{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.base import clone\n", "from sklearn.model_selection import cross_val_predict\n", "from sklearn.datasets import load_iris\n", "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n", "from sklearn.svm import SVC\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.ensemble import StackingClassifier as skStackingClassifier" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class StackingClassifier():\n", " def __init__(self, estimators, final_estimator):\n", " self.estimators = estimators\n", " self.final_estimator = final_estimator\n", "\n", " def fit(self, X, y):\n", " self.estimators_ = []\n", " for est in self.estimators:\n", " self.estimators_.append(clone(est).fit(X, y))\n", " predictions = []\n", " for est in self.estimators:\n", " cur_prediction = cross_val_predict(est, X, y, method=\"predict_proba\")\n", " if cur_prediction.shape[1] == 2:\n", " predictions.append(cur_prediction[:, [1]])\n", " else:\n", " predictions.append(cur_prediction)\n", " X_meta = np.hstack(predictions)\n", " self.final_estimator_ = clone(self.final_estimator)\n", " self.final_estimator_.fit(X_meta, y)\n", " return self\n", "\n", " def transform(self, X):\n", " predictions = []\n", " for est in self.estimators_:\n", " cur_prediction = est.predict_proba(X)\n", " if cur_prediction.shape[1] == 2:\n", " predictions.append(cur_prediction[:, [1]])\n", " else:\n", " predictions.append(cur_prediction)\n", " return np.hstack(predictions)\n", "\n", " def predict(self, X):\n", " return self.final_estimator_.predict(self.transform(X))\n", "\n", " def predict_proba(self, X):\n", " return self.final_estimator_.predict_proba(self.transform(X))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "X, y = X[y != 2], y[y != 2]\n", "clf1 = StackingClassifier(estimators=[RandomForestClassifier(random_state=0),\n", " GradientBoostingClassifier(random_state=0),\n", " SVC(random_state=0, probability=True)],\n", " final_estimator=LogisticRegression(random_state=0)).fit(X, y)\n", "clf2 = skStackingClassifier(estimators=[(\"rf\", RandomForestClassifier(random_state=0)),\n", " (\"gbdt\", GradientBoostingClassifier(random_state=0)),\n", " (\"svc\", SVC(random_state=0, probability=True))],\n", " final_estimator=LogisticRegression(random_state=0)).fit(X, y)\n", "trans1 = clf1.transform(X)\n", "trans2 = clf2.transform(X)\n", "assert np.allclose(trans1, trans2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "clf1 = StackingClassifier(estimators=[RandomForestClassifier(random_state=0),\n", " GradientBoostingClassifier(random_state=0),\n", " SVC(random_state=0, probability=True)],\n", " final_estimator=LogisticRegression(random_state=0)).fit(X, y)\n", "clf2 = skStackingClassifier(estimators=[(\"rf\", RandomForestClassifier(random_state=0)),\n", " (\"gbdt\", GradientBoostingClassifier(random_state=0)),\n", " (\"svc\", SVC(random_state=0, probability=True))],\n", " final_estimator=LogisticRegression(random_state=0)).fit(X, y)\n", "trans1 = clf1.transform(X)\n", "trans2 = clf2.transform(X)\n", "assert np.allclose(trans1, trans2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }