{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.sparse import diags\n", "from sklearn.datasets import fetch_20newsgroups\n", "from sklearn.feature_extraction.text import CountVectorizer\n", "from sklearn.feature_extraction.text import TfidfTransformer as skTfidfTransformer" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class TfidfTransformer():\n", " def fit(self, X):\n", " df = np.bincount(X.indices, minlength=X.shape[1]) + 1\n", " n_samples = X.shape[0] + 1\n", " self.idf_ = np.log(n_samples / df) + 1\n", " self._idf_diag = diags(self.idf_, shape=(X.shape[1], X.shape[1]), format='csr')\n", " return self\n", "\n", " def transform(self, X):\n", " return X * self._idf_diag" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X = fetch_20newsgroups(remove=('headers', 'footers', 'quotes')).data\n", "for subset in [10, 100, 1000]:\n", " X_train = X[:subset]\n", " X_test = X[subset: 2 * subset]\n", " vec = CountVectorizer().fit(X_train)\n", " Xt_train = vec.transform(X_train)\n", " Xt_test = vec.transform(X_test)\n", " trans1 = TfidfTransformer().fit(Xt_train)\n", " # scikit-learn uses l2 norm by default\n", " trans2 = skTfidfTransformer(norm=None).fit(Xt_train)\n", " assert np.allclose(trans1.idf_, trans2.idf_)\n", " Xt1 = trans1.transform(Xt_train)\n", " Xt2 = trans2.transform(Xt_train)\n", " assert np.allclose(Xt1.toarray(), Xt2.toarray())\n", " Xt1 = trans1.transform(Xt_test)\n", " Xt2 = trans2.transform(Xt_test)\n", " assert np.allclose(Xt1.toarray(), Xt2.toarray())" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }