{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.sparse import coo_matrix\n", "from sklearn.metrics import confusion_matrix as skconfusion_matrix" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def confusion_matrix(y_true, y_pred):\n", " n_labels = len(set(y_true) | set(y_pred))\n", " return coo_matrix((np.ones(len(y_true)), (y_true, y_pred)),\n", " shape=(n_labels, n_labels)).toarray()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# binary\n", "for i in range(10):\n", " rng = np.random.RandomState(i)\n", " y_true = rng.randint(2, size=10)\n", " y_pred = rng.randint(2, size=10)\n", " score1 = confusion_matrix(y_true, y_pred)\n", " score2 = skconfusion_matrix(y_true, y_pred)\n", " assert np.array_equal(score1, score2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# multiclass\n", "for i in range(10):\n", " rng = np.random.RandomState(i)\n", " y_true = rng.randint(3, size=10)\n", " y_pred = rng.randint(3, size=10)\n", " score1 = confusion_matrix(y_true, y_pred)\n", " score2 = skconfusion_matrix(y_true, y_pred)\n", " assert np.array_equal(score1, score2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }