{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.special import expit, logsumexp\n", "from sklearn.datasets import load_breast_cancer, load_iris\n", "from sklearn.tree import DecisionTreeRegressor\n", "from sklearn.ensemble import GradientBoostingClassifier as skGradientBoostingClassifier" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class GradientBoostingClassifier():\n", " def __init__(self, learning_rate=0.1, n_estimators=100, max_depth=3, random_state=0):\n", " self.learning_rate = learning_rate\n", " self.n_estimators = n_estimators\n", " self.max_depth = max_depth\n", " self.random_state = random_state\n", "\n", " def fit(self, X, y):\n", " self.n_features_ = X.shape[1]\n", " self.classes_, y = np.unique(y, return_inverse=True)\n", " self.n_classes_ = len(self.classes_)\n", " if self.n_classes_ == 2:\n", " n_effective_classes = 1\n", " else:\n", " n_effective_classes = self.n_classes_\n", " self.estimators_ = np.empty((self.n_estimators, n_effective_classes), dtype=np.object)\n", " raw_predictions = np.zeros((X.shape[0], n_effective_classes))\n", " rng = np.random.RandomState(0)\n", " for i in range(self.n_estimators):\n", " raw_predictions_copy = raw_predictions.copy()\n", " for j in range(n_effective_classes):\n", " # binary classification\n", " if n_effective_classes == 1:\n", " y_enc = y\n", " residual = y_enc - expit(raw_predictions_copy.ravel())\n", " # multiclass classification\n", " else:\n", " y_enc = (y == j).astype(np.int)\n", " residual = y_enc - np.nan_to_num(np.exp(raw_predictions_copy[:, j] \n", " - logsumexp(raw_predictions_copy, axis=1)))\n", " tree = DecisionTreeRegressor(criterion=\"friedman_mse\", max_depth=self.max_depth,\n", " random_state=rng)\n", " tree.fit(X, residual)\n", " terminal_regions = tree.apply(X)\n", " for leaf in np.where(tree.tree_.children_left == -1)[0]:\n", " cur = np.where(terminal_regions == leaf)[0]\n", " # binary classification\n", " if n_effective_classes == 1:\n", " numerator = np.sum(residual[cur])\n", " denominator = np.sum((y_enc[cur] - residual[cur]) * (1 - y_enc[cur] + residual[cur]))\n", " # multiclass classification\n", " else:\n", " numerator = np.sum(residual[cur])\n", " numerator *= (self.n_classes_ - 1) / self.n_classes_\n", " denominator = np.sum((y_enc[cur] - residual[cur]) * (1 - y_enc[cur] + residual[cur]))\n", " if np.abs(denominator) < 1e-150:\n", " tree.tree_.value[leaf, 0, 0] = 0\n", " else:\n", " tree.tree_.value[leaf, 0, 0] = numerator / denominator\n", " raw_predictions[:, j] += self.learning_rate * tree.tree_.value[:, 0, 0][terminal_regions]\n", " self.estimators_[i, j] = tree\n", " return self\n", "\n", " def _predict(self, X):\n", " raw_predictions = np.zeros((X.shape[0], self.estimators_.shape[1]))\n", " for i in range(self.estimators_.shape[0]):\n", " for j in range(self.estimators_.shape[1]):\n", " raw_predictions[:, j] += self.learning_rate * self.estimators_[i, j].predict(X)\n", " return raw_predictions\n", "\n", " def decision_function(self, X):\n", " prob = self._predict(X)\n", " if self.n_classes_ == 2:\n", " return prob.ravel()\n", " else:\n", " return prob\n", "\n", " def predict_proba(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " prob = expit(scores)\n", " prob = np.vstack((1 - prob, prob)).T\n", " else:\n", " prob = np.nan_to_num(np.exp(scores - logsumexp(scores, axis=1)[:, np.newaxis]))\n", " return prob\n", "\n", " def predict(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " indices = (scores > 0).astype(int)\n", " else:\n", " indices = np.argmax(scores, axis=1)\n", " return self.classes_[indices] \n", "\n", " @property\n", " def feature_importances_(self):\n", " all_importances = np.zeros(self.n_features_)\n", " for i in range(self.estimators_.shape[0]):\n", " for j in range(self.estimators_.shape[1]):\n", " all_importances += self.estimators_[i, j].tree_.compute_feature_importances(normalize=False)\n", " return all_importances / np.sum(all_importances)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# binary classification\n", "X, y = load_breast_cancer(return_X_y=True)\n", "clf1 = GradientBoostingClassifier(n_estimators=10).fit(X, y)\n", "clf2 = skGradientBoostingClassifier(n_estimators=10, init=\"zero\", presort=False, random_state=0).fit(X, y)\n", "assert np.allclose(clf1.feature_importances_, clf2.feature_importances_)\n", "prob1 = clf1.decision_function(X)\n", "prob2 = clf2.decision_function(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# multiclass classification\n", "X, y = load_iris(return_X_y=True)\n", "clf1 = GradientBoostingClassifier(n_estimators=10).fit(X, y)\n", "clf2 = skGradientBoostingClassifier(n_estimators=10, init=\"zero\", presort=False, random_state=0).fit(X, y)\n", "assert np.allclose(clf1.feature_importances_, clf2.feature_importances_)\n", "prob1 = clf1.decision_function(X)\n", "prob2 = clf2.decision_function(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }