""" `Learn the Basics `_ || **Quickstart** || `Tensors `_ || `Datasets & DataLoaders `_ || `Transforms `_ || `Build Model `_ || `Autograd `_ || `Optimization `_ || `Save & Load Model `_ Quickstart =================== This section runs through the API for common tasks in machine learning. Refer to the links in each section to dive deeper. Working with data ----------------- PyTorch has two `primitives to work with data `_: ``torch.utils.data.DataLoader`` and ``torch.utils.data.Dataset``. ``Dataset`` stores the samples and their corresponding labels, and ``DataLoader`` wraps an iterable around the ``Dataset``. """ import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor ###################################################################### # PyTorch offers domain-specific libraries such as `TorchText `_, # `TorchVision `_, and `TorchAudio `_, # all of which include datasets. For this tutorial, we will be using a TorchVision dataset. # # The ``torchvision.datasets`` module contains ``Dataset`` objects for many real-world vision data like # CIFAR, COCO (`full list here `_). In this tutorial, we # use the FashionMNIST dataset. Every TorchVision ``Dataset`` includes two arguments: ``transform`` and # ``target_transform`` to modify the samples and labels respectively. # Download training data from open datasets. training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor(), ) # Download test data from open datasets. test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor(), ) ###################################################################### # We pass the ``Dataset`` as an argument to ``DataLoader``. This wraps an iterable over our dataset, and supports # automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element # in the dataloader iterable will return a batch of 64 features and labels. batch_size = 64 # Create data loaders. train_dataloader = DataLoader(training_data, batch_size=batch_size) test_dataloader = DataLoader(test_data, batch_size=batch_size) for X, y in test_dataloader: print(f"Shape of X [N, C, H, W]: {X.shape}") print(f"Shape of y: {y.shape} {y.dtype}") break ###################################################################### # Read more about `loading data in PyTorch `_. # ###################################################################### # -------------- # ################################ # Creating Models # ------------------ # To define a neural network in PyTorch, we create a class that inherits # from `nn.Module `_. We define the layers of the network # in the ``__init__`` function and specify how data will pass through the network in the ``forward`` function. To accelerate # operations in the neural network, we move it to the GPU or MPS if available. # Get cpu, gpu or mps device for training. device = ( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) print(f"Using {device} device") # Define model class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork().to(device) print(model) ###################################################################### # Read more about `building neural networks in PyTorch `_. # ###################################################################### # -------------- # ##################################################################### # Optimizing the Model Parameters # ---------------------------------------- # To train a model, we need a `loss function `_ # and an `optimizer `_. loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) ####################################################################### # In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and # backpropagates the prediction error to adjust the model's parameters. def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X) loss = loss_fn(pred, y) # Backpropagation loss.backward() optimizer.step() optimizer.zero_grad() if batch % 100 == 0: loss, current = loss.item(), (batch + 1) * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") ############################################################################## # We also check the model's performance against the test dataset to ensure it is learning. def test(dataloader, model, loss_fn): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= num_batches correct /= size print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") ############################################################################## # The training process is conducted over several iterations (*epochs*). During each epoch, the model learns # parameters to make better predictions. We print the model's accuracy and loss at each epoch; we'd like to see the # accuracy increase and the loss decrease with every epoch. epochs = 5 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(train_dataloader, model, loss_fn, optimizer) test(test_dataloader, model, loss_fn) print("Done!") ###################################################################### # Read more about `Training your model `_. # ###################################################################### # -------------- # ###################################################################### # Saving Models # ------------- # A common way to save a model is to serialize the internal state dictionary (containing the model parameters). torch.save(model.state_dict(), "model.pth") print("Saved PyTorch Model State to model.pth") ###################################################################### # Loading Models # ---------------------------- # # The process for loading a model includes re-creating the model structure and loading # the state dictionary into it. model = NeuralNetwork().to(device) model.load_state_dict(torch.load("model.pth")) ############################################################# # This model can now be used to make predictions. classes = [ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ] model.eval() x, y = test_data[0][0], test_data[0][1] with torch.no_grad(): x = x.to(device) pred = model(x) predicted, actual = classes[pred[0].argmax(0)], classes[y] print(f'Predicted: "{predicted}", Actual: "{actual}"') ###################################################################### # Read more about `Saving & Loading your model `_. #