{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.preprocessing import RobustScaler as skRobustScaler" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class RobustScaler:\n", " def __init__(self, quantile_range=(25, 75)):\n", " self.quantile_range = quantile_range\n", "\n", " def fit(self, X):\n", " self.center_ = np.median(X, axis=0)\n", " quantiles = np.percentile(X, self.quantile_range, axis=0)\n", " self.scale_ = quantiles[1] - quantiles[0]\n", " return self\n", "\n", " def transform(self, X):\n", " return (X - self.center_) / self.scale_" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, _ = load_iris(return_X_y=True)\n", "sc1 = RobustScaler().fit(X)\n", "sc2 = skRobustScaler().fit(X)\n", "assert np.allclose(sc1.center_, sc2.center_)\n", "assert np.allclose(sc1.scale_, sc2.scale_)\n", "Xt1 = sc1.transform(X)\n", "Xt2 = sc2.transform(X)\n", "assert np.allclose(Xt1, Xt2)" ] } ], "metadata": { "kernelspec": { "display_name": "dev", "language": "python", "name": "dev" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }