{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from copy import deepcopy\n", "from sklearn.datasets import load_iris\n", "from sklearn.ensemble import VotingClassifier as skVotingClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.ensemble import RandomForestClassifier" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class VotingClassifier():\n", " def __init__(self, estimators, voting='hard'):\n", " self.estimators = estimators\n", " self.voting = voting\n", "\n", " def fit(self, X, y):\n", " self.classes_, y_train = np.unique(y, return_inverse=True)\n", " self.estimators_ = [deepcopy(est).fit(X, y_train) for _, est in self.estimators]\n", " return self\n", "\n", " def transform(self, X):\n", " if self.voting == 'hard':\n", " prob = np.array([est.predict(X) for est in self.estimators_]).T\n", " elif self.voting == 'soft':\n", " prob = np.array([est.predict_proba(X) for est in self.estimators_])\n", " return prob\n", "\n", " def predict(self, X):\n", " prob = self.transform(X)\n", " if self.voting == 'hard':\n", " pred = np.apply_along_axis(lambda x:np.argmax(np.bincount(x)), axis=1, arr=prob)\n", " elif self.voting == 'soft':\n", " pred = np.argmax(np.mean(prob, axis=0), axis=1)\n", " return self.classes_[pred]\n", "\n", " def predict_proba(self, X):\n", " if self.voting == 'hard':\n", " raise AttributeError\n", " return np.mean(self.transform(X), axis=0)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# soft voting\n", "X, y = load_iris(return_X_y = True)\n", "clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=15000, random_state=0)\n", "clf2 = RandomForestClassifier(n_estimators=100, random_state=0)\n", "eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)]).fit(X, y)\n", "eclf2 = skVotingClassifier(estimators=[('lr', clf1), ('rf', clf2)]).fit(X, y)\n", "prob1 = eclf1.transform(X)\n", "prob2 = eclf2.transform(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = eclf1.predict(X)\n", "pred2 = eclf2.predict(X)\n", "assert np.allclose(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# hard voting\n", "X, y = load_iris(return_X_y = True)\n", "clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=15000, random_state=0)\n", "clf2 = RandomForestClassifier(n_estimators=100, random_state=0)\n", "eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='soft').fit(X, y)\n", "eclf2 = skVotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],\n", " voting='soft', flatten_transform=False).fit(X, y)\n", "prob1 = eclf1.transform(X)\n", "prob2 = eclf2.transform(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = eclf1.predict_proba(X)\n", "prob2 = eclf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = eclf1.predict(X)\n", "pred2 = eclf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }