{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import LinearSVC\n", "from sklearn.calibration import calibration_curve as skcalibration_curve" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def calibration_curve(y_true, y_prob, normalize=False, n_bins=5):\n", " if normalize:\n", " y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min())\n", " bins = np.linspace(0, 1 + 1e-8, n_bins + 1)\n", " binids = np.digitize(y_prob, bins) - 1\n", " bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))\n", " bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))\n", " bin_total = np.bincount(binids, minlength=len(bins))\n", " nonzero = bin_total != 0\n", " prob_true = (bin_true[nonzero] / bin_total[nonzero])\n", " prob_pred = (bin_sums[nonzero] / bin_total[nonzero])\n", " return prob_true, prob_pred" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "X, y = X[y != 2], y[y != 2]\n", "clf = LogisticRegression(max_iter=10000).fit(X, y)\n", "y_prob = clf.predict_proba(X)[:, 1]\n", "prob_true1, prob_pred1 = calibration_curve(y, y_prob)\n", "prob_true2, prob_pred2 = skcalibration_curve(y, y_prob)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "X, y = X[y != 2], y[y != 2]\n", "clf = LinearSVC(max_iter=10000).fit(X, y)\n", "y_prob = clf.decision_function(X)\n", "prob_true1, prob_pred1 = calibration_curve(y, y_prob, normalize=True)\n", "prob_true2, prob_pred2 = skcalibration_curve(y, y_prob, normalize=True)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }