{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.linalg import lstsq\n", "from copy import deepcopy\n", "from sklearn.base import BaseEstimator, RegressorMixin\n", "from sklearn.datasets import load_boston\n", "from sklearn.ensemble import BaggingRegressor as skBaggingRegressor" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def r2_score(y_true, y_pred):\n", " numerator = np.sum((y_true - y_pred) ** 2)\n", " denominator = np.sum((y_true - np.mean(y_true)) ** 2)\n", " return 1 - numerator / denominator" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class LinearRegression(BaseEstimator, RegressorMixin):\n", " def fit(self, X, y):\n", " X_train = np.hstack((np.ones((X.shape[0], 1)), X))\n", " coef, _, _, _ = lstsq(X_train, y)\n", " self.coef_ = coef[1:]\n", " self.intercept_ = coef[0]\n", " return self\n", "\n", " def predict(self, X):\n", " y_pred = np.dot(X, self.coef_) + self.intercept_\n", " return y_pred" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "class BaggingRegressor():\n", " def __init__(self, base_estimator, n_estimators, oob_score, random_state):\n", " self.base_estimator = base_estimator\n", " self.n_estimators = n_estimators\n", " self.oob_score = oob_score\n", " self.random_state = random_state\n", "\n", " def fit(self, X, y):\n", " MAX_INT = np.iinfo(np.int32).max\n", " rng = np.random.RandomState(self.random_state)\n", " self._seeds = rng.randint(MAX_INT, size=self.n_estimators)\n", " self.estimators_ = []\n", " self.estimators_samples_ = []\n", " for i in range(self.n_estimators):\n", " est = deepcopy(self.base_estimator)\n", " rng = np.random.RandomState(self._seeds[i])\n", " sample_indices = rng.randint(0, X.shape[0], X.shape[0])\n", " self.estimators_samples_.append(sample_indices)\n", " est.fit(X[sample_indices], y[sample_indices])\n", " self.estimators_.append(est)\n", " if self.oob_score:\n", " self._set_oob_score(X, y)\n", " return self\n", "\n", " def _set_oob_score(self, X, y):\n", " predictions = np.zeros(X.shape[0])\n", " n_predictions = np.zeros(X.shape[0])\n", " for i in range(self.n_estimators):\n", " mask = np.ones(X.shape[0], dtype=bool)\n", " mask[self.estimators_samples_[i]] = False\n", " predictions[mask] += self.estimators_[i].predict(X[mask])\n", " n_predictions[mask] += 1\n", " predictions /= n_predictions\n", " self.oob_prediction_ = predictions\n", " self.oob_score_ = r2_score(y, predictions)\n", "\n", " def predict(self, X):\n", " pred = np.zeros(X.shape[0])\n", " for est in self.estimators_:\n", " pred += est.predict(X)\n", " pred /= self.n_estimators\n", " return pred" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)\n", "clf1 = BaggingRegressor(base_estimator=LinearRegression(),\n", " n_estimators=100, oob_score=True, random_state=0).fit(X, y)\n", "clf2 = skBaggingRegressor(base_estimator=LinearRegression(),\n", " n_estimators=100, oob_score=True, random_state=0).fit(X, y)\n", "assert np.allclose(clf1._seeds, clf2._seeds)\n", "assert np.array_equal(clf1.estimators_samples_, clf2.estimators_samples_)\n", "for i in range(clf1.n_estimators):\n", " assert np.allclose(clf1.estimators_[i].coef_, clf2.estimators_[i].coef_)\n", " assert np.allclose(clf1.estimators_[i].intercept_, clf2.estimators_[i].intercept_)\n", "assert np.allclose(clf1.oob_prediction_, clf2.oob_prediction_)\n", "assert np.allclose(clf1.oob_score_, clf2.oob_score_)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }