{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.impute import MissingIndicator as skMissingIndicator" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class MissingIndicator():\n", " def fit(self, X):\n", " mask = np.isnan(X)\n", " n_missing = np.sum(mask, axis=0)\n", " self.features_ = np.flatnonzero(n_missing)\n", " return self\n", "\n", " def transform(self, X):\n", " return np.isnan(X[:, self.features_])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, _ = load_iris(return_X_y=True)\n", "rng = np.random.RandomState(0)\n", "missing_samples = np.arange(X.shape[0])\n", "missing_features = rng.choice(X.shape[1], X.shape[0])\n", "X[missing_samples, missing_features] = np.nan" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "est1 = MissingIndicator().fit(X)\n", "est2 = skMissingIndicator().fit(X)\n", "assert np.array_equal(est1.features_, est2.features_)\n", "Xt1 = est1.transform(X)\n", "Xt2 = est2.transform(X)\n", "assert np.allclose(Xt1, Xt2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }