{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.base import clone\n", "from sklearn.datasets import load_boston, load_iris\n", "from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n", "from sklearn.model_selection import KFold, StratifiedKFold\n", "from sklearn.model_selection import learning_curve as sklearning_curve" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def learning_curve(estimator, X, y, train_sizes, random_state=0):\n", " if estimator._estimator_type == \"regressor\":\n", " cv = KFold()\n", " else: # estimator._estimator_type == \"classifier\"\n", " cv = StratifiedKFold()\n", " train_scores = np.zeros((len(train_sizes), cv.n_splits))\n", " test_scores = np.zeros((len(train_sizes), cv.n_splits))\n", " cv_iter = list(cv.split(X, y))\n", " train_sizes_abs = (len(cv_iter[0][0]) * np.array(train_sizes)).astype(int)\n", " rng = np.random.RandomState(random_state)\n", " cv_iter = [(rng.permutation(train), test) for train, test in cv_iter]\n", " for i, train_size in enumerate(train_sizes_abs):\n", " for j, (train, test) in enumerate(cv_iter):\n", " est = clone(estimator)\n", " est.fit(X[train][:train_size], y[train][:train_size])\n", " train_scores[i, j] = est.score(X[train][:train_size], y[train][:train_size])\n", " test_scores[i, j] = est.score(X[test], y[test])\n", " return train_sizes_abs, train_scores, test_scores" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# regression\n", "X, y = load_boston(return_X_y=True)\n", "clf = RandomForestRegressor(random_state=0)\n", "ans1 = learning_curve(clf, X, y, train_sizes=[0.2, 0.4, 0.6, 0.8, 1], random_state=0)\n", "ans2 = sklearning_curve(clf, X, y, train_sizes=[0.2, 0.4, 0.6, 0.8, 1], shuffle=True, random_state=0)\n", "assert np.array_equal(ans1[0], ans2[0])\n", "assert np.allclose(ans1[1], ans2[1])\n", "assert np.allclose(ans1[2], ans2[2])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# classification\n", "X, y = load_iris(return_X_y=True)\n", "clf = RandomForestClassifier(random_state=0)\n", "ans1 = learning_curve(clf, X, y, train_sizes=[0.2, 0.4, 0.6, 0.8, 1], random_state=0)\n", "ans2 = sklearning_curve(clf, X, y, train_sizes=[0.2, 0.4, 0.6, 0.8, 1], shuffle=True, random_state=0)\n", "assert np.array_equal(ans1[0], ans2[0])\n", "assert np.allclose(ans1[1], ans2[1])\n", "assert np.allclose(ans1[2], ans2[2])" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }