{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.datasets import load_iris\n",
    "from sklearn.preprocessing import MinMaxScaler as skMinMaxScaler"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "class MinMaxScaler():\n",
    "    def __init__(self, feature_range=(0, 1)):\n",
    "        self.feature_range = feature_range\n",
    "\n",
    "    def fit(self, X):\n",
    "        self.data_min_ = X.min(axis=0)\n",
    "        self.data_max_ = X.max(axis=0)\n",
    "        self.data_range_ = self.data_max_ - self.data_min_\n",
    "        self.scale_ = (self.feature_range[1] - self.feature_range[0]) / self.data_range_\n",
    "        return self\n",
    "\n",
    "    def transform(self, X):\n",
    "        return self.feature_range[0] + (X - self.data_min_) * self.scale_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, _ = load_iris(return_X_y=True)\n",
    "sc1 = MinMaxScaler().fit(X)\n",
    "sc2 = skMinMaxScaler().fit(X)\n",
    "assert np.allclose(sc1.data_min_, sc2.data_min_)\n",
    "assert np.allclose(sc1.data_max_, sc2.data_max_)\n",
    "assert np.allclose(sc1.data_range_, sc2.data_range_)\n",
    "assert np.allclose(sc1.scale_, sc2.scale_)\n",
    "Xt1 = sc1.transform(X)\n",
    "Xt2 = sc2.transform(X)\n",
    "assert np.allclose(Xt1, Xt2)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}