, 3) >>> x 0.4834 0.6907 1.3417 -0.1300 0.5295 0.2321 [torch.FloatTensor of size (2,3)] >>> torch.t(x) 0.4834 -0.1300 0.6907 0.5295 1.3417 0.2321 [torch.FloatTensor of size (3,2)]
-
torch.
take
(input, indices) → Tensor¶ Returns a new tensor with the elements of
input
at the given indices. The input tensor is treated as if it were viewed as a 1-D tensor. The result takes the same shape as the indices.Parameters: - input (Tensor) – the input tensor
- indices (LongTensor) – the indices into tensor
Example:
>>> src = torch.Tensor([[4, 3, 5], [6, 7, 8]]) >>> torch.take(src, torch.LongTensor([0, 2, 5])) 4 5 8 [torch.FloatTensor of size (3,)]
-
torch.
transpose
(input, dim0, dim1, out=None) → Tensor¶ Returns a tensor that is a transposed version of
input
. The given dimensionsdim0
anddim1
are swapped.The resulting
out
tensor shares it’s underlying storage with theinput
tensor, so changing the content of one would change the content of the other.Parameters: Example:
>>> x = torch.randn(2, 3) >>> x 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735 [torch.FloatTensor of size (2,3)] >>> torch.transpose(x, 0, 1) 0.5983 1.5981 -0.0341 -0.5265 2.4918 -0.8735 [torch.FloatTensor of size (3,2)]
-
torch.
unbind
(tensor, dim=0)[source]¶ Removes a tensor dimension.
Returns a tuple of all slices along a given dimension, already without it.
Parameters:
-
torch.
unsqueeze
(input, dim, out=None) → Tensor¶ Returns a new tensor with a dimension of size one inserted at the specified position.
The returned tensor shares the same underlying data with this tensor.
A negative dim value within the range [-
input.dim()
,input.dim()
) can be used and will correspond tounsqueeze()
applied atdim
=dim + input.dim() + 1
Parameters: Example:
>>> x = torch.Tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) 1 2 3 4 [torch.FloatTensor of size (1,4)] >>> torch.unsqueeze(x, 1) 1 2 3 4 [torch.FloatTensor of size (4,1)]
-
torch.
where
(condition, x, y) → Tensor¶ Return a tensor of elements selected from either
x
ory
, depending oncondition
.The operation is defined as:
\[\begin{split}out_i = \begin{cases} x_i & \text{if } condition_i \\ y_i & \text{otherwise} \\ \end{cases}\end{split}\]Note
The tensors
condition
,x
,y
must be broadcastable.Parameters: - condition (ByteTensor) – When True (nonzero), yield x, otherwise yield y
- x (Tensor) – values selected at indices where
condition
isTrue
- y (Tensor) – values selected at indices where
condition
isFalse
Returns: A tensor of shape equal to the broadcasted shape of
condition
,x
,y
Return type: Excemple:
>>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x -2.2068 1.2589 -0.9796 -0.7586 -0.5561 0.5734 [torch.FloatTensor of size (3,2)] >>> torch.where(x > 0, x, y) 1.0000 1.2589 1.0000 1.0000 1.0000 0.5734 [torch.FloatTensor of size (3,2)]
Random sampling¶
-
torch.
manual_seed
(seed)[source]¶ Sets the seed for generating random numbers. Returns a torch._C.Generator object.
Parameters: seed (int) – The desired seed.
-
torch.
initial_seed
()[source]¶ Returns the initial seed for generating random numbers as a Python long.
-
torch.
set_rng_state
(new_state)[source]¶ Sets the random number generator state.
Parameters: new_state (torch.ByteTensor) – The desired state
-
torch.
default_generator
= <torch._C.Generator object>¶
-
torch.
bernoulli
(input, out=None) → Tensor¶ Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The
input
tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values ininput
have to be in the range: \(0 \leq \text{input}_i \leq 1\).The \(\text{i}^{th}\) element of the output tensor will draw a value 1 according to the \(\text{i}^{th}\) probability value given in
input
.\[\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})\]The returned
out
tensor only has values 0 or 1 and is of the same shape asinput
Parameters: Example:
>>> a = torch.Tensor(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] >>> a 0.7544 0.8140 0.9842 0.5282 0.0595 0.6445 0.1925 0.9553 0.9732 [torch.FloatTensor of size (3,3)] >>> torch.bernoulli(a) 1 1 1 0 0 1 0 1 1 [torch.FloatTensor of size (3,3)] >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 >>> torch.bernoulli(a) 1 1 1 1 1 1 1 1 1 [torch.FloatTensor of size (3,3)] >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 >>> torch.bernoulli(a) 0 0 0 0 0 0 0 0 0 [torch.FloatTensor of size (3,3)]
-
torch.
multinomial
(input, num_samples, replacement=False, out=None) → LongTensor¶ Returns a tensor where each row contains
num_samples
indices sampled from the multinomial probability distribution located in the corresponding row of tensorinput
.Note
The rows of
input
do not need to sum to one (in which case we use the values as weights), but must be non-negative and have a non-zero sum.Indices are ordered from left to right according to when each was sampled (first samples are placed in first column).
If
input
is a vector,out
is a vector of sizenum_samples
.If
input
is a matrix with m rows,out
is an matrix of shape \((m \times num\_samples)\).If replacement is
True
, samples are drawn with replacement.If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row.
This implies the constraint that
num_samples
must be lower thaninput
length (or number of columns ofinput
if it is a matrix).Parameters: Example:
>>> weights = torch.Tensor([0, 10, 3, 0]) # create a tensor of weights >>> torch.multinomial(weights, 4) 1 2 0 0 [torch.LongTensor of size (4,)] >>> torch.multinomial(weights, 4, replacement=True) 1 2 1 2 [torch.LongTensor of size (4,)]
-
torch.
normal
()¶ -
torch.
normal
(means, std, out=None) → Tensor
Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given.
The
means
is a tensor with the mean of each output element’s normal distributionThe
std
is a tensor with the standard deviation of each output element’s normal distributionThe shapes of
means
andstd
don’t need to match, but the total number of elements in each tensor need to be the same.Note
When the shapes do not match, the shape of
means
is used as the shape for the returned output tensorParameters: Example:
>>> torch.normal(means=torch.arange(1, 11), std=torch.arange(1, 0, -0.1)) 1.5104 1.6955 2.4895 4.9185 4.9895 6.9155 7.3683 8.1836 8.7164 9.8916 [torch.FloatTensor of size (10,)]
-
torch.
normal
(mean=0.0, std, out=None) → Tensor
Similar to the function above, but the means are shared among all drawn elements.
Parameters: Example:
>>> torch.normal(mean=0.5, std=torch.arange(1, 6)) 0.5723 0.0871 -0.3783 -2.5689 10.7893 [torch.FloatTensor of size (5,)]
-
torch.
normal
(means, std=1.0, out=None) → Tensor
Similar to the function above, but the standard-deviations are shared among all drawn elements.
Parameters: Example:
>>> torch.normal(means=torch.arange(1, 6)) 1.1681 2.8884 3.7718 2.5616 4.2500 [torch.FloatTensor of size (5,)]
-
-
torch.
rand
(*sizes, out=None) → Tensor¶ Returns a tensor filled with random numbers from a uniform distribution on the interval \([0, 1)\)
The shape of the tensor is defined by the variable argument
sizes
.Parameters: - sizes (int...) – a set of ints defining the shape of the output tensor.
- out (Tensor, optional) – the output tensor
Example:
>>> torch.rand(4) 0.9193 0.3347 0.3232 0.7715 [torch.FloatTensor of size (4,)] >>> torch.rand(2, 3) 0.5010 0.5140 0.0719 0.1435 0.5636 0.0538 [torch.FloatTensor of size (2,3)]
-
torch.
randn
(*sizes, out=None) → Tensor¶ Returns a tensor filled with random numbers from a normal distribution with zero mean and variance of one (also called the standard normal distirbution).
\[\text{out}_{i} \sim \mathcal{N}(0, 1)\]The shape of the tensor is defined by the variable argument
sizes
.Parameters: - sizes (int...) – a set of ints defining the shape of the output tensor.
- out (Tensor, optional) – the output tensor
Example:
>>> torch.randn(4) -0.1145 0.0094 -1.1717 0.9846 [torch.FloatTensor of size (4,)] >>> torch.randn(2, 3) 1.4339 0.3351 -1.0999 1.5458 -0.9643 -0.3558 [torch.FloatTensor of size (2,3)]
-
torch.
randperm
(n, out=None) → LongTensor¶ Returns a random permutation of integers from
0
ton - 1
.Parameters: Example:
>>> torch.randperm(4) 2 1 3 0 [torch.LongTensor of size (4,)]
In-place random sampling¶
There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation:
torch.Tensor.bernoulli_()
- in-place version oftorch.bernoulli()
torch.Tensor.cauchy_()
- numbers drawn from the Cauchy distributiontorch.Tensor.exponential_()
- numbers drawn from the exponential distributiontorch.Tensor.geometric_()
- elements drawn from the geometric distributiontorch.Tensor.log_normal_()
- samples from the log-normal distributiontorch.Tensor.normal_()
- in-place version oftorch.normal()
torch.Tensor.random_()
- numbers sampled from the discrete uniform distributiontorch.Tensor.uniform_()
- numbers sampled from the continuous uniform distribution
Serialization¶
-
torch.
save
(obj, f, pickle_module=<module 'pickle' from '/opt/conda/lib/python3.6/pickle.py'>, pickle_protocol=2)[source]¶ Saves an object to a disk file.
See also: Recommended approach for saving a model
Parameters: - obj – saved object
- f – a file-like object (has to implement write and flush) or a string containing a file name
- pickle_module – module used for pickling metadata and objects
- pickle_protocol – can be specified to override the default protocol
Warning
If you are using Python 2, torch.save does NOT support StringIO.StringIO as a valid file-like object. This is because the write method should return the number of bytes written; StringIO.write() does not do this.
Please use something like io.BytesIO instead.
Example
>>> # Save to file >>> x = torch.Tensor([0, 1, 2, 3, 4]) >>> torch.save(x, 'tensor.pt') >>> # Save to io.BytesIO buffer >>> buffer = io.BytesIO() >>> torch.save(x, buffer)
-
torch.
load
(f, map_location=None, pickle_module=<module 'pickle' from '/opt/conda/lib/python3.6/pickle.py'>)[source]¶ Loads an object saved with
torch.save()
from a file.torch.load()
uses Python’s unpickling facilities but treats storages, which underlie tensors, specially. They are first deserialized on the CPU and are then moved to the device they were saved from. If this fails (e.g. because the run time system doesn’t have certain devices), an exception is raised. However, storages can be dynamically remapped to an alternative set of devices using the map_location argument.If map_location is a callable, it will be called once for each serialized storage with two arguments: storage and location. The storage argument will be the initial deserialization of the storage, residing on the CPU. Each serialized storage has a location tag associated with it which identifies the device it was saved from, and this tag is the second argument passed to map_location. The builtin location tags are ‘cpu’ for CPU tensors and ‘cuda:device_id’ (e.g. ‘cuda:2’) for CUDA tensors. map_location should return either None or a storage. If map_location returns a storage, it will be used as the final deserialized object, already moved to the right device. Otherwise, \(torch.load\) will fall back to the default behavior, as if map_location wasn’t specified.
If map_location is a string, it should be a device tag, where all tensors should be loaded.
Otherwise, if map_location is a dict, it will be used to remap location tags appearing in the file (keys), to ones that specify where to put the storages (values).
User extensions can register their own location tags and tagging and deserialization methods using register_package.
Parameters: - f – a file-like object (has to implement read, readline, tell, and seek), or a string containing a file name
- map_location – a function, string or a dict specifying how to remap storage locations
- pickle_module – module used for unpickling metadata and objects (has to match the pickle_module used to serialize file)
Example
>>> torch.load('tensors.pt') # Load all tensors onto the CPU >>> torch.load('tensors.pt', map_location='cpu') # Load all tensors onto the CPU, using a function >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage) # Load all tensors onto GPU 1 >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1)) # Map tensors from GPU 1 to GPU 0 >>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'}) # Load tensor from io.BytesIO object >>> with open('tensor.pt') as f: buffer = io.BytesIO(f.read()) >>> torch.load(buffer)
Parallelism¶
-
torch.
get_num_threads
() → int¶ Gets the number of OpenMP threads used for parallelizing CPU operations
-
torch.
set_num_threads
(int)¶ Sets the number of OpenMP threads used for parallelizing CPU operations
Math operations¶
Pointwise Ops¶
-
torch.
abs
(input, out=None) → Tensor¶ Computes the element-wise absolute value of the given
input
tensor.\[\text{out}_{i} = |\text{input}_{i}|\]Parameters: Example:
>>> torch.abs(torch.FloatTensor([-1, -2, 3])) 1 2 3 [torch.FloatTensor of size (3,)]
-
torch.
acos
(input, out=None) → Tensor¶ Returns a new tensor with the arccosine of the elements of
input
.\[\text{out}_{i} = \cos^{-1}(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.acos(a) 2.2608 1.2956 1.1075 nan [torch.FloatTensor of size (4,)]
-
torch.
add
()¶ -
torch.
add
(input, value, out=None)
Adds the scalar
value
to each element of the inputinput
and returns a new resulting tensor.\[out = input + value\]If
input
is of type FloatTensor or DoubleTensor,value
must be a real number, otherwise it should be an integer.Parameters: - input (Tensor) – the input tensor
- value (Number) – the number to be added to each element of
input
Keyword Arguments: out (Tensor, optional) – the output tensor
Example:
>>> a = torch.randn(4) >>> a 0.4050 -1.2227 1.8688 -0.4185 [torch.FloatTensor of size (4,)] >>> torch.add(a, 20) 20.4050 18.7773 21.8688 19.5815 [torch.FloatTensor of size (4,)]
-
torch.
add
(input, value=1, other, out=None)
Each element of the tensor
other
is multiplied by the scalarvalue
and added to each element of the tensorinput
. The resulting tensor is returned.The shapes of
input
andother
must be broadcastable.\[out = input + value \times other\]If
other
is of type FloatTensor or DoubleTensor,value
must be a real number, otherwise it should be an integer.Parameters: Keyword Arguments: out (Tensor, optional) – the output tensor
Example:
>>> import torch >>> a = torch.randn(4) >>> a -0.9310 2.0330 0.0852 -0.2941 [torch.FloatTensor of size (4,)] >>> b = torch.randn(2, 2) >>> b 1.0663 0.2544 -0.1513 0.0749 [torch.FloatTensor of size (2,2)] >>> torch.add(a, 10, b) 9.7322 4.5770 -1.4279 0.4552 [torch.FloatTensor of size (4,)]
-
-
torch.
addcdiv
(tensor, value=1, tensor1, tensor2, out=None) → Tensor¶ Performs the element-wise division of
tensor1
bytensor2
, multiply the result by the scalarvalue
and add it totensor
.\[out_i = tensor_i + value \times \frac{tensor1_i}{tensor2_i}\]The shapes of
tensor
,tensor1
, andtensor2
must be broadcastable.For inputs of type FloatTensor or DoubleTensor,
value
must be a real number, otherwise an integer.Parameters: Example:
>>> t = torch.randn(2, 3) >>> t1 = torch.randn(1, 6) >>> t2 = torch.randn(6, 1) >>> torch.addcdiv(t, 0.1, t1, t2) 0.0122 -0.0188 -0.2354 0.7396 -1.5721 1.2878 [torch.FloatTensor of size (2,3)]
-
torch.
addcmul
(tensor, value=1, tensor1, tensor2, out=None) → Tensor¶ Performs the element-wise multiplication of
tensor1
bytensor2
, multiply the result by the scalarvalue
and add it totensor
.\[out_i = tensor_i + value \times tensor1_i \times tensor2_i\]The shapes of
tensor
,tensor1
, andtensor2
must be broadcastable.For inputs of type FloatTensor or DoubleTensor,
value
must be a real number, otherwise an integer.Parameters: Example:
>>> t = torch.randn(2, 3) >>> t1 = torch.randn(1, 6) >>> t2 = torch.randn(6, 1) >>> torch.addcmul(t, 0.1, t1, t2) 0.0122 -0.0188 -0.2354 0.7396 -1.5721 1.2878 [torch.FloatTensor of size (2,3)]
-
torch.
asin
(input, out=None) → Tensor¶ Returns a new tensor with the arcsine of the elements of
input
.\[\text{out}_{i} = \sin^{-1}(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.asin(a) -0.6900 0.2752 0.4633 nan [torch.FloatTensor of size (4,)]
-
torch.
atan
(input, out=None) → Tensor¶ Returns a new tensor with the arctangent of the elements of
input
.\[\text{out}_{i} = \tan^{-1}(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.atan(a) -0.5669 0.2653 0.4203 0.9196 [torch.FloatTensor of size (4,)]
-
torch.
atan2
(input1, input2, out=None) → Tensor¶ Returns a new tensor with the arctangent of the elements of
input1
andinput2
.The shapes of
input1
andinput2
must be broadcastable.Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.atan2(a, torch.randn(4)) -2.4167 2.9755 0.9363 1.6613 [torch.FloatTensor of size (4,)]
-
torch.
ceil
(input, out=None) → Tensor¶ Returns a new tensor with the ceil of the elements of
input
, the smallest integer greater than or equal to each element.\[\text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1\]Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> torch.ceil(a) 2 1 -0 -0 [torch.FloatTensor of size (4,)]
-
torch.
clamp
(input, min, max, out=None) → Tensor¶ Clamp all elements in
input
into the range [min
,max
] and return a resulting tensor:\[\begin{split}y_i = \begin{cases} \text{min} & \text{if } x_i < \text{min} \\ x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\ \text{max} & \text{if } x_i > \text{max} \end{cases}\end{split}\]If
input
is of type FloatTensor or DoubleTensor, argsmin
andmax
must be real numbers, otherwise they should be integers.Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> torch.clamp(a, min=-0.5, max=0.5) 0.5000 0.3912 -0.5000 -0.5000 [torch.FloatTensor of size (4,)]
-
torch.
clamp
(input, *, min, out=None) → Tensor
Clamps all elements in
input
to be larger or equalmin
.If
input
is of type FloatTensor or DoubleTensor,value
should be a real number, otherwise it should be an integer.Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> torch.clamp(a, min=0.5) 1.3869 0.5000 0.5000 0.5000 [torch.FloatTensor of size (4,)]
-
torch.
clamp
(input, *, max, out=None) → Tensor
Clamps all elements in
input
to be smaller or equalmax
.If
input
is of type FloatTensor or DoubleTensor,value
should be a real number, otherwise it should be an integer.Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> torch.clamp(a, max=0.5) 0.5000 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)]
-
-
torch.
cos
(input, out=None) → Tensor¶ Returns a new tensor with the cosine of the elements of
input
.\[\text{out}_{i} = \cos(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.cos(a) 0.8041 0.9633 0.9018 0.2557 [torch.FloatTensor of size (4,)]
-
torch.
cosh
(input, out=None) → Tensor¶ Returns a new tensor with the hyperbolic cosine of the elements of
input
.\[\text{out}_{i} = \cosh(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.cosh(a) 1.2095 1.0372 1.1015 1.9917 [torch.FloatTensor of size (4,)]
-
torch.
div
()¶ -
torch.
div
(input, value, out=None) → Tensor
Divides each element of the input
input
with the scalarvalue
and returns a new resulting tensor.\[out_i = \frac{input_i}{value}\]If
input
is of type FloatTensor or DoubleTensor,value
should be a real number, otherwise it should be an integerParameters: Example:
>>> a = torch.randn(5) >>> a -0.6147 -1.1237 -0.1604 -0.6853 0.1063 [torch.FloatTensor of size (5,)] >>> torch.div(a, 0.5) -1.2294 -2.2474 -0.3208 -1.3706 0.2126 [torch.FloatTensor of size (5,)]
-
torch.
div
(input, other, out=None) → Tensor
Each element of the tensor
input
is divided by each element of the tensorother
. The resulting tensor is returned. The shapes ofinput
andother
must be broadcastable.\[out_i = \frac{input_i}{other_i}\]Parameters: Example:
>>> a = torch.randn(4, 4) >>> a -0.1810 0.4017 0.2863 -0.1013 0.6183 2.0696 0.9012 -1.5933 0.5679 0.4743 -0.0117 -0.1266 -0.1213 0.9629 0.2682 1.5968 [torch.FloatTensor of size (4,4)] >>> b = torch.randn(8, 2) >>> b 0.8774 0.7650 0.8866 1.4805 -0.6490 1.1172 1.4259 -0.8146 1.4633 -0.1228 0.4643 -0.6029 0.3492 1.5270 1.6103 -0.6291 [torch.FloatTensor of size (8,2)] >>> torch.div(a, b) -0.2062 0.5251 0.3229 -0.0684 -0.9528 1.8525 0.6320 1.9559 0.3881 -3.8625 -0.0253 0.2099 -0.3473 0.6306 0.1666 -2.5381 [torch.FloatTensor of size (4,4)]
-
-
torch.
erf
(tensor, out=None) → Tensor¶ Computes the error function of each element. The error function is defined as follows:
\[\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt\]Parameters: Example:
>>> torch.erf(torch.Tensor([0, -1., 10.])) 0.0000 -0.8427 1.0000 [torch.FloatTensor of size (3,)]
-
torch.
erfinv
(tensor, out=None) → Tensor¶ Computes the inverse error function of each element. The inverse error function is defined in the range \((-1, 1)\) as:
\[\mathrm{erfinv}(\mathrm{erf}(x)) = x\]Parameters: Example:
>>> torch.erfinv(torch.Tensor([0, 0.5, -1.])) 0.0000 0.4769 -inf [torch.FloatTensor of size (3,)]
-
torch.
exp
(tensor, out=None) → Tensor¶ Returns a new tensor with the exponential of the elements of
input
.\[y_{i} = e^{x_{i}}\]Parameters: Example:
>>> torch.exp(torch.Tensor([0, math.log(2)])) 1 2 [torch.FloatTensor of size (2,)]
-
torch.
expm1
(tensor, out=None) → Tensor¶ Returns a new tensor with the exponential of the elements minus 1 of
input
.\[y_{i} = e^{x_{i}} - 1\]Parameters: Example:
>>> torch.expm1(torch.Tensor([0, math.log(2)])) 0 1 [torch.FloatTensor of size (2,)]
-
torch.
floor
(input, out=None) → Tensor¶ Returns a new tensor with the floor of the elements of
input
, the largest integer less than or equal to each element.\[\text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor\]Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> torch.floor(a) 1 0 -1 -1 [torch.FloatTensor of size (4,)]
-
torch.
fmod
(input, divisor, out=None) → Tensor¶ Computes the element-wise remainder of division.
The dividend and divisor may contain both for integer and floating point numbers. The remainder has the same sign as the dividend
input
.When
divisor
is a tensor, the shapes ofinput
anddivisor
must be broadcastable.Parameters: Example:
>>> torch.fmod(torch.Tensor([-3, -2, -1, 1, 2, 3]), 2) -1 -0 -1 1 0 1 [torch.FloatTensor of size (6,)] >>> torch.fmod(torch.Tensor([1, 2, 3, 4, 5]), 1.5) 1.0000 0.5000 0.0000 1.0000 0.5000 [torch.FloatTensor of size (5,)]
See also
torch.remainder()
, which computes the element-wise remainder of division equivalently to Python’s % operator
-
torch.
frac
(tensor, out=None) → Tensor¶ Computes the fractional portion of each element in
tensor
.\[\text{out}_{i} = \text{input}_{i} - \left\lfloor \text{input}_{i} \right\rfloor\]Example:
>>> torch.frac(torch.Tensor([1, 2.5, -3.2])) 0.0000 0.5000 -0.2000 [torch.FloatTensor of size (3,)]
-
torch.
lerp
(start, end, weight, out=None)¶ Does a linear interpolation of two tensors
start
andend
based on a scalarweight
and returns the resultingout
tensor.\[out_i = start_i + weight \times (end_i - start_i)\]The shapes of
start
andend
must be broadcastable.Parameters: Example:
>>> start = torch.arange(1, 5) >>> end = torch.Tensor(4).fill_(10) >>> start 1 2 3 4 [torch.FloatTensor of size (4,)] >>> end 10 10 10 10 [torch.FloatTensor of size (4,)] >>> torch.lerp(start, end, 0.5) 5.5000 6.0000 6.5000 7.0000 [torch.FloatTensor of size (4,)]
-
torch.
log
(input, out=None) → Tensor¶ Returns a new tensor with the natural logarithm of the elements of
input
.\[y_{i} = \log_{e} (x_{i})\]Parameters: Example:
>>> a = torch.randn(5) >>> a -0.4183 0.3722 -0.3091 0.4149 0.5857 [torch.FloatTensor of size (5,)] >>> torch.log(a) nan -0.9883 nan -0.8797 -0.5349 [torch.FloatTensor of size (5,)]
-
torch.
log1p
(input, out=None) → Tensor¶ Returns a new tensor with the natural logarithm of (1 +
input
).\[y_i = \log_{e} (x_i + 1)\]Note
This function is more accurate than
torch.log()
for small values ofinput
Parameters: Example:
>>> a = torch.randn(5) >>> a -0.4183 0.3722 -0.3091 0.4149 0.5857 [torch.FloatTensor of size (5,)] >>> torch.log1p(a) -0.5418 0.3164 -0.3697 0.3471 0.4611 [torch.FloatTensor of size (5,)]
-
torch.
mul
()¶ -
torch.
mul
(input, value, out=None)
Multiplies each element of the input
input
with the scalarvalue
and returns a new resulting tensor.\[out_i = value \times input_i\]If
input
is of type FloatTensor or DoubleTensor,value
should be a real number, otherwise it should be an integerParameters: Example:
>>> a = torch.randn(3) >>> a -0.9374 -0.5254 -0.6069 [torch.FloatTensor of size (3,)] >>> torch.mul(a, 100) -93.7411 -52.5374 -60.6908 [torch.FloatTensor of size (3,)]
-
torch.
mul
(input, other, out=None)
Each element of the tensor
input
is multiplied by each element of the Tensorother
. The resulting tensor is returned.The shapes of
input
andother
must be broadcastable.\[out_i = input_i \times other_i\]Parameters: Example:
>>> a = torch.randn(4, 4) >>> a -0.7280 0.0598 -1.4327 -0.5825 -0.1427 -0.0690 0.0821 -0.3270 -0.9241 0.5110 0.4070 -1.1188 -0.8308 0.7426 -0.6240 -1.1582 [torch.FloatTensor of size (4,4)] >>> b = torch.randn(2, 8) >>> b 0.0430 -1.0775 0.6015 1.1647 -0.6549 0.0308 -0.1670 1.0742 -1.2593 0.0292 -0.0849 0.4530 1.2404 -0.4659 -0.1840 0.5974 [torch.FloatTensor of size (2,8)] >>> torch.mul(a, b) -0.0313 -0.0645 -0.8618 -0.6784 0.0934 -0.0021 -0.0137 -0.3513 1.1638 0.0149 -0.0346 -0.5068 -1.0304 -0.3460 0.1148 -0.6919 [torch.FloatTensor of size (4,4)]
-
-
torch.
neg
(input, out=None) → Tensor¶ Returns a new tensor with the negative of the elements of
input
.\[out = -1 \times input\]Parameters: Example:
>>> a = torch.randn(5) >>> a -0.4430 1.1690 -0.8836 -0.4565 0.2968 [torch.FloatTensor of size (5,)] >>> torch.neg(a) 0.4430 -1.1690 0.8836 0.4565 -0.2968 [torch.FloatTensor of size (5,)]
-
torch.
pow
()¶ -
torch.
pow
(input, exponent, out=None) → Tensor
Takes the power of each element in
input
withexponent
and returns a tensor with the result.exponent
can be either a singlefloat
number or a Tensor with the same number of elements asinput
.When
exponent
is a scalar value, the operation applied is:\[out_i = x_i ^ {exponent}\]When
exponent
is a tensor, the operation applied is:\[out_i = x_i ^ {exponent_i}\]When
exponent
is a tensor, the shapes ofinput
andexponent
must be broadcastable.Parameters: Example:
>>> a = torch.randn(4) >>> a -0.5274 -0.8232 -2.1128 1.7558 [torch.FloatTensor of size (4,)] >>> torch.pow(a, 2) 0.2781 0.6776 4.4640 3.0829 [torch.FloatTensor of size (4,)] >>> exp = torch.arange(1, 5) >>> a = torch.arange(1, 5) >>> a 1 2 3 4 [torch.FloatTensor of size (4,)] >>> exp 1 2 3 4 [torch.FloatTensor of size (4,)] >>> torch.pow(a, exp) 1 4 27 256 [torch.FloatTensor of size (4,)]
-
torch.
pow
(base, input, out=None) → Tensor
base
is a scalarfloat
value, andinput
is a tensor. The returned tensorout
is of the same shape asinput
The operation applied is:
\[out_i = base ^ {input_i}\]Parameters: Example:
>>> exp = torch.arange(1, 5) >>> base = 2 >>> torch.pow(base, exp) 2 4 8 16 [torch.FloatTensor of size (4,)]
-
-
torch.
reciprocal
(input, out=None) → Tensor¶ Returns a new tensor with the reciprocal of the elements of
input
\[\text{out}_{i} = \frac{1}{\text{input}_{i}}\]Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> torch.reciprocal(a) 0.7210 2.5565 -1.1583 -1.8289 [torch.FloatTensor of size (4,)]
-
torch.
remainder
(input, divisor, out=None) → Tensor¶ Computes the element-wise remainder of division.
The divisor and dividend may contain both for integer and floating point numbers. The remainder has the same sign as the divisor.
When
divisor
is a tensor, the shapes ofinput
anddivisor
must be broadcastable.Parameters: Example:
>>> torch.remainder(torch.Tensor([-3, -2, -1, 1, 2, 3]), 2) 1 0 1 1 0 1 [torch.FloatTensor of size (6,)] >>> torch.remainder(torch.Tensor([1, 2, 3, 4, 5]), 1.5) 1.0000 0.5000 0.0000 1.0000 0.5000 [torch.FloatTensor of size (5,)]
See also
torch.fmod()
, which computes the element-wise remainder of division equivalently to the C library functionfmod()
.
-
torch.
round
(input, out=None) → Tensor¶ Returns a new tensor with each of the elements of
input
rounded to the closest integer.Parameters: Example:
>>> a = torch.randn(4) >>> a 1.2290 1.3409 -0.5662 -0.0899 [torch.FloatTensor of size (4,)] >>> torch.round(a) 1 1 -1 -0 [torch.FloatTensor of size (4,)]
-
torch.
rsqrt
(input, out=None) → Tensor¶ Returns a new tensor with the reciprocal of the square-root of each of the elements of
input
.\[\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}}\]Parameters: Example:
>>> a = torch.randn(4) >>> a 1.2290 1.3409 -0.5662 -0.0899 [torch.FloatTensor of size (4,)] >>> torch.rsqrt(a) 0.9020 0.8636 nan nan [torch.FloatTensor of size (4,)]
-
torch.
sigmoid
(input, out=None) → Tensor¶ Returns a new tensor with the sigmoid of the elements of
input
.\[\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}}\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.4972 1.3512 0.1056 -0.2650 [torch.FloatTensor of size (4,)] >>> torch.sigmoid(a) 0.3782 0.7943 0.5264 0.4341 [torch.FloatTensor of size (4,)]
-
torch.
sign
(input, out=None) → Tensor¶ Returns a new tensor with the sign of the elements of
input
.Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.sign(a) -1 1 1 1 [torch.FloatTensor of size (4,)]
-
torch.
sin
(input, out=None) → Tensor¶ Returns a new tensor with the sine of the elements of
input
.\[\text{out}_{i} = \sin(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.sin(a) -0.5944 0.2684 0.4322 0.9667 [torch.FloatTensor of size (4,)]
-
torch.
sinh
(input, out=None) → Tensor¶ Returns a new tensor with the hyperbolic sine of the elements of
input
.\[\text{out}_{i} = \sinh(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.sinh(a) -0.6804 0.2751 0.4619 1.7225 [torch.FloatTensor of size (4,)]
-
torch.
sqrt
(input, out=None) → Tensor¶ Returns a new tensor with the square-root of the elements of
input
.\[\text{out}_{i} = \sqrt{\text{input}_{i}}\]Parameters: Example:
>>> a = torch.randn(4) >>> a 1.2290 1.3409 -0.5662 -0.0899 [torch.FloatTensor of size (4,)] >>> torch.sqrt(a) 1.1086 1.1580 nan nan [torch.FloatTensor of size (4,)]
-
torch.
tan
(input, out=None) → Tensor¶ Returns a new tensor with the tangent of the elements of
input
.\[\text{out}_{i} = \tan(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.tan(a) -0.7392 0.2786 0.4792 3.7801 [torch.FloatTensor of size (4,)]
-
torch.
tanh
(input, out=None) → Tensor¶ Returns a new tensor with the hyperbolic tangent of the elements of
input
.\[\text{out}_{i} = \tanh(\text{input}_{i})\]Parameters: Example:
>>> a = torch.randn(4) >>> a -0.6366 0.2718 0.4469 1.3122 [torch.FloatTensor of size (4,)] >>> torch.tanh(a) -0.5625 0.2653 0.4193 0.8648 [torch.FloatTensor of size (4,)]
-
torch.
trunc
(input, out=None) → Tensor¶ Returns a new tensor with the truncated integer values of the elements of
input
.Parameters: Example:
>>> a = torch.randn(4) >>> a -0.4972 1.3512 0.1056 -0.2650 [torch.FloatTensor of size (4,)] >>> torch.trunc(a) -0 1 0 -0 [torch.FloatTensor of size (4,)]
Reduction Ops¶
-
torch.
cumprod
(input, dim, out=None) → Tensor¶ Returns the cumulative product of elements of
input
in the dimensiondim
.For example, if
input
is a vector of size N, the result will also be a vector of size N, with elements.\[y_i = x_1 \times x_2\times x_3\times \dots \times x_i\]Parameters: Example:
>>> a = torch.randn(10) >>> a 1.1148 1.8423 1.4143 -0.4403 1.2859 -1.2514 -0.4748 1.1735 -1.6332 -0.4272 [torch.FloatTensor of size (10,)] >>> torch.cumprod(a, dim=0) 1.1148 2.0537 2.9045 -1.2788 -1.6444 2.0578 -0.9770 -1.1466 1.8726 -0.8000 [torch.FloatTensor of size (10,)] >>> a[5] = 0.0 >>> torch.cumprod(a, dim=0) 1.1148 2.0537 2.9045 -1.2788 -1.6444 -0.0000 0.0000 0.0000 -0.0000 0.0000 [torch.FloatTensor of size (10,)]
-
torch.
cumsum
(input, dim, out=None) → Tensor¶ Returns the cumulative sum of elements of
input
in the dimensiondim
.For example, if
input
is a vector of size N, the result will also be a vector of size N, with elements.\[y_i = x_1 + x_2 + x_3 + \dots + x_i\]Parameters: Example:
>>> a = torch.randn(10) >>> a -0.6039 -0.2214 -0.3705 -0.0169 1.3415 -0.1230 0.9719 0.6081 -0.1286 1.0947 [torch.FloatTensor of size (10,)] >>> torch.cumsum(a, dim=0) -0.6039 -0.8253 -1.1958 -1.2127 0.1288 0.0058 0.9777 1.5858 1.4572 2.5519 [torch.FloatTensor of size (10,)]
-
torch.
dist
(input, other, p=2) → Tensor¶ Returns the p-norm of (
input
-other
)The shapes of
input
andother
must be broadcastable.Parameters: Example:
>>> x = torch.randn(4) >>> x -1.5474 -0.4649 0.5954 -0.8610 [torch.FloatTensor of size (4,)] >>> y = torch.randn(4) >>> y 1.7141 0.3274 -1.2772 -0.4725 [torch.FloatTensor of size (4,)] >>> torch.dist(x, y, 3.5) 3.3953 [torch.FloatTensor of size ()] >>> torch.dist(x, y, 3) 3.4710 [torch.FloatTensor of size ()] >>> torch.dist(x, y, 0) inf [torch.FloatTensor of size ()] >>> torch.dist(x, y, 1) 6.3150 [torch.FloatTensor of size ()]
-
torch.
mean
()¶ -
torch.
mean
(input) → Tensor
Returns the mean value of all elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 3) >>> a -1.4550 0.8839 -1.3408 [torch.FloatTensor of size (1,3)] >>> torch.mean(a) -0.6373 [torch.FloatTensor of size ()]
-
torch.
mean
(input, dim, keepdim=False, out=None) → Tensor
Returns the mean value of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimensiondim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 fewer dimension.Parameters: Example:
>>> a = torch.randn(4, 4) >>> a -1.2738 -0.3058 0.1230 -1.9615 0.8771 -0.5430 -0.9233 0.9879 1.4107 0.0317 -0.6823 0.2255 -1.3854 0.4953 -0.2160 0.2435 [torch.FloatTensor of size (4,4)] >>> torch.mean(a, 1) -0.8545 0.0997 0.2464 -0.2157 [torch.FloatTensor of size (4,)] >>> torch.mean(a, 1, True) -0.8545 0.0997 0.2464 -0.2157 [torch.FloatTensor of size (4,1)]
-
-
torch.
median
()¶ -
torch.
median
(input) → Tensor
Returns the median value of all elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 3) >>> a 0.5749 -0.2804 -0.7931 [torch.FloatTensor of size (1,3)] >>> torch.median(a) -0.2804 [torch.FloatTensor of size ()]
-
torch.
median
(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor)
Returns the median value of each row of the
input
tensor in the given dimensiondim
. Also returns the index location of the median value as a LongTensor.By default,
dim
is the last dimension of theinput
tensor.If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the outputs tensor having 1 fewer dimension thaninput
.Parameters: Example:
>>> a -0.6891 -0.6662 0.2697 0.7412 0.5254 -0.7402 0.5528 -0.2399 [torch.FloatTensor of size (4,2)] >>> a = torch.randn(4, 5) >>> a 0.4056 -0.3372 1.0973 -2.4884 0.4334 2.1336 0.3841 0.1404 -0.1821 -0.7646 -0.2403 1.3975 -2.0068 0.1298 0.0212 -1.5371 -0.7257 -0.4871 -0.2359 -1.1724 [torch.FloatTensor of size (4,5)] >>> torch.median(a, 1) ( 0.4056 0.1404 0.0212 -0.7257 [torch.FloatTensor of size (4,)] , 0 2 4 1 [torch.LongTensor of size (4,)] )
-
-
torch.
mode
(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor)¶ Returns the mode value of each row of the
input
tensor in the given dimensiondim
. Also returns the index location of the mode value as a LongTensor.By default,
dim
is the last dimension of theinput
tensor.If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Note
This function is not defined for
torch.cuda.Tensor
yet.Parameters: Example:
>>> a -0.6891 -0.6662 0.2697 0.7412 0.5254 -0.7402 0.5528 -0.2399 [torch.FloatTensor of size (4,2)] >>> a = torch.randn(4, 5) >>> a 0.4056 -0.3372 1.0973 -2.4884 0.4334 2.1336 0.3841 0.1404 -0.1821 -0.7646 -0.2403 1.3975 -2.0068 0.1298 0.0212 -1.5371 -0.7257 -0.4871 -0.2359 -1.1724 [torch.FloatTensor of size (4,5)] >>> torch.mode(a, 1) ( -2.4884 -0.7646 -2.0068 -1.5371 [torch.FloatTensor of size (4,)] , 3 4 2 0 [torch.LongTensor of size (4,)] )
-
torch.
norm
()¶ -
torch.
norm
(input, p=2) → Tensor
Returns the p-norm of the
input
tensor.\[||x||_{p} = \sqrt[p]{x_{1}^{p} + x_{2}^{p} + \ldots + x_{N}^{p}}\]Parameters: Example:
>>> a = torch.randn(1, 3) >>> a 0.1628 0.1210 -0.9801 [torch.FloatTensor of size (1,3)] >>> torch.norm(a, 3) 0.9822 [torch.FloatTensor of size ()]
-
torch.
norm
(input, p, dim, keepdim=False, out=None) → Tensor
Returns the p-norm of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimensiondim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 fewer dimension thaninput
.Parameters: Example:
>>> a = torch.randn(4, 2) >>> a -0.6891 -0.6662 0.2697 0.7412 0.5254 -0.7402 0.5528 -0.2399 [torch.FloatTensor of size (4,2)] >>> torch.norm(a, 2, 1) 0.9585 0.7888 0.9077 0.6026 [torch.FloatTensor of size (4,)] >>> torch.norm(a, 0, 1, True) 2 2 2 2 [torch.FloatTensor of size (4,1)]
-
-
torch.
prod
()¶ -
torch.
prod
(input) → Tensor
Returns the product of all elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 3) >>> a 0.7624 -0.4892 -0.1841 [torch.FloatTensor of size (1,3)] >>> torch.prod(a) 1.00000e-02 * 6.8676 [torch.FloatTensor of size ()]
-
torch.
prod
(input, dim, keepdim=False, out=None) → Tensor
Returns the product of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimensiondim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 fewer dimension thaninput
.Parameters: Example:
>>> a = torch.randn(4, 2) >>> a 0.1598 -0.6884 -0.1831 -0.4412 -0.9925 -0.6244 -0.2416 -0.8080 [torch.FloatTensor of size (4,2)] >>> torch.prod(a, 1) -0.1100 0.0808 0.6197 0.1952 [torch.FloatTensor of size (4,)]
-
-
torch.
std
()¶ -
torch.
std
(input, unbiased=True) → Tensor
Returns the standard-deviation of all elements in the
input
tensor.If
unbiased
isFalse
, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.Parameters: Example:
>>> a = torch.randn(1, 3) >>> a 0.1665 0.4876 -0.2155 [torch.FloatTensor of size (1,3)] >>> torch.std(a) 0.3520 [torch.FloatTensor of size ()]
-
torch.
std
(input, dim, keepdim=False, unbiased=True, out=None) → Tensor
Returns the standard-deviation of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimensiondim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 fewer dimension thaninput
.If
unbiased
isFalse
, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.Parameters: Example:
>>> a = torch.randn(4, 4) >>> a 0.1889 -2.4856 0.0043 1.8169 -0.7701 -0.4682 -2.2410 0.4098 0.1919 -1.1856 -1.0361 0.9085 0.0173 1.0662 0.2143 -0.5576 [torch.FloatTensor of size (4,4)] >>> torch.std(a, dim=1) 1.7756 1.1025 1.0045 0.6725 [torch.FloatTensor of size (4,)]
-
-
torch.
sum
()¶ -
torch.
sum
(input) → Tensor
Returns the sum of all elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 3) >>> a -0.0281 1.0131 -0.0384 [torch.FloatTensor of size (1,3)] >>> torch.sum(a) 0.9466 [torch.FloatTensor of size ()]
-
torch.
sum
(input, dim, keepdim=False, out=None) → Tensor
Returns the sum of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimensiondim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 fewer dimension thaninput
.Parameters: Example:
>>> a = torch.randn(4, 4) >>> a -0.4640 0.0609 0.1122 0.4784 -1.3063 1.6443 0.4714 -0.7396 -1.3561 -0.1959 1.0609 -1.9855 2.6833 0.5746 -0.5709 -0.4430 [torch.FloatTensor of size (4,4)] >>> torch.sum(a, 1) 0.1874 0.0698 -2.4767 2.2440 [torch.FloatTensor of size (4,)]
-
-
torch.
unique
(input, sorted=False, return_inverse=False)[source]¶ Returns the unique scalar elements of the input tensor as a 1-D tensor.
Parameters: Returns: A tensor or a tuple of tensors containing
- output (Tensor): the output list of unique scalar elements.
- inverse_indices (Tensor): (optional) if
return_inverse
is True, there will be a 2nd returned tensor (same shape as input) representing the indices for where elements in the original input map to in the output; otherwise, this function will only return a single tensor.
Return type: Example:
>>>> output = torch.unique(torch.LongTensor([1, 3, 2, 3])) >>>> output 2 3 1 [torch.LongTensor of size (3,)] >>>> output, inverse_indices = torch.unique( torch.LongTensor([1, 3, 2, 3]), sorted=True, return_inverse=True) >>>> output 1 2 3 [torch.LongTensor of size (3,)] >>>> inverse_indices 0 2 1 2 [torch.LongTensor of size (4,)] >>>> output, inverse_indices = torch.unique( torch.LongTensor([[1, 3], [2, 3]]), sorted=True, return_inverse=True) >>>> output 1 2 3 [torch.LongTensor of size (3,)] >>>> inverse_indices 0 2 1 2 [torch.LongTensor of size (2,2)]
-
torch.
var
()¶ -
torch.
var
(input, unbiased=True) → Tensor
Returns the variance of all elements in the
input
tensor.If
unbiased
isFalse
, then the variance will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.Parameters: Example:
>>> a = torch.randn(1, 3) >>> a 1.4529 -0.0128 0.6240 [torch.FloatTensor of size (1,3)] >>> torch.var(a) 0.5401 [torch.FloatTensor of size ()]
-
torch.
var
(input, dim, keepdim=False, unbiased=True, out=None) → Tensor
Returns the variance of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the outputs tensor having 1 fewer dimension thaninput
.If
unbiased
isFalse
, then the variance will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.Parameters: Example:
>>> a = torch.randn(4, 4) >>> a -1.2738 -0.3058 0.1230 -1.9615 0.8771 -0.5430 -0.9233 0.9879 1.4107 0.0317 -0.6823 0.2255 -1.3854 0.4953 -0.2160 0.2435 [torch.FloatTensor of size (4,4)] >>> torch.var(a, 1) 0.8859 0.9509 0.7548 0.6949 [torch.FloatTensor of size (4,)]
-
Comparison Ops¶
-
torch.
eq
(input, other, out=None) → Tensor¶ Computes element-wise equality
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
Parameters: Returns: A
torch.ByteTensor
containing a 1 at each location where comparison is trueReturn type: Example:
>>> torch.eq(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) 1 0 0 1 [torch.ByteTensor of size (2,2)]
-
torch.
equal
(tensor1, tensor2) → bool¶ True
if two tensors have the same size and elements,False
otherwise.Example:
>>> torch.equal(torch.Tensor([1, 2]), torch.Tensor([1, 2])) True
-
torch.
ge
(input, other, out=None) → Tensor¶ Computes \(input \geq other\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
Parameters: Returns: A
torch.ByteTensor
containing a 1 at each location where comparison is trueReturn type: Example:
>>> torch.ge(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) 1 1 0 1 [torch.ByteTensor of size (2,2)]
-
torch.
gt
(input, other, out=None) → Tensor¶ Computes \(input > other\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
Parameters: Returns: A
torch.ByteTensor
containing a 1 at each location where comparison is trueReturn type: Example:
>>> torch.gt(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) 0 1 0 0 [torch.ByteTensor of size (2,2)]
-
torch.
isnan
(tensor)[source]¶ Returns a new tensor with boolean elements representing if each element is NaN or not.
Parameters: tensor (Tensor) – A tensor to check Returns: A torch.ByteTensor
containing a 1 at each location of NaN elements.Return type: Tensor Example:
>>> torch.isnan(torch.Tensor([1, float('nan'), 2])) 0 1 0 [torch.ByteTensor of size 3]
-
torch.
kthvalue
(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor)¶ Returns the
k
th smallest element of the giveninput
tensor along a given dimension.If
dim
is not given, the last dimension of the input is chosen.A tuple of (values, indices) is returned, where the indices is the indices of the kth-smallest element in the original input tensor in dimension dim.
If
keepdim
isTrue
, both thevalues
andindices
tensors are the same size asinput
, except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in both thevalues
andindices
tensors having 1 fewer dimension than theinput
tensor.Parameters: - input (Tensor) – the input tensor
- k (int) – k for the k-th smallest element
- dim (int, optional) – the dimension to find the kth value along
- keepdim (bool) – whether the output tensors have
dim
retained or not - out (tuple, optional) – the output tuple of (Tensor, LongTensor) can be optionally given to be used as output buffers
Example:
>>> x = torch.arange(1, 6) >>> x 1 2 3 4 5 [torch.FloatTensor of size (5,)] >>> torch.kthvalue(x, 4) ( 4 [torch.FloatTensor of size (1,)] , 3 [torch.LongTensor of size (1,)] ) >>> x=torch.arange(1,7).resize_(2,3) >>> x 1 2 3 4 5 6 [torch.FloatTensor of size (2,3)] >>> torch.kthvalue(x,2,0,True) ( 4 5 6 [torch.FloatTensor of size (1,3)] , 1 1 1 [torch.LongTensor of size (1,3)] )
-
torch.
le
(input, other, out=None) → Tensor¶ Computes \(input \leq other\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
Parameters: Returns: A
torch.ByteTensor
containing a 1 at each location where comparison is trueReturn type: Example:
>>> torch.le(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) 1 0 1 1 [torch.ByteTensor of size (2,2)]
-
torch.
lt
(input, other, out=None) → Tensor¶ Computes \(input < other\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
Parameters: Returns: A torch.ByteTensor containing a 1 at each location where comparison is true
Return type: Example:
>>> torch.lt(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) 0 0 1 0 [torch.ByteTensor of size (2,2)]
-
torch.
max
()¶ -
torch.
max
(input) → Tensor
Returns the maximum value of all elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 3) >>> a 0.4729 -0.2266 -0.2085 [torch.FloatTensor of size (1,3)] >>> torch.max(a) 0.4729 [torch.FloatTensor of size ()]
-
torch.
max
(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
Returns the maximum value of each row of the
input
tensor in the given dimensiondim
. The second return value is the index location of each maximum value found (argmax).If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Parameters: Example:
>> a = torch.randn(4, 4) >> a 0.0692 0.3142 1.2513 -0.5428 0.9288 0.8552 -0.2073 0.6409 1.0695 -0.0101 -2.4507 -1.2230 0.7426 -0.7666 0.4862 -0.6628 torch.FloatTensor of size (4,4)] >>> torch.max(a, 1) ( 1.2513 0.9288 1.0695 0.7426 [torch.FloatTensor of size (4,)] , 2 0 0 0 [torch.LongTensor of size (4,)] )
-
torch.
max
(input, other, out=None) → Tensor
Each element of the tensor
input
is compared with the corresponding element of the tensorother
and an element-wise maximum is taken.The shapes of
input
andother
don’t need to match, but they must be broadcastable.\[out_i = \max(tensor_i, other_i)\]Note
When the shapes do not match, the shape of the returned output tensor follows the broadcasting rules.
Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> b = torch.randn(4) >>> b 1.0067 -0.8010 0.6258 0.3627 [torch.FloatTensor of size (4,)] >>> torch.max(a, b) 1.3869 0.3912 0.6258 0.3627 [torch.FloatTensor of size (4,)]
-
-
torch.
min
()¶ -
torch.
min
(input) → Tensor
Returns the minimum value of all elements in the
input
tensor.Parameters: input (Tensor) – the input tensor Example:
>>> a = torch.randn(1, 3) >>> a 0.4729 -0.2266 -0.2085 [torch.FloatTensor of size (1,3)] >>> torch.min(a) -0.22663167119026184
-
torch.
min
(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
Returns the minimum value of each row of the
input
tensor in the given dimensiondim
. The second return value is the index location of each minimum value found (argmin).If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Parameters: Example:
>> a = torch.randn(4, 4) >> a 0.0692 0.3142 1.2513 -0.5428 0.9288 0.8552 -0.2073 0.6409 1.0695 -0.0101 -2.4507 -1.2230 0.7426 -0.7666 0.4862 -0.6628 torch.FloatTensor of size (4,4)] >> torch.min(a, 1) 0.5428 0.2073 2.4507 0.7666 torch.FloatTensor of size (4,)] 3 2 2 1 torch.LongTensor of size (4,)]
-
torch.
min
(input, other, out=None) → Tensor
Each element of the tensor
input
is compared with the corresponding element of the tensorother
and an element-wise minimum is taken. The resulting tensor is returned.The shapes of
input
andother
don’t need to match, but they must be broadcastable.\[out_i = \min(tensor_i, other_i)\]Note
When the shapes do not match, the shape of the returned output tensor follows the broadcasting rules.
Parameters: Example:
>>> a = torch.randn(4) >>> a 1.3869 0.3912 -0.8634 -0.5468 [torch.FloatTensor of size (4,)] >>> b = torch.randn(4) >>> b 1.0067 -0.8010 0.6258 0.3627 [torch.FloatTensor of size (4,)] >>> torch.min(a, b) 1.0067 -0.8010 -0.8634 -0.5468 [torch.FloatTensor of size (4,)]
-
-
torch.
ne
(input, other, out=None) → Tensor¶ Computes \(input \neq other\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
Parameters: Returns: A
torch.ByteTensor
containing a 1 at each location where comparison is true.Return type: Example:
>>> torch.ne(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) 0 1 1 0 [torch.ByteTensor of size (2,2)]
-
torch.
sort
(input, dim=None, descending=False, out=None) -> (Tensor, LongTensor)¶ Sorts the elements of the
input
tensor along a given dimension in ascending order by value.If
dim
is not given, the last dimension of the input is chosen.If
descending
isTrue
then the elements are sorted in descending order by value.A tuple of (sorted_tensor, sorted_indices) is returned, where the sorted_indices are the indices of the elements in the original input tensor.
Parameters: Example:
>>> x = torch.randn(3, 4) >>> sorted, indices = torch.sort(x) >>> sorted -1.6747 0.0610 0.1190 1.4137 -1.4782 0.7159 1.0341 1.3678 -0.3324 -0.0782 0.3518 0.4763 [torch.FloatTensor of size (3,4)] >>> indices 0 1 3 2 2 1 0 3 3 1 0 2 [torch.LongTensor of size (3,4)] >>> sorted, indices = torch.sort(x, 0) >>> sorted -1.6747 -0.0782 -1.4782 -0.3324 0.3518 0.0610 0.4763 0.1190 1.0341 0.7159 1.4137 1.3678 [torch.FloatTensor of size (3,4)] >>> indices 0 2 1 2 2 0 2 0 1 1 0 1 [torch.LongTensor of size (3,4)]
-
torch.
topk
(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)¶ Returns the
k
largest elements of the giveninput
tensor along a given dimension.If
dim
is not given, the last dimension of the input is chosen.If
largest
isFalse
then the k smallest elements are returned.A tuple of (values, indices) is returned, where the indices are the indices of the elements in the original input tensor.
The boolean option
sorted
ifTrue
, will make sure that the returned k elements are themselves sortedParameters: - input (Tensor) – the input tensor
- k (int) – the k in “top-k”
- dim (int, optional) – the dimension to sort along
- largest (bool, optional) – controls whether to return largest or smallest elements
- sorted (bool, optional) – controls whether to return the elements in sorted order
- out (tuple, optional) – the output tuple of (Tensor, LongTensor) that can be optionally given to be used as output buffers
Example:
>>> x = torch.arange(1, 6) >>> x 1 2 3 4 5 [torch.FloatTensor of size (5,)] >>> torch.topk(x, 3) ( 5 4 3 [torch.FloatTensor of size (3,)] , 4 3 2 [torch.LongTensor of size (3,)] ) >>> torch.topk(x, 3, 0, largest=False) ( 1 2 3 [torch.FloatTensor of size (3,)] , 0 1 2 [torch.LongTensor of size (3,)] )
Spectral Ops¶
-
torch.
stft
(signal, frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) → Tensor¶ Short-time Fourier transform (STFT).
Ignoring the batch dimension, this method computes the following expression:
\[X[m, \omega] = \sum_{k = 0}^{\text{frame_length}}% window[k]\ signal[m \times hop + k]\ e^{- j \frac{2 \pi \cdot \omega k}{\text{frame_length}}}\]where \(m\) is the index of the sliding window, and \(\omega\) is the frequency that \(0 \leq \omega <\)
fft_size
. Whenreturn_onsesided
is the default valueTrue
, only values for \(\omega\) in range \(\left[0, 1, 2, \dots, \left\lfloor \frac{\text{fft_size}}{2} \right\rfloor + 1\right]\) are returned because the real-to-complex transform satisfies the Hermitian symmetry, i.e., \(X[m, \omega] = X[m, \text{fft_size} - \omega]^*\).The input
signal
must be 1-D sequence \((T)\) or 2-D a batch of sequences \((N \times T)\). Iffft_size
isNone
, it is default to same value asframe_length
.window
can be a 1-D tensor of sizeframe_length
, e.g., seetorch.hann_window()
. Ifwindow
is the default valueNone
, it is treated as if having \(1\) everywhere in the frame.pad_end
indicates the amount of zero padding at the end ofsignal
before STFT.Returns the real and the imaginary parts together as one tensor of size \((* \times N \times 2)\), where \(*\) is the shape of input
signal
, \(N\) is the number of \(\omega\) s considered depending onfft_size
andreturn_onesided
, and each pair in the last dimension represents a complex number as real part and imaginary part.Parameters: - signal (Tensor) – the input tensor
- frame_length (int) – the size of window frame and STFT filter
- hop (int) – the distance between neighboring sliding window frames
- fft_size (int, optional) – size of Fourier transform. Default:
None
- return_onesided (bool, optional) – controls whether to avoid redundancy in the return value. Default:
True
- window (Tensor, optional) – the optional window function. Default:
None
- pad_end (int, optional) – implicit zero padding at the end of
signal
. Default: 0
Returns: A tensor containing the STFT result
Return type:
-
torch.
hann_window
(window_length, periodic=True)[source]¶ Hann window function.
This method computes the Hann window function:
\[w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{N - 1} \right)\]where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\textt{window_length} + 1\). Also, we always havetorch.hann_window(L, periodic=True)
equal totorch.hann_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(\leq 2\), the returned window contains a single value 1.Parameters: Returns: A 1-D tensor of size \((\text{window_length})\) containing the window
Return type:
-
torch.
hamming_window
(window_length, periodic=True, alpha=0.54, beta=0.46)[source]¶ Hamming window function.
This method computes the Hamming window function:
\[w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right)\]where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\text{window_length} + 1\). Also, we always havetorch.hamming_window(L, periodic=True)
equal totorch.hamming_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(\leq 2\), the returned window contains a single value 1.Note
This is a generalized version of
torch.hann_window()
.Parameters: Returns: A 1-D tensor of size \((window\_length)\) containing the window
Return type:
-
torch.
bartlett_window
(window_length, periodic=True)[source]¶ Bartlett window function.
This method computes the Bartlett window function:
\[\begin{split}w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ \end{cases}\end{split}\], where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\text{window_length} + 1\). Also, we always havetorch.bartlett_window(L, periodic=True)
equal totorch.bartlett_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(\leq 2\), the returned window contains a single value 1.Parameters: Returns: A 1-D tensor of size \((window\_length)\) containing the window
Return type:
Other Operations¶
-
torch.
cross
(input, other, dim=-1, out=None) → Tensor¶ Returns the cross product of vectors in dimension
dim
ofinput
andother
.input
andother
must have the same size, and the size of theirdim
dimension should be 3.If
dim
is not given, it defaults to the first dimension found with the size 3.Parameters: Example:
>>> a = torch.randn(4, 3) >>> a -0.6652 -1.0116 -0.6857 0.2286 0.4446 -0.5272 0.0476 0.2321 1.9991 0.6199 1.1924 -0.9397 [torch.FloatTensor of size (4,3)] >>> b = torch.randn(4, 3) >>> b -0.1042 -1.1156 0.1947 0.9947 0.1149 0.4701 -1.0108 0.8319 -0.0750 0.9045 -1.3754 1.0976 [torch.FloatTensor of size (4,3)] >>> torch.cross(a, b, dim=1) -0.9619 0.2009 0.6367 0.2696 -0.6318 -0.4160 -1.6805 -2.0171 0.2741 0.0163 -1.5304 -1.9311 [torch.FloatTensor of size (4,3)] >>> torch.cross(a, b) -0.9619 0.2009 0.6367 0.2696 -0.6318 -0.4160 -1.6805 -2.0171 0.2741 0.0163 -1.5304 -1.9311 [torch.FloatTensor of size (4,3)]
-
torch.
diag
(input, diagonal=0, out=None) → Tensor¶ - If
input
is a vector (1-D tensor), then returns a 2-D square tensor with the elements ofinput
as the diagonal. - If
input
is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements ofinput
.
The argument
diagonal
controls which diagonal to consider:- If
diagonal
= 0, it is the main diagonal. - If
diagonal
> 0, it is above the main diagonal. - If
diagonal
< 0, it is below the main diagonal.
Parameters: See also
torch.diagonal()
always returns the diagonal of its input.torch.diagflat()
always constructs a tensor with diagonal elements specified by the input.Examples:
Get the square matrix where the input vector is the diagonal:
>>> a = torch.randn(3) >>> a 1.0480 -2.3405 -1.1138 [torch.FloatTensor of size (3,)] >>> torch.diag(a) 1.0480 0.0000 0.0000 0.0000 -2.3405 0.0000 0.0000 0.0000 -1.1138 [torch.FloatTensor of size (3,3)] >>> torch.diag(a, 1) 0.0000 1.0480 0.0000 0.0000 0.0000 0.0000 -2.3405 0.0000 0.0000 0.0000 0.0000 -1.1138 0.0000 0.0000 0.0000 0.0000 [torch.FloatTensor of size (4,4)]
Get the k-th diagonal of a given matrix:
>>> a = torch.randn(3, 3) >>> a -1.5328 -1.3210 -1.5204 0.8596 0.0471 -0.2239 -0.6617 0.0146 -1.0817 [torch.FloatTensor of size (3,3)] >>> torch.diag(a, 0) -1.5328 0.0471 -1.0817 [torch.FloatTensor of size (3,)] >>> torch.diag(a, 1) -1.3210 -0.2239 [torch.FloatTensor of size (2,)]
- If
-
torch.
histc
(input, bins=100, min=0, max=0, out=None) → Tensor¶ Computes the histogram of a tensor.
The elements are sorted into equal width bins between
min
andmax
. Ifmin
andmax
are both zero, the minimum and maximum values of the data are used.Parameters: Returns: Histogram represented as a tensor
Return type: Example:
>>> torch.histc(torch.FloatTensor([1, 2, 1]), bins=4, min=0, max=3) 0 2 1 0 [torch.FloatTensor of size (4,)]
-
torch.
renorm
(input, p, dim, maxnorm, out=None) → Tensor¶ Returns a tensor where each sub-tensor of
input
along dimensiondim
is normalized such that the p-norm of the sub-tensor is lower than the valuemaxnorm
Note
If the norm of a row is lower than maxnorm, the row is unchanged
Parameters: Example:
>>> x = torch.ones(3, 3) >>> x[1].fill_(2) >>> x[2].fill_(3) >>> x 1 1 1 2 2 2 3 3 3 [torch.FloatTensor of size (3,3)] >>> torch.renorm(x, 1, 0, 5) 1.0000 1.0000 1.0000 1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 [torch.FloatTensor of size (3,3)]
-
torch.
trace
(input) → Tensor¶ Returns the sum of the elements of the diagonal of the input 2-D matrix.
Example:
>>> x = torch.arange(1, 10).view(3, 3) >>> x 1 2 3 4 5 6 7 8 9 [torch.FloatTensor of size (3,3)] >>> torch.trace(x) 15 [torch.FloatTensor of size ()]
-
torch.
tril
(input, diagonal=0, out=None) → Tensor¶ Returns the lower triangular part of the matrix (2-D tensor)
input
, the other elements of the result tensorout
are set to 0.The lower triangular part of the matrix is defined as the elements on and below the diagonal.
The argument
diagonal
controls which diagonal to consider. Ifdiagonal
= 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices \(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where \(d_{1}, d_{2}\) are the dimensions of the matrix.Parameters: Example:
>>> a = torch.randn(3, 3) >>> a 1.3225 1.7304 1.4573 -0.3052 -0.3111 -0.1809 1.2469 0.0064 -1.6250 [torch.FloatTensor of size (3,3)] >>> torch.tril(a) 1.3225 0.0000 0.0000 -0.3052 -0.3111 0.0000 1.2469 0.0064 -1.6250 [torch.FloatTensor of size (3,3)] >>> b = torch.randn(4, 6) >>> b 0.2762 0.1640 0.3947 -0.8633 -0.4150 2.4491 -2.8177 -1.0580 0.3659 -0.0797 0.2294 1.3660 -1.8665 -0.4127 -0.7031 -0.4697 -0.2383 -0.1321 1.0998 0.2726 0.2512 0.4557 0.7012 -0.9356 [torch.FloatTensor of size (4,6)] >>> torch.tril(b, diagonal=1) 0.2762 0.1640 0.0000 0.0000 0.0000 0.0000 -2.8177 -1.0580 0.3659 0.0000 0.0000 0.0000 -1.8665 -0.4127 -0.7031 -0.4697 0.0000 0.0000 1.0998 0.2726 0.2512 0.4557 0.7012 0.0000 [torch.FloatTensor of size (4,6)] >>> torch.tril(b, diagonal=-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -2.8177 0.0000 0.0000 0.0000 0.0000 0.0000 -1.8665 -0.4127 0.0000 0.0000 0.0000 0.0000 1.0998 0.2726 0.2512 0.0000 0.0000 0.0000 [torch.FloatTensor of size (4,6)]
-
torch.
triu
(input, diagonal=0, out=None) → Tensor¶ Returns the upper triangular part of the matrix (2-D tensor)
input
, the other elements of the result tensorout
are set to 0.The upper triangular part of the matrix is defined as the elements on and above the diagonal.
The argument
diagonal
controls which diagonal to consider. Ifdiagonal
= 0, all elements on and below the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices \(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where \(d_{1}, d_{2}\) are the dimensions of the matrix.Parameters: Example:
>>> a = torch.randn(3, 3) >>> a 1.3225 1.7304 1.4573 -0.3052 -0.3111 -0.1809 1.2469 0.0064 -1.6250 [torch.FloatTensor of size (3,3)] >>> torch.triu(a) 1.3225 1.7304 1.4573 0.0000 -0.3111 -0.1809 0.0000 0.0000 -1.6250 [torch.FloatTensor of size (3,3)] >>> torch.triu(a, diagonal=1) 0.0000 1.7304 1.4573 0.0000 0.0000 -0.1809 0.0000 0.0000 0.0000 [torch.FloatTensor of size (3,3)] >>> torch.triu(a, diagonal=-1) 1.3225 1.7304 1.4573 -0.3052 -0.3111 -0.1809 0.0000 0.0064 -1.6250 [torch.FloatTensor of size (3,3)] >>> b = torch.randn(4, 6) >>> b 0.2762 0.1640 0.3947 -0.8633 -0.4150 2.4491 -2.8177 -1.0580 0.3659 -0.0797 0.2294 1.3660 -1.8665 -0.4127 -0.7031 -0.4697 -0.2383 -0.1321 1.0998 0.2726 0.2512 0.4557 0.7012 -0.9356 [torch.FloatTensor of size (4,6)] >>> torch.tril(b, diagonal=1) 0.0000 0.1640 0.3947 -0.8633 -0.4150 2.4491 0.0000 0.0000 0.3659 -0.0797 0.2294 1.3660 0.0000 0.0000 0.0000 -0.4697 -0.2383 -0.1321 0.0000 0.0000 0.0000 0.0000 0.7012 -0.9356 [torch.FloatTensor of size (4,6)] >>> torch.tril(a, diagonal=-1) 0.2762 0.1640 0.3947 -0.8633 -0.4150 2.4491 -2.8177 -1.0580 0.3659 -0.0797 0.2294 1.3660 0.0000 -0.4127 -0.7031 -0.4697 -0.2383 -0.1321 0.0000 0.0000 0.2512 0.4557 0.7012 -0.9356 [torch.FloatTensor of size (4,6)]
BLAS and LAPACK Operations¶
-
torch.
addbmm
(beta=1, mat, alpha=1, batch1, batch2, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices stored in
batch1
andbatch2
, with a reduced add step (all matrix multiplications get accumulated along the first dimension).mat
is added to the final result.batch1
andbatch2
must be 3-D tensors each containing the same number of matrices.If
batch1
is a \((b \times n \times m)\) tensor,batch2
is a \((b \times m \times p)\) tensor,mat
must be broadcastable with a \((n \times p)\) tensor andout
will be a \((n \times p)\) tensor.\[out = \beta\ mat + \alpha\ (\sum_{i=0}^{b} batch1_i \mathbin{@} batch2_i)\]For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers.Parameters: - beta (Number, optional) – multiplier for
mat
(\(\beta\)) - mat (Tensor) – matrix to be added
- alpha (Number, optional) – multiplier for batch1 @ batch2 (\(\alpha\))
- batch1 (Tensor) – the first batch of matrices to be multiplied
- batch2 (Tensor) – the second batch of matrices to be multiplied
- out (Tensor, optional) – the output tensor
Example:
>>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) -3.1162 11.0071 7.3102 0.1824 -7.6892 1.8265 6.0739 0.4589 -0.5641 -5.4283 -9.3387 -0.1794 -1.2318 -6.8841 -4.7239 [torch.FloatTensor of size (3,5)]
- beta (Number, optional) – multiplier for
-
torch.
addmm
(beta=1, mat, alpha=1, mat1, mat2, out=None) → Tensor¶ Performs a matrix multiplication of the matrices
mat1
andmat2
. The matrixmat
is added to the final result.If
mat1
is a \((n \times m)\) tensor,mat2
is a \((m \times p)\) tensor, thenmat
must be broadcastable with a \((n \times p)\) tensor andout
will be a \((n \times p)\) tensor.alpha
andbeta
are scaling factors on matrix-vector product betweenmat1
and :attr`mat2` and the added matrixmat
respectively.\[out = \beta\ mat + \alpha\ (mat1_i \mathbin{@} mat2_i)\]For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers.Parameters: - beta (Number, optional) – multiplier for
mat
(\(\beta\)) - mat (Tensor) – matrix to be added
- alpha (Number, optional) – multiplier for \(mat1 @ mat2\) (\(\alpha\))
- mat1 (Tensor) – the first matrix to be multiplied
- mat2 (Tensor) – the second matrix to be multiplied
- out (Tensor, optional) – the output tensor
Example:
>>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) -0.4095 -1.9703 1.3561 5.7674 -4.9760 2.7378 [torch.FloatTensor of size (2,3)]
- beta (Number, optional) – multiplier for
-
torch.
addmv
(beta=1, tensor, alpha=1, mat, vec, out=None) → Tensor¶ Performs a matrix-vector product of the matrix
mat
and the vectorvec
. The vectortensor
is added to the final result.If
mat
is a \((n \times m)\) tensor,vec
is a 1-D tensor of size m, thentensor
must be broadcastable with a 1-D tensor of size n andout
will be 1-D tensor of size n.alpha
andbeta
are scaling factors on matrix-vector product betweenmat
andvec
and the added tensortensor
respectively.\[out = \beta\ tensor + \alpha\ (mat \mathbin{@} vec)\]For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integersParameters: Example:
>>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) -2.0939 -2.2950 [torch.FloatTensor of size (2,)]
-
torch.
addr
(beta=1, mat, alpha=1, vec1, vec2, out=None) → Tensor¶ Performs the outer-product of vectors
vec1
andvec2
and adds it to the matrixmat
.Optional values
beta
andalpha
are scaling factors on the outer product betweenvec1
andvec2
and the added matrixmat
respectively.\[out = \beta\ mat + \alpha\ (vec1 \otimes vec2)\]If
vec1
is a vector of size n andvec2
is a vector of size m, thenmat
must be broadcastable with a matrix of size \((n \times m)\) andout
will be a matrix of size \((n \times m)\).For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integersParameters: - beta (Number, optional) – multiplier for
mat
(\(\beta\)) - mat (Tensor) – matrix to be added
- alpha (Number, optional) – multiplier for \(vec1 \otimes vec2\) (\(\alpha\))
- vec1 (Tensor) – the first vector of the outer product
- vec2 (Tensor) – the second vector of the outer product
- out (Tensor, optional) – the output tensor
Example:
>>> vec1 = torch.arange(1, 4) >>> vec2 = torch.arange(1, 3) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) 1 2 2 4 3 6 [torch.FloatTensor of size (3,2)]
- beta (Number, optional) – multiplier for
-
torch.
baddbmm
(beta=1, mat, alpha=1, batch1, batch2, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices in
batch1
andbatch2
.mat
is added to the final result.batch1
andbatch2
must be 3-D tensors each containing the same number of matrices.If
batch1
is a \((b \times n \times m)\) tensor,batch2
is a \((b \times m \times p)\) tensor, thenmat
must be broadcastable with a \((b \times n \times p)\) tensor andout
will be a \((b \times n \times p)\) tensor. Bothalpha
andbeta
mean the same as the scaling factors used intorch.addbmm()
.\[out_i = \beta\ mat_i + \alpha\ (batch1_i \mathbin{@} batch2_i)\]For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers.Parameters: - beta (Number, optional) – multiplier for
mat
(\(\beta\)) - mat (Tensor) – the tensor to be added
- alpha (Number, optional) – multiplier for batch1 @ batch2 (\(\alpha\))
- batch1 (Tensor) – the first batch of matrices to be multiplied
- batch2 (Tensor) – the second batch of matrices to be multiplied
- out (Tensor, optional) – the output tensor
Example:
>>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5])
- beta (Number, optional) – multiplier for
-
torch.
bmm
(batch1, batch2, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices stored in
batch1
andbatch2
.batch1
andbatch2
must be 3-D tensors each containing the same number of matrices.If
batch1
is a \((b \times n \times m)\) tensor,batch2
is a \((b \times m \times p)\) tensor,out
will be a \((b \times n \times p)\) tensor.\[out_i = batch1_i \mathbin{@} batch2_i\]Note
This function does not broadcast. For broadcasting matrix products, see
torch.matmul()
.Parameters: Example:
>>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> res = torch.bmm(batch1, batch2) >>> res.size() torch.Size([10, 3, 5])
-
torch.
btrifact
(A, info=None, pivot=True)[source]¶ Batch LU factorization.
Returns a tuple containing the LU factorization and pivots. Pivoting is done if
pivot
is set.The optional argument
info
stores information if the factorization succeeded for each minibatch example. Theinfo
is provided as an IntTensor, its values will be filled from dgetrf and a non-zero value indicates an error occurred. Specifically, the values are from cublas if cuda is being used, otherwise LAPACK.Warning
The
info
argument is deprecated in favor oftorch.btrifact_with_info()
.Parameters: Returns: A tuple containing factorization and pivots.
Example:
>>> A = torch.randn(2, 3, 3) >>> A_LU, pivots = torch.btrifact(A) >>> A_LU (0 ,.,.) = 0.7908 -0.0854 0.1522 0.2757 -1.2942 -1.3715 -0.6029 0.3609 0.3210 (1 ,.,.) = 0.9091 0.1719 0.7741 0.1625 0.6720 0.1687 -0.1927 -0.9420 -0.4891 [torch.FloatTensor of size (2,3,3)] >>> pivots 2 2 3 1 3 3 [torch.IntTensor of size (2,3)]
-
torch.
btrifact_with_info
(A, pivot=True) -> (Tensor, IntTensor, IntTensor)¶ Batch LU factorization with additional error information.
This is a version of
torch.btrifact()
that always creates an info IntTensor, and returns it as the third return value.Parameters: Returns: A tuple containing factorization, pivots, and an IntTensor where non-zero values indicate whether factorization for each minibatch sample succeeds.
Example:
>>> A = torch.randn(2, 3, 3) >>> A_LU, pivots, info = A.btrifact_with_info() >>> if info.nonzero().size(0) == 0: >>> print('LU factorization succeeded for all samples!') LU factorization succeeded for all samples!
-
torch.
btrisolve
(b, LU_data, LU_pivots) → Tensor¶ Batch LU solve.
Returns the LU solve of the linear system \(Ax = b\).
Parameters: - b (Tensor) – the RHS tensor
- LU_data (Tensor) – the pivoted LU factorization of A from
btrifact()
. - LU_pivots (IntTensor) – the pivots of the LU factorization
Example:
>>> A = torch.randn(2, 3, 3) >>> b = torch.randn(2, 3) >>> A_LU = torch.btrifact(A) >>> x = torch.btrisolve(b, *A_LU) >>> torch.norm(torch.bmm(A, x.unsqueeze(2)) - b.unsqueeze(2)) 1.00000e-08 * 7.1293 [torch.FloatTensor of size ()]
-
torch.
btriunpack
(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True)[source]¶ Unpacks the data and pivots from a batched LU factorization (btrifact) of a tensor.
Returns a tuple of tensors as
(the pivots, the L tensor, the U tensor)
.Parameters: Example:
>>> A = torch.randn(2, 3, 3) >>> A_LU, pivots = A.btrifact() >>> P, a_L, a_U = torch.btriunpack(A_LU, pivots) >>> >>> # test that (P, A_L, A_U) gives LU factorization >>> A_ = torch.bmm(P, torch.bmm(A_L, A_U)) >>> assert torch.equal(A_, A) == True # can recover A
-
torch.
dot
(tensor1, tensor2) → Tensor¶ Computes the dot product (inner product) of two tensors.
Note
This function does not broadcast.
Example:
>>> torch.dot(torch.Tensor([2, 3]), torch.Tensor([2, 1])) 7 [torch.FloatTensor of size ()]
-
torch.
eig
(a, eigenvectors=False, out=None) -> (Tensor, Tensor)¶ Computes the eigenvalues and eigenvectors of a real square matrix.
Parameters: Returns: A tuple containing
- e (Tensor): the right eigenvalues of
a
- v (Tensor): the eigenvectors of
a
ifeigenvectors
isTrue
; otherwise an empty tensor
Return type: - e (Tensor): the right eigenvalues of
-
torch.
gels
(B, A, out=None) → Tensor¶ Computes the solution to the least squares and least norm problems for a full rank matrix \(A\) of size \((m \times n)\) and a matrix \(B\) of size \((n \times k)\).
If \(m \geq n\),
gels()
solves the least-squares problem:\[\begin{array}{ll} \min_X & \|AX-B\|_2. \end{array}\]If \(m < n\),
gels()
solves the least-norm problem:\[\begin{array}{ll} \min_X & \|X\|_2 & \mbox{subject to} & AX = B. \end{array}\]Returned tensor \(X\) has shape \((\max(m, n) \times k)\). The first \(n\) rows of \(X\) contains the solution. If :math`m geq n`, the residual sum of squares for the solution in each column is given by the sum of squares of elements in the remaining \(m - n\) rows of that column.
Parameters: Returns: A tuple containing:
- X (Tensor): the least squares solution
- qr (Tensor): the details of the QR factorization
Return type: Note
The returned matrices will always be transposed, irrespective of the strides of the input matrices. That is, they will have stride (1, m) instead of (m, 1).
Example:
>>> A = torch.Tensor([[1, 1, 1], [2, 3, 4], [3, 5, 2], [4, 2, 5], [5, 4, 3]]) >>> B = torch.Tensor([[-10, -3], [ 12, 14], [ 14, 12], [ 16, 16], [ 18, 16]]) >>> X, _ = torch.gels(B, A) >>> X 2.0000 1.0000 1.0000 1.0000 1.0000 2.0000 10.9635 4.8501 8.9332 5.2418 [torch.FloatTensor of size (5,2)]
-
torch.
geqrf
(input, out=None) -> (Tensor, Tensor)¶ This is a low-level function for calling LAPACK directly.
You’ll generally want to use
torch.qr()
instead.Computes a QR decomposition of
input
, but without constructing \(Q\) and \(R\) as explicit separate matrices.Rather, this directly calls the underlying LAPACK function ?geqrf which produces a sequence of ‘elementary reflectors’.
See LAPACK documentation for geqrf for further details.
Parameters:
-
torch.
ger
(vec1, vec2, out=None) → Tensor¶ Outer product of
vec1
andvec2
. Ifvec1
is a vector of size \(n\) andvec2
is a vector of size \(m\), thenout
must be a matrix of size \((n \times m)\).Note
This function does not broadcast.
Parameters: Example:
>>> v1 = torch.arange(1, 5) >>> v2 = torch.arange(1, 4) >>> torch.ger(v1, v2) 1 2 3 2 4 6 3 6 9 4 8 12 [torch.FloatTensor of size (4,3)]
-
torch.
gesv
(B, A, out=None) -> (Tensor, Tensor)¶ This function returns the solution to the system of linear equations represented by \(AX = B\) and the LU factorization of A, in order as a tuple X, LU.
LU contains L and U factors for LU factorization of A.
A
has to be a square and non-singular matrix (2-D tensor).If A is an \((m \times m)\) matrix and B is \((m \times k)\), the result LU is \((m \times m)\) and X is \((m \times k)\).
Note
Irrespective of the original strides, the returned matrices X and LU will be transposed, i.e. with strides (1, m) instead of (m, 1).
Parameters: Example:
>>> A = torch.Tensor([[6.80, -2.11, 5.66, 5.97, 8.23], [-6.05, -3.30, 5.36, -4.44, 1.08], [-0.45, 2.58, -2.70, 0.27, 9.04], [8.32, 2.71, 4.35, -7.17, 2.14], [-9.67, -5.14, -7.26, 6.08, -6.87]]).t() >>> B = torch.Tensor([[4.02, 6.19, -8.22, -7.57, -3.03], [-1.56, 4.00, -8.67, 1.75, 2.86], [9.81, -4.09, -4.57, -8.61, 8.99]]).t() >>> X, LU = torch.gesv(B, A) >>> torch.dist(B, torch.mm(A, X)) 1.00000e-06 * 7.0977 [torch.FloatTensor of size ()]
-
torch.
inverse
(input, out=None) → Tensor¶ Takes the inverse of the square matrix
input
.Note
Irrespective of the original strides, the returned matrix will be transposed, i.e. with strides (1, m) instead of (m, 1)
Parameters: Example:
>>> x = torch.rand(10, 10) >>> y = torch.inverse(x) >>> z = torch.mm(x, y) >>> z 1.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 1.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 1.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 1.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 1.0000 [torch.FloatTensor of size (10,10)] >>> torch.max(torch.abs(z - torch.eye(10))) # Max nonzero 1.00000e-07 * 5.0967 [torch.FloatTensor of size ()]
-
torch.
det
(A) → Tensor¶ Calculates determinant of a 2D square tensor.
Note
Backward through
det()
internally uses SVD results whenA
is not invertible. In this case, double backward throughdet()
will be unstable in whenA
doesn’t have distinct singular values. Seesvd()
for details.Parameters: A (Tensor) – The input 2D square tensor Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) 0.3690 [torch.FloatTensor of size ()]
-
torch.
logdet
(A) → Tensor¶ Calculates log determinant of a 2D square tensor.
Note
Result is
-inf
ifA
has zero log determinant, and isnan
ifA
has negative determinant.Note
Backward through
logdet()
internally uses SVD results whenA
is not invertible. In this case, double backward throughlogdet()
will be unstable in whenA
doesn’t have distinct singular values. Seesvd()
for details.Parameters: A (Tensor) – The input 2D square tensor Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) 1.9386 [torch.FloatTensor of size ()] >>> torch.logdet(A) 0.6620 [torch.FloatTensor of size ()]
-
torch.
slogdet
(A) -> (Tensor, Tensor)¶ Calculates the sign and log value of a 2D square tensor’s determinant.
Note
If
A
has zero determinant, this returns(0, -inf)
.Note
Backward through
slogdet()
internally uses SVD results whenA
is not invertible. In this case, double backward throughslogdet()
will be unstable in whenA
doesn’t have distinct singular values. Seesvd()
for details.Parameters: A (Tensor) – The input 2D square tensor Returns: A tuple containing the sign of the determinant, and the log value of the absolute determinant. Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) -0.3534 [torch.FloatTensor of size ()] >>> torch.logdet(A) nan [torch.FloatTensor of size ()] >>> torch.slogdet(A) ( -1 [torch.FloatTensor of size ()] , -1.0402 [torch.FloatTensor of size ()] )
-
torch.
matmul
(tensor1, tensor2, out=None) → Tensor¶ Matrix product of two tensors.
The behavior depends on the dimensionality of the tensors as follows:
- If both tensors are 1-dimensional, the dot product (scalar) is returned.
- If both arguments are 2-dimensional, the matrix-matrix product is returned.
- If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
- If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned.
- If both arguments are at least 1-dimensional and at least one argument is
N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first
argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the
batched matrix multiply and removed after. If the second argument is 1-dimensional, a
1 is appended to its dimension for the purpose of the batched matrix multiple and removed after.
The non-matrix (i.e. batch) dimensions are broadcasted (and thus
must be broadcastable). For example, if
tensor1
is a \((j \times 1 \times n \times m)\) tensor andtensor2
is a \((k \times m \times p)\) tensor,out
will be an \((j \times k \times n \times p)\) tensor.
Note
The 1-dimensional dot product version of this function does not support an
out
parameter.Parameters: Example:
>>> # vector x vector >>> tensor1 = torch.randn(3) >>> tensor2 = torch.randn(3) >>> torch.matmul(tensor1, tensor2).size() -0.4334 [torch.FloatTensor of size ()] >>> # matrix x vector >>> tensor1 = torch.randn(3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([3]) >>> # batched matrix x broadcasted vector >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3]) >>> # batched matrix x batched matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(10, 4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5]) >>> # batched matrix x broadcasted matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5])
-
torch.
mm
(mat1, mat2, out=None) → Tensor¶ Performs a matrix multiplication of the matrices
mat1
andmat2
.If
mat1
is a \((n \times m)\) tensor,mat2
is a \((m \times p)\) tensor,out
will be a \((n \times p)\) tensor.Note
This function does not broadcast. For broadcasting matrix products, see
torch.matmul()
.Parameters: Example:
>>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.mm(mat1, mat2) 0.0519 -0.3304 1.2232 4.3910 -5.1498 2.7571 [torch.FloatTensor of size (2,3)]
-
torch.
mv
(mat, vec, out=None) → Tensor¶ Performs a matrix-vector product of the matrix
mat
and the vectorvec
.If
mat
is a \((n \times m)\) tensor,vec
is a 1-D tensor of size \(m\),out
will be 1-D of size \(n\).Note
This function does not broadcast.
Parameters: Example:
>>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.mv(mat, vec) -2.0939 -2.2950 [torch.FloatTensor of size (2,)]
-
torch.
orgqr
(a, tau) → Tensor¶ Computes the orthogonal matrix Q of a QR factorization, from the (a, tau) tuple returned by
torch.geqrf()
.This directly calls the underlying LAPACK function ?orgqr. See LAPACK documentation for orgqr for further details.
Parameters: - a (Tensor) – the a from
torch.geqrf()
. - tau (Tensor) – the tau from
torch.geqrf()
.
- a (Tensor) – the a from
-
torch.
ormqr
(a, tau, mat, left=True, transpose=False) -> (Tensor, Tensor)¶ Multiplies mat by the orthogonal Q matrix of the QR factorization formed by
torch.geqrf()
that is represented by (a, tau).This directly calls the underlying LAPACK function ?ormqr. See LAPACK documentation for ormqr for further details.
Parameters: - a (Tensor) – the a from
torch.geqrf()
. - tau (Tensor) – the tau from
torch.geqrf()
. - mat (Tensor) – the matrix to be multiplied.
- a (Tensor) – the a from
-
torch.
potrf
(a, upper=True, out=None) → Tensor¶ Computes the Cholesky decomposition of a symmetric positive-definite matrix \(A\).
If
upper
isTrue
, the returned matrix U is upper-triangular, and the decomposition has the form:\[A = U^TU\]If
upper
isFalse
, the returned matrix L is lower-triangular, and the decomposition has the form:\[A = LL^T\]Parameters: Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive definite >>> u = torch.potrf(a) >>> a 2.3563 3.2318 -0.9406 3.2318 4.9557 -2.1618 -0.9406 -2.1618 2.2443 [torch.FloatTensor of size (3,3)] >>> u 1.5350 2.1054 -0.6127 0.0000 0.7233 -1.2053 0.0000 0.0000 0.6451 [torch.FloatTensor of size (3,3)] >>> torch.mm(u.t(), u) 2.3563 3.2318 -0.9406 3.2318 4.9557 -2.1618 -0.9406 -2.1618 2.2443 [torch.FloatTensor of size (3,3)]
-
torch.
potri
(u, upper=True, out=None) → Tensor¶ Computes the inverse of a positive semidefinite matrix given its Cholesky factor
u
: returns matrix invIf
upper
isTrue
or not provided,u
is upper triangular such that:\[inv = (u^T u)^{-1}\]If
upper
isFalse
,u
is lower triangular such that:\[inv = (uu^{T})^{-1}\]Parameters: Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive definite >>> u = torch.potrf(a) >>> a 2.3563 3.2318 -0.9406 3.2318 4.9557 -2.1618 -0.9406 -2.1618 2.2443 [torch.FloatTensor of size (3,3)] >>> torch.potri(u) 12.5724 -10.1765 -4.5333 -10.1765 8.5852 4.0047 -4.5333 4.0047 2.4031 [torch.FloatTensor of size (3,3)] >>> a.inverse() 12.5723 -10.1765 -4.5333 -10.1765 8.5852 4.0047 -4.5333 4.0047 2.4031 [torch.FloatTensor of size (3,3)]
-
torch.
potrs
(b, u, upper=True, out=None) → Tensor¶ Solves a linear system of equations with a positive semidefinite matrix to be inverted given its Cholesky factor matrix
u
.If
upper
isTrue
or not provided,u
is upper triangular and c is returned such that:\[c = (u^T u)^{-1} b\]If
upper
isFalse
,u
is and lower triangular and c is returned such that:\[c = (u u^T)^{-1} b\]Note
b
is always a 2-D tensor, use b.unsqueeze(1) to convert a vector.Parameters: Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive definite >>> u = torch.potrf(a) >>> a 2.3563 3.2318 -0.9406 3.2318 4.9557 -2.1618 -0.9406 -2.1618 2.2443 [torch.FloatTensor of size (3,3)] >>> b = torch.randn(3, 2) >>> b -0.3119 -1.8224 -0.2798 0.1789 -0.3735 1.7451 [torch.FloatTensor of size (3,2)] >>> torch.potrs(b,u) 0.6187 -32.6438 -0.7234 27.0703 -0.6039 13.1717 [torch.FloatTensor of size (3,2)] >>> torch.mm(a.inverse(),b) 0.6187 -32.6436 -0.7234 27.0702 -0.6039 13.1717 [torch.FloatTensor of size (3,2)]
-
torch.
pstrf
(a, upper=True, out=None) -> (Tensor, Tensor)¶ Computes the pivoted Cholesky decomposition of a positive semidefinite matrix
a
. returns matrices u and piv.If
upper
isTrue
or not provided, u is upper triangular such that \(a = p^T u^T u p\), with p the permutation given by piv.If
upper
isFalse
, u is lower triangular such that \(a = p^T u u^T p\).Parameters: Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive definite >>> a 5.4417 -2.5280 1.3643 -2.5280 2.9689 -2.1368 1.3643 -2.1368 4.6116 [torch.FloatTensor of size (3,3)] >>> u,piv = torch.pstrf(a) >>> u 2.3328 0.5848 -1.0837 0.0000 2.0663 -0.7274 0.0000 0.0000 1.1249 [torch.FloatTensor of size (3,3)] >>> piv 0 2 1 [torch.IntTensor of size (3,)] >>> p = torch.eye(3).index_select(0,piv.long()).index_select(0,piv.long()).t() # make pivot permutation >>> torch.mm(torch.mm(p.t(),torch.mm(u.t(),u)),p) # reconstruct 5.4417 1.3643 -2.5280 1.3643 4.6116 -2.1368 -2.5280 -2.1368 2.9689 [torch.FloatTensor of size (3,3)]
-
torch.
qr
(input, out=None) -> (Tensor, Tensor)¶ Computes the QR decomposition of a matrix
input
, and returns matrices Q and R such that \(\text{input} = Q R\), with \(Q\) being an orthogonal matrix and \(R\) being an upper triangular matrix.This returns the thin (reduced) QR factorization.
Note
precision may be lost if the magnitudes of the elements of
input
are largeNote
While it should always give you a valid decomposition, it may not give you the same one across platforms - it will depend on your LAPACK implementation.
Note
Irrespective of the original strides, the returned matrix \(Q\) will be transposed, i.e. with strides (1, m) instead of (m, 1).
Parameters: Example:
>>> a = torch.Tensor([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> q, r = torch.qr(a) >>> q -0.8571 0.3943 0.3314 -0.4286 -0.9029 -0.0343 0.2857 -0.1714 0.9429 [torch.FloatTensor of size (3,3)] >>> r -14.0000 -21.0000 14.0000 0.0000 -175.0000 70.0000 0.0000 0.0000 -35.0000 [torch.FloatTensor of size (3,3)] >>> torch.mm(q, r).round() 12 -51 4 6 167 -68 -4 24 -41 [torch.FloatTensor of size (3,3)] >>> torch.mm(q.t(), q).round() 1 -0 0 -0 1 0 0 0 1 [torch.FloatTensor of size (3,3)]
-
torch.
svd
(input, some=True, out=None) -> (Tensor, Tensor, Tensor)¶ U, S, V = torch.svd(A) returns the singular value decomposition of a real matrix A of size (n x m) such that \(A = USV^T\).
U is of shape \((n \times n)\).
S is a diagonal matrix of shape \((n \times m)\), represented as a vector of size \(\min(n, m)\) containing the non-negative diagonal entries.
V is of shape \((m \times m)\).
If
some
isTrue
(default), the returned U and V matrices will contain only \(min(n, m)\) orthonormal columns.Note
Irrespective of the original strides, the returned matrix U will be transposed, i.e. with strides (1, n) instead of (n, 1).
Note
Extra care needs to be taken when backward through U and V outputs. Such operation is really only stable when
input
is full rank with all distinct singular values. Otherwise,NaN
can appear as the gradients are not properly defined. Also, notice that double backward will usually do an additional backward through U and V even if the original backward is only on S.Note
When
some
=False
, the gradients onU[:, min(n, m):]
andV[:, min(n, m):]
will be ignored in backward as those vectors can be arbitrary bases of the subspaces.Parameters: Example:
>>> a = torch.Tensor([[8.79, 6.11, -9.15, 9.57, -3.49, 9.84], [9.93, 6.91, -7.93, 1.64, 4.02, 0.15], [9.83, 5.04, 4.86, 8.83, 9.80, -8.99], [5.45, -0.27, 4.85, 0.74, 10.00, -6.02], [3.16, 7.98, 3.01, 5.80, 4.27, -5.31]]).t() >>> u, s, v = torch.svd(a) >>> u -0.5911 0.2632 0.3554 0.3143 0.2299 -0.3976 0.2438 -0.2224 -0.7535 -0.3636 -0.0335 -0.6003 -0.4508 0.2334 -0.3055 -0.4297 0.2362 -0.6859 0.3319 0.1649 -0.4697 -0.3509 0.3874 0.1587 -0.5183 0.2934 0.5763 -0.0209 0.3791 -0.6526 [torch.FloatTensor of size (6,5)] >>> s 27.4687 22.6432 8.5584 5.9857 2.0149 [torch.FloatTensor of size (5,)] >>> v -0.2514 0.8148 -0.2606 0.3967 -0.2180 -0.3968 0.3587 0.7008 -0.4507 0.1402 -0.6922 -0.2489 -0.2208 0.2513 0.5891 -0.3662 -0.3686 0.3859 0.4342 -0.6265 -0.4076 -0.0980 -0.4932 -0.6227 -0.4396 [torch.FloatTensor of size (5,5)] >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) 1.00000e-05 * 1.0918 [torch.FloatTensor of size ()]
-
torch.
symeig
(input, eigenvectors=False, upper=True, out=None) -> (Tensor, Tensor)¶ This function returns eigenvalues and eigenvectors of a real symmetric matrix
input
, represented by a tuple \((e, V)\).input
and \(V\) are \((m \times m)\) matrices and \(e\) is a \(m\) dimensional vector.This function calculates all eigenvalues (and vectors) of
input
such that \(input = V diag(e) V^T\).The boolean argument
eigenvectors
defines computation of eigenvectors or eigenvalues only.If it is
False
, only eigenvalues are computed. If it isTrue
, both eigenvalues and eigenvectors are computed.Since the input matrix
input
is supposed to be symmetric, only the upper triangular portion is used by default.If
upper
isFalse
, then lower triangular portion is used.Note: Irrespective of the original strides, the returned matrix V will be transposed, i.e. with strides (1, m) instead of (m, 1).
Parameters: Examples:
>>> a = torch.Tensor([[ 1.96, 0.00, 0.00, 0.00, 0.00], [-6.49, 3.80, 0.00, 0.00, 0.00], [-0.47, -6.39, 4.17, 0.00, 0.00], [-7.20, 1.50, -1.51, 5.70, 0.00], [-0.65, -6.34, 2.67, 1.80, -7.10]]).t() >>> e, v = torch.symeig(a, eigenvectors=True) >>> e -11.0656 -6.2287 0.8640 8.8655 16.0948 [torch.FloatTensor of size (5,)] >>> v -0.2981 -0.6075 0.4026 -0.3745 0.4896 -0.5078 -0.2880 -0.4066 -0.3572 -0.6053 -0.0816 -0.3843 -0.6600 0.5008 0.3991 -0.0036 -0.4467 0.4553 0.6204 -0.4564 -0.8041 0.4480 0.1725 0.3108 0.1622 [torch.FloatTensor of size (5,5)]
-
torch.
trtrs
(b, A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)¶ Solves a system of equations with a triangular coefficient matrix A and multiple right-hand sides b.
In particular, solves \(AX = b\) and assumes A is upper-triangular with the default keyword arguments.
This method is NOT implemented for CUDA tensors.
Parameters: - A (Tensor) – the input triangular coefficient matrix
- b (Tensor) – multiple right-hand sides. Each column of b is a right-hand side for the system of equations.
- upper (bool, optional) – whether to solve the upper-triangular system of equations (default) or the lower-triangular system of equations. Default: True.
- transpose (bool, optional) – whether A should be transposed before being sent into the solver. Default: False.
- unitriangular (bool, optional) – whether A is unit triangular. If True, the diagonal elements of A are assumed to be 1 and not referenced from A. Default: False.
Returns: A tuple (X, M) where M is a clone of A and X is the solution to AX = b (or whatever variant of the system of equations, depending on the keyword arguments.)
- Shape:
- A: \((N, N)\)
- b: \((N, C)\)
- output[0]: \((N, C)\)
- output[1]: \((N, N)\)
Examples:
>>> A = torch.randn(2, 2).triu() >>> A -1.8793 0.1567 0.0000 -2.1972 [torch.FloatTensor of size (2,2)] >>> b = torch.randn(2, 3) >>> b 1.8776 -0.0759 1.6590 -0.5676 0.4771 0.7477 [torch.FloatTensor of size (2,3)] >>> torch.trtrs(b, A) ( -0.9775 0.0223 -0.9112 0.2583 -0.2172 -0.3403 [torch.FloatTensor of size (2,3)] , -1.8793 0.1567 0.0000 -2.1972 [torch.FloatTensor of size (2,2)] )