{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_boston, load_breast_cancer, load_iris\n", "from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor\n", "from sklearn.inspection import partial_dependence as skpartial_dependence" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def partial_dependence(estimator, X, features, grid_resolution=100):\n", " if len(np.unique(X[:, features])) < grid_resolution:\n", " values = np.unique(X[:, features])\n", " else:\n", " values = np.linspace(np.min(X[:, features]), np.max(X[:, features]),\n", " num=grid_resolution, endpoint=True)\n", " if estimator._estimator_type == \"regressor\":\n", " prediction_method = estimator.predict\n", " else: # estimator._estimator_type == \"classifier\"\n", " prediction_method = estimator.predict_proba\n", " averaged_predictions = []\n", " for value in values:\n", " X_eval = X.copy()\n", " X_eval[:, features] = value\n", " predictions = prediction_method(X_eval)\n", " averaged_predictions.append(np.mean(predictions, axis=0))\n", " averaged_predictions = np.array(averaged_predictions).T\n", " if estimator._estimator_type == \"regressor\":\n", " averaged_predictions = averaged_predictions.reshape(1, -1)\n", " elif estimator._estimator_type == \"classifier\" and averaged_predictions.shape[0] == 2:\n", " averaged_predictions = averaged_predictions[1].reshape(1, -1)\n", " return averaged_predictions, values" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# regression\n", "X, y = load_boston(return_X_y=True)\n", "clf = RandomForestRegressor(random_state=0).fit(X, y)\n", "for i in range(X.shape[1]):\n", " ans1 = partial_dependence(clf, X, i)\n", " ans2 = skpartial_dependence(clf, X, i, percentiles=(0, 1))\n", " assert np.allclose(ans1[0], ans2[0])\n", " assert np.allclose(ans1[1], ans2[1][0])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# binary classification\n", "X, y = load_breast_cancer(return_X_y=True)\n", "clf = RandomForestClassifier(random_state=0).fit(X, y)\n", "for i in range(X.shape[1]):\n", " ans1 = partial_dependence(clf, X, i)\n", " ans2 = skpartial_dependence(clf, X, i, percentiles=(0, 1))\n", " assert np.allclose(ans1[1], ans2[1][0])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# multiclass classification\n", "X, y = load_iris(return_X_y=True)\n", "clf = RandomForestClassifier(random_state=0).fit(X, y)\n", "for i in range(X.shape[1]):\n", " ans1 = partial_dependence(clf, X, i)\n", " ans2 = skpartial_dependence(clf, X, i, percentiles=(0, 1))\n", " assert np.allclose(ans1[1], ans2[1][0])" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }