{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_boston\n", "from sklearn.tree import DecisionTreeRegressor\n", "from sklearn.utils.stats import _weighted_percentile\n", "from sklearn.ensemble import GradientBoostingRegressor as skGradientBoostingRegressor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 1\n", "- similar to scikit-learn loss=\"ls\"" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class GradientBoostingRegressor():\n", " def __init__(self, learning_rate=0.1, n_estimators=100, max_depth=3, random_state=0):\n", " self.learning_rate = learning_rate\n", " self.n_estimators = n_estimators\n", " self.max_depth = max_depth\n", " self.random_state = random_state\n", "\n", " def fit(self, X, y):\n", " self.n_features_ = X.shape[1]\n", " self.estimators_ = np.empty((self.n_estimators, 1), dtype=np.object)\n", " raw_predictions = np.zeros(X.shape[0])\n", " rng = np.random.RandomState(0)\n", " for i in range(self.n_estimators):\n", " residual = y - raw_predictions\n", " tree = DecisionTreeRegressor(criterion=\"friedman_mse\", max_depth=self.max_depth,\n", " random_state=rng)\n", " tree.fit(X, residual)\n", " raw_predictions += self.learning_rate * tree.predict(X)\n", " self.estimators_[i, 0] = tree\n", " return self\n", "\n", " def predict(self, X):\n", " raw_predictions = np.zeros(X.shape[0])\n", " for i in range(self.n_estimators):\n", " raw_predictions += self.learning_rate * self.estimators_[i, 0].predict(X)\n", " return raw_predictions\n", "\n", " @property\n", " def feature_importances_(self):\n", " all_importances = np.zeros(self.n_features_)\n", " for i in range(self.n_estimators):\n", " all_importances += self.estimators_[i, 0].tree_.compute_feature_importances(normalize=False)\n", " return all_importances / np.sum(all_importances)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)\n", "clf1 = GradientBoostingRegressor().fit(X, y)\n", "clf2 = skGradientBoostingRegressor(init=\"zero\", presort=False, random_state=0).fit(X, y)\n", "assert np.allclose(clf1.feature_importances_, clf2.feature_importances_)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 2\n", "- similar to scikit-learn loss=\"lad\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "class GradientBoostingRegressor():\n", " def __init__(self, learning_rate=0.1, n_estimators=100, max_depth=3, random_state=0):\n", " self.learning_rate = learning_rate\n", " self.n_estimators = n_estimators\n", " self.max_depth = max_depth\n", " self.random_state = random_state\n", "\n", " def fit(self, X, y):\n", " self.n_features_ = X.shape[1]\n", " self.estimators_ = np.empty((self.n_estimators, 1), dtype=np.object)\n", " raw_predictions = np.zeros(X.shape[0])\n", " rng = np.random.RandomState(0)\n", " for i in range(self.n_estimators):\n", " residual = np.sign(y - raw_predictions)\n", " tree = DecisionTreeRegressor(criterion=\"friedman_mse\", max_depth=self.max_depth,\n", " random_state=rng)\n", " tree.fit(X, residual)\n", " terminal_regions = tree.apply(X)\n", " for leaf in np.where(tree.tree_.children_left == -1)[0]:\n", " cur = np.where(terminal_regions == leaf)[0]\n", " # scikit-learn uses _weightef_percentile, which is inconsistent with np.median\n", " tree.tree_.value[leaf, 0, 0] = _weighted_percentile(y[cur] - raw_predictions[cur],\n", " np.ones(cur.shape[0]))\n", " raw_predictions += self.learning_rate * tree.tree_.value[:, 0, 0][terminal_regions]\n", " self.estimators_[i, 0] = tree\n", " return self\n", "\n", " def predict(self, X):\n", " raw_predictions = np.zeros(X.shape[0])\n", " for i in range(self.n_estimators):\n", " raw_predictions += self.learning_rate * self.estimators_[i, 0].predict(X)\n", " return raw_predictions\n", "\n", " @property\n", " def feature_importances_(self):\n", " all_importances = np.zeros(self.n_features_)\n", " for i in range(self.n_estimators):\n", " all_importances += self.estimators_[i, 0].tree_.compute_feature_importances(normalize=False)\n", " return all_importances / np.sum(all_importances)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)\n", "clf1 = GradientBoostingRegressor().fit(X, y)\n", "clf2 = skGradientBoostingRegressor(init=\"zero\", loss=\"lad\", presort=False, random_state=0).fit(X, y)\n", "assert np.allclose(clf1.feature_importances_, clf2.feature_importances_)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 3\n", "- similar to scikit-learn loss=\"huber\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "class GradientBoostingRegressor():\n", " def __init__(self, learning_rate=0.1, n_estimators=100, max_depth=3,\n", " random_state=0, alpha=0.9):\n", " self.learning_rate = learning_rate\n", " self.n_estimators = n_estimators\n", " self.max_depth = max_depth\n", " self.random_state = random_state\n", " self.alpha = alpha\n", "\n", " def fit(self, X, y):\n", " self.n_features_ = X.shape[1]\n", " self.estimators_ = np.empty((self.n_estimators, 1), dtype=np.object)\n", " raw_predictions = np.zeros(X.shape[0])\n", " rng = np.random.RandomState(0)\n", " for i in range(self.n_estimators):\n", " residual = np.zeros(X.shape[0])\n", " diff = y - raw_predictions\n", " gamma = _weighted_percentile(np.abs(diff), np.ones(diff.shape[0]), self.alpha * 100)\n", " gamma_mask = np.abs(diff) <= gamma\n", " residual[gamma_mask] = diff[gamma_mask]\n", " residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask])\n", " tree = DecisionTreeRegressor(criterion=\"friedman_mse\", max_depth=self.max_depth,\n", " random_state=rng)\n", " tree.fit(X, residual)\n", " terminal_regions = tree.apply(X)\n", " for leaf in np.where(tree.tree_.children_left == -1)[0]:\n", " cur = np.where(terminal_regions == leaf)[0]\n", " diff = y[cur] - raw_predictions[cur]\n", " # scikit-learn uses _weightef_percentile, which is inconsistent with np.median\n", " median = _weighted_percentile(diff, np.ones(diff.shape[0]))\n", " diff_minus_median = diff - median\n", " tree.tree_.value[leaf, 0, 0] = median + np.mean(np.sign(diff_minus_median)\n", " * np.minimum(np.abs(diff_minus_median), gamma))\n", " raw_predictions += self.learning_rate * tree.tree_.value[:, 0, 0][terminal_regions]\n", " self.estimators_[i, 0] = tree\n", " return self\n", "\n", " def predict(self, X):\n", " raw_predictions = np.zeros(X.shape[0])\n", " for i in range(self.n_estimators):\n", " raw_predictions += self.learning_rate * self.estimators_[i, 0].predict(X)\n", " return raw_predictions\n", "\n", " @property\n", " def feature_importances_(self):\n", " all_importances = np.zeros(self.n_features_)\n", " for i in range(self.n_estimators):\n", " all_importances += self.estimators_[i, 0].tree_.compute_feature_importances(normalize=False)\n", " return all_importances / np.sum(all_importances)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)\n", "clf1 = GradientBoostingRegressor().fit(X, y)\n", "clf2 = skGradientBoostingRegressor(init=\"zero\", loss=\"huber\", presort=False, random_state=0).fit(X, y)\n", "assert np.allclose(clf1.feature_importances_, clf2.feature_importances_)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }