{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.metrics import median_absolute_error as skmedian_absolute_error"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def median_absolute_error(y_true, y_pred):\n",
    "    return np.median(np.abs(y_true - y_pred))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "for i in range(10):\n",
    "    rng = np.random.RandomState(i)\n",
    "    y_true = rng.rand(10)\n",
    "    y_pred = rng.rand(10)\n",
    "    score1 = median_absolute_error(y_true, y_pred)\n",
    "    score2 = skmedian_absolute_error(y_true, y_pred)\n",
    "    assert np.isclose(score1, score2)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "dev",
   "language": "python",
   "name": "dev"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}