{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from scipy.special import xlogy\n",
    "from sklearn.datasets import load_breast_cancer, load_iris\n",
    "from sklearn.tree import DecisionTreeClassifier\n",
    "from sklearn.ensemble import AdaBoostClassifier as skAdaBoostClassifier"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation 1\n",
    "- SAMME"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "class AdaBoostClassifier():\n",
    "    def __init__(self, n_estimators=50, random_state=0):\n",
    "        self.n_estimators = n_estimators\n",
    "        self.random_state = random_state\n",
    "\n",
    "    def fit(self, X, y):\n",
    "        self.classes_, y_train = np.unique(y, return_inverse=True)\n",
    "        self.n_classes_ = len(self.classes_)\n",
    "        sample_weight = np.full(X.shape[0], 1 / X.shape[0])\n",
    "        self.estimators_ = []\n",
    "        self.estimator_weights_ = np.zeros(self.n_estimators)\n",
    "        self.estimator_errors_ = np.ones(self.n_estimators)\n",
    "        MAX_INT = np.iinfo(np.int32).max\n",
    "        rng = np.random.RandomState(self.random_state)\n",
    "        for i in range(self.n_estimators):\n",
    "            est = DecisionTreeClassifier(max_depth=1,\n",
    "                                         random_state=rng.randint(MAX_INT))\n",
    "            est.fit(X, y_train, sample_weight=sample_weight)\n",
    "            y_predict = est.predict(X)\n",
    "            incorrect = y_predict != y_train\n",
    "            estimator_error = np.average(incorrect, weights=sample_weight)\n",
    "            estimator_weight = (np.log((1 - estimator_error) / estimator_error) +\n",
    "                                np.log(self.n_classes_ - 1))\n",
    "            sample_weight *= np.exp(estimator_weight * incorrect)\n",
    "            sample_weight /= np.sum(sample_weight)\n",
    "            self.estimators_.append(est)\n",
    "            self.estimator_errors_[i] = estimator_error\n",
    "            self.estimator_weights_[i] = estimator_weight\n",
    "        return self\n",
    "\n",
    "    def decision_function(self, X):\n",
    "        pred = np.zeros((X.shape[0], self.n_classes_))\n",
    "        for i in range(self.n_estimators):\n",
    "            pred[np.arange(X.shape[0]), self.estimators_[i].predict(X)] += self.estimator_weights_[i]\n",
    "        pred /= np.sum(self.estimator_weights_)\n",
    "        if self.n_classes_ == 2:\n",
    "            return pred[:, 1] - pred[:, 0]\n",
    "        return pred\n",
    "\n",
    "    def predict(self, X):\n",
    "        scores = self.decision_function(X)\n",
    "        if len(scores.shape) == 1:\n",
    "            indices = (scores > 0).astype(int)\n",
    "        else:\n",
    "            indices = np.argmax(scores, axis=1)\n",
    "        return self.classes_[indices]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, y = load_breast_cancer(return_X_y=True)\n",
    "clf1 = AdaBoostClassifier(random_state=0).fit(X, y)\n",
    "clf2 = skAdaBoostClassifier(algorithm=\"SAMME\", random_state=0).fit(X, y)\n",
    "assert np.allclose(clf1.estimator_errors_, clf2.estimator_errors_)\n",
    "assert np.allclose(clf1.estimator_weights_, clf2.estimator_weights_)\n",
    "pred1 = clf1.predict(X)\n",
    "pred2 = clf2.predict(X)\n",
    "assert np.array_equal(pred1, pred2)\n",
    "prob1 = clf1.decision_function(X)\n",
    "prob2 = clf2.decision_function(X)\n",
    "assert np.allclose(prob1, prob2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, y = load_iris(return_X_y=True)\n",
    "clf1 = AdaBoostClassifier(random_state=0).fit(X, y)\n",
    "clf2 = skAdaBoostClassifier(algorithm=\"SAMME\", random_state=0).fit(X, y)\n",
    "assert np.allclose(clf1.estimator_errors_, clf2.estimator_errors_)\n",
    "assert np.allclose(clf1.estimator_weights_, clf2.estimator_weights_)\n",
    "pred1 = clf1.predict(X)\n",
    "pred2 = clf2.predict(X)\n",
    "assert np.array_equal(pred1, pred2)\n",
    "prob1 = clf1.decision_function(X)\n",
    "prob2 = clf2.decision_function(X)\n",
    "assert np.allclose(prob1, prob2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation 2\n",
    "- SAMME.R"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "class AdaBoostClassifier():\n",
    "    def __init__(self, n_estimators=50, random_state=0):\n",
    "        self.n_estimators = n_estimators\n",
    "        self.random_state = random_state\n",
    "\n",
    "    def fit(self, X, y):\n",
    "        self.classes_, y_train = np.unique(y, return_inverse=True)\n",
    "        self.n_classes_ = len(self.classes_)\n",
    "        sample_weight = np.full(X.shape[0], 1 / X.shape[0])\n",
    "        self.estimators_ = []\n",
    "        self.estimator_weights_ = np.zeros(self.n_estimators)\n",
    "        self.estimator_errors_ = np.ones(self.n_estimators)\n",
    "        MAX_INT = np.iinfo(np.int32).max\n",
    "        rng = np.random.RandomState(self.random_state)\n",
    "        for i in range(self.n_estimators):\n",
    "            est = DecisionTreeClassifier(max_depth=1,\n",
    "                                         random_state=rng.randint(MAX_INT))\n",
    "            est.fit(X, y_train, sample_weight=sample_weight)\n",
    "            y_predict = est.predict(X)\n",
    "            estimator_error = np.average(y_predict != y_train, weights=sample_weight)\n",
    "            y_predict_proba = est.predict_proba(X)\n",
    "            np.clip(y_predict_proba, np.finfo(y_predict_proba.dtype).eps, None, y_predict_proba)\n",
    "            y_coding = np.full((y_train.shape[0], self.n_classes_), -1 / (self.n_classes_ - 1))\n",
    "            y_coding[np.arange(y_train.shape[0]), y_train] = 1\n",
    "            sample_weight *= np.exp(-1 * ((self.n_classes_ - 1) / self.n_classes_)\n",
    "                                    * xlogy(y_coding, y_predict_proba).sum(axis=1))\n",
    "            sample_weight /= np.sum(sample_weight)\n",
    "            self.estimators_.append(est)\n",
    "            self.estimator_errors_[i] = estimator_error\n",
    "            self.estimator_weights_[i] = 1\n",
    "        return self\n",
    "\n",
    "    def decision_function(self, X):\n",
    "        pred = np.zeros((X.shape[0], self.n_classes_))\n",
    "        for i in range(self.n_estimators):\n",
    "            y_predict_proba = self.estimators_[i].predict_proba(X)\n",
    "            np.clip(y_predict_proba, np.finfo(y_predict_proba.dtype).eps, None, y_predict_proba)\n",
    "            log_proba = np.log(y_predict_proba)\n",
    "            pred += ((self.n_classes_ - 1)\n",
    "                     * (log_proba - (1 / self.n_classes_) * log_proba.sum(axis=1)[:, np.newaxis]))\n",
    "        pred /= np.sum(self.estimator_weights_)\n",
    "        if self.n_classes_ == 2:\n",
    "            return pred[:, 1] - pred[:, 0]\n",
    "        return pred\n",
    "\n",
    "    def predict(self, X):\n",
    "        scores = self.decision_function(X)\n",
    "        if len(scores.shape) == 1:\n",
    "            indices = (scores > 0).astype(int)\n",
    "        else:\n",
    "            indices = np.argmax(scores, axis=1)\n",
    "        return self.classes_[indices]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, y = load_breast_cancer(return_X_y=True)\n",
    "clf1 = AdaBoostClassifier(random_state=0).fit(X, y)\n",
    "clf2 = skAdaBoostClassifier(algorithm=\"SAMME.R\", random_state=0).fit(X, y)\n",
    "assert np.allclose(clf1.estimator_errors_, clf2.estimator_errors_)\n",
    "assert np.allclose(clf1.estimator_weights_, clf2.estimator_weights_)\n",
    "pred1 = clf1.predict(X)\n",
    "pred2 = clf2.predict(X)\n",
    "assert np.array_equal(pred1, pred2)\n",
    "prob1 = clf1.decision_function(X)\n",
    "prob2 = clf2.decision_function(X)\n",
    "assert np.allclose(prob1, prob2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, y = load_iris(return_X_y=True)\n",
    "clf1 = AdaBoostClassifier(n_estimators=50, random_state=0).fit(X, y)\n",
    "clf2 = skAdaBoostClassifier(n_estimators=50, algorithm=\"SAMME.R\", random_state=0).fit(X, y)\n",
    "assert np.allclose(clf1.estimator_errors_, clf2.estimator_errors_)\n",
    "assert np.allclose(clf1.estimator_weights_, clf2.estimator_weights_)\n",
    "pred1 = clf1.predict(X)\n",
    "pred2 = clf2.predict(X)\n",
    "assert np.array_equal(pred1, pred2)\n",
    "prob1 = clf1.decision_function(X)\n",
    "prob2 = clf2.decision_function(X)\n",
    "assert np.allclose(prob1, prob2)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "dev",
   "language": "python",
   "name": "dev"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}