{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.spatial.distance import cdist\n", "from sklearn.datasets import load_iris\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.neighbors import NearestCentroid as skNearestCentroid" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class NearestCentroid():\n", " def fit(self, X, y):\n", " self.classes_ = np.unique(y)\n", " self.centroids_ = np.zeros((len(self.classes_), X.shape[1]))\n", " for i, c in enumerate(self.classes_):\n", " self.centroids_[i] = np.mean(X[y == c], axis=0)\n", " return self\n", "\n", " def predict(self, X):\n", " return self.classes_[np.argmin(cdist(X, self.centroids_), axis=1)]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_iris(return_X_y=True)\n", "X = StandardScaler().fit_transform(X)\n", "clf1 = NearestCentroid().fit(X, y)\n", "clf2 = skNearestCentroid().fit(X, y)\n", "assert np.allclose(clf1.centroids_, clf2.centroids_)\n", "pred1 = clf1.predict(X)\n", "pred2 = clf2.predict(X)\n", "assert np.array_equal(pred1, pred2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }