{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.base import clone\n", "from sklearn.datasets import load_breast_cancer, load_iris\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.feature_selection import SelectFromModel as skSelectFromModel" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class SelectFromModel():\n", " def __init__(self, estimator):\n", " self.estimator = estimator\n", "\n", " def fit(self, X, y):\n", " self.estimator_ = clone(self.estimator)\n", " self.estimator_.fit(X, y)\n", " if hasattr(self.estimator_, \"feature_importances_\"):\n", " self.importances_ = self.estimator_.feature_importances_\n", " elif hasattr(self.estimator_, \"coef_\"):\n", " if self.estimator_.coef_.ndim == 1:\n", " self.importances_ = np.abs(self.estimator_.coef_)\n", " else:\n", " self.importances_ = np.linalg.norm(self.estimator_.coef_,\n", " ord=1, axis=0)\n", " self.threshold_ = np.mean(self.importances_)\n", " return self\n", "\n", " def transform(self, X):\n", " return X[:, self.importances_ >= self.threshold_]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_breast_cancer(return_X_y=True)\n", "clf = RandomForestClassifier(random_state=0)\n", "est1 = SelectFromModel(estimator=clf).fit(X, y)\n", "est2 = skSelectFromModel(estimator=clf).fit(X, y)\n", "assert np.allclose(est1.threshold_, est2.threshold_)\n", "Xt1 = est1.transform(X)\n", "Xt2 = est2.transform(X)\n", "assert np.allclose(Xt1, Xt2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "X, y = load_breast_cancer(return_X_y=True)\n", "clf = LogisticRegression(max_iter=15000, random_state=0)\n", "est1 = SelectFromModel(estimator=clf).fit(X, y)\n", "est2 = skSelectFromModel(estimator=clf).fit(X, y)\n", "assert np.allclose(est1.threshold_, est2.threshold_)\n", "Xt1 = est1.transform(X)\n", "Xt2 = est2.transform(X)\n", "assert np.allclose(Xt1, Xt2)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "clf = LogisticRegression(max_iter=15000, random_state=0)\n", "est1 = SelectFromModel(estimator=clf).fit(X, y)\n", "est2 = skSelectFromModel(estimator=clf).fit(X, y)\n", "assert np.allclose(est1.threshold_, est2.threshold_)\n", "Xt1 = est1.transform(X)\n", "Xt2 = est2.transform(X)\n", "assert np.allclose(Xt1, Xt2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }