{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.datasets import load_iris\n",
    "from sklearn.feature_selection import VarianceThreshold as skVarianceThreshold"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "class VarianceThreshold():\n",
    "    def __init__(self, threshold=0):\n",
    "        self.threshold = threshold\n",
    "\n",
    "    def fit(self, X):\n",
    "        self.variances_ = np.var(X, axis=0)\n",
    "        return self\n",
    "\n",
    "    def transform(self, X):\n",
    "        return X[:, self.variances_ > self.threshold]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, _ = load_iris(return_X_y=True)\n",
    "X[:, [0, 2]] = 0\n",
    "est1 = VarianceThreshold().fit(X)\n",
    "est2 = skVarianceThreshold().fit(X)\n",
    "assert np.allclose(est1.variances_, est2.variances_)\n",
    "Xt1 = est1.transform(X)\n",
    "Xt2 = est2.transform(X)\n",
    "assert np.allclose(Xt1, Xt2)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "dev",
   "language": "python",
   "name": "dev"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}