{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.base import clone\n", "from sklearn.datasets import load_boston, load_iris\n", "from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n", "from sklearn.model_selection import KFold, StratifiedKFold\n", "from sklearn.model_selection import validation_curve as skvalidation_curve" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def validation_curve(estimator, X, y, param_name, param_range):\n", " if estimator._estimator_type == \"regressor\":\n", " cv = KFold()\n", " else: # estimator._estimator_type == \"classifier\"\n", " cv = StratifiedKFold()\n", " train_scores = np.zeros((len(param_range), cv.n_splits))\n", " test_scores = np.zeros((len(param_range), cv.n_splits))\n", " for i, param in enumerate(param_range):\n", " for j, (train, test) in enumerate(cv.split(X, y)):\n", " est = clone(estimator)\n", " est.set_params(**{param_name: param})\n", " est.fit(X[train], y[train])\n", " train_scores[i, j] = est.score(X[train], y[train])\n", " test_scores[i, j] = est.score(X[test], y[test])\n", " return train_scores, test_scores" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# regression\n", "X, y = load_boston(return_X_y=True)\n", "clf = DecisionTreeRegressor(random_state=0)\n", "ans1 = validation_curve(clf, X, y, \"max_depth\", [2, 4, 6, 8, 10])\n", "ans2 = validation_curve(clf, X, y, \"max_depth\", [2, 4, 6, 8, 10])\n", "assert np.allclose(ans1[0], ans2[0])\n", "assert np.allclose(ans1[1], ans2[1])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# classification\n", "X, y = load_iris(return_X_y=True)\n", "clf = DecisionTreeClassifier(random_state=0)\n", "ans1 = validation_curve(clf, X, y, \"max_depth\", [1, 2, 3, 4, 5])\n", "ans2 = validation_curve(clf, X, y, \"max_depth\", [1, 2, 3, 4, 5])\n", "assert np.allclose(ans1[0], ans2[0])\n", "assert np.allclose(ans1[1], ans2[1])" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }