{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.metrics.pairwise import euclidean_distances as skeuclidean_distances" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def euclidean_distances(X, Y=None):\n", " XX = np.sum(np.square(X), axis=1)[:, np.newaxis]\n", " if Y is None:\n", " YY = XX.T\n", " XY = np.dot(X, X.T)\n", " else:\n", " YY = np.sum(np.square(Y), axis=1)[np.newaxis, :]\n", " XY = np.dot(X, Y.T)\n", " dist = -2 * XY + XX + YY\n", " dist[dist < 0] = 0\n", " return np.sqrt(dist)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, _ = load_iris(return_X_y=True)\n", "ans1 = euclidean_distances(X)\n", "ans2 = skeuclidean_distances(X)\n", "assert np.allclose(ans1, ans2, atol=1e-6)\n", "ans1 = euclidean_distances(X[:100], X[100:])\n", "ans2 = skeuclidean_distances(X[:100], X[100:], squared=False)\n", "assert np.allclose(ans1, ans2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }