{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.spatial.distance import cdist\n", "from sklearn.datasets import load_breast_cancer\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.neighbors import NearestNeighbors as skNearestNeighbors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation 1\n", "- based on brute force\n", "- similar to scikit-learn algorithm='brute'" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class NearestNeighbors():\n", " def __init__(self, n_neighbors=5, radius=1.0):\n", " self.n_neighbors = n_neighbors\n", " self.radius = radius\n", "\n", " def fit(self, X):\n", " self._fit_X = X\n", " return self\n", "\n", " def kneighbors(self, X, n_neighbors=None):\n", " if n_neighbors is None:\n", " n_neighbors = self.n_neighbors\n", " dist_mat = cdist(X, self._fit_X)\n", " neigh_ind = np.argsort(dist_mat, axis=1)[:, :n_neighbors]\n", " dist = dist_mat[np.arange(dist_mat.shape[0])[:, np.newaxis], neigh_ind]\n", " return dist, neigh_ind\n", "\n", " def radius_neighbors(self, X, radius=None):\n", " if radius is None:\n", " radius = self.radius\n", " dist_mat = cdist(X, self._fit_X)\n", " neigh_ind_list = [np.where(d <= radius)[0] for d in dist_mat]\n", " dist_list = [d[neigh_ind_list[i]] for i, d in enumerate(dist_mat)]\n", " dist = np.empty(len(dist_list), dtype='object')\n", " dist[:] = dist_list\n", " neigh_ind = np.empty(len(neigh_ind_list), dtype='object')\n", " neigh_ind[:] = neigh_ind_list\n", " return dist, neigh_ind" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, _ = load_breast_cancer(return_X_y=True)\n", "X = StandardScaler().fit_transform(X)\n", "neigh1 = NearestNeighbors().fit(X)\n", "neigh2 = skNearestNeighbors().fit(X)\n", "dist1, neigh_ind1 = neigh1.kneighbors(X)\n", "dist2, neigh_ind2 = neigh2.kneighbors(X)\n", "assert np.allclose(dist1, dist2)\n", "assert np.array_equal(neigh_ind1, neigh_ind2)\n", "dist1, neigh_ind1 = neigh1.radius_neighbors(X, radius=5)\n", "dist2, neigh_ind2 = neigh2.radius_neighbors(X, radius=5)\n", "for d1, d2, n1, n2 in zip(dist1, dist2, neigh_ind1, neigh_ind2):\n", " ind1 = np.argsort(d1)\n", " ind2 = np.argsort(d2)\n", " assert np.allclose(d1[ind1], d2[ind2])\n", " assert np.array_equal(n1[ind1], n2[ind2])" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }