{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.special import expit, logsumexp\n", "from scipy.optimize import minimize\n", "from sklearn.datasets import load_iris, load_breast_cancer\n", "from sklearn.linear_model import LogisticRegression as skLogisticRegression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 1\n", "- convert multiclass classification problem to binary classification problem in a one-vs-all fashion\n", "- based on gradient decent\n", "- similar to sklearn multi_class='ovr' & solver='lbfgs'\n", "- reference: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class LogisticRegression():\n", " def __init__(self, C=1.0):\n", " self.C = C\n", "\n", " def _encode(self, y):\n", " classes = np.unique(y)\n", " y_train = np.full((y.shape[0], len(classes)), -1)\n", " for i, c in enumerate(classes):\n", " y_train[y == c, i] = 1\n", " if len(classes) == 2:\n", " y_train = y_train[:, 1].reshape(-1, 1)\n", " return classes, y_train\n", "\n", " @staticmethod\n", " def _cost_grad(w, X, y, alpha):\n", " def _log_logistic(x):\n", " if x > 0:\n", " return -np.log(1 + np.exp(-x))\n", " else:\n", " return x - np.log(1 + np.exp(x))\n", " yz = y * (np.dot(X, w[:-1]) + w[-1])\n", " cost = -np.sum(np.vectorize(_log_logistic)(yz)) + 0.5 * alpha * np.dot(w[:-1], w[:-1])\n", " grad = np.zeros(len(w))\n", " t = (expit(yz) - 1) * y\n", " grad[:-1] = np.dot(X.T, t) + alpha * w[:-1]\n", " grad[-1] = np.sum(t)\n", " return cost, grad\n", "\n", " def _solve_lbfgs(self, X, y):\n", " result = np.zeros((y.shape[1], X.shape[1] + 1))\n", " for i in range(y.shape[1]):\n", " cur_y = y[:, i]\n", " w0 = np.zeros(X.shape[1] + 1)\n", " res = minimize(fun=self._cost_grad, jac=True, x0=w0,\n", " args=(X, cur_y, 1 / self.C), method='L-BFGS-B')\n", " result[i] = res.x\n", " return result[:, :-1], result[:, -1]\n", "\n", " def fit(self, X, y):\n", " self.classes_, y_train = self._encode(y)\n", " self.coef_, self.intercept_ = self._solve_lbfgs(X, y_train)\n", " return self\n", "\n", " def decision_function(self, X):\n", " scores = np.dot(X, self.coef_.T) + self.intercept_\n", " if scores.shape[1] == 1:\n", " return scores.ravel()\n", " else:\n", " return scores\n", "\n", " def predict(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " indices = (scores > 0).astype(int)\n", " else:\n", " indices = np.argmax(scores, axis=1)\n", " return self.classes_[indices]\n", "\n", " def predict_proba(self, X):\n", " scores = self.decision_function(X)\n", " prob = expit(scores)\n", " if len(scores.shape) == 1:\n", " prob = np.vstack((1 - prob, prob)).T\n", " else:\n", " prob /= np.sum(prob, axis=1)[:, np.newaxis]\n", " return prob" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# binary classification\n", "for C in [0.1, 1, 10]:\n", " X, y = load_breast_cancer(return_X_y = True)\n", " clf1 = LogisticRegression(C=C).fit(X, y)\n", " clf2 = skLogisticRegression(C=C, multi_class=\"ovr\", solver=\"lbfgs\",\n", " # keep consisent with scipy default\n", " tol=1e-5, max_iter=15000).fit(X, y)\n", " assert clf1.coef_.shape == (1, X.shape[1])\n", " assert np.allclose(clf1.coef_, clf2.coef_)\n", " assert np.allclose(clf1.intercept_, clf2.intercept_)\n", " prob1 = clf1.decision_function(X)\n", " prob2 = clf2.decision_function(X)\n", " assert np.allclose(prob1, prob2)\n", " prob1 = clf1.predict_proba(X)\n", " prob2 = clf2.predict_proba(X)\n", " assert np.allclose(prob1, prob2)\n", " pred1 = clf1.predict(X)\n", " pred2 = clf2.predict(X)\n", " assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# multiclass classification\n", "for C in [0.1, 1, 10]:\n", " X, y = load_iris(return_X_y=True)\n", " clf1 = LogisticRegression(C=C).fit(X, y)\n", " clf2 = skLogisticRegression(C=C, multi_class=\"ovr\", solver=\"lbfgs\",\n", " # keep consisent with scipy default\n", " tol=1e-5, max_iter=15000).fit(X, y)\n", " assert clf1.coef_.shape == (len(np.unique(y)), X.shape[1])\n", " assert np.allclose(clf1.coef_, clf2.coef_)\n", " assert np.allclose(clf1.intercept_, clf2.intercept_)\n", " prob1 = clf1.decision_function(X)\n", " prob2 = clf2.decision_function(X)\n", " assert np.allclose(prob1, prob2)\n", " prob1 = clf1.predict_proba(X)\n", " prob2 = clf2.predict_proba(X)\n", " assert np.allclose(prob1, prob2)\n", " pred1 = clf1.predict(X)\n", " pred2 = clf2.predict(X)\n", " assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# penalty = 'none'\n", "X, y = load_iris(return_X_y=True)\n", "clf1 = LogisticRegression(C=np.inf).fit(X, y)\n", "clf2 = skLogisticRegression(penalty='none', multi_class=\"ovr\", solver=\"lbfgs\",\n", " # keep consisent with scipy default\n", " tol=1e-5, max_iter=15000).fit(X, y)\n", "assert clf1.coef_.shape == (len(np.unique(y)), X.shape[1])\n", "assert np.allclose(clf1.coef_, clf2.coef_)\n", "assert np.allclose(clf1.intercept_, clf2.intercept_)\n", "prob1 = clf1.decision_function(X)\n", "prob2 = clf2.decision_function(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 2\n", "- support multiclass classification problem directly\n", "- based on gradient decent\n", "- similar to sklearn multi_class='multinomial' & solver='lbfgs'" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "class LogisticRegression():\n", " def __init__(self, C=1.0):\n", " self.C = C\n", "\n", " def _encode(self, y):\n", " classes = np.unique(y)\n", " y_train = np.zeros((y.shape[0], len(classes)))\n", " for i, c in enumerate(classes):\n", " y_train[y == c, i] = 1\n", " return classes, y_train\n", "\n", " @staticmethod\n", " def _cost_grad(w, X, y, alpha):\n", " w = w.reshape(y.shape[1], -1)\n", " p = np.dot(X, w[:, :-1].T) + w[:, -1]\n", " p -= logsumexp(p, axis=1)[:, np.newaxis]\n", " cost = -np.sum(y * p) + 0.5 * alpha * np.dot(w[:, :-1].ravel(), w[:, :-1].ravel())\n", " grad = np.zeros_like(w)\n", " diff = np.exp(p) - y\n", " grad[:, :-1] = np.dot(diff.T, X) + alpha * w[:, :-1]\n", " grad[:, -1] = np.sum(diff, axis=0)\n", " return cost, grad.ravel()\n", "\n", " def _solve_lbfgs(self, X, y):\n", " w0 = np.zeros(y.shape[1] * (X.shape[1] + 1))\n", " res = minimize(fun=self._cost_grad, jac=True, x0=w0,\n", " args=(X, y, 1 / self.C), method='L-BFGS-B')\n", " result = res.x.reshape(y.shape[1], -1)\n", " if y.shape[1] == 2:\n", " result = result[1][np.newaxis, :]\n", " return result[:, :-1], result[:, -1]\n", "\n", " def fit(self, X, y):\n", " self.classes_, y_train = self._encode(y)\n", " self.coef_, self.intercept_ = self._solve_lbfgs(X, y_train)\n", " return self\n", "\n", " def decision_function(self, X):\n", " scores = np.dot(X, self.coef_.T) + self.intercept_\n", " if scores.shape[1] == 1:\n", " return scores.ravel()\n", " else:\n", " return scores\n", "\n", " def predict(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " indices = (scores > 0).astype(int)\n", " else:\n", " indices = np.argmax(scores, axis=1)\n", " return self.classes_[indices]\n", "\n", " def predict_proba(self, X):\n", " scores = self.decision_function(X)\n", " if len(scores.shape) == 1:\n", " scores = np.c_[-scores, scores]\n", " scores -= np.max(scores, axis=1)[:, np.newaxis]\n", " prob = np.exp(scores)\n", " prob /= np.sum(prob, axis=1)[:, np.newaxis]\n", " return prob" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# binary classification\n", "for C in [0.1, 1, 10]:\n", " X, y = load_breast_cancer(return_X_y = True)\n", " clf1 = LogisticRegression(C=C).fit(X, y)\n", " clf2 = skLogisticRegression(C=C, multi_class=\"multinomial\", solver=\"lbfgs\",\n", " # keep consisent with scipy default\n", " tol=1e-5, max_iter=15000).fit(X, y)\n", " assert clf1.coef_.shape == (1, X.shape[1])\n", " assert np.allclose(clf1.coef_, clf2.coef_)\n", " assert np.allclose(clf1.intercept_, clf2.intercept_)\n", " prob1 = clf1.decision_function(X)\n", " prob2 = clf2.decision_function(X)\n", " assert np.allclose(prob1, prob2)\n", " prob1 = clf1.predict_proba(X)\n", " prob2 = clf2.predict_proba(X)\n", " assert np.allclose(prob1, prob2)\n", " pred1 = clf1.predict(X)\n", " pred2 = clf2.predict(X)\n", " assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# multiclass classification\n", "for C in [0.1, 1, 10]:\n", " X, y = load_iris(return_X_y=True)\n", " clf1 = LogisticRegression(C=C).fit(X, y)\n", " clf2 = skLogisticRegression(C=C, multi_class=\"multinomial\", solver=\"lbfgs\",\n", " # keep consisent with scipy default\n", " tol=1e-5, max_iter=15000).fit(X, y)\n", " assert clf1.coef_.shape == (len(np.unique(y)), X.shape[1])\n", " assert np.allclose(clf1.coef_, clf2.coef_)\n", " assert np.allclose(clf1.intercept_, clf2.intercept_)\n", " prob1 = clf1.decision_function(X)\n", " prob2 = clf2.decision_function(X)\n", " assert np.allclose(prob1, prob2)\n", " prob1 = clf1.predict_proba(X)\n", " prob2 = clf2.predict_proba(X)\n", " assert np.allclose(prob1, prob2)\n", " pred1 = clf1.predict(X)\n", " pred2 = clf2.predict(X)\n", " assert np.array_equal(pred1, pred2)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# penalty = 'none'\n", "X, y = load_iris(return_X_y=True)\n", "clf1 = LogisticRegression(C=np.inf).fit(X, y)\n", "clf2 = skLogisticRegression(penalty='none', multi_class=\"multinomial\", solver=\"lbfgs\",\n", " # keep consisent with scipy default\n", " tol=1e-5, max_iter=15000).fit(X, y)\n", "assert clf1.coef_.shape == (len(np.unique(y)), X.shape[1])\n", "assert np.allclose(clf1.coef_, clf2.coef_)\n", "assert np.allclose(clf1.intercept_, clf2.intercept_)\n", "prob1 = clf1.decision_function(X)\n", "prob2 = clf2.decision_function(X)\n", "assert np.allclose(prob1, prob2)\n", "prob1 = clf1.predict_proba(X)\n", "prob2 = clf2.predict_proba(X)\n", "assert np.allclose(prob1, prob2)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }