{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_boston\n", "from sklearn.dummy import DummyRegressor as skDummyRegressor" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class DummyRegressor():\n", " def __init__(self, strategy=\"mean\", constant=None, quantile=None):\n", " self.strategy = strategy\n", " self.constant = constant\n", " self.quantile = quantile\n", "\n", " def fit(self, X, y):\n", " if self.strategy == \"mean\":\n", " self.constant_ = np.mean(y)\n", " elif self.strategy == \"median\":\n", " self.constant_ = np.median(y)\n", " elif self.strategy == \"quantile\":\n", " self.constant_ = np.quantile(y, quantile);\n", " elif self.strategy == \"constant\":\n", " self.constant_ = self.constant\n", " # keep consistent with scikit-learn\n", " self.constant_ = np.reshape(self.constant_, (1, -1))\n", " return self\n", "\n", " def predict(self, X):\n", " return np.full(X.shape[0], self.constant_)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "clf1 = DummyRegressor(strategy=\"mean\").fit(X, y)\n", "clf2 = skDummyRegressor(strategy=\"mean\").fit(X, y)\n", "assert np.allclose(clf1.constant_, clf2.constant_)\n", "pred1 = clf2.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "clf1 = DummyRegressor(strategy=\"median\").fit(X, y)\n", "clf2 = skDummyRegressor(strategy=\"median\").fit(X, y)\n", "assert np.allclose(clf1.constant_, clf2.constant_)\n", "pred1 = clf2.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "clf1 = DummyRegressor(strategy=\"constant\", constant=0).fit(X, y)\n", "clf2 = skDummyRegressor(strategy=\"constant\", constant=0).fit(X, y)\n", "assert np.allclose(clf1.constant_, clf2.constant_)\n", "pred1 = clf2.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "for quantile in [0.25, 0.75]:\n", " clf1 = DummyRegressor(strategy=\"quantile\", quantile=quantile).fit(X, y)\n", " clf2 = skDummyRegressor(strategy=\"quantile\", quantile=quantile).fit(X, y)\n", " assert np.allclose(clf1.constant_, clf2.constant_)\n", " pred1 = clf2.predict(X)\n", " pred2 = clf2.predict(X)\n", " assert np.allclose(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }