{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.metrics import accuracy_score as skaccuracy_score" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def accuracy_score(y_true, y_pred):\n", " return np.mean(y_true == y_pred)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# binary\n", "for i in range(10):\n", " rng = np.random.RandomState(i)\n", " y_true = rng.randint(2, size=10)\n", " y_pred = rng.randint(2, size=10)\n", " score1 = accuracy_score(y_true, y_pred)\n", " score2 = skaccuracy_score(y_true, y_pred)\n", " assert np.isclose(score1, score2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# multiclass\n", "for i in range(10):\n", " rng = np.random.RandomState(i)\n", " y_true = rng.randint(3, size=10)\n", " y_pred = rng.randint(3, size=10)\n", " score1 = accuracy_score(y_true, y_pred)\n", " score2 = skaccuracy_score(y_true, y_pred)\n", " assert np.isclose(score1, score2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }