{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.metrics import multilabel_confusion_matrix as skmultilabel_confusion_matrix" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def multilabel_confusion_matrix(y_true, y_pred):\n", " n_labels = len(set(y_true) | set(y_pred))\n", " true_sum = np.bincount(y_true, minlength=n_labels)\n", " pred_sum = np.bincount(y_pred, minlength=n_labels)\n", " tp = np.bincount(y_true[y_true == y_pred], minlength=n_labels)\n", " fp = pred_sum - tp\n", " fn = true_sum - tp\n", " tn = len(y_true) - tp - fp - fn\n", " return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# binary\n", "for i in range(10):\n", " rng = np.random.RandomState(i)\n", " y_true = rng.randint(2, size=10)\n", " y_pred = rng.randint(2, size=10)\n", " score1 = multilabel_confusion_matrix(y_true, y_pred)\n", " score2 = skmultilabel_confusion_matrix(y_true, y_pred)\n", " assert np.array_equal(score1, score2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# multiclass\n", "for i in range(10):\n", " rng = np.random.RandomState(i)\n", " y_true = rng.randint(3, size=10)\n", " y_pred = rng.randint(3, size=10)\n", " score1 = multilabel_confusion_matrix(y_true, y_pred)\n", " score2 = skmultilabel_confusion_matrix(y_true, y_pred)\n", " assert np.array_equal(score1, score2)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }