{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.decomposition import KernelPCA as skKernelPCA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 1\n", "- linear kernel\n", "- similar to sklearn kernel='linear'" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class KernelCenterer():\n", " def fit(self, K):\n", " n_samples = K.shape[0]\n", " self.K_fit_rows_ = np.sum(K, axis=0) / n_samples\n", " self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples\n", " return self\n", "\n", " def transform(self, K):\n", " Kt = (K - (np.sum(K, axis=1) / K.shape[1])[:, np.newaxis]\n", " - self.K_fit_rows_ + self.K_fit_all_)\n", " return Kt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class KernelPCA():\n", " def __init__(self, n_components):\n", " self.n_components = n_components\n", "\n", " @staticmethod\n", " def _linear_kernel(X, Y):\n", " K = np.dot(X, Y.T)\n", " return K\n", "\n", " def fit(self, X):\n", " self.X_fit_ = X\n", " K = self._linear_kernel(X, X)\n", " self._centerer = KernelCenterer().fit(K)\n", " Kt = self._centerer.transform(K)\n", " eigval, eigvec = np.linalg.eigh(Kt)\n", " self.lambdas_ = eigval[-self.n_components:][::-1]\n", " self.alphas_ = eigvec[:, -self.n_components:][:, ::-1]\n", " return self\n", "\n", " def transform(self, X):\n", " K = self._linear_kernel(X, self.X_fit_)\n", " Kt = self._centerer.transform(K)\n", " scaled_alphas = self.alphas_ / np.sqrt(self.lambdas_)\n", " return np.dot(Kt, scaled_alphas)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "X, _ = load_iris(return_X_y=True)\n", "kpca1 = KernelPCA(n_components=2).fit(X)\n", "kpca2 = skKernelPCA(n_components=2).fit(X)\n", "assert np.allclose(kpca1.lambdas_, kpca2.lambdas_)\n", "for i in range(kpca1.alphas_.shape[1]):\n", " assert np.allclose(kpca1.alphas_[:, i], kpca2.alphas_[:, i]) or np.allclose(kpca1.alphas_[:, i], -kpca2.alphas_[:, i])\n", "Xt1 = kpca1.transform(X)\n", "Xt2 = kpca2.transform(X)\n", "for i in range(Xt1.shape[1]):\n", " assert np.allclose(Xt1[:, i], Xt2[:, i]) or np.allclose(Xt1[:, i], -Xt2[:, i])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 2\n", "- rbf kernel\n", "- similar to sklearn kernel='rbf'" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "class KernelPCA():\n", " def __init__(self, n_components, gamma=None):\n", " self.n_components = n_components\n", " self.gamma = gamma\n", "\n", " @staticmethod\n", " def _rbf_kernel(X, Y, gamma):\n", " if gamma is None:\n", " gamma = 1 / X.shape[1]\n", " K = np.zeros((X.shape[0], Y.shape[0]))\n", " for i in range(X.shape[0]):\n", " for j in range(Y.shape[0]):\n", " K[i, j] = np.exp(-gamma * np.sum(np.square(X[i] - Y[j])))\n", " return K\n", "\n", " def fit(self, X):\n", " self.X_fit_ = X\n", " K = self._rbf_kernel(X, X, self.gamma)\n", " self._centerer = KernelCenterer().fit(K)\n", " Kt = self._centerer.transform(K)\n", " eigval, eigvec = np.linalg.eigh(Kt)\n", " self.lambdas_ = eigval[-self.n_components:][::-1]\n", " self.alphas_ = eigvec[:, -self.n_components:][:, ::-1]\n", " return self\n", "\n", " def transform(self, X):\n", " K = self._rbf_kernel(X, self.X_fit_, self.gamma)\n", " Kt = self._centerer.transform(K)\n", " scaled_alphas = self.alphas_ / np.sqrt(self.lambdas_)\n", " return np.dot(Kt, scaled_alphas)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "X, _ = load_iris(return_X_y=True)\n", "kpca1 = KernelPCA(n_components=2).fit(X)\n", "kpca2 = skKernelPCA(n_components=2, kernel='rbf').fit(X)\n", "assert np.allclose(kpca1.lambdas_, kpca2.lambdas_)\n", "for i in range(kpca1.alphas_.shape[1]):\n", " assert np.allclose(kpca1.alphas_[:, i], kpca2.alphas_[:, i]) or np.allclose(kpca1.alphas_[:, i], -kpca2.alphas_[:, i])\n", "Xt1 = kpca1.transform(X)\n", "Xt2 = kpca2.transform(X)\n", "for i in range(Xt1.shape[1]):\n", " assert np.allclose(Xt1[:, i], Xt2[:, i]) or np.allclose(Xt1[:, i], -Xt2[:, i])" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }