{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.special import expit\n", "from scipy.optimize import minimize\n", "from copy import deepcopy\n", "from sklearn.base import BaseEstimator, ClassifierMixin\n", "from sklearn.datasets import load_iris\n", "from sklearn.ensemble import BaggingClassifier as skBaggingClassifier\n", "#from sklearn.linear_model import LogisticRegression" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def accuracy_score(y_true, y_pred):\n", " return np.mean(y_true == y_pred)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class LogisticRegression(BaseEstimator, ClassifierMixin):\n", " def __init__(self, C=1.0):\n", " self.C = C\n", "\n", " def _encode(self, y):\n", " classes = np.unique(y)\n", " y_train = np.full((y.shape[0], len(classes)), -1)\n", " for i, c in enumerate(classes):\n", " y_train[y == c, i] = 1\n", " if len(classes) == 2:\n", " y_train = y_train[:, 1].reshape(-1, 1)\n", " return classes, y_train\n", "\n", " @staticmethod\n", " def _cost_grad(w, X, y, alpha):\n", " def _log_logistic(x):\n", " if x > 0:\n", " return -np.log(1 + np.exp(-x))\n", " else:\n", " return x - np.log(1 + np.exp(x))\n", " yz = y * (np.dot(X, w[:-1]) + w[-1])\n", " cost = -np.sum(np.vectorize(_log_logistic)(yz)) + 0.5 * alpha * np.dot(w[:-1], w[:-1])\n", " grad = np.zeros(len(w))\n", " t = (expit(yz) - 1) * y\n", " grad[:-1] = np.dot(X.T, t) + alpha * w[:-1]\n", " grad[-1] = np.sum(t)\n", " return cost, grad\n", "\n", " def _solve_lbfgs(self, X, y):\n", " result = np.zeros((y.shape[1], X.shape[1] + 1))\n", " for i in range(y.shape[1]):\n", " cur_y = y[:, i]\n", " w0 = np.zeros(X.shape[1] + 1)\n", " res = minimize(fun=self._cost_grad, jac=True, x0=w0,\n", " args=(X, cur_y, 1 / self.C), method='L-BFGS-B')\n", " result[i] = res.x\n", " return result[:, :-1], result[:, -1]\n", "\n", " def fit(self, X, y):\n", " self.classes_, y_train = self._encode(y)\n", " self.coef_, self.intercept_ = self._solve_lbfgs(X, y_train)\n", " return self\n", "\n", " def decision_function(self, X):\n", " scores = np.dot(X, self.coef_.T) + self.intercept_\n", " if scores.shape[1] == 1:\n", " return scores.ravel()\n", " else:\n", " return scores\n", "\n", " def predict(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " indices = (scores > 0).astype(int)\n", " else:\n", " indices = np.argmax(scores, axis=1)\n", " return self.classes_[indices]\n", "\n", " def predict_proba(self, X):\n", " scores = self.decision_function(X)\n", " prob = expit(scores)\n", " if len(scores.shape) == 1:\n", " prob = np.vstack((1 - prob, prob)).T\n", " else:\n", " prob /= np.sum(prob, axis=1)[:, np.newaxis]\n", " return prob" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "class BaggingClassifier():\n", " def __init__(self, base_estimator, n_estimators, oob_score, random_state):\n", " self.base_estimator = base_estimator\n", " self.n_estimators = n_estimators\n", " self.oob_score = oob_score\n", " self.random_state = random_state\n", "\n", " def fit(self, X, y):\n", " self.classes_, y_train = np.unique(y, return_inverse=True)\n", " self.n_classes_ = len(self.classes_)\n", " MAX_INT = np.iinfo(np.int32).max\n", " rng = np.random.RandomState(self.random_state)\n", " self._seeds = rng.randint(MAX_INT, size=self.n_estimators)\n", " self.estimators_ = []\n", " self.estimators_samples_ = []\n", " for i in range(self.n_estimators):\n", " est = deepcopy(self.base_estimator)\n", " rng = np.random.RandomState(self._seeds[i])\n", " sample_indices = rng.randint(0, X.shape[0], X.shape[0])\n", " self.estimators_samples_.append(sample_indices)\n", " est.fit(X[sample_indices], y_train[sample_indices])\n", " self.estimators_.append(est)\n", " if self.oob_score:\n", " self._set_oob_score(X, y_train)\n", " return self\n", "\n", " def _set_oob_score(self, X, y):\n", " predictions = np.zeros((X.shape[0], self.n_classes_))\n", " for i in range(self.n_estimators):\n", " mask = np.ones(X.shape[0], dtype=bool)\n", " mask[self.estimators_samples_[i]] = False\n", " predictions[mask] += self.estimators_[i].predict_proba(X[mask])\n", " self.oob_decision_function_ = predictions / np.sum(predictions, axis=1)[:, np.newaxis]\n", " self.oob_score_ = accuracy_score(y, np.argmax(predictions, axis=1))\n", "\n", " def predict_proba(self, X):\n", " proba = np.zeros((X.shape[0], self.n_classes_))\n", " for i in range(self.n_estimators):\n", " proba += self.estimators_[i].predict_proba(X)\n", " proba /= self.n_estimators\n", " return proba\n", "\n", " def predict(self, X):\n", " proba = self.predict_proba(X)\n", " return self.classes_[np.argmax(proba, axis=1)]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "clf1 = BaggingClassifier(base_estimator=LogisticRegression(),\n", " n_estimators=100, oob_score=True, random_state=0).fit(X, y)\n", "clf2 = skBaggingClassifier(base_estimator=LogisticRegression(),\n", " n_estimators=100, oob_score=True, random_state=0).fit(X, y)\n", "assert np.allclose(clf1._seeds, clf2._seeds)\n", "assert np.array_equal(clf1.estimators_samples_, clf2.estimators_samples_)\n", "for i in range(clf1.n_estimators):\n", " assert np.allclose(clf1.estimators_[i].coef_, clf2.estimators_[i].coef_)\n", " assert np.allclose(clf1.estimators_[i].intercept_, clf2.estimators_[i].intercept_)\n", "assert np.allclose(clf1.oob_decision_function_, clf2.oob_decision_function_)\n", "assert np.allclose(clf1.oob_score_, clf2.oob_score_)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }