{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.preprocessing import KernelCenterer as skKernelCenterer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\tilde{K}_{ij} = (\\varphi(x_i) - \\frac{1}{n}\\sum_{r=1}^n{\\varphi(x_r)})^T(\\varphi(x_j) - \\frac{1}{n}\\sum_{r=1}^n{\\varphi(x_r)})$$\n", "$$= \\varphi(x_i)^T\\varphi(x_j) - \\frac{1}{n}\\sum_{r=1}^n{\\varphi(x_i)^T\\varphi(x_r)}\n", "- \\frac{1}{n}\\sum_{r=1}^n{\\varphi(x_r)^T\\varphi(x_j)} + \\frac{1}{n^2}\\sum_{r,s=1}^n{\\varphi(x_r)^T\\varphi(x_s)}$$\n", "$$= K_{ij} - \\frac{1}{n}\\sum_{r=1}^n{K_{ir}} - \\frac{1}{n}\\sum_{r=1}^n{K_{rj}} + \\frac{1}{n^2}\\sum_{r,s=1}^n{K_{rs}}$$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class KernelCenterer():\n", " def fit(self, K):\n", " n_samples = K.shape[0]\n", " self.K_fit_rows_ = np.sum(K, axis=0) / n_samples\n", " self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples\n", " return self\n", "\n", " def transform(self, K):\n", " Kt = (K - (np.sum(K, axis=1) / K.shape[1])[:, np.newaxis]\n", " - self.K_fit_rows_ + self.K_fit_all_)\n", " return Kt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def linear_kernel(X, Y=None):\n", " if Y is None:\n", " Y = X\n", " K = np.dot(X, Y.T)\n", " return K\n", "\n", "def rbf_kernel(X, Y=None, gamma=None):\n", " if Y is None:\n", " Y = X\n", " if gamma is None:\n", " gamma = 1 / X.shape[1]\n", " K = np.zeros((X.shape[0], Y.shape[0]))\n", " for i in range(X.shape[0]):\n", " for j in range(Y.shape[0]):\n", " K[i, j] = np.exp(-gamma * np.sum(np.square(X[i] - Y[j])))\n", " return K" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# definition\n", "X, _ = load_iris(return_X_y=True)\n", "X_train, X_test = X[:100], X[100:]\n", "X_mean = np.mean(X_train, axis=0)\n", "Xt_train = X_train - X_mean\n", "Xt_test = X_test - X_mean\n", "K_train = linear_kernel(X_train)\n", "K_test = linear_kernel(X_test, X_train)\n", "Kt_train = linear_kernel(Xt_train)\n", "Kt_test = linear_kernel(Xt_test, Xt_train)\n", "trans = KernelCenterer().fit(K_train)\n", "assert np.allclose(trans.transform(K_train), Kt_train)\n", "assert np.allclose(trans.transform(K_test), Kt_test)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# linear kernel\n", "X, _ = load_iris(return_X_y=True)\n", "X_train, X_test = X[:100], X[100:]\n", "K_train = linear_kernel(X_train)\n", "K_test = linear_kernel(X_test, X_train)\n", "trans1 = KernelCenterer().fit(K_train)\n", "trans2 = skKernelCenterer().fit(K_train)\n", "Kt1 = trans1.transform(K_train)\n", "Kt2 = trans2.transform(K_train)\n", "assert np.allclose(Kt1, Kt2)\n", "Kt1 = trans1.transform(K_test)\n", "Kt2 = trans2.transform(K_test)\n", "assert np.allclose(Kt1, Kt2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# rbf kernel\n", "X, _ = load_iris(return_X_y=True)\n", "X_train, X_test = X[:100], X[100:]\n", "K_train = rbf_kernel(X_train)\n", "K_test = rbf_kernel(X_test, X_train)\n", "trans1 = KernelCenterer().fit(K_train)\n", "trans2 = skKernelCenterer().fit(K_train)\n", "Kt1 = trans1.transform(K_train)\n", "Kt2 = trans2.transform(K_train)\n", "assert np.allclose(Kt1, Kt2)\n", "Kt1 = trans1.transform(K_test)\n", "Kt2 = trans2.transform(K_test)\n", "assert np.allclose(Kt1, Kt2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }