{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from math import ceil, floor\n", "from sklearn.datasets import load_boston\n", "from sklearn.model_selection import ShuffleSplit as skShuffleSplit" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class ShuffleSplit():\n", " def __init__(self, n_splits=10,\n", " train_size=0.9, test_size=0.1, random_state=0):\n", " self.n_splits = n_splits\n", " self.train_size = train_size\n", " self.test_size = test_size\n", " self.random_state = random_state\n", "\n", " def split(self, X, y):\n", " n_train = floor(self.train_size * X.shape[0])\n", " n_test = ceil(self.test_size * X.shape[0])\n", " rng = np.random.RandomState(self.random_state)\n", " for _ in range(self.n_splits):\n", " permutation = rng.permutation(X.shape[0])\n", " yield (permutation[n_test:(n_test + n_train)],\n", " permutation[:n_test])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)\n", "cv1 = ShuffleSplit(n_splits=5, random_state=0)\n", "cv2 = skShuffleSplit(n_splits=5, random_state=0)\n", "for (train1, test1), (train2, test2) in zip(cv1.split(X, y), cv2.split(X, y)):\n", " assert np.array_equal(train1, train2)\n", " assert np.array_equal(test1, test2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "X, y = load_boston(return_X_y=True)\n", "cv1 = ShuffleSplit(n_splits=5, train_size=0.5, test_size=0.2, random_state=0)\n", "cv2 = skShuffleSplit(n_splits=5, train_size=0.5, test_size=0.2, random_state=0)\n", "for (train1, test1), (train2, test2) in zip(cv1.split(X, y), cv2.split(X, y)):\n", " assert np.array_equal(train1, train2)\n", " assert np.array_equal(test1, test2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }