{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.linalg import lstsq\n", "from scipy.special import expit\n", "from sklearn.datasets import load_breast_cancer, load_iris\n", "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as skLinearDiscriminantAnalysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 1\n", "- similar to scikit-learn solver='lsqr'\n", "- reference: Pattern Recognition and Machine Learning Section 4.2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class LinearDiscriminantAnalysis():\n", " def fit(self, X, y):\n", " self.classes_ = np.unique(y)\n", " n_features = X.shape[1]\n", " n_classes = len(self.classes_)\n", " self.priors_ = np.zeros(n_classes)\n", " self.means_ = np.zeros((n_classes, n_features))\n", " self.covariance_ = np.zeros((n_features, n_features))\n", " for i, c in enumerate(self.classes_):\n", " X_c = X[y == c]\n", " self.priors_[i] = X_c.shape[0] / X.shape[0]\n", " self.means_[i] = np.mean(X_c, axis=0)\n", " self.covariance_ += self.priors_[i] * np.cov(X_c.T, bias=True)\n", " self.coef_ = lstsq(self.covariance_, self.means_.T)[0].T\n", " self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +\n", " np.log(self.priors_))\n", " if len(self.classes_) == 2:\n", " self.coef_ = np.atleast_2d(self.coef_[1] - self.coef_[0])\n", " self.intercept_ = np.atleast_1d(self.intercept_[1] - self.intercept_[0])\n", " return self\n", "\n", " def decision_function(self, X):\n", " scores = np.dot(X, self.coef_.T) + self.intercept_\n", " if scores.shape[1] == 1:\n", " return scores.ravel()\n", " else:\n", " return scores\n", "\n", " def predict(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " indices = (scores > 0).astype(int)\n", " else:\n", " indices = np.argmax(scores, axis=1)\n", " return self.classes_[indices]\n", "\n", " def predict_proba(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " prob = expit(scores)\n", " prob = np.vstack((1 - prob, prob)).T\n", " else:\n", " scores -= np.max(scores, axis=1)[:, np.newaxis]\n", " prob = np.exp(scores)\n", " prob /= np.sum(prob, axis=1)[:, np.newaxis]\n", " return prob" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_breast_cancer(return_X_y=True)\n", "clf1 = LinearDiscriminantAnalysis().fit(X, y)\n", "clf2 = skLinearDiscriminantAnalysis(solver='lsqr').fit(X, y)\n", "assert np.allclose(clf1.priors_, clf2.priors_)\n", "assert np.allclose(clf1.means_, clf2.means_)\n", "assert np.allclose(clf1.covariance_, clf2.covariance_)\n", "assert np.allclose(clf1.coef_, clf2.coef_)\n", "assert np.allclose(clf1.intercept_, clf2.intercept_)\n", "prob1 = clf1.decision_function(X)\n", "prob2 = clf2.decision_function(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "clf1 = LinearDiscriminantAnalysis().fit(X, y)\n", "clf2 = skLinearDiscriminantAnalysis(solver='lsqr').fit(X, y)\n", "assert np.allclose(clf1.priors_, clf2.priors_)\n", "assert np.allclose(clf1.means_, clf2.means_)\n", "assert np.allclose(clf1.covariance_, clf2.covariance_)\n", "assert np.allclose(clf1.coef_, clf2.coef_)\n", "assert np.allclose(clf1.intercept_, clf2.intercept_)\n", "prob1 = clf1.decision_function(X)\n", "prob2 = clf2.decision_function(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }